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Preface to the Third Edition

The aim of this book, announced in the first edition, is to give a bird’s-
eye view of undergraduate mathematics and a glimpse of wider horizons.
The second edition aimed to broaden this view by including new chapters
on number theory and algebra, and to engage readers better by including
many more exercises. This third (and possibly last) edition aims to increase
breadth and depth, but also cohesion, by connecting topics that were previ-
ously strangers to each other, such as projective geometry and finite groups,
and analysis and combinatorics.

There are two new chapters, on simple groups and combinatorics, and
several new sections in old chapters. The new sections fill gaps and update
areas where there has been recent progress, such as the Poincaré conjec-
ture. The simple groups chapter includes some material on Lie groups,
thus redressing one of the omissions I regretted in the first edition of this
book. The coverage of group theory has now grown from 17 pages and 10
exercises in the first edition to 61 pages and 85 exercises in this one. As in
the second edition, exercises often amount to proofs of big theorems, bro-
ken down into small steps. In this way we are able to cover some famous
theorems, such as the Brouwer fixed point theorem and the simplicity of
A5, that would otherwise consume too much space.

Each chapter now begins with a “Preview” intended to orient the reader
with motivation, an outline of its contents and, where relevant, connections
to chapters that come before and after. I hope this will assist readers who
like to have an overview before plunging into the details, and also instruc-
tors looking for a path through the book that is short enough for a one-
semester course. Many different paths exist, at many different levels. Up
to Chapter 10, the level should be comfortable for most junior or senior
undergraduates; after that, the topics become more challenging, but also of
greater current interest.
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viii Preface to the Third Edition

All the figures have now been converted to electronic form, which has
enabled me to reduce some that were excessively large, and hence mitigate
the bloating that tends to occur in new editions.

Some of the new material on mechanics in Section 13.2 originally ap-
peared (in Italian) in a chapter I wrote for Volume II of La Matematica,
edited by Claudio Bartocci and Piergiorgio Odifreddi (Einaudi, Torino,
2008). Likewise, the new Section 8.6 contains material that appeared in
my book The Four Pillars of Geometry (Springer, 2005).

Finally, there are many improvements and corrections suggested to me
by readers. Special thanks go to France Dacar, Didier Henrion, David
Kramer, Nat Kuhn, Tristan Needham, Peter Ross, John Snygg, Paul Stan-
ford, Roland van der Veen, and Hung-Hsi Wu for these, and to my son
Robert and my wife, Elaine, for their tireless proofreading.

I also thank the University of San Francisco for giving me the opportu-
nity to teach the courses on which much of this book is based, and Monash
University for the use of their facilities while revising it.

John Stillwell
Monash University and the University of San Francisco

March 2010



Preface to the Second Edition

This edition has been completely retyped in LATEX, and many of the figures
redone using the PSTricks package, to improve accuracy and make revision
easier in the future. In the process, several substantial additions have been
made.

• There are three new chapters, on Chinese and Indian number theory,
on hypercomplex numbers, and on algebraic number theory. These
fill some gaps in the first edition and give more insight into later
developments.

• There are many more exercises. This, I hope, corrects a weakness of
the first edition, which had too few exercises, and some that were too
hard. Some of the monster exercises in the first edition, such as the
one in Section 2.2 comparing volume and surface area of the icosa-
hedron and dodecahedron, have now been broken into manageable
parts. Nevertheless, there are still a few challenging questions for
those who want them.

• Commentary has been added to the exercises to explain how they
relate to the preceding section, and also (when relevant) how they
foreshadow later topics.

• The index has been given extra structure to make searching easier.
To find Euler’s work on Fermat’s last theorem, for example, one no
longer has to look at 41 different pages under “Euler.” Instead, one
can find the entry “Euler, and Fermat’s last theorem” in the index.

• The bibliography has been redone, giving more complete publica-
tion data for many works previously listed with little or none. I have
found the online catalogue of the Burndy Library of the Dibner In-
stitute at MIT helpful in finding this information, particularly for
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x Preface to the Second Edition

early printed works. For recent works I have made extensive use of
MathSciNet, the online version of Mathematical Reviews.

There are also many small changes, some prompted by recent mathe-
matical events, such as the proof of Fermat’s last theorem. (Fortunately,
this one did not force a major rewrite, because the background theory of
elliptic curves was covered in the first edition.)

I thank the many friends, colleagues, and reviewers who drew my at-
tention to faults in the first edition, and helped me in the process of revision.
Special thanks go to the following people.

• My sons, Michael and Robert, who did most of the typing, and my
wife, Elaine, who did a great deal of the proofreading.

• My students in Math 310 at the University of San Francisco, who
tried out many of the exercises, and to Tristan Needham, who invited
me to USF in the first place.

• Mark Aarons, David Cox, Duane DeTemple, Wes Hughes, Christine
Muldoon, Martin Muldoon, and Abe Shenitzer, for corrections and
suggestions.

John Stillwell
Monash University
Victoria, Australia

2001



Preface to the First Edition

One of the disappointments experienced by most mathematics students is
that they never get a course on mathematics. They get courses in calculus,
algebra, topology, and so on, but the division of labor in teaching seems to
prevent these different topics from being combined into a whole. In fact,
some of the most important and natural questions are stifled because they
fall on the wrong side of topic boundary lines. Algebraists do not discuss
the fundamental theorem of algebra because “that’s analysis” and analysts
do not discuss Riemann surfaces because “that’s topology,” for example.
Thus if students are to feel they really know mathematics by the time they
graduate, there is a need to unify the subject.

This book aims to give a unified view of undergraduate mathematics by
approaching the subject through its history. Since readers should have had
some mathematical experience, certain basics are assumed and the mathe-
matics is not developed formally as in a standard text. On the other hand,
the mathematics is pursued more thoroughly than in most general histories
of mathematics, because mathematics is our main goal and history only
the means of approaching it. Readers are assumed to know basic calcu-
lus, algebra, and geometry, to understand the language of set theory, and to
have met some more advanced topics such as group theory, topology, and
differential equations. I have tried to pick out the dominant themes of this
body of mathematics, and to weave them together as strongly as possible
by tracing their historical development.

In doing so, I have also tried to tie up some traditional loose ends. For
example, undergraduates can solve quadratic equations. Why not cubics?
They can integrate 1/

√
1 − x2 but are told not to worry about 1/

√
1 − x4.

Why? Pursuing the history of these questions turns out to be very fruitful,
leading to a deeper understanding of complex analysis and algebraic ge-
ometry, among other things. Thus I hope that the book will be not only a
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xii Preface to the First Edition

bird’s-eye view of undergraduate mathematics but also a glimpse of wider
horizons.

Some historians of mathematics may object to my anachronistic use of
modern notation and (fairly) modern interpretations of classical mathemat-
ics. This has certain risks, such as making the mathematics look simpler
than it really was in its time, but the risk of obscuring ideas by cumber-
some, unfamiliar notation is greater, in my opinion. Indeed, it is practically
a truism that mathematical ideas generally arise before there is notation or
language to express them clearly, and that ideas are implicit before they
become explicit. Thus the historian, who is presumably trying to be both
clear and explicit, often has no choice but to be anachronistic when tracing
the origins of ideas.

Mathematicians may object to my choice of topics, since a book of
this size is necessarily incomplete. My preference has been for topics with
elementary roots and strong interconnections. The major themes are the
concepts of number and space: their initial separation in Greek mathemat-
ics, their union in the geometry of Fermat and Descartes, and the fruits
of this union in calculus and analytic geometry. Certain important topics
of today, such as Lie groups and functional analysis, are omitted on the
grounds of their comparative remoteness from elementary roots. Others,
such as probability theory, are mentioned only briefly, as most of their de-
velopment seems to have occurred outside the mainstream. For any other
omissions or slights I can only plead personal taste and a desire to keep the
book within the bounds of a one- or two-semester course.

The book has grown from notes for a course given to senior undergrad-
uates at Monash University over the past few years. The course was of
half-semester length and a little over half the book was covered (Chapters
1–11 one year and Chapters 5–15 another year). Naturally I will be de-
lighted if other universities decide to base a course on the book. There is
plenty of scope for custom course design by varying the periods or topics
discussed. However, the book should serve equally well as general reading
for the student or professional mathematician.

Biographical notes have been inserted at the end of each chapter, partly
to add human interest but also to help trace the transmission of ideas from
one mathematician to another. These notes have been distilled mainly from
secondary sources, the Dictionary of Scientific Biography (DSB) normally
being used in addition to the sources cited explicitly. I have followed the
DSB’s practice of describing the subject’s mother by her maiden name.



Preface to the First Edition xiii

References are cited in the name (year) form, for example, Newton (1687)
refers to the Principia, and the references are collected at the end of the
book.

The manuscript has been read carefully and critically by John Crossley,
Jeremy Gray, George Odifreddi, and Abe Shenitzer. Their comments have
resulted in innumerable improvements, and any flaws remaining may be
due to my failure to follow all their advice. To them, and to Anne-Marie
Vandenberg for her usual excellent typing, I offer my sincere thanks.

John Stillwell
Monash University
Victoria, Australia

1989
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5.5 Pell’s Equation in Bhâskara II . . . . . . . . . . . . . . . 78
5.6 Rational Triangles . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Biographical Notes: Brahmagupta and Bhâskara . . . . . . 84
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1

The Theorem of Pythagoras

Preview

The Pythagorean theorem is the most appropriate starting point for a book
on mathematics and its history. It is not only the oldest mathematical the-
orem, but also the source of three great streams of mathematical thought:
numbers, geometry, and infinity.

The number stream begins with Pythagorean triples; triples of integers
(a, b, c) such that a2 + b2 = c2. The geometry stream begins with the
interpretation of a2, b2, and c2 as squares on the sides of a right-angled
triangle with sides a, b, and hypotenuse c. The infinity stream begins with
the discovery that

√
2, the hypotenuse of the right-angled triangle whose

other sides are of length 1, is an irrational number.
These three streams are followed separately through Greek mathemat-

ics in Chapters 2, 3, and 4. The geometry stream resurfaces in Chapter
7, where it takes an algebraic turn. The basis of algebraic geometry is
the possibility of describing points by numbers—their coordinates—and
describing each curve by an equation satisfied by the coordinates of its
points.

This fusion of numbers with geometry is briefly explored at the end of
this chapter, where we use the formula a2 + b2 = c2 to define the concept
of distance in terms of coordinates.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 1
DOI 10.1007/978-1-4419-6053-5 1, c© Springer Science+Business Media, LLC 2010



2 1 The Theorem of Pythagoras

1.1 Arithmetic and Geometry

If there is one theorem that is known to all mathematically educated people,
it is surely the theorem of Pythagoras. It will be recalled as a property of
right-angled triangles: the square of the hypotenuse equals the sum of the
squares of the other two sides (Figure 1.1). The “sum” is of course the sum
of areas and the area of a square of side l is l2, which is why we call it “l
squared.” Thus the Pythagorean theorem can also be expressed by

a2 + b2 = c2, (1)

where a, b, c are the lengths shown in Figure 1.1.

a

b

c

Figure 1.1: The Pythagorean theorem

Conversely, a solution of (1) by positive numbers a, b, c can be re-
alized by a right-angled triangle with sides a, b and hypotenuse c. It is
clear that we can draw perpendicular sides a, b for any given positive num-
bers a, b, and then the hypotenuse c must be a solution of (1) to satisfy
the Pythagorean theorem. This converse view of the theorem becomes
interesting when we notice that (1) has some very simple solutions. For
example,

(a, b, c) = (3, 4, 5), (32 + 42 = 9 + 16 = 25 = 52),
(a, b, c) = (5, 12, 13), (52 + 122 = 25 + 144 = 169 = 132).

It is thought that in ancient times such solutions may have been used for
the construction of right angles. For example, by stretching a closed rope
with 12 equally spaced knots one can obtain a (3, 4, 5) triangle with right
angle between the sides 3, 4, as seen in Figure 1.2.
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Figure 1.2: Right angle by rope stretching

Whether or not this is a practical method for constructing right angles,
the very existence of a geometrical interpretation of a purely arithmetical
fact like

32 + 42 = 52

is quite wonderful. At first sight, arithmetic and geometry seem to be com-
pletely unrelated realms. Arithmetic is based on counting, the epitome of a
discrete (or digital) process. The facts of arithmetic can be clearly under-
stood as outcomes of certain counting processes, and one does not expect
them to have any meaning beyond this. Geometry, on the other hand, in-
volves continuous rather than discrete objects, such as lines, curves, and
surfaces. Continuous objects cannot be built from simple elements by dis-
crete processes, and one expects to see geometrical facts rather than arrive
at them by calculation.

The Pythagorean theorem was the first hint of a hidden, deeper rela-
tionship between arithmetic and geometry, and it has continued to hold a
key position between these two realms throughout the history of mathe-
matics. This has sometimes been a position of cooperation and sometimes
one of conflict, as followed the discovery that

√
2 is irrational (see Section

1.5). It is often the case that new ideas emerge from such areas of tension,
resolving the conflict and allowing previously irreconcilable ideas to in-
teract fruitfully. The tension between arithmetic and geometry is, without
doubt, the most profound in mathematics, and it has led to the most pro-
found theorems. Since the Pythagorean theorem is the first of these, and
the most influential, it is a fitting subject for our first chapter.
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1.2 Pythagorean Triples

Pythagoras lived around 500 bce (see Section 1.7), but the story of the
Pythagorean theorem begins long before that, at least as far back as 1800
bce in Babylonia. The evidence is a clay tablet, known as Plimpton 322,
which systematically lists a large number of integer pairs (a, c) for which
there is an integer b satisfying

a2 + b2 = c2. (1)

A translation of this tablet, together with its interpretation and historical
background, was first published by Neugebauer and Sachs (1945) (for a
more recent discussion, see van der Waerden (1983), p. 2). Integer triples
(a, b, c) satisfying (1)—for example, (3, 4, 5), (5, 12, 13), (8, 15, 17)—are
now known as Pythagorean triples. Presumably the Babylonians were
interested in them because of their interpretation as sides of right-angled
triangles, though this is not known for certain. At any rate, the problem
of finding Pythagorean triples was considered interesting in other ancient
civilizations that are known to have possessed the Pythagorean theorem;
van der Waerden (1983) gives examples from China (between 200 bce and
220 ce) and India (between 500 and 200 bce). The most complete under-
standing of the problem in ancient times was achieved in Greek mathemat-
ics, between Euclid (around 300 bce) and Diophantus (around 250 ce).

We now know that the general formula for generating Pythagorean
triples is

a = (p2 − q2)r, b = 2qpr, c = (p2 + q2)r.

It is easy to see that a2 + b2 = c2 when a, b, c are given by these formulas,
and of course a, b, c will be integers if p, q, r are. Even though the Baby-
lonians did not have the advantage of our algebraic notation, it is plausible
that this formula, or the special case

a = p2 − q2, b = 2pq, c = p2 + q2

(which gives all solutions a, b, c, without common divisor) was the basis
for the triples they listed. Less general formulas have been attributed to
Pythagoras himself (around 500 bce) and Plato (see Heath (1921), Vol. 1,
pp. 80–81); a solution equivalent to the general formula is given in Euclid’s
Elements, Book X (lemma following Prop. 28). As far as we know, this
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is the first statement of the general solution and the first proof that it is
general. Euclid’s proof is essentially arithmetical, as one would expect
since the problem seems to belong to arithmetic.

However, there is a far more striking solution, which uses the geomet-
ric interpretation of Pythagorean triples. This emerges from the work of
Diophantus, and it is described in the next section.

Exercises

The integer pairs (a, c) in Plimpton 322 are

a c
119 169

3367 4825
4601 6649

12709 18541
65 97

319 481
2291 3541

799 1249
481 769

4961 8161
45 75

1679 2929
161 289

1771 3229
56 106

Figure 1.3: Pairs in Plimpton 322

1.2.1 For each pair (a, c) in the table, compute c2 − a2, and confirm that it is a
perfect square, b2. (Computer assistance is recommended.)

You should notice that in most cases b is a “rounder” number than a or c.

1.2.2 Show that most of the numbers b are divisible by 60, and that the rest are
divisible by 30 or 12.

Such numbers were in fact exceptionally “round” for the Babylonians, because 60
was the base for their system of numerals. It looks like they computed Pythagorean
triples starting with the “round” numbers b and that the column of b values later
broke off the tablet.

Euclid’s formula for Pythagorean triples comes out of his theory of divisibil-
ity, which we shall take up in Section 3.3. Divisibility is also involved in some
basic properties of Pythagorean triples, such as their evenness or oddness.
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1.2.3 Show that any integer square leaves remainder 0 or 1 on division by 4.

1.2.4 Deduce from Exercise 1.2.3 that if (a, b, c) is a Pythagorean triple then a
and b cannot both be odd.

1.3 Rational Points on the Circle

We know from Section 1.1 that a Pythagorean triple (a, b, c) can be realized
by a triangle with sides a, b and hypotenuse c. This in turn yields a triangle
with fractional (or rational) number sides x = a/c, y = b/c and hypotenuse
1. All such triangles can be fitted inside the circle of radius 1 as shown in
Figure 1.4. The sides x and y become what we now call the coordinates of

X
O

Y

x

y
1

P

Figure 1.4: The unit circle

the point P on the circle. The Greeks did not use this language; however,
they could derive the relationship between x and y we call the equation of
the circle. Since

a2 + b2 = c2 (1)

we have (a
c

)2
+

(
b
c

)2
= 1,

so the relationship between x = a/c and y = b/c is

x2 + y2 = 1. (2)
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Consequently, finding integer solutions of (1) is equivalent to finding ratio-
nal solutions of (2), or finding rational points on the curve (2).

Such problems are now called Diophantine, after Diophantus, who was
the first to deal with them seriously and successfully. Diophantine equa-
tions have acquired the more special connotation of equations for which
integer solutions are sought, although Diophantus himself sought only ra-
tional solutions. (There is an interesting open problem that turns on this
distinction. Matiyasevich (1970) proved that there is no algorithm for de-
ciding which polynomial equations have integer solutions. It is not known
whether there is an algorithm for deciding which polynomial equations
have rational solutions.)

Most of the problems solved by Diophantus involve quadratic or cubic
equations, usually with one obvious trivial solution. Diophantus used the
obvious solution as a stepping stone to the nonobvious, but no account
of his method survived. It was ultimately reconstructed by Fermat and
Newton in the 17th century, and this so-called chord–tangent construction
will be considered later. Here, we need it only for the equation x2+ y2 = 1,
which is an ideal showcase for the method in its simplest form.

X
O

Y

1Q

R

Figure 1.5: Construction of rational points

A trivial solution of this equation is x = −1, y = 0, which is the point
Q on the unit circle (Figure 1.5). After a moment’s thought, one realizes
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that a line through Q, with rational slope t,

y = t(x + 1) (3)

will meet the circle at a second rational point R. This is because substitu-
tion of y = t(x + 1) in x2 + y2 = 1 gives a quadratic equation with rational
coefficients and one rational solution (x = −1); hence the second solution
must also be a rational value of x. But then the y value of this point will
also be rational, since t and x will be rational in (3). Conversely, the chord
joining Q to any other rational point R on the circle will have a rational
slope. Thus by letting t run through all rational values, we find all rational
points R � Q on the unit circle.

What are these points? We find them by solving the equations just
discussed. Substituting y = t(x + 1) in x2 + y2 = 1 gives

x2 + t2(x + 1)2 = 1,

or
x2(1 + t2) + 2t2x + (t2 − 1) = 0.

This quadratic equation in x has solutions −1 and (1 − t2)/(1 + t2). The
nontrivial solution x = (1 − t2)/(1 + t2), when substituted in (3), gives
y = 2t/(1 + t2).

Exercises

The parameter t in the pair
(

1−t2

1+t2 ,
2t

1+t2

)
runs through all rational numbers if

t = q/p and p, q run through all pairs of integers.

1.3.1 Deduce that if (a, b, c) is any Pythagorean triple then

a
c
=

p2 − q2

p2 + q2
,

b
c
=

2pq
p2 + q2

for some integers p and q.

1.3.2 Use Exercise 1.3.1 to prove Euclid’s formula for Pythagorean triples.

The triples (a, b, c) in Plimpton 322 seem to have been computed to provide
right-angled triangles covering a range of shapes—their angles actually follow an
increasing sequence in roughly equal steps. This raises the question, can the shape
of any right-angled triangle be approximated by a Pythagorean triple?

1.3.3 Show that any right-angled triangle with hypotenuse 1 may be approxi-
mated arbitrarily closely by one with rational sides.
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Some important information may be gleaned from Diophantus’s method if
we compare the angle at O in Figure 1.4 with the angle at Q in Figure 1.5. The
two angles are shown in Figure 1.6, and hopefully you know from high school
geometry the relation between them.

X
O

Y

Q 1θ

t

Figure 1.6: Angles in a circle

1.3.4 Use Figure 1.6 to show that t = tan θ2 and

cos θ =
1 − t2

1 + t2
, sin θ =

2t
1 + t2

.

1.4 Right-Angled Triangles

It is high time we looked at the Pythagorean theorem from the traditional
point of view, as a theorem about right-angled triangles; however, we shall
be rather brief about its proof. It is not known how the theorem was first
proved, but probably it was by simple manipulations of area, perhaps sug-
gested by rearrangement of floor tiles. Just how easy it can be to prove
the Pythagorean theorem is shown by Figure 1.7, given by Heath (1925)
in his edition of Euclid’s Elements, Vol. 1, p. 354. Each large square con-
tains four copies of the given right-angled triangle. Subtracting these four
triangles from the large square leaves, on the one hand (Figure 1.7, left),
the sum of the squares on the two sides of the triangle. On the other hand
(right), it also leaves the square on the hypotenuse. This proof, like the
hundreds of others that have been given for the Pythagorean theorem, rests
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on certain geometric assumptions. It is in fact possible to transcend geo-
metric assumptions by using numbers as the foundation for geometry, and
the Pythagorean theorem then becomes true almost by definition, as an
immediate consequence of the definition of distance (see Section 1.6).

Figure 1.7: Proof of the Pythagorean theorem

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we shall see how this conflict arose.

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?
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Euclid’s first proof of the Pythagorean theorem, in Book I of the Elements, is
also based on area. It depends only on the fact that triangles with the same base
and height have equal area, though it involves a rather complicated figure. In Book
VI, Proposition 31, he gives another proof, based on similar triangles (Figure 1.9).

a b

c1 c2

Figure 1.9: Another proof of the Pythagorean theorem

1.4.2 Show that the three triangles in Figure 1.9 are similar, and hence prove the
Pythagorean theorem by equating ratios of corresponding sides.

1.5 Irrational Numbers

We have mentioned that the Babylonians, although probably aware of the
geometric meaning of the Pythagorean theorem, devoted most of their at-
tention to the whole-number triples it had brought to light, the Pythagorean
triples. Pythagoras and his followers were even more devoted to whole
numbers. It was they who discovered the role of numbers in musical har-
mony: dividing a vibrating string in two raises its pitch by an octave, di-
viding in three raises the pitch another fifth, and so on. This great discov-
ery, the first clue that the physical world might have an underlying mathe-
matical structure, inspired them to seek numerical patterns, which to them
meant whole-number patterns, everywhere. Imagine their consternation
when they found that the Pythagorean theorem led to quantities that were
not numerically computable. They found lengths that were incommensu-
rable, that is, not measurable as integer multiples of the same unit. The
ratio between such lengths is therefore not a ratio of whole numbers, hence
in the Greek view not a ratio at all, or irrational.

The incommensurable lengths discovered by the Pythagoreans were
the side and diagonal of the unit square. It follows immediately from the
Pythagorean theorem that



12 1 The Theorem of Pythagoras

(diagonal)2 = 1 + 1 = 2.

Hence if the diagonal and side are in the ratio m/n (where m and n can be
assumed to have no common divisor), we have

m2/n2 = 2,

whence
m2 = 2n2.

The Pythagoreans were interested in odd and even numbers, so they prob-
ably observed that the latter equation, which says that m2 is even, also
implies that m is even, say m = 2p. But if

m = 2p,

then
2n2 = m2 = 4p2;

hence
n2 = 2p2,

which similarly implies that n is even, contrary to the hypothesis that m and
n have no common divisor. (This proof is in Aristotle’s Prior Analytics. An
alternative, more geometric, proof is mentioned in Section 3.4.)

This discovery had profound consequences. Legend has it that the
first Pythagorean to make the result public was drowned at sea (see Heath
(1921), Vol. 1, pp. 65, 154). It led to a split between the theories of num-
ber and space that was not healed until the 19th century (if then, some
believe). The Pythagoreans could not accept

√
2 as a number, but no one

could deny that it was the diagonal of the unit square. Consequently, ge-
ometrical quantities had to be treated separately from numbers or, rather,
without mentioning any numbers except rationals. Greek geometers thus
developed ingenious techniques for precise handling of arbitrary lengths in
terms of rationals, known as the theory of proportions and the method of
exhaustion.

When Dedekind reconsidered these techniques in the 19th century, he
realized that they provided an arithmetical interpretation of irrational quan-
tities after all (Chapter 4). It was then possible, as Hilbert (1899) showed,
to reconcile arithmetic with geometry. The key role of the Pythagorean
theorem in this reconciliation is described in the next section.
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Exercises

The crucial step in the proof that
√

2 is irrational is showing that m2 even
implies m is even or, equivalently, that m odd implies m2 odd. It is worth taking a
closer look at why this is true.

1.5.1 Writing an arbitrary odd number m in the form 2q + 1, for some integer q,
show that m2 also has the form 2r + 1, which shows that m2 is also odd.

You probably did some algebra like this in Exercise 1.2.3, but if not, here is
your chance:

1.5.2 Show that the square of 2q+1 is in fact of the form 4s+1, and hence explain
why every integer square leaves remainder 0 or 1 on division by 4.

1.6 The Definition of Distance

The numerical interpretation of irrationals gave each length a numerical
measure and hence made it possible to give coordinates x, y to each point
P on the plane. The simplest way is to take a pair of perpendicular lines
(axes) OX, OY and let x, y be the lengths of the perpendiculars from P to
OX and OY respectively (Figure 1.10). Geometric properties of P are then
reflected by arithmetical relations between x and y. This opens up the pos-
sibility of analytic geometry, whose development is discussed in Chapter
7. Here we want only to see how coordinates give a precise meaning to the
basic geometric notion of distance.

X

Y

O

P

x

x

y y

Figure 1.10: Perpendicular axes
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We have already said that the perpendicular distances from P to the
axes are the numbers x, y. The distance between points on the same per-
pendicular to an axis should therefore be defined as the difference between
the appropriate coordinates. In Figure 1.11 this is x2− x1 for RQ and y2−y1
for PQ. But then the Pythagorean theorem tells us that the distance PR is

X

Y

O

R(x1, y1) Q

P(x2, y2)

x2 − x1

y2 − y1

Figure 1.11: Defining distance

given by

PR2 = RQ2 + PQ2 = (x2 − x1)2 + (y2 − y1)2.

That is,

PR =
√

(x2 − x1)2 + (y2 − y1)2. (1)

Since this construction applies to arbitrary points P,R in the plane, we now
have a general formula for the distance between two points.

We derived this formula as a consequence of geometric assumptions,
in particular the Pythagorean theorem. Although this makes geometry
amenable to arithmetical calculation—a very useful situation, to be sure—
it does not say that geometry is arithmetic. In the early days of analytic
geometry, the latter was a very heretical view (see Section 7.6). Eventu-
ally, however, Hilbert (1899) realized it could be made a fact by taking (1)
as a definition of distance. Of course, all other geometric concepts have to
be defined in terms of numbers, too, but this boils down to defining a point,
which is simply an ordered pair (x, y) of numbers. Equation (1) then gives
the distance between the points (x1, y1) and (x2, y2).
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When geometry is reconstructed in this way, all geometric facts be-
come facts about numbers (though they do not necessarily become easier
to see). In particular, the Pythagorean theorem becomes true by definition
since it has been built into the definition of distance. This is not to say
that the Pythagorean theorem ultimately is trivial. Rather, it shows that the
Pythagorean theorem is precisely what is needed to interpret arithmetical
facts as geometry.

I mention these more recent ideas only to update the Pythagorean the-
orem and to give a precise statement of its power to transform arithmetic
into geometry. In ancient Greek times, geometry was based much more on
seeing than on calculation. We shall see in the next chapter how the Greeks
managed to build geometry on the basis of visually evident facts.

Exercises

Most mathematicians today are more familiar with coordinates than tradi-
tional geometry, yet certain theorems of analytic geometry are seldom proved,
because they seem visually obvious. A good example is what Hilbert (1899)
calls additivity of segments: if A, B, C are points in that order on a line, then
AB + BC = AC.

1.6.1 By suitably naming the coordinates for A, B, and C, show that the equation
AB + BC = AC is equivalent to

√
x2

1 + y
2
1 +

√
x2

2 + y
2
2 =

√
(x1 + x2)2 + (y1 + y2)2, (*)

where x1y2 = y1x2. Hint: It is convenient to let B be the origin.

1.6.2 Prove (*) by proving an equivalent rational equation obtained by squaring
twice and using x1y2 = y1x2.

It should be stressed that Hilbert (1899) is concerned not only with defining
geometric concepts in terms of coordinates, but also with the reverse process: set-
ting up geometric assumptions from which coordinates may be rigorously derived.
There is more about this in Sections 2.1 and 20.7.

1.7 Biographical Notes: Pythagoras

Very little is known for certain about Pythagoras, although he figures in
many legends. No documents have survived from the period in which he
lived, so we have to rely on stories that were passed down for several cen-
turies before being recorded. It appears that he was born on Samos, a Greek
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island near the coast of what is now Turkey, around 580 bce. He traveled
to the nearby mainland town of Miletus, where he learned mathematics
from Thales (624–547 bce), traditionally regarded as the founder of Greek
mathematics. Pythagoras also traveled to Egypt and Babylon, where he
presumably picked up additional mathematical ideas. Around 540 bce he
settled in Croton, a Greek colony in what is now southern Italy.

There he founded a school whose members later became known as the
Pythagoreans. The school’s motto was “All is number,” and the Pythagore-
ans tried to bring the realms of science, religion, and philosophy all under
the rule of number. The very word mathematics (“that which is learned”)
is said to be a Pythagorean invention. The school imposed a strict code
of conduct on its members, which included secrecy, vegetarianism, and a
curious taboo on the eating of beans. The code of secrecy meant that math-
ematical results were considered to be the property of the school, and their
individual discoverers were not identified to outsiders. Because of this, we
do not know who discovered the Pythagorean theorem, the irrationality of√

2, or other arithmetical results that will be mentioned in Chapter 3.
As mentioned in Section 1.5, the most notable scientific success of the

Pythagorean school was the explanation of musical harmony in terms of
whole-number ratios. This success inspired the search for a numerical law
governing the motions of planets, a “harmony of the spheres.” Such a law
probably cannot be expressed in terms that the Pythagoreans would have
accepted; nevertheless, it seems reasonable to view the expansion of the
number concept to meet the needs of geometry (and hence mechanics) as a
natural extension of the Pythagorean program. In this sense, Newton’s law
of gravitation (Section 13.3) expresses the harmony that the Pythagoreans
were looking for. Even in the strictest sense, Pythagoreanism is very much
alive today. With the digital computer, digital audio, and digital video cod-
ing everything, at least approximately, into sequences of whole numbers,
we are closer than ever to a world in which “all is number.”

Whether the complete rule of number is wise remains to be seen. It is
said that when the Pythagoreans tried to extend their influence into politics
they met with popular resistance. Pythagoras fled, but he was murdered in
nearby Metapontum in 497 bce.
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Greek Geometry

Preview

Geometry was the first branch of mathematics to become highly developed.
The concepts of “theorem” and “proof” originated in geometry, and most
mathematicians until recent times were introduced to their subject through
the geometry in Euclid’s Elements.

In the Elements one finds the first attempt to derive theorems from sup-
posedly self-evident statements called axioms. Euclid’s axioms are incom-
plete and one of them, the so-called parallel axiom, is not as obvious as
the others. Nevertheless, it took over 2000 years to produce a clearer foun-
dation for geometry.

The climax of the Elements is the investigation of the regular polyhe-
dra, five symmetric figures in three-dimensional space. The five regular
polyhedra make several appearances in mathematical history, most impor-
tantly in the theory of symmetry—group theory—discussed in Chapters 19
and 23.

The Elements contains not only proofs but also many constructions, by
ruler and compass. However, three constructions are conspicuous by their
absence: duplication of the cube, trisection of the angle, and squaring the
circle. These problems were not properly understood until the 19th century,
when they were resolved (in the negative) by algebra and analysis.

The only curves in the Elements are circles, but the Greeks studied
many other curves, such as the conic sections. Again, many problems that
the Greeks could not solve were later clarified by algebra. In particular,
curves can be classified by degree, and the conic sections are the curves of
degree 2, as we will see in Chapter 7.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 17
DOI 10.1007/978-1-4419-6053-5 2, c© Springer Science+Business Media, LLC 2010
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2.1 The Deductive Method

He was 40 years old before he looked on Geometry; which
happened accidentally. Being in a Gentleman’s Library, Eu-
clid’s Elements lay open, and ’twas the 47 El. libri I. He read
the Proposition. By G—–sayd he (he would now and then
sweare an emphaticall Oath by way of emphasis) this is im-
possible! So he reads the Demonstration of it, which referred
him back to such a Proposition; which proposition he read.
That referred him back to another, which he also read . . . that
at last he was demonstratively convinced of that trueth. This
made him in love with Geometry.

This quotation about the philosopher Thomas Hobbes (1588–1679),
from Aubrey’s Brief Lives, beautifully captures the force of Greece’s most
important contribution to mathematics, the deductive method. (The propo-
sition mentioned, incidentally, is the Pythagorean theorem.)

We have already seen that significant results were known before the pe-
riod of classical Greece, but the Greeks were the first to construct mathe-
matics by deduction from previously established results, resting ultimately
on the most evident possible statements, called axioms. Thales (624–547
bce) is thought to be the originator of this method (see Heath (1921),
p. 128), and by 300 bce it had become so sophisticated that Euclid’s El-
ements set the standard for mathematical rigor until the 19th century. The
Elements was in fact too subtle for most mathematicians, let alone their stu-
dents, so that in time Euclid’s geometry was boiled down to the simplest
and driest propositions about straight lines, triangles, and circles. This
part of the Elements is based on the following axioms (in the translation of
Heath (1925), p. 154), which Euclid called postulates and common notions.

Postulates

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.
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5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on that side on which are the angles less than the
two right angles.

Common Notions

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

It appears that Euclid’s intention was to deduce geometric propositions
from visually evident statements (the postulates) using evident principles
of logic (the common notions). Actually, he often made unconscious use
of visually plausible assumptions that are not among his postulates. His
very first proposition used the unstated assumption that two circles meet
if the center of each is on the circumference of the other (Heath (1925),
p. 242). Nevertheless, such flaws were not noticed until the 19th century,
and they were rectified by Hilbert (1899). By themselves, they probably
would not have been enough to end the Elements’ run of 22 centuries as
a leading textbook. The Elements was overthrown by more serious math-
ematical upheavals in the 19th century. The so-called non-Euclidean ge-
ometries, using alternatives to Euclid’s fifth postulate (the parallel axiom),
developed to the point where the old axioms could no longer be considered
self-evident (see Chapter 18). At the same time, the concept of number
matured to the point where irrational numbers became acceptable, and in-
deed preferable to intuitive geometric concepts, in view of the doubts about
what the self-evident truths of geometry really were.

The outcome was a more adaptable language for geometry in which
“points,” “lines,” and so on, could be defined, usually in terms of numbers,
so as to suit the type of geometry under investigation. Such a develop-
ment was long overdue, because even in Euclid’s time the Greeks were
investigating curves more complicated than circles, which did not fit con-
veniently in Euclid’s system. Descartes (1637) introduced the coordinate
method, which gives a single framework for handling both Euclid’s geom-
etry and higher curves (see Chapter 7), but it was not at first realized that
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coordinates allowed geometry to be entirely rebuilt on numerical founda-
tions.

The comparatively trivial step (for us) of passing to axioms about num-
bers from axioms about points had to wait until the 19th century, when
geometric axioms about points lost authority and number-theoretic axioms
gained it. We shall say more about these developments later (and of prob-
lems with the authority of axioms in general, which arose in the 20th cen-
tury). For the remainder of this chapter we shall look at some important
nonelementary topics in Greek geometry, using the coordinate framework
where convenient.

Exercises

Euclid’s Common Notions 1 and 4 define what we now call an equivalence
relation, which is not necessarily the equality relation. In fact, the kind of relation
Euclid had in mind was equality in some geometric quantity such as length or
angle (but not necessarily equality in all respects—the latter is what he meant by
“coinciding”). An equivalence relation � is normally defined by three properties.
For any a, b and c:

a � a, (reflexive)

a � b =⇒ b � a, (symmetric)

a � b and b � c =⇒ a � c. (transitive)

2.1.1 Explain how Common Notions 1 and 4 may be interpreted as the transitive
and reflexive properties. Note that the natural way to write Common Notion
1 symbolically is slightly different from the statement of transitivity above.

2.1.2 Show that the symmetric property follows from Euclid’s Common Notions
1 and 4.

Hilbert (1899) took advantage of Euclid’s Common Notions 1 and 4 in his
rectification of Euclid’s axiom system. He defined equality of length by postulat-
ing a transitive and reflexive relation on line segments, and stated transitivity in
the style of Euclid, so that the symmetric property was a consequence.

2.2 The Regular Polyhedra

Greek geometry is virtually complete as far as the elementary properties
of plane figures are concerned. It is fair to say that only a handful of
interesting elementary propositions about triangles and circles have been
discovered since Euclid’s time. Solid geometry is much more challenging,
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even today, so it is understandable that it was left in a less complete state
by the Greeks. Nevertheless, they made some very impressive discoveries
and managed to complete one of the most beautiful chapters in solid ge-
ometry, the enumeration of the regular polyhedra. The five possible regular
polyhedra are shown in Figure 2.1.

Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Figure 2.1: The regular polyhedra

Each polyhedron is convex and is bounded by a number of congruent
polygonal faces, the same number of faces meet at each vertex, and in each
face all the sides and angles are equal, hence the term regular polyhedron.
A regular polyhedron is a spatial figure analogous to a regular polygon in
the plane. But whereas there are regular polygons with any number n ≥ 3
of sides, there are only five regular polyhedra.

This fact is easily proved and may go back to the Pythagoreans (see, for
example Heath (1921), p. 159). One considers the possible polygons that
can occur as faces, their angles, and the numbers of them that can occur at
a vertex. For a 3-gon (triangle) the angle is π/3, so three, four, or five can
occur at a vertex, but six cannot, as this would give a total angle 2π and
the vertex would be flat. For a 4-gon the angle is π/2, so three can occur



22 2 Greek Geometry

at a vertex, but not four. For a 5-gon the angle is 3π/5, so three can occur
at a vertex, but not four. For a 6-gon the angle is 2π/3, so not even three
can occur at a vertex. But at least three faces must meet at each vertex of
a polyhedron, so 6-gons (and, similarly, 7-gons, 8-gons, . . . ) cannot occur
as faces of a regular polyhedron. This leaves only the five possibilities just
listed, which correspond to the five known regular polyhedra.

But do we really know that these five exist? There is no difficulty with
the tetrahedron, cube, or octahedron, but it is not clear that, say, 20 equi-
lateral triangles will fit together to form a closed surface. Euclid found this
problem difficult enough to be placed near the end of the Elements, and few
of his readers ever mastered his solution. A beautiful direct construction
was given by Luca Pacioli, a friend of Leonardo da Vinci’s, in his book De
divina proportione (1509). Pacioli’s construction uses three copies of the
golden rectangle, with sides 1 and (1 +

√
5)/2, interlocking as in Figure

2.2. The 12 vertices define 20 triangles such as ABC, and it suffices to
show that these are equilateral, that is, AB = 1. This is a straightforward
exercise in the Pythagorean theorem (Exercise 2.2.2).

A

B

C

Figure 2.2: Pacioli’s construction of the icosahedron

The regular polyhedra will make another important appearance in con-
nection with yet another 19th-century development, the theory of finite
groups and Galois theory. Before the regular polyhedra made this tri-
umphant comeback, they also took part in a famous fiasco: the Kepler
(1596) theory of planetary distances. Kepler’s theory is summarized by
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his famous diagram (Figure 2.3) of the five polyhedra, nested in such a
way as to produce six spheres of radii proportional to the distances of the
six planets then known. Unfortunately, although mathematics could not
permit any more regular polyhedra, nature could permit more planets, and
Kepler’s theory was ruined when Uranus was discovered in 1781.

Figure 2.3: Kepler’s diagram of the polyhedra

Exercises

The ratios between successive radii in Kepler’s construction depend on what
may be called the inradius and circumradius of each polyhedron—the radii of the
spheres that touch it on the inside and the outside. It happens that the ratio

circumradius
inradius

is the same for the cube and the octahedron, and it is also the same for the do-
decahedron and the icosahedron. This implies that the cube and octahedron can
be exchanged in Kepler’s construction, as can the dodecahedron and the icosahe-
dron. Thus there are at least four different arrangements of the regular polyhedra
that yield the same sequence of radii.
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It is easy to see why the cube and the octahedron are interchangeable.

2.2.1 Show that circumradius
inradius =

√
3 for both the cube and the octahedron.

To compute circumradius/inradius for the icosahedron and the dodecahedron,
we pursue Pacioli’s construction a little further, with the help of vector addition.

2.2.2 First check Pacioli’s construction: use the Pythagorean theorem to show
that AB = BC = CA in Figure 2.2. (It may help to use the additional fact
that τ = (1 +

√
5)/2 satisfies τ2 = τ + 1. This is also useful in the exercises

below.)

Now, to simplify coordinates, we take golden rectangles that are twice the nor-
mal size—length 2τ and width 2—and place them in the three coordinate planes
in the relative positions shown in Figure 2.2, so O = (0, 0, 0) is at the center of
each rectangle.

2.2.3 Show that the coordinates of the vertices of the icosahedron are (±1, 0,±τ),
(±τ,±1, 0), and (0,±τ,±1), for all possible combinations of + and − signs.

2.2.4 In particular, show that suitably chosen axes give A = (1, 0, τ), B = (τ,−1, 0),
and C = (τ, 1, 0) in Figure 2.2. Deduce that

circumradius =
√
τ + 2 for this icosahedron.

To find the inradius, we find the center of the triangle ABC, then compute its
distance from O.

2.2.5 Show that the center of the triangle ABC is 1
3 (2τ + 1, 0, τ), and hence that

inradius =
1
3

√
9τ + 6 for this icosahedron.

It follows that

circumradius
inradius

=
3
√
τ + 2√

9τ + 6
for any icosahedron,

but it will be helpful to have this number in a simpler form.

2.2.6 Show that 3
√
τ+2√

9τ+6
=
√

3(7 − 4τ) =
√

15
4τ+3 .

Now to compute the ratio circumradius/inradius for the dodecahedron, we use
the dual dodecahedron, whose vertices are the face centers, such as 1

3 (A+ B+C),
of the icosahedron above. This immediately gives

circumradius of dual dodecahedron = inradius of icosahedron =
1
3

√
9τ + 6.



2.3 Ruler and Compass Constructions 25

Thus it remains to find the inradius of the dual dodecahedron, which is the distance
from O to one of its face centers. A face of the dual dodecahedron is a pentagon,
with vertices, for example,

1
3

(A+ B+C),
1
3

(A+C+D),
1
3

(A+D+E),
1
3

(A+E +F),
1
3

(A+F + B),

where B,C,D, E, F are the five vertices of the icosahedron equidistant from A.

2.2.7 Using A = (1, 0, τ), B = (τ,−1, 0), C = (τ, 1, 0), D = (0, τ, 1), E = (−1, 0, τ),
and F = (0,−τ, 1), show that the face center of the pentagon with the above
vertices is

1
15

(5A+2B+2C+2D+2E+2F) =
1

15
(4τ+3, 0, 7τ+4) =

4τ + 3
15

(1, 0, τ),

and hence that

inradius of the dual dodecahedron =
4τ + 3

15

√
τ + 2.

2.2.8 Deduce from Exercises 2.2.7 and 2.2.6 that

circumradius
inradius

for dodecahedron =

√
15

4τ + 3
=

circumradius
inradius

for icosahedron.

Another remarkable result follows from this, using the fact that the volume of
a pyramid = 1/3 base area × height. The result is attributed to Apollonius.

2.2.9 By dividing the polyhedra into pyramids with bases equal to the faces, and
height equal to the inradius, establish the following relationship between
the dodecahedron D and the icosahedron I of the same circumradius:

surface area D
surface area I

=
volume D
volume I

.

2.3 Ruler and Compass Constructions

Greek geometers prided themselves on their logical purity; nevertheless,
they were guided by intuition about physical space. One aspect of Greek
geometry that was peculiarly influenced by physical considerations was
the theory of constructions. Much of the elementary geometry of straight
lines and circles can be viewed as the theory of constructions by ruler and
compass. The very subject matter, lines and circles, reflects the instruments
used to draw them. And many of the elementary problems of geometry—
for example, to bisect a line segment or angle, construct a perpendicular,
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or draw a circle through three given points—can be solved by ruler and
compass constructions.

When coordinates are introduced, it is not hard to show that the points
constructible from points P1, . . . , Pn have coordinates in the set of numbers
generated from the coordinates of P1, . . . , Pn by the operations +, −, ×, ÷,
and
√

(see Moise (1963) or the exercises to Section 6.3). Square roots
arise, of course, because of the Pythagorean theorem: if points (a, b) and
(c, d) have been constructed, then so has the distance

√
(c − a)2 + (d − b)2

between them (Section 1.6 and Figure 2.4). Conversely, it is possible to
construct

√
l for any given length l (Exercise 2.3.2).

(a, b)

(c, d)

Figure 2.4: Construction of a distance

Looked at from this point of view, ruler and compass constructions
look very special and unlikely to yield numbers such as

3√
2, for example.

However, the Greeks tried very hard to solve just this problem, which was
known as duplication of the cube (so-called because to double the volume
of a cube one must multiply the side by

3√
2). Other notorious problems

were trisection of the angle and squaring the circle. The latter problem
was to construct a square equal in area to a given circle or to construct the
number π, which amounts to the same thing. They never seem to have given
up these goals, though the possibility of a negative solution was admitted
and solutions by less elementary means were tolerated. We shall see some
of these in the next sections.

The impossibility of solving these problems by ruler and compass con-
structions was not proved until the 19th century. For the duplication of
the cube and trisection of the angle, impossibility was shown by Wantzel
(1837). Wantzel seldom receives credit for settling these problems, which
had baffled the best mathematicians for 2000 years, perhaps because his
methods were superseded by the more powerful theory of Galois.
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The impossibility of squaring the circle was proved by Lindemann
(1882), in a very strong way. Not only is π undefinable by rational op-
erations and square roots; it is also transcendental, that is, not the root of
any polynomial equation with rational coefficients. Like Wantzel’s work,
this was a rare example of a major result being proved by a minor mathe-
matician. In Lindemann’s case the explanation is perhaps that a major step
had already been taken when Hermite (1873) proved the transcendence of
e. Accessible proofs of both these results can be found in Klein (1924).
Lindemann’s subsequent career was mathematically undistinguished, even
embarrassing. In response to skeptics who thought his success with π had
been a fluke, he took aim at the most famous unsolved problem in mathe-
matics, “Fermat’s last theorem” (see Chapter 11 for the origin of this prob-
lem). His efforts fizzled out in a series of inconclusive papers, each one
correcting an error in the one before. Fritsch (1984) has written an inter-
esting biographical article on Lindemann.

One ruler and compass problem is still open: which regular n-gons are
constructible? Gauss discovered in 1796 that the 17-gon is constructible
and then showed that a regular n-gon is constructible if and only if n =
2m p1 p2 · · · pk, where the pi are distinct primes of the form 22h

+ 1. (This
problem is also known as circle division, because it is equivalent to dividing
the circumference of a circle, or the angle 2π, into n equal parts.) The
proof of necessity was actually completed by Wantzel (1837). However, it
is still not explicitly known what these primes are, or even whether there
are infinitely many of them. The only ones known are for h = 0, 1, 2, 3, 4.

Exercises

Many of the constructions made by the Greeks can be simplified by translat-
ing them into algebra, where it turns out that constructible lengths are those that
can be built from known lengths by the operations of +, −, ×, ÷, and

√
. It is

therefore enough to know constructions for these five basic operations. Addition
and subtraction are obvious, and the other operations are covered in the following
exercises, together with an example in which algebra is a distinct advantage.

2.3.1 Show, using similar triangles, that if lengths l1 and l2 are constructible, then
so are l1l2 and l1/l2.

2.3.2 Use similar triangles to explain why
√

l is the length shown in Figure 2.5,
and hence show that

√
l is constructible from l.

One of the finest ruler and compass constructions from ancient times is that of
the regular pentagon, which includes, yet again, the golden ratio τ = (1 +

√
5)/2.
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l

√
l

1

Figure 2.5: Square root construction

Knowing (from the questions above) that this number is constructible, it becomes
easy for us to construct the pentagon itself.

2.3.3 By finding some parallels and similar triangles in Figure 2.6, show that the
diagonal x of the regular pentagon of side 1 satisfies x/1 = 1/(x − 1).

1

x

Figure 2.6: The regular pentagon

2.3.4 Deduce from Exercise 2.3.3 that the diagonal of the pentagon is (1+
√

5)/2
and hence that the regular pentagon is constructible.

2.4 Conic Sections

Conic sections are the curves obtained by intersecting a circular cone by a
plane: hyperbolas, ellipses (including circles), and parabolas (Figure 2.7,
left to right). Today we know the conic sections better in terms of their
equations in cartesian coordinates:

x2

a2
− y

2

b2
= 1, (hyperbola)

x2

a2
+
y2

b2
= 1, (ellipse)

y = ax2. (parabola)
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More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

Figure 2.7: The conic sections

The invention of conic sections is attributed to Menaechmus (fourth
century bce), a contemporary of Alexander the Great. Alexander is said
to have asked Menaechmus for a crash course in geometry, but Menaech-
mus refused, saying, “There is no royal road to geometry.” Menaechmus
used conic sections to give a very simple solution to the problem of dupli-
cating the cube. In analytic notation, this can be described as finding the
intersection of the parabola y = 1

2 x2 with the hyperbola xy = 1. This yields

x
1
2

x2 = 1 or x3 = 2.

Although the Greeks accepted this as a “construction” for duplicating
the cube, they apparently never discussed instruments for actually drawing
conic sections. This is very puzzling since a natural generalization of the
compass immediately suggests itself (Figure 2.8). The arm A is set at a
fixed position relative to a plane P, while the other arm rotates about it at a
fixed angle θ, generating a cone with A as its axis of symmetry. The pencil,
which is free to slide in a sleeve on this second arm, traces the section of
the cone lying in the plane P. According to Coolidge (1945), p. 149, this
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instrument for drawing conic sections was first described as late as 1000 ce
by the Arab mathematician al-Kuji. Yet nearly all the theoretical facts one
could wish to know about conic sections had already been worked out by
Apollonius (around 250–200 bce)!

A
θ

P

Figure 2.8: Generalized compass

The theory and practice of conic sections finally met when Kepler
(1609) discovered the orbits of the planets to be ellipses, and Newton
(1687) explained this fact by his law of gravitation. This wonderful vin-
dication of the theory of conic sections has often been described in terms
of basic research receiving its long overdue reward, but perhaps one can
also see it as a rebuke to Greek disdain for applications. Kepler would not
have been sure which it was. To the end of his days he was proudest of
his theory explaining the distances of the planets in terms of the five reg-
ular polyhedra (Section 2.2). The fascinating and paradoxical character of
Kepler has been warmly described in two excellent books, Koestler (1959)
and Banville (1981).

Exercises

A key feature of the ellipse for both geometry and astronomy is a point called
the focus. The term is the Latin word for fireplace, and it was introduced by
Kepler. The ellipse actually has two foci, and they have the geometric property
that the sum of the distances from the foci F1, F2 to any point P on the ellipse is
constant.

2.4.1 This property gives a way to draw an ellipse using two pins and piece of
string. Explain how.
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2.4.2 By introducing suitable coordinate axes, show that a curve with the above
“constant sum” property indeed has an equation of the form

x2

a2
+
y2

b2
= 1.

(It is a good idea to start with the two square root terms, representing the
distances F1P and F2P, on opposite sides of the equation.) Show also that
any equation of this form is obtainable by suitable choice of F1, F2, and
F1P + F2P.

Another interesting property of the lines from the foci to a point P on the
ellipse is that they make equal angles with the tangent at P. It follows that a light
ray from F1 to P is reflected through F2. A simple proof of this can be based on
the shortest-path property of reflection, shown in Figure 2.9 and discovered by the
Greek scientist Heron around 100 ce.

L P

F1

P′

F2

Figure 2.9: The shortest-path property

Shortest-path property. The path F1PF2 of reflection in the line L from F1 to
F2 is shorter than any other path F1P′F2 from F1 to L to F2.

2.4.3 Prove the shortest-path property, by considering the two paths F1PF2 and
F1P′F2, where F2 is the reflection of the point F2 in the line L.

Thus to prove that the lines F1P and F2P make equal angles with the tangent,
it is enough to show that F1PF2 is shorter than F1P′F2 for any other point P′ on
the tangent at P.

2.4.4 Prove this, using the fact that F1PF2 has the same length for all points P on
the ellipse.

Kepler’s great discovery was that the focus is also significant in astronomy. It
is the point occupied by the sun as the planet moves along its ellipse.

2.5 Higher-Degree Curves

The Greeks lacked a systematic theory of higher-degree curves, because
they lacked a systematic algebra. They could find what amounted to carte-
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sian equations of individual curves—“symptoms,” as they called them; see
van der Waerden (1954), p. 241—but they did not consider equations in
general or notice any of their properties relevant to the study of curves, for
example, the degree. Nevertheless, they studied many interesting special
curves, which Descartes and his followers cut their teeth on when alge-
braic geometry finally emerged in the 17th century. An excellent and well-
illustrated account of these early investigations may be found in Brieskorn
and Knörrer (1981), Chapter 1.

In this section we must confine ourselves to brief remarks on a few
examples.

The Cissoid of Diocles (around 100 bce)

This curve is defined using an auxiliary circle, which for convenience we
take to be the unit circle, and vertical lines through x and −x. It is the set
of all points P seen in Figure 2.10.

X

Y

−x O x R

P

Figure 2.10: Construction of the cissoid

The portion shown results from varying x between 0 and 1. It is a cubic
curve with cartesian equation

y2(1 + x) = (1 − x)3.
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This equation shows that if (x, y) is a point on the curve, then so is (x,−y).
Hence one gets the complete picture of it by reflecting the portion shown
in Figure 2.10 in the x-axis. The result is a sharp point at R, a cusp, a
phenomenon that first arises with cubic curves. Diocles showed that the
cissoid could be used to duplicate the cube, which is plausible (though still
not obvious!) once one knows that this curve is cubic.

The Spiric Sections of Perseus (around 150 bce)

Apart from the sphere, cylinder, and cone—whose sections are all conic
sections—one of the few surfaces studied by the Greeks was the torus. This
surface, generated by rotating a circle about an axis outside the circle, but in
the same plane, was called a spira by the Greeks—hence the name spiric
sections for the sections by planes parallel to the axis. These sections,
which were first studied by Perseus, have four qualitatively distinct forms
(see Figure 2.11, which is adapted from Brieskorn and Knörrer (1981),
p. 20).

Figure 2.11: Spiric sections

These forms—convex ovals, “squeezed” ovals, the figure 8, and pairs
of ovals—were rediscovered in the 17th century when analytic geometers
looked at curves of degree 4, of which the spiric sections are examples.
For suitable choice of torus, the figure 8 curve becomes the lemniscate
of Bernoulli and the convex ovals become Cassini ovals. Cassini (1625–
1712) was a distinguished astronomer but an opponent of Newton’s theory
of gravitation. He rejected Kepler’s ellipses and instead proposed Cassini
ovals as orbits for the planets.
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The Epicycles of Ptolemy (140 ce)

These curves are known from a famous astronomical work, the Almagest
of Claudius Ptolemy. Ptolemy himself attributes the idea to Apollonius. It
seems almost certain that this is the Apollonius who mastered conic sec-
tions, which is ironic, because epicycles were his candidates for the plane-
tary orbits, destined to be defeated by those very same conic sections.

An epicycle, in its simplest form, is the path traced by a point on a cir-
cle that rolls on another circle (Figure 2.12). More complicated epicycles
can be defined by having a third circle roll on the second, and so on. The
Greeks introduced these curves to try to reconcile the complicated move-
ments of the planets, relative to the fixed stars, with a geometry based on
the circle. In principle, this is possible! Lagrange (1772) showed that any
motion along the celestial equator can be approximated arbitrarily closely
by epicylic motion, and a more modern version of the result may be found
in Sternberg (1969). But Ptolemy’s mistake was to accept the apparent
complexity of the motions of the planets as actual in the first place. As we
now know, the motion becomes simple when one considers motion relative
to the sun rather than to the earth and allows orbits to be ellipses.

Figure 2.12: Generating an epicycle

Epicycles still have a role to play in engineering, and their mathemat-
ical properties are interesting. Some of them are closed curves and turn
out to be algebraic, that is, of the form p(x, y) = 0 for a polynomial p.
Others, such as those that result from rolling circles whose radii have an
irrational ratio, lie densely in a certain region of the plane and hence can-
not be algebraic; an algebraic curve p(x, y) = 0 can meet a straight line
y = mx + c in only a finite number of points, corresponding to roots of the
polynomial equation p(x,mx + c) = 0, and the dense epicycles meet some
lines infinitely often.
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Exercises

The equation of the cissoid is derivable as follows.

2.5.1 Using X and Y for the horizontal and vertical coordinates, show that the
straight line RP in Figure 2.10 has equation

Y =

√
1 − x2

1 + x
(X − 1).

2.5.2 Deduce the equation of the cissoid from Exercise 2.5.1.

The simplest epicyclic curve is the cardioid (“heart-shape”), which results
from a circle rolling on a fixed circle of the same size.

2.5.3 Sketch a picture of the cardioid, confirming that it is heart-shaped (sort of).

2.5.4 Show that if both circles have radius 1, and we follow the point on the
rolling circle initially at (1, 0), then the cardioid it traces out has parametric
equations

x = 2 cos θ − cos 2θ,

y = 2 sin θ − sin 2θ.

The cardioid is an algebraic curve. Its cartesian equation may be hard to
discover, but it is easy to verify, especially if one has a computer algebra system.

2.5.5 Check that the point (x, y) on the cardioid satisfies

(x2 + y2 − 1)2 = 4((x − 1)2 + y2).

2.6 Biographical Notes: Euclid

Even less is known about Euclid than about Pythagoras. We know only
that he flourished around 300 bce and taught in Alexandria, the Greek city
in Egypt founded by Alexander the Great in 322 bce. Two stories are
told about him. The first—the same that is told about Menaechmus and
Alexander—has Euclid telling King Ptolemy I, “There is no royal road to
geometry.” The second concerns a student who asked the perennial ques-
tion, “What shall I gain from learning mathematics?” Euclid called his
slave and said, “Give him a coin if he must profit from what he learns.”

The most important fact of Euclid’s life was undoubtedly his writing of
the Elements, though we do not know how much of the mathematics in it
was actually his own work. Certainly the elementary geometry of triangles
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and circles was known before Euclid’s time. Some of the most sophisti-
cated parts of the Elements, too, are due to earlier mathematicians. The
theory of irrationals in Book V is due to Eudoxus (around 400–347 bce),
as is the “method of exhaustion” of Book XII (see Chapter 4). The the-
ory of regular polyhedra of Book XIII is due, at least partly, to Theaetetus
(around 415–369 bce).

But whatever Euclid’s “research” contribution may have been, it was
dwarfed by his contribution to the organization and dissemination of math-
ematical knowledge. For 2000 years the Elements was not only the core
of mathematical education but at the heart of Western culture. The most
glowing tributes to the Elements do not, in fact, come from mathematicians
but from philosophers, politicians, and others. We saw Hobbes’s response
to Euclid in Section 2.1. Here are some others:

He studied and nearly mastered the six books of Euclid since
he was a member of Congress. He regrets his want of educa-
tion, and does what he can to supply the want.

Abraham Lincoln (writing of himself), Short Autobiography

. . . he studied Euclid until he could demonstrate with ease all
the propositions in the six books.

Herndon’s Life of Lincoln

At the age of eleven, I began Euclid. . . . This was one of the
great events of my life, as dazzling as first love. I had not
imagined there was anything so delicious in the world.

Bertrand Russell, Autobiography, vol. 1

Perhaps the low cultural status of mathematics today, not to mention
the mathematical ignorance of politicians and philosophers, reflects the
lack of an Elements suitable for the modern world.
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Greek Number Theory

Preview

Number theory is the second large field of mathematics that comes to us
from the Pythagoreans via Euclid. The Pythagorean theorem led mathe-
maticians to the study of squares and sums of squares; Euclid drew atten-
tion to the primes by proving that there are infinitely many of them.

Euclid’s investigations were based on the so-called Euclidean algo-
rithm, a method for finding the greatest common divisor of two natural
numbers. Common divisors are the key to basic results about prime num-
bers, in particular unique prime factorization, which says that each natural
number factors into primes in exactly one way.

Another discovery of the Pythagoreans, the irrationality of
√

2, has
repercussions in the world of natural numbers. Since

√
2 � m/n for any

natural numbers m, n, there is no solution of the equation x2 − 2y2 = 0 in
the natural numbers. But, surprisingly, there are natural number solutions
of x2 − 2y2 = 1, and in fact infinitely many of them. The same is true of
the equation x2 − Ny2 = 1 for any nonsquare natural number N.

The latter equation, called Pell’s equation, is perhaps second in fame
only to the Pythagorean equation x2 + y2 = z2, among equations for which
integer solutions are sought. Methods for solving the Pell equation for
general N were first discovered by Indian mathematicians, whose work we
study in Chapter 5.

Equations for which integer or rational solutions are sought are called
Diophantine, after Diophantus. The methods he used to solve quadratic
and cubic Diophantine equations are still of interest. We study his method
for cubics in this chapter, and take it up again in Chapters 11 and 16.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 37
DOI 10.1007/978-1-4419-6053-5 3, c© Springer Science+Business Media, LLC 2010
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3.1 The Role of Number Theory

In Chapter 1 we saw that number theory has been important in mathematics
for at least as long as geometry, and from a foundational point of view it
may be more important. Despite this, number theory has never submitted
to a systematic treatment like that undergone by elementary geometry in
Euclid’s Elements. At all stages in its development, number theory has had
glaring gaps because of the intractability of elementary problems. Most
of the really old unsolved problems in mathematics, in fact, are simple
questions about the natural numbers 1, 2, 3, . . . . The nonexistence of a
general method for solving Diophantine equations (Section 1.3) and the
problem of identifying the primes of the form 22h

+ 1 (Section 2.3) have
been noted. Other unsolved number theory problems will be mentioned in
the sections that follow.

As a consequence, the role of number theory in the history of mathe-
matics has been quite different from that of geometry. Geometry has played
a stabilizing and unifying role, to the point of retarding further develop-
ment at times and creating the popular impression that mathematics is a
static subject. For those able to understand it, number theory has been a
spur to progress and change. Before 1800, only a handful of mathemati-
cians contributed to advances in number theory, but they include some of
the greats—Diophantus, Fermat, Euler, Lagrange, and Gauss. This book
stresses those advances in number theory that sprang from its deep connec-
tions with other parts of mathematics, particularly geometry, since these
were the most significant for mathematics as a whole. Nevertheless, there
are topics in number theory that are too interesting to ignore, even though
they seem (at present) to be outside the mainstream. We discuss a few of
them in the next section.

3.2 Polygonal, Prime, and Perfect Numbers

The polygonal numbers, which were studied by the Pythagoreans, result
from a naive transfer of geometric ideas to number theory. From Figure 3.1
it is easy to calculate an expression for the mth n-gonal number as the sum
of a certain arithmetic series (Exercise 3.2.3) and to show, for example, that
a square is the sum of two triangular numbers. Apart from Diophantus’s
work, which contains impressive results on sums of squares, Greek results
on polygonal numbers were of this elementary type.
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Triangular numbers

1 3 6 10

Square numbers

1 4 9 16

Pentagonal numbers

1 5 12 22

Figure 3.1: Polygonal numbers

On the whole, the Greeks seem to have been mistaken in attaching
much importance to polygonal numbers. There are no major theorems
about them, except perhaps the following two. The first is the theorem
conjectured by Bachet de Méziriac (1621) (in his edition of Diophantus)
that every positive integer is the sum of four integer squares. This was
proved by Lagrange (1770). A generalization, which Fermat (1670) stated
without proof, is that every positive integer is the sum of n n-agonal num-
bers. This was proved by Cauchy (1813a), though the proof is a bit of a
letdown because all but four of the numbers can be 0 or 1. A short proof of
Cauchy’s theorem has been given by Nathanson (1987). The other remark-
able theorem about polygonal numbers is the formula

∞∏
n=1

(1 − xn) = 1 +
∞∑

k=1

(−1)k(x(3k2−k)/2 + x(3k2+k)/2)
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proved by Euler (1750) and known as Euler’s pentagonal number theorem,
since the exponents (3k2 − k)/2 are pentagonal numbers. For a proof see
Hall (1967), p. 33.

The four-square theorem and the pentagonal number theorem were
both absorbed around 1830 into Jacobi’s theory of theta functions, a much
larger theory. Theta functions are related to the elliptic functions that we
study in Chapters 12 and 16.

The prime numbers were also considered within the geometric frame-
work, as the numbers with no rectangular representation. A prime number,
having no divisors apart from itself and 1, has only a “linear” representa-
tion. Of course this is merely a restatement of the definition of prime, and
most theorems about prime numbers require much more powerful ideas;
however, the Greeks did come up with one gem. This is the proof that
there are infinitely many primes, in Book IX of Euclid’s Elements.

Given any finite collection of primes p1, p2, . . . , pn, we can find another
by considering

p = p1 p2 · · · pn + 1.

This number is not divisible by p1, p2, . . . , pn (each leaves remainder 1).
Hence either p itself is a prime, and p > p1, p2, . . . , pn, or else it has a
prime divisor � p1, p2, . . . , pn.

A perfect number is one that equals the sum of its divisors (including 1
but excluding itself). For example, 6 = 1 + 2 + 3 is a perfect number, as is
28 = 1+2+4+7+14. Although this concept goes back to the Pythagoreans,
only two noteworthy theorems about perfect numbers are known. Euclid
concludes Book IX of the Elements by proving that if 2n − 1 is prime, then
2n−1(2n−1) is perfect (Exercise 3.2.5). These perfect numbers are of course
even, and Euler (1849) (a posthumous publication) proved that every even
perfect number is of Euclid’s form. Euler’s surprisingly simple proof may
be found in Burton (1985), p. 504. It is not known whether there are any
odd perfect numbers; this may be the oldest open problem in mathematics.

In view of Euler’s theorem, the existence of even perfect numbers de-
pends on the existence of primes of the form 2n − 1. These are known
as Mersenne primes, after Marin Mersenne (1588–1648), who first drew
attention to the problem of recognizing primes of this form. It is not
known whether there are infinitely many Mersenne primes, though larger
and larger ones seem to be found quite regularly. In recent years each new
world-record prime has been a Mersenne prime, giving a corresponding
world-record perfect number.
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Exercises

Infinitely many natural numbers are not sums of three (or fewer) squares. The
smallest of them is 7, and it can be shown as follows that no number of the form
8n + 7 is a sum of three squares.

3.2.1 Show that any square leaves remainder 0, 1, or 4 on division by 8.

3.2.2 Deduce that a sum of three squares leaves remainder 0, 1, 2, 3, 4, 5, or 6 on
division by 8.

One reason polygonal numbers play only a small role in mathematics is that
questions about them are basically questions about squares—hence the focus is
on problems about squares.

3.2.3 Show that the kth pentagonal number is (3k2 − k)/2.

3.2.4 Show that each square is the sum of two consecutive triangular numbers.

Euclid’s theorem about perfect numbers depends on the prime divisor prop-
erty, which will be proved in the next section. Assuming this for the moment, it
follows that if 2n−1 is a prime p, then the proper divisors of 2n−1 p (those unequal
to 2n−1 p itself) are

1, 2, 22, . . . , 2n−1 and p, 2p, 22p . . . , 2n−2 p.

3.2.5 Given that the divisors of 2n−1 p are those just listed, show that 2n−1 p is
perfect when p = 2n − 1 is prime.

3.3 The Euclidean Algorithm

This algorithm is named after Euclid because its earliest known appearance
is in Book VII of the Elements. However, in the opinion of many historians
(for example, Heath (1921), p. 399) the algorithm and some of its conse-
quences were probably known earlier. At the very least, Euclid deserves
credit for a masterly presentation of the fundamentals of number theory,
based on this algorithm.

The Euclidean algorithm is used to find the greatest common divisor
(gcd) of two positive integers a, b. The first step is to construct the pair
(a1, b1), where

a1 = max(a, b) −min(a, b),

b1 = min(a, b),
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and then one simply repeats this operation of subtracting the smaller num-
ber from the larger. That is, if the pair constructed at step i is (ai, bi), then
the pair constructed at step i + 1 is

ai+1 = max(ai, bi) −min(ai, bi),

bi+1 = min(ai, bi).

The algorithm terminates at the first stage when ai+1 = bi+1, and this com-
mon value is gcd(a, b). This is because taking differences preserves any
common divisors; hence when ai+1 = bi+1 we have

gcd(a, b) = gcd(a1, b1) = · · · = gcd(ai+1, bi+1) = ai+1 = bi+1.

The sheer simplicity of the algorithm makes it easy to draw some important
consequences. Euclid of course did not use our notation, but nevertheless
he had results close to the following.

1. If gcd(a, b) = 1, then there are integers m, n such that ma + nb = 1.

The equations

a1 = max(a, b) −min(a, b),

b1 = min(a, b),
...

ai+1 = max(ai, bi) −min(ai, bi),

bi+1 = min(ai, bi)

show first that a1, b1 are integral linear combinations, ma + nb, of a
and b, hence so are a2, b2, hence so are a3, b3, . . ., and finally this is
true of ai+1 = bi+1. But ai+1 = bi+1 = 1, since gcd(a, b) = 1; hence
1 = ma + nb for some integers m, n.

2. If p is a prime number that divides ab, then p divides a or b (the
prime divisor property).

To see this, suppose p does not divide a. Then since p has no other
divisors except 1, we have gcd(p, a) = 1. Hence by the previous
result we get integers m, n such that

ma + np = 1.
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Multiplying each side by b gives

mab + nbp = b.

By hypothesis, p divides ab; hence p divides both terms on the left-
hand side, and therefore p divides the right-hand side b.

3. Each positive integer has a unique factorization into primes (the fun-
damental theorem of arithmetic).

Suppose on the contrary that some integer n has two different prime
factorizations:

n = p1 p2 · · · pj = q1q2 · · · qk.

By removing common factors, if necessary, we can assume that there
is a pi that is not among the q’s. But this contradicts the previous
result, because pi divides n = q1q2 · · · qk, yet it does not divide any
of q1, q2, . . . , qk individually, since these are prime numbers � pi.

Exercises

We can now fill the gap in the proof of Euclid’s theorem on perfect numbers
(previous exercise set), using the prime divisor property.

3.3.1 Use the prime divisor property to show that the proper divisors of 2n−1 p, for
any odd prime p, are 1, 2, 22, . . . , 2n−1 and p, 2p, 22p . . . , 2n−2 p.

The result that if gcd(a, b) = 1 then 1 = ma + nb for some integers m and n is
a special case of the following way to represent the gcd.

3.3.2 Show that, for any integers a and b, there are integers m and n such that
gcd(a, b) = ma + nb.

This in turn gives a general way to find integer solutions of linear equations.

3.3.3 Deduce from Exercise 3.3.2 that the equation ax + by = c with integer
coefficients a, b, and c has an integer solution x, y if gcd(a, b) divides c.

The converse of this result is also valid, as one discovers when considering a
necessary condition for ax + by = c to have an integer solution.

3.3.4 The equation 12x + 15y = 1 has no integer solution. Why?

3.3.5 (Solution of linear Diophantine equations) Give a test to decide, for any
given integers a, b, c, whether there are integers x, y such that

ax + by = c.
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3.4 Pell’s Equation

The Diophantine equation x2 − Ny2 = 1, where N is a nonsquare integer,
is known as Pell’s equation because Euler mistakenly attributed a solution
of it to the 17th-century English mathematician Pell (it should have been
attributed to Brouncker). Pell’s equation is probably the best-known Dio-
phantine equation after the equation a2 + b2 = c2 for Pythagorean triples,
and in some ways it is more important. Solving Pell’s equation is the main
step in the solution of the general quadratic Diophantine equation in two
variables (see, for example, Gelfond (1961)), and also a key tool in prov-
ing the theorem of Matiyasevich mentioned in Section 1.3 that there is no
algorithm for solving all Diophantine equations (see, for example, Davis
(1973) or Jones and Matiyasevich (1991)). In view of this, it is fitting that
Pell’s equation should make its first appearance in the foundations of Greek
mathematics, and it is impressive to see how well the Greeks understood
it.

The simplest instance of Pell’s equation,

x2 − 2y2 = 1,

was studied by the Pythagoreans in connection with
√

2. If x, y are large
solutions to this equation, then x/y ≈ √2, and in fact the Pythagoreans
found a way of generating larger and larger solutions by means of the re-
currence relations

xn+1 = xn + 2yn,

yn+1 = xn + yn.

A short calculation shows that

x2
n+1 − 2y2n+1 = −(x2

n − 2y2n),

so if (xn, yn) satisfies x2−2y2 = ±1, then (xn+1, yn+1) satisfies x2−2y2 = ∓1.
Starting with the trivial solution (x0, y0) = (1, 0) of x2 − 2y2 = 1, we get
successively larger solutions (x2, y2), (x4, y4), . . . of the equation x2−2y2 =
1. (The pairs (xn, yn) were known as side and diagonal numbers because
the ratio yn/xn tends to that of the side and diagonal in a square.)

But how might these recurrence relations have been discovered in the
first place? Van der Waerden (1976) and Fowler (1980, 1982) suggest that
the key is the Euclidean algorithm applied to line segments, an operation
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the Greeks called anthyphairesis. Given any two lengths a, b, one can de-
fine the sequence (a1, b1), (a2, b2), . . ., as in Section 3.2, by repeated sub-
traction of the smaller length from the larger. If a, b are integer multiples
of some unit, then the process terminates as in Section 3.3, but if b/a is
irrational, it continues forever. We can well imagine that the Pythagoreans
would have been interested in anthyphairesis applied to a = 1, b =

√
2.

Here is what happens. We represent a, b by sides of a rectangle, and each
subtraction of the smaller number from the larger is represented by cutting
off the square on the shorter side (Figure 3.2). We notice that the rectangle
remaining after step 2, with sides

√
2− 1 and 2− √2 =

√
2(
√

2− 1), is the
same shape as the original, though the long side is now vertical instead of
horizontal. It follows that similar steps will recur forever, which is another
proof that

√
2 is irrational, incidentally.

1

√
2

step 1

1
√

2 − 1

step 2

1
√

2 − 1

2
−
√ 2

√ 2
−1

Figure 3.2: The Euclidean algorithm on
√

2 and 1

Our present interest, however, is in the relation between successive
similar rectangles. If we let the long and short sides of successive simi-
lar rectangles be xn+1, yn+1 and xn, yn, we can derive a recurrence relations
for xn+1, yn+1 from Figure 3.3:
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yn+1

xn+1

xn + yn

yn
yn

xn

Figure 3.3: The recurrence relation

xn+1 = xn + 2yn,

yn+1 = xn + yn,

exactly the relations of the Pythagoreans! The difference is that our xn,
yn are not integers, and they satisfy x2 − 2y2 = 0, not x2 − 2y2 = 1.
Nevertheless, one feels that Figure 3.3 gives the most natural interpretation
of these relations. The discovery that the same relations generate solutions
of x2 − 2y2 = 1 possibly arose from wishing that the Euclidean algorithm
terminated with x1 = y1 = 1. If the Pythagoreans started with x1 = y1 = 1
and applied the recurrence relations, then they may well have found that
(xn, yn) satisfies x2 − 2y2 = (−1)n, as we did earlier.

Many other instances of the Pell equation x2 −Ny2 = 1 occur in Greek
mathematics, and these can be understood in a similar way by applying
anthyphairesis to the rectangle with sides 1,

√
N. In the seventh century ce

the Indian mathematician Brahmagupta gave a recurrence relation for gen-
erating solutions of x2−Ny2 = 1, as we shall see in Chapter 5. The Indians
called the Euclidean algorithm the “pulverizer” because it breaks numbers
down to smaller and smaller pieces. To obtain a recurrence one has to know
that a rectangle proportional to the original eventually recurs, a fact that
was rigorously proved only in 1768 by Lagrange. The later European work
on Pell’s equation, which began in the 17th century with Brouncker and
others, was based on the continued fraction for

√
N, though this amounts

to the same thing as anthyphairesis (see exercises). For a condensed but
detailed history of Pell’s equation, see Dickson (1920), pp. 341–400.



3.4 Pell’s Equation 47

An interesting aspect of the theory is the very irregular relationship be-
tween N and the number of steps of anthyphairesis before a rectangle pro-
portional to the original recurs. If the number of steps is large, the smallest
nontrivial solution of x2 − Ny2 = 1 is enormous. A famous example is the
so-called cattle problem of Archimedes (287–212 bce). This problem leads
to the equation

x2 − 4729494y2 = 1,

the smallest solution of which was found by Krummbiegel and Amthor
(1880) to have 206,545 digits!

A recent paper on the cattle problem, Lenstra (2002), gives a strikingly
condensed form of solution: “for the first time in history, all infinitely many
solutions to the cattle problem are displayed in a handy little table.”

Exercises

The continued fraction of a real number α > 0 is written

α = n1 +
1

n2 +
1

n3 +
1

n4 +
1

. . .

,

where n1, n2, n3, n4, . . . are integers obtained by the following algorithm. Let

n1 = integer part of α.

Then α − n1 < 1 and α1 = 1/(α − n1) > 1, so we can take

n2 = integer part of α1.

Then α1 − n2 < 1 and α2 = 1/(α1 − n2) > 1, so we can take

n3 = integer part of α2, and so on.

3.4.1 Apply the above algorithm to the number α = 157/68, and hence show that

157
68
= 2 +

1

3 +
1

4 +
1
5

.

You may notice that what happens is essentially the Euclidean algorithm applied
to the pair (157, 68), except that repeated operations of subtraction are replaced
by division with remainder. The integers 2, 3, 4, 5 are the successive quotients
obtained in these divisions: 157 divided by 68 gives quotient 2 and remainder 21,
68 divided by 21 gives quotient 3 and remainder 5, and so on.
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Thus the Euclidean algorithm on integers a, b yields results that may be en-
coded by the (finite) continued fraction for a/b. This idea was introduced by Euler,
and it became the preferred approach to the Euclidean algorithm for some mathe-
maticians. Gauss (1801), in particular, always speaks of the Euclidean algorithm
as the “continued fraction algorithm.”

The Euclidean algorithm on a pair (α, 1), where α is irrational, is in fact better
known as the continued fraction algorithm.

3.4.2 Interpret the operations in the continued fraction algorithm—detaching the
integer part and taking the reciprocal of the remainder—in terms of anthy-
phairesis.

3.4.3 Show that √
2 = 1 +

1

2 +
1

2 +
1

2 +
1

. . .

.

Exercise 3.4.3 implies that
√

2 + 1 is the periodic continued fraction

2 +
1

2 +
1

2 +
1

2 +
1

. . .

.

3.4.4 Show that
√

3 + 1 also has a periodic continued fraction, and hence derive
the continued fraction for

√
3.

3.5 The Chord and Tangent Methods

In Section 1.3 we used a method of Diophantus to find all rational points on
the circle. If p(x, y) = 0 is any quadratic equation in x and y with rational
coefficients, and if the equation has one rational solution x = r1, y = s1,
then we can find any rational solution by drawing a rational line y = mx+c
through the point r1, s1 and finding its other intersection with the curve
p(x, y) = 0. The two intersections with the curve, x = r1, r2, say, are given
by the roots r1, r2 of the equation

p(x,mx + c) = 0.
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This means that p(x,mx+c) = k(x−r1)(x−r2), and since all coefficients on
the left-hand side are rational and r1 is rational, then k and r2 must also be
rational. The y value when x = r2, y = s2 = mr2+ c, is rational since m and
c are; hence (r2, s2) is another rational point on p(x, y) = 0. Conversely,
any line through two rational points is rational, and hence all rational points
are found in this way.

Now if p(x, y) = 0 is a curve of degree 3, its intersections with a line
y = mx+ c are given by the roots of the cubic equation p(x,mx+ c) = 0. If
we know two rational points on the curve, then the line through them will
be rational, and its third intersection with the curve will also be rational, by
an argument like the preceding one. This fact becomes more useful when
one realizes that the two known rational points can be taken to coincide, in
which case the line is the tangent through the known rational point. Thus
from one rational solution we can generate another by the tangent construc-
tion, and from two we can construct a third by taking the chord between
the two.

Diophantus found rational solutions to cubic equations in what seems
to have been essentially this way. The surviving works of Diophantus
reveal little of his methods, but a plausible reconstruction—an algebraic
version of the tangent and chord constructions—has been given by Bash-
makova (1981). Probably the first to understand Diophantus’s methods
was Fermat, in the 17th century, and the first to give the tangent and chord
interpretation was Newton (1670s).

In contrast to the quadratic case, we have no choice in the slope of
the rational line for cubics. Thus it is by no means clear that this method
will give us all rational points on a cubic. A remarkable theorem, con-
jectured by Poincaré (1901) and proved by Mordell (1922), says that all
rational points can be generated by tangent and chord constructions ap-
plied to finitely many points. However, it is still not known whether there
is an algorithm for finding a finite set of such rational generators on each
cubic curve.

Exercises

3.5.1 Explain the solution x = 21/4, y = 71/8 to x3 − 3x2 + 3x + 1 = y2 given by
Diophantus (Heath (1910), p. 242) by constructing the tangent through the
obvious rational point on this curve.

3.5.2 Rederive the following rational point construction of Viète (1593), p. 145.
Given the rational point (a, b) on x3 − y3 = a3 − b3, show that the tangent
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at (a, b) is

y =
a2

b2
(x − a) + b,

and that the other intersection of the tangent with the curve is the rational
point

x = a
a3 − 2b3

a3 + b3
, y = b

b3 − 2a3

a3 + b3
.

3.6 Biographical Notes: Diophantus

Diophantus lived in Alexandria during the period when Greek mathemat-
ics, along with the rest of Western civilization, was generally in decline.
The catastrophes that engulfed the West with the fall of Rome and the rise
of Islam, culminating in the burning of the library in Alexandria in 640
ce, buried almost all details of Diophantus’s life. His dates can be placed
with certainty only between 150 and 350 ce, since he mentions Hypsi-
cles (known to be around 150) and is mentioned by Theon of Alexandria
(around 350). One other scrap of evidence, a letter of Michael Psellus (11th
century), suggests 250 ce as the most likely time when Diophantus flour-
ished. Apart from this, the only clue to Diophantus’s life is a conundrum
in the Greek Anthology (around 600 ce):

God granted him to be a boy for the sixth part of his life, and
adding a twelfth part to this, He clothed his cheeks with down.
He lit him the light of wedlock after a seventh part, and five
years after his marriage He granted him a son. Alas! late-
born wretched child; after attaining the measure of half his
father’s life, chill Fate took him. After consoling his grief by
this science of numbers for four years he ended his life.

Cohen and Drabkin (1958), p. 27

If this information is correct, then Diophantus married at 33 and had a
son who died at 42, four years before Diophantus himself died by his own
hand at 84.

Diophantus’s work went almost unnoticed for many centuries, and only
parts of it survive. The first stirrings of interest in Diophantus occurred in
the Middle Ages, but much of the credit for the eventual revival of Dio-
phantus belongs to Rafael Bombelli (1526–1572) and Wilhelm Holtzmann
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(known as Xylander, 1532–1576). Bombelli discovered a copy of Dio-
phantus’s Arithmetic in the Vatican library and published 143 problems
from it in his Algebra (1572). The most famous edition of the Arithmetic
was that of Bachet de Méziriac (1621). Bachet glimpsed the possibility of
general principles behind the special problems of the Arithmetic and, in his
commentary on the book, alerted his contemporaries to the challenge of
properly understanding Diophantus and carrying his ideas further. It was
Fermat who took up this challenge and made the first significant advances
in number theory since the classical era (see Chapter 11).
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Infinity in Greek Mathematics

Preview

Perhaps the most interesting—and most modern—feature of Greek math-
ematics is its treatment of infinity. The Greeks feared infinity and tried to
avoid it, but in doing so they laid the foundations for a rigorous treatment
of infinite processes in 19th century calculus.

The most original contributions to the theory of infinity in ancient times
were the theory of proportions and the method of exhaustion. Both were
devised by Eudoxus and expounded in Book V of Euclid’s Elements.

The theory of proportions develops the idea that a “quantity” λ (what
we would now call a real number) can be known by its position among the
rational numbers. That is, λ is known if we know the rational numbers less
than λ and the rational numbers greater than λ.

The method of exhaustion generalizes this idea from “quantities” to re-
gions of the plane or space. A region becomes “known” (in area or volume)
when its position among known areas or volumes is known. For example,
we know the area of a circle when we know the areas of the polygons inside
it and the areas of polygons outside it; we know the volume of a pyramid
when we know the volumes of stacks of prisms inside it and outside it.

Using this method, Euclid found that the volume of a tetrahedron equals
1/3 of its base area times its height, and Archimedes found the area of a
parabolic segment. Both of them relied on an infinite process that is fun-
damental to many calculations of area and volume: the summation of an
infinite geometric series.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 53
DOI 10.1007/978-1-4419-6053-5 4, c© Springer Science+Business Media, LLC 2010
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4.1 Fear of Infinity

Reasoning about infinity is one of the characteristic features of mathemat-
ics as well as its main source of conflict. We saw, in Chapter 1, the conflict
that arose from the discovery of irrationals, and in this chapter we shall
see that the Greeks’ rejection of irrational numbers was just part of a gen-
eral rejection of infinite processes. In fact, until the late 19th century most
mathematicians were reluctant to accept infinity as more than “potential.”
The infinitude of a process, collection, or magnitude was understood as
the possibility of its indefinite continuation, and no more—certainly not
the possibility of eventual completion. For example, the natural numbers
1, 2, 3, . . ., can be accepted as a potential infinity—generated from 1 by the
process of adding 1—without accepting that there is a completed totality
{1, 2, 3, . . .}. The same applies to any sequence x1, x2, x3, . . . (of rational
numbers, say), where xn+1 is obtained from xn by a definite rule.

And yet a beguiling possibility arises when xn tends to a limit x. If
x is something we already accept—for geometric reasons, say—then it is
very tempting to view x as somehow the “completion” of the sequence
x1, x2, x3, . . . . It seems that the Greeks were afraid to draw such conclu-
sions. According to tradition, they were frightened off by the paradoxes of
Zeno, around 450 bce.

We know of Zeno’s arguments only through Aristotle, who quotes them
in his Physics in order to refute them, and it is not clear what Zeno himself
wished to achieve. Was there, for example, a tendency toward speculation
about infinity that he disapproved of? His arguments are so extreme they
could almost be parodies of loose arguments about infinity he heard among
his contemporaries. Consider his first paradox, the dichotomy:

There is no motion because that which is moved must arrive
at the middle (of its course) before it arrives at the end.

Aristotle, Physics, Book VI, Ch. 9

The full argument presumably is that before getting anywhere one must
first get half way, and before that a quarter of the way, and before that one
eighth of the way, ad infinitum. The completion of this infinite sequence
of steps no longer seems impossible to most mathematicians, since it rep-
resents nothing more than an infinite set of points within a finite interval.
It must have frightened the Greeks though, because in all their proofs they
were very careful to avoid completed infinities and limits.
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The first mathematical processes we would recognize as infinite were
probably devised by the Pythagoreans, for example, the recurrence rela-
tions

xn+1 = xn + 2yn,

yn+1 = xn + yn

for generating integer solutions of the equations x2 − 2y2 = ±1. We saw
in Section 3.4 why it is likely that these relations arose from an attempt to
understand

√
2, and it is easy for us to see that xn/yn →

√
2 as n→ ∞.

However, it is unlikely that the Pythagoreans would have viewed
√

2
as a “limit” or seen the sequence as a meaningful object at all. The most
we can say is that, by stating a recurrence, the Pythagoreans implied a se-
quence with limit

√
2, but only a much later generation of mathematicians

could accept the infinite sequence as such and appreciate its importance in
defining the limit.

In a problem where we would find it natural to reach a solution α by
a limiting process, the Greeks would instead eliminate any solution but α.
They would show that any number <α was too small and any number >α
was too large to be the solution. In the following sections we shall study
some examples of this style of proof and see how it ultimately bore fruit
in the foundations of mathematics. As a method of finding solutions to
problems, however, it was sterile: how does one guess the number α in the
first place? When mathematicians returned to problems of finding limits in
the 17th century, they found no use for the rigorous methods of the Greeks.
The dubious 17th-century methods of infinitesimals were criticized by the
Zeno of the time, Bishop Berkeley, but little was done to meet his objec-
tions until much later, since infinitesimals did not seem to lead to incorrect
results. It was Dedekind, Weierstrass, and others in the 19th century who
eventually restored Greek standards of rigor.

The story of rigor lost and rigor regained took an amazing turn when
a previously unknown manuscript of Archimedes, The Method, was dis-
covered in 1906. In it he reveals that his deepest results were found using
dubious infinitary arguments, and only later proved rigorously. Because, as
he says, “It is of course easier to supply the proof when we have previously
acquired some knowledge of the questions by the method, than it is to find
it without any previous knowledge.”

The importance of this statement goes beyond its revelation that infinity
can be used to discover results that are not initially accessible to logic.
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Archimedes was probably the first mathematician candid enough to explain
that there is a difference between the way theorems are discovered and the
way they are proved.

4.2 Eudoxus’s Theory of Proportions

The theory of proportions is credited to Eudoxus (around 400–350 bce)
and is expounded in Book V of Euclid’s Elements. The purpose of the
theory is to enable lengths (and other geometric quantities) to be treated
as precisely as numbers, while admitting only the use of rational numbers.
We saw the motivation for this in Section 1.5: the Greeks could not accept
irrational numbers, but they accepted irrational geometric quantities such
as the diagonal of the unit square. To simplify the exposition of the theory,
let us call lengths rational if they are rational multiples of a fixed length.

The idea of Eudoxus was to say that a length λ is determined by those
rational lengths less than it and those greater than it. To be precise, he says
λ1 = λ2 if any rational length <λ1 is also <λ2, and vice versa. Likewise
λ1 < λ2 if there is a rational length >λ1 but <λ2. This definition uses
the rationals to give an infinitely sharp notion of length while avoiding
any overt use of infinity. Of course the infinite set of rational lengths <λ
is present in spirit, but Eudoxus avoids mentioning it by speaking of an
arbitrary rational length <λ.

The theory of proportions was so successful that it delayed the de-
velopment of a theory of real numbers for 2000 years. This was ironic,
because the theory of proportions can be used to define irrational numbers
just as well as lengths. It was understandable though, because the com-
mon irrational lengths, such as the diagonal of the unit square, arise from
constructions that are intuitively clear and finite from the geometric point
of view. Any arithmetic approach to

√
2, whether by sequences, decimals,

or continued fractions, is infinite and therefore less intuitive. Until the
19th century this seemed a good reason for considering geometry to be a
better foundation for mathematics than arithmetic. Then the problems of
geometry came to a head, and mathematicians began to fear geometric in-
tuition as much as they had previously feared infinity. There was a purge
of geometric reasoning from the textbooks and industrious reconstruction
of mathematics on the basis of numbers and sets of numbers. Set theory
is discussed further in Chapter 24. Suffice to say, for the moment, that set
theory depends on the acceptance of completed infinities.
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The beauty of the theory of proportion was its adaptability to this new
climate. Instead of rational lengths, take rational numbers. Instead of com-
paring existing irrational lengths by means of rational lengths, construct
irrational numbers from scratch using sets of rationals! The length

√
2 is

determined by the two sets of positive rationals

L√2 = {r : r2 < 2}, U√2 = {r : r2 > 2}.
Dedekind (1872) decided to let

√
2 be this pair of sets! In general, let any

partition of the positive rationals into sets L,U such that any member of L
is less than any member of U be a positive real number. This idea, now
known as a Dedekind cut, is more than just a twist of Eudoxus; it gives
a complete and uniform construction of all real numbers, or points on the
line, using just the rationals. In short, it is an explanation of the continuous
in terms of the discrete, finally resolving the fundamental conflict in Greek
mathematics. Dedekind was understandably pleased with his achievement.
He wrote

The statement is so frequently made that the differential calcu-
lus deals with continuous magnitude, and yet an explanation
of this continuity is nowhere given. . . . It then only remained
to discover its true origin in the elements of arithmetic and
thus at the same time secure a real definition of the essence of
continuity. I succeeded Nov. 24 1858.

Dedekind (1872), p. 2

Exercises

There is only one Dedekind cut (L,U) corresponding to an irrational number
α, but there are two cuts corresponding to a rational number a:

L = {r : r ≤ a}, U = {r : r > a}
and

L = {r : r < a}, U = {r : r ≥ a}.
To unify the theory of all reals we choose the latter cut, call it

La = {r : r < a}, Ua = {r : r ≥ a},
as the standard way to represent a rational a. We can then say, whether x is rational
or irrational, that the lower set for x is

Lx = {r : r < x}.
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Now we use lower sets to define x + y and xy for positive reals x and y as follows:

Lx+y = {r + s : r < x and s < y, where r, s are rational}
Lxy = {rs : r < x and s < y, where r, s are rational}.

4.2.1 Show that these are valid definitions of x + y and xy when x and y are
rational.

The true power of these definitions, as Dedekind realized, is that they allow
rigorous proofs of results like

√
2
√

3 =
√

6 that (in Dedekind’s opinion) had never
been rigorously proved before. Such proofs are possible, but still not trivial. Even
to prove that

√
2
√

2 = 2 one still has to prove the next two results.

4.2.2 If r2 < 2 and s2 < 2, show that rs < 2.

4.2.3 If a rational t < 2, show that t = rs for some rational r, s with r2 < 2,
s2 < 2.

4.2.4 Why do Exercises 4.2.2 and 4.2.3 show that
√

2
√

2 = 2?

4.2.5 Give a similar proof that
√

2
√

3 =
√

6.

4.3 The Method of Exhaustion

The method of exhaustion, also credited to Eudoxus, is a generalization
of his theory of proportions. Just as an irrational length is determined by
the rational lengths on either side of it, more general unknown quantities
become determined by arbitrarily close approximations using known fig-
ures. Examples given by Eudoxus (and expounded in Book XII of Euclid’s
Elements) are an approximation of the circle by inner and outer polygons
(Figure 4.1) and an approximation of a pyramid by stacks of prisms (Figure
4.2, which shows the most obvious approximation, not the cunning one ac-
tually used by Euclid). In both cases the approximating figures are known
quantities, on the basis of the theory of proportions and the theorem that
area of triangle = 1/2 base × height.

The polygonal approximations are used to show that the area of any
circle is proportional to the square on its radius, as follows. Suppose
P1 ⊂ P2 ⊂ P3 ⊂ · · · are the inner polygons and Q1 ⊃ Q2 ⊃ Q3 ⊃ · · ·
are the outer polygons. Each polygon is obtained from its predecessor by
bisecting the arcs between its vertices, as shown in Figure 4.1. It can then
be shown, by elementary geometry, that the area difference Qi − Pi can be
made arbitrarily small, and hence Pi approximates the area C of the circle
arbitrarily closely.
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Figure 4.1: Approximating the circle

Figure 4.2: Approximating the pyramid

On the other hand, elementary geometry also shows that the area Pi is
proportional to the square, R2, of the radius. Writing the area as Pi(R) and
using the theory of proportions to handle ratios of areas, we have

Pi(R) : Pi(R
′) = R2 : R′2. (1)

Now let C(R) denote the area of the circle of radius R, and suppose

C(R) : C(R′) < R2 : R′2. (2)

By choosing a Pi that approximates C sufficiently closely we also get

Pi(R) : Pi(R
′) < R2 : R′2,

which contradicts (1). Hence the < sign in (2) is incorrect, and we can
similarly show that > is incorrect. Thus the only possibility is

C(R) : C(R′) = R2 : R′2,

that is, the area of a circle is proportional to the square of its radius.
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Notice that “exhaustion” does not mean using an infinite sequence of
steps to show that area is proportional to the square of the radius. Rather,
one shows that any disproportionality can be refuted in a finite number
of steps (by going to a suitable Pi). This is typical of the way in which
exhaustion arguments avoid mention of limits and infinity.

In the case of the pyramid, one uses elementary geometry again to show
that stacks of prisms approximate the pyramid arbitrarily closely. Then ex-
haustion shows that the volume of a pyramid, like that of a prism, is pro-
portional to base × height (see exercises below). Finally, there is a clever
argument to show that the constant of proportionality is 1/3. We can re-
strict to the case of triangular pyramids (since any pyramid can be cut into
these), and Figure 4.3 shows how a triangular prism is cut into three trian-
gular pyramids. Any two of these pyramids can be seen to have equal base
and height—although which face is taken to be the base depends on which
pyramids are being compared—hence all three are equal in volume. Each
is therefore one-third of the prism, that is, 1/3 base × height.

Figure 4.3: Cutting a prism into pyramids

It is interesting that Euclid does not need the method of exhaustion in
the theory of area for polygons. All this can be done by dissection argu-
ments such as that showing area of triangle = 1/2 base×height (Figure 4.4).
In fact, it was shown by Farkas Bolyai (1832a) that any polygons P, Q of
equal area can be cut into polygonal pieces P1, . . . , Pn and Q1, . . . ,Qn such
that Pi is congruent to Qi. Thus we can define polygons to be equal in area
if they possess dissections into such correspondingly congruent pieces.

In Hilbert’s famous list of mathematical problems, Hilbert (1900a), the
third was to decide whether an analogous definition was possible for poly-
hedra. Dehn (1900) showed that it was not; in fact, a tetrahedron and a cube
of equal volume cannot be dissected into corresponding congruent polyhe-
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Figure 4.4: Area of a triangle

dral pieces. Hence infinite processes of some kind, such as the method of
exhaustion, are needed to define equality of volume. A readable account
of Dehn’s theorem and related results may be found in Boltyansky (1978).

Exercises

Although the method of exhaustion is not needed for the area theory of poly-
gons, it is nevertheless a helpful stepping stone toward cases in which exhaustion
is necessary, such as volumes of polyhedra or areas of curved regions.

4.3.1 Show that the area of two triangles with the same base and height can be
approximated arbitrarily closely by the same set of rectangles, differently
stacked (Figure 4.5).

Figure 4.5: Approximations to triangles

4.3.2 Show similarly that any two tetrahedra with the same base and height can
be approximated arbitrarily closely by the same prisms, differently stacked
(Figure 4.6).

Around 1800, Legendre used the result of Exercise 4.3.2 to give another proof
that the volume of a pyramid is 1/3 that of a prism with the same base and height
(see Heath (1925), Book XII, Proposition 5). He used the above dissection of a
prism into three tetrahedra, pairwise of the same base and height, so he only had
to do the following.
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Figure 4.6: Approximations to tetrahedra

4.3.3 Deduce from Exercise 4.3.2 that pyramids of equal base and height have
equal volume.

Another interesting approach to the volume of the tetrahedron by exhaustion
was given by Euclid (see Heath (1925), Book XII, Proposition 4). He dissected
the tetrahedron into two smaller tetrahedra and two prisms as shown in Figure 4.7,
with vertices at the edge midpoints of the original tetrahedron.

Figure 4.7: Euclid’s dissection of the tetrahedron

4.3.4 Show that the two prisms occupy more than half the volume of the tetra-
hedron. (Hence, by iterating the construction in the smaller tetrahedra,
the volume of the tetrahedron may be approximated arbitrarily closely by
prisms.)

4.3.5 Show that the volume of the two prisms in Figure 4.7 is 1/4 base × height
(the base and height of the tetrahedron, that is).
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By computing the volumes of the corresponding prisms in the smaller tetra-
hedra (Figure 4.8), and repeating, we find the volume of the original tetrahedron
as a sum of a geometric series.

cut

Figure 4.8: Repeated dissection of the tetrahedron

4.3.6 Show that the total volume of the prisms is
(

1
4
+

1
42
+

1
43
+ · · ·

)
base × height = 1/3 base × height.

In the next section we study a construction of Archimedes that is curiously
similar to this one of Euclid. Each step cuts pieces out of the leftovers from the
previous step and leads to a similar geometric series.

4.4 The Area of a Parabolic Segment

The method of exhaustion was brought to full maturity by Archimedes
(287–212 bce). Among his most famous results are the volume and surface
area of the sphere and the area of a parabolic segment. As mentioned
in Section 4.1, Archimedes first discovered these results by nonrigorous
methods, later confirming them by the method of exhaustion. Perhaps the
most interesting and natural of his exhaustion proofs is the one for the area
of the parabolic segment. The segment is exhausted by polygons similarly
to Eudoxus’ exhaustion of the circle, but the area is obtained outright and
not merely in proportion to another figure.

To simplify the construction slightly we assume that the segment is
cut off by a chord perpendicular to the axis of symmetry of the parabola.
Archimedes divides the parabolic segment into triangles Δ1,Δ2,Δ3, . . ., as
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shown in Figure 4.9 (labeled by their subscripts). The middle vertex of
each triangle lies on the parabola halfway between the other two (measured
horizontally). These triangles clearly exhaust the parabolic segment, and
so it remains to compute their area. Quite surprisingly, this turns into a
geometric series.

1

2 3

4

,
5 6

7

Figure 4.9: The parabolic segment

We indicate how this comes about by looking at Δ3 (Figure 4.10).

1

2 3

O X

Y Z

P

S

Q

R

Figure 4.10: A triangle in the segment

Since OP = 1
2OX, PQ = 1

4 PS by definition of the parabola. On the



4.4 The Area of a Parabolic Segment 65

other hand, S R = 1
2 PS , so QR = 1

4 PS . Now Δ3 is the sum of the triangles
RQZ and OQR, which have the same base RQ and “height” OP = PX,
hence equal area. We have just seen that RQZ has half the base of S RZ
and it has the same height; hence (calling figures equal when they have the
same area)

Δ3 = S RZ =
1
4

OYZ =
1
8
Δ1.

By symmetry, Δ2 = Δ3, so Δ2 + Δ3 =
1
4Δ1.

A similar argument shows that

Δ4 + Δ5 + Δ6 + Δ7 =
1

16
Δ1

and so on, each new chain of triangles having one-fourth the area of the
previous chain. Consequently,

area of parabolic segment = Δ1

⎛⎜⎜⎜⎜⎜⎝1 + 1
4
+

(
1
4

)2

+ · · ·
⎞⎟⎟⎟⎟⎟⎠

=
4
3
Δ1.

Of course, Archimedes does not use the infinite series but uses exhaustion,
showing that any area < 4

3Δ1 can be exceeded by taking sufficiently many
of the triangles Δi. The sum of the finite geometric series needed for this
was known from Euclid’s Elements, Book IX, where Euclid used it for the
theorem about perfect numbers (Section 3.2).

Exercises

Archimedes’ method of approximation by triangles was a brilliant success on
the parabolic segment, but not suited to many other curves. A more generally use-
ful method is approximation by rectangles, probably known to you from calculus.
The area of a parabolic segment can also be computed in this way, though less
gracefully, and indeed Archimedes did this too. We look at other curved areas that
can be evaluated by rectangle approximation in Section 9.2.

Probably the simplest area that cannot be found by this method is the area
under the hyperbola y = 1/x, from x = 1 to x = t. This is because the area
in question is log t, and the logarithm function cannot be defined by elementary
means. But if instead one takes the area to be log t by definition, then it is possible
to derive the basic property of the logarithm—

log ab = log a + log b

—and by means Archimedes would have understood.
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4.4.1 Suppose we approximate the area log a under y = 1/x from 1 to a by n
rectangles of equal width, as shown in Figure 4.11.

x

y

y = 1/x

O 1 a

· · ·

Figure 4.11: Rectangle approximation to log a

Show that the corresponding approximation to the area under y = 1/x from
b to ab by n rectangles has exactly the same area. (In fact, corresponding
rectangles have equal area.)

4.4.2 Deduce from Exercise 4.4.1, by the method of exhaustion, that the areas
under y = 1/x from 1 to a and from b to ab are equal.

4.4.3 Deduce from Exercise 4.4.2, and the above definition of log, that

log ab = log a + log b.

4.5 Biographical Notes: Archimedes

Archimedes is one of the few ancient mathematicians whose life is known
in any detail, thanks to the attention he received from classical authors
such as Plutarch, Livy, and Cicero and his participation in the historically
significant siege of Syracuse in 212 bce. He was born in Syracuse (a Greek
city in what is now Sicily) around 287 bce and did most of his important
work there, though he may have studied for a time in Alexandria. He seems
to have been related to the ruler of Syracuse, King Hieron II, or at least on
good terms with him. There are many stories of mechanisms invented by
Archimedes for the benefit of Hieron: compound pulleys for moving ships,
ballistic devices for the defense of Syracuse, and a model planetarium.

The most famous story about Archimedes is the one told by Vitruvius
(De architectura, Book IX, Ch. 3), which has Archimedes leaping from his
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bath with a shout of “Eureka!” when he realized that weighing a crown
immersed in water would give a means of testing whether it was pure gold.
Historians doubt the authenticity of this story, but it does at least recognize
Archimedes’ understanding of hydrostatics.

In ancient times Archimedes’ reputation rested on his mechanical in-
ventions, which no doubt were more understandable to most people than
his pure mathematics. However, it can also be argued that his theoreti-
cal mechanics (including the law of the lever, centers of mass, equilib-
rium, and hydrostatic pressure) was his most original contribution to sci-
ence. Before Archimedes there was no mathematical theory of mechan-
ics at all, only the thoroughly incorrect mechanics of Aristotle. In pure
mathematics, Archimedes did not make any comparable conceptual ad-
vances, except perhaps in his Method, which uses his ideas from statics as
a means of discovering results on areas and volumes. The concepts that
Archimedes needed for proofs in geometry—the theory of proportions and
the method of exhaustion—had already been supplied by Eudoxus, and it
was Archimedes’ phenomenal insight and technique that lifted him head
and shoulders above his contemporaries.

The story of Archimedes’ death has often been told, though with vary-
ing details. He was killed by a Roman soldier when Syracuse fell to the
Romans under Marcellus in 212 bce. Probably he was doing mathemat-
ics at the time of his death, but whether he enraged a soldier by saying
“Stand away from my diagram!” is conjectural. This story has come
down to us from Tzetzes (Chiliad, Book II). Another version of the death
of Archimedes is given in Plutarch’s Lives, in the chapter on Marcellus.
Plutarch also tells us that Archimedes asked that his gravestone be in-
scribed with a figure and description of his favorite result, the relation be-
tween the volumes of the sphere and the cylinder. (He showed that the
volume of the sphere is two-thirds that of the enveloping cylinder. See
Heath (1897), p. 43, and Exercise 9.2.5.) A century and a half later, Cicero
(Tusculan Disputations, Book V) reported finding the gravestone when he
was a quaestor in Sicily in 75 bce. The grave had been neglected, but the
figure of the sphere and cylinder was still recognizable.
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Number Theory in Asia

Preview

In the next three chapters we see algebra, in the form of techniques for
manipulating equations, becoming firmly established in mathematics. The
present chapter shows equations applied to number theory, Chapter 6 shows
equations studied for their own sake, and Chapter 7 shows equations ap-
plied to geometry.

As we saw in Chapter 3, Diophantus had methods for finding rational
solutions of quadratic and cubic equations. But when integer solutions are
sought, even linear equations are not trivial. The first general solutions
of linear equations in integers were found in China and India, along with
independent discoveries of the Euclidean algorithm.

The Indians also rediscovered Pell’s equation x2 − Ny2 = 1, and found
methods of solving it for general natural number values of N.

The first advance on Pell’s equation was made by Brahmagupta, who
in 628 ce found a way of “composing” solutions of x2 − Ny2 = k1 and
x2 − Ny2 = k2 to produce a solution of x2 − Ny2 = k1k2. (We also touch
on a curious formula of Brahmagupta that gives all triangles with rational
sides and rational area.)

In 1150 ce, Bhâskara II found an extension of Brahmagupta’s method
that finds a solution of x2 − Ny2 = 1 for any nonsquare natural number
N. He illustrated it with the case N = 61, for which the least nontrivial
solution is extraordinarily large.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 69
DOI 10.1007/978-1-4419-6053-5 5, c© Springer Science+Business Media, LLC 2010
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5.1 The Euclidean Algorithm

It is clear from the preceding chapters of this book that ancient Greece
had an enormous influence on world mathematics and that most of the
fundamental concepts of mathematics can be found there. This does not
mean, however, that the Greeks discovered everything first, or that they
did everything best. We have already seen that the Pythagorean theorem
was known in Babylon earlier than in Greece, and that Pythagorean triples
were understood better there than they ever were in Greece, at least until
the time of Diophantus.

In fact, the Pythagorean theorem and Pythagorean triples were also
known in ancient China and India. As far as we know these were inde-
pendent discoveries, so it rather seems that the Pythagorean theorem is
mathematically universal, likely to arise in any sufficiently advanced civi-
lization. Other such cultural universals are the concept of π—the ratio of
diameter to circumference in the circle—and the Euclidean algorithm. As
we shall see in this chapter, the Euclidean algorithm seems to arise when-
ever there is an interest in multiples, divisors, or integer solutions of linear
and quadratic equations.

For Euclid, there were two quite separate applications of the Euclidean
algorithm. In the first, the algorithm was applied to integers and used to
draw conclusions about divisibility and primes. In the second, the algo-
rithm was applied to line segments and was used as a criterion for irra-
tionality: if the algorithm does not terminate, then the ratio of the segments
is irrational. As we saw in Section 3.4, it is possible that the Greeks pushed
the nonterminating Euclidean algorithm far enough to see that it becomes
periodic in certain cases; for example, when the two line segments have
lengths 1 and

√
2.

Independently of these developments, the first form of the Euclidean
algorithm arose in China in the Han dynasty, between 200 bce and 200
ce. It was used by the Chinese to simplify fractions—dividing numerator
and denominator by their gcd—and also to find integer solutions of linear
equations.

A typical “application” of such an equation is the following. Suppose
there are 3651

4 days in a year and 291
2 days in a lunar month. If we go to

units of 1/4 day, the year and lunar month are then measured by the integers
1461 and 118. Now suppose there is a full moon on the first day of the year.
How long will it be before there is a full moon on the second day of the
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year? This will happen in x years (and y months), where

1461x = 118y − 4.

We therefore seek the least integer solution of this equation and, as we saw
in Section 3.3, this depends on expressing 1 = gcd(1461, 118) as a combi-
nation of the form 118y − 1461x, which can be done with the help of the
Euclidean algorithm. In the equation, of course, we are interested only in
part of the solution—the number x—because we only want to know a mul-
tiple of 1461 that is 4 less than some multiple of 118 (we don’t care which
one). Such a problem would later be described as a congruence problem:
we seek an x such that 1461x is congruent to −4, mod 118. The Chinese
became highly skilled in such problems, extending their methods to mul-
tiple congruences, as the next section explains. This led to an important
theorem, known today as the Chinese remainder theorem.

Around the fifth and sixth centuries ce, similar linear Diophantine equa-
tions were solved in India, and perhaps with similar calendar problems in
mind. However, the Indians took the idea in a different direction. They
independently discovered the Pell equation x2 − Ny2 = 1, found by the
Greeks in trying to understand

√
N, and also rediscovered the periodicity

in it. Most remarkable of all, they did this without any split between ratio-
nal and irrational. Their treatment of the Pell equation is completely based
on integer operations, and it blends smoothly with their treatment of linear
equations.

5.2 The Chinese Remainder Theorem

The origin of this theorem is the following problem, occurring in the Math-
ematical Manual of Sun Zi, late in the third century ce. It is required to find
a number that leaves remainder 2 on division by 3, remainder 3 on division
by 5, and remainder 2 on division by 7. The answer can easily be found by
experiment to be 23, but Sun Zi offers the following explanation, presum-
ably to indicate a general method.

If we count by threes and there is a remainder 2, put down 140.
If we count by fives and there is a remainder 3, put down 63.
If we count by sevens and there is a remainder 2, put down 30.
Add them to obtain 233 and subtract 210 to get the answer.

From the translation of Sun Zi’s Mathematical Manual in Lam
and Ang (1992), p. 178
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The numbers 140, 63, and 30 were chosen because of the following
properties:

• 140 = 4 × (5 × 7)
leaves remainder 2 on division by 3,
and remainder 0 on division by 5, 7.

• 63 = 3 × (3 × 7)
leaves remainder 3 on division by 5,
and remainder 0 on division by 3, 7.

• 30 = 2 × (3 × 5)
leaves remainder 2 on division by 7,
and remainder 0 on division by 3, 5.

Hence their sum 233 necessarily leaves remainders 2, 3, 2 on division by
3, 5, 7, respectively. Since 3 × 5 × 7 = 105 leaves remainder 0 on division
by 3, 5, and 7, we can subtract 105 from 233 and obtain a smaller number
that leaves the same remainders on division by 3, 5, and 7. Subtracting 105
twice gives the smallest solution, 23.

But why choose 140, 63, and 30, in particular? It would be simpler to
choose 35 in place of 140, because

• 35 = 5 × 7
leaves remainder 2 on division by 3,
and remainder 0 on division by 5, 7.

Sun Zi’s explanation continues:

If we count by threes and there is a remainder 1, put down 70.
If we count by fives and there is a remainder 1, put down 21.
If we count by sevens and there is a remainder 1, put down 15.

Apparently he began with 70 = 2 × (5 × 7) because it is the smallest
multiple of 5 and 7 leaving remainder 1 on division by 3, then multiplied
by 2 to get a number leaving remainder 2 on division by 3.

The numbers 63 and 30 can also be explained this way. The smallest
multiple of 3 and 7 that leaves remainder 1 on division by 5 is 21 = 3 × 7.
Therefore, 63 = 3 × (3 × 7) is a multiple of 3 and 7 that leaves remainder 3
on division by 5. Similarly, 15 = 3 × 5 is the smallest multiple of 3 and 5
that leaves remainder 1 on division by 7, so 30 is the smallest multiple of
3 and 5 that leaves remainder 2 on division by 7.
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An interesting question arises at this point. If Sun Zi intended this to
be a general method, with integers p, q, r in place of 3, 5, 7, he needed
to know that there is a multiple m(qr) of qr that leaves remainder 1 on
division by p. Did he know this? Such a number m is what we now call an
inverse of qr, mod p, and Sun Zi’s problem is probably the first occasion
in the history of mathematics where these inverses are called for.

A method for solving Sun Zi’s problem in full generality was first given
in the Mathematical Treatise in Nine Sections by Qin Jiushao in 1247. He
solved the crucial problem of finding inverses by the Euclidean algorithm.
Given integers p and a with gcd(p, a) = 1, we know from Section 2.4 that
there are integers m and n such that

mp + na = 1.

But then
mp = 1 − na,

so mp leaves remainder 1 on division by a, and m is an inverse of p, mod
a. Qin Jiushao found m by running the Euclidean algorithm on p and a,
then substituting back to find m and n with mp + na = 1. He called it the
“method of finding 1.”

It is not hard to show (Exercise 5.2.1) that p has an inverse mod a only
if gcd(p, a) = 1. Thus in a Chinese remainder problem we generally need
the divisors to be relatively prime. The method of inverses then gives the
following.

Chinese remainder theorem. If p1, . . . , pk are relatively prime integers
and r1 < p1, . . . , rk < pk are any integers ≥ 0, then there is an integer n
such that, for each i, n leaves remainder ri on division by pi. �

This theorem has made many appearances in the history of number the-
ory, and has often been the vehicle for important new concepts and results.
Its later development in China is described in Libbrecht (1973). When it
was eventually discovered in Europe, Euler and Gauss made excellent use
of it.

Exercises

5.2.1 Prove that if mp leaves remainder 1 on division by a, then gcd(p, a) = 1.

5.2.2 Give a proof of the Chinese remainder theorem, using the existence of in-
verses mod pi to justify Sun Zi’s method.
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5.3 Linear Diophantine Equations

We have seen how the Chinese came to use the Euclidean algorithm for
remainder problems, somewhere between the third century ce and Qin
Jiushao’s Mathematical Treatise of 1247. The algorithm was also used ex-
tensively in India during the same period, beginning with the Âryabhat. ı̂ya
of Âryabhat.a in 499 ce. Âryabhat.a was born in 476 ce and is also known
as Âryabhat.a I, to distinguish him from another mathematician of the same
name who lived around 950 ce.

His most important contribution was a method for finding integer so-
lutions of equations of the form ax + by = c, where a, b, and c are inte-
gers. Like the Chinese remainder problem, which it closely resembles, this
problem cries out for the Euclidean algorithm. Both problems boil down
to expressing gcd(a, b) in the form ma+ nb, and in the case of the equation
ax + by = c the underlying reason is the following:

Criterion for integer solution of ax + by = c. The equation ax+ by = c,
where a, b, c are integers, has an integer solution⇔ gcd(a, b) divides c.

Proof. If x and y are integers, then gcd(a, b) divides ax + by; hence if
ax + by = c, then gcd(a, b) divides c. Conversely, we know from Section
3.3 that there are integers m and n such that gcd(a, b) = ma+ nb. Hence, if
gcd(a, b) divides c, we have ma + nb divides c, say (ma + nb)d = c. Then
x = md, y = nd is a solution of the equation ax + by = c. �

As mentioned in Section 3.3, gcd(a, b) = ma + nb is an easy conse-
quence of the Euclidean algorithm, though Euclid apparently missed it.
We also cannot be sure that Âryabhat.a noticed it, since his book contains
only a few lines on the problem of solving ax + by = c, and these were
made intelligible only by the efforts of later commentators. The first of
these was Bhâskara I, who observed in 522 ce that, by dividing a and b by
their gcd, the problem reduces to solving

a′x + b′y = 1,

where gcd(a′, b′) = 1, and that the latter problem can always be solved.
Thus Bhâskara I assumed that 1 = gcd(a′, b′) = m′a′ + n′b′ for some
integers m′ and n′, and it follows that gcd(a, b) = ma+nb, after multiplying
both sides by gcd(a, b).

Bhâskara I also introduced the vivid term kut.t.aka, meaning pulverizer,
for the Euclidean algorithm. The numbers a and b are “pulverized” by the
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algorithm into smaller and smaller parts, with the smallest part being their
gcd. The Indian pulverizer was the division-with-remainder form of the
algorithm, though of course the word applies equally well to the subtractive
form. To solve the equation ax + by = c, where gcd(a, b) divides c, the
pulverizer was combined with substitution to find coefficients m and n such
that ma + nb = gcd(a, b), and multiplication by a suitable factor to obtain
x and y such that ax + by = c. Examples may be seen in Srinivasiengar
(1967).

Exercises

Finding m and n such that gcd(a, b) = ma + nb can be done by running the
Euclidean algorithm on the numbers a and b, in parallel with the algorithm on the
literal symbols a and b. The symbols a and b hold the numbers m and n as their
coefficients. For example, to find m and n such that 1 = 21m + 17n, one runs the
Euclidean algorithm starting with the pair (21, 17), and also with (a, b), doing to
the symbols exactly what is done to the numbers.

The first few steps look like this:

(21, 17) (a, b)
(17, 21 − 17) (b, a − b)
(17, 4) (b, a − b)
(17 − 4, 4) (b − (a − b), a − b)
(13, 4) (−a + 2b, a − b)

So far, this gives 13 = −21 + 2 × 17 and 4 = 21 − 17 in the form 21m + 17n.

5.3.1 Complete the running of the Euclidean algorithm on (21, 17), and hence
find integers m and n such that 1 = 21m + 17n.

5.3.2 Hence find integers x, y such that 21x + 17y = 3.

5.4 Pell’s Equation in Brahmagupta

Where linear Diophantine equations are concerned, Indian mathematics
and Chinese mathematics are very similar. In fact, the resemblance is even
greater than has been suggested so far, because Chinese remainder prob-
lems were also studied in India. This suggests possible contact and sharing
of ideas. On the other hand, the two mathematical cultures diverge in other
respects. The Chinese developed algebra and approximation methods for
high-degree equations, but not integer solutions for nonlinear equations
(except for the Pythagorean equation). The Indians made less progress
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in algebra, but had striking success finding integer solutions of the Pell
equation—the first major advance in number theory since Diophantus.

The author of this advance was Brahmagupta, whose Brâhma-sphut.a-
siddhânta of 628 ce can be read in the English translation of Colebrooke
(1817). Brahmagupta’s treatment of the Pell equation

x2 − Ny2 = 1, where N is a nonsquare integer,

is based on his discovery (see Colebrooke (1817), p. 363) that

(x2
1 − Ny21)(x2

2 − Ny22) = (x1x2 + Ny1y2)2 − N(x1y2 + x2y1)2.

This identity generalizes the identity discovered by Diophantus

(x2
1 + y

2
1)(x2

2 + y
2
2) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2,

to which we shall return later in connection with complex numbers. Like
Diophantus’s identity, Brahmagupta’s is easily checked by multiplying out
both sides, though not easily discovered in the first place.

Brahmagupta used his identity to find solutions of

x2 − Ny2 = 1

via a sequence of equations of the form

x2 − Ny2 = ki.

His identity shows that if

x = x1, y = y1 is a solution of x2 − Ny2 = k1,

and
x = x2, y = y2 is a solution of x2 − Ny2 = k2,

then

x = x1x2 + Ny1y2, y = x1y2 + x2y1 is a solution of x2 − Ny2 = k1k2.

This is called composition of the triples (x1, y1, k1) and (x2, y2, k2) to form
the triple (x1x2 + Ny1y2, x1y2 + x2y1, k1k2).

If k1 = 1 and k2 = 1, composition is a way to generate infinitely many
solutions of x2 − Ny2 = 1 when one is known (if only one of k1, k2 is 1,
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compose the corresponding triple with itself). More surprisingly, it is often
possible to find a solution of x2 − Ny2 = 1 from solutions of

x2 − Ny2 = k1 and x2 − Ny2 = k2 for integers k1, k2 > 1.

The reason is that composing (x1, y2, k1) with itself gives a solution of
x2 − Ny2 = k2

1, say x = X, y = Y , and hence a rational solution x = X/k1,
y = Y/k1 of x2 − Ny2 = 1. With a bit of luck, this solution will be integral,
or else it will yield an integral solution when composed further.

Example: x2 − 92y2 = 1. (This is Brahmagupta’s first example; he says
that “a person solving this problem within a year is a mathematician.” See
Colebrooke (1817), p. 364.)

Solution. Since 102−92×12 = 8, we have the triple (10, 1, 8). Composing
this with itself gives the triple

(10 × 10 + 92 × 1 × 1, 10 × 1 + 1 × 10, 8 × 8) = (192, 20, 64),

which means
1922 − 92 × 202 = 82.

Dividing both sides by 82 gives

242 − 92 × (5/2)2 = 1,

hence the new “nearly integer” triple (24, 5/2, 1). Composing (24, 5/2, 1)
with itself finally gives the integer triple

(242 + 92 × (5/2)2, 24 × (5/2) + (5/2) × 24, 1) = (576 + 575, 120, 1)

= (1151, 120, 1).

Thus x = 1151, y = 120 is an integer solution of x2 − 92y2 = 1. �

Exercises

5.4.1 Explain the solutions xn+1 = xn + 2yn, yn+1 = xn + yn of x2 − 2y2 = (−1)n

(the “side and diagonal numbers” of Section 3.4) in terms of composition.

5.4.2 Derive Brahmagupta’s identity using the factorization

(x2
1 − Ny2

1)(x2
2 − Ny2

2) = (x1 −
√

Ny1)(x1 +
√

Ny1)(x2 −
√

Ny2)(x2 +
√

Ny2),

and combining the first factor with the third, and the second with the fourth.
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5.4.3 Show that
√

N is irrational when N is a nonsquare integer. Deduce that if
a1 −

√
Nb1 = a2 −

√
Nb2 for integers a1, b1, a2, b2, then a1 = a2 and b1 = b2.

5.4.4 If (x3, y3, 1) is the composite of (x1, y1, 1) and (x2, y2, 1), use Exercise 5.4.3
to show that x3, y3 may also be defined as the integers such that

(x1 −
√

Ny1)(x2 −
√

Ny2) = x3 −
√

Ny3.

Now we free x and y from the restriction to integer or rational values, and
define the Brahmagupta composite of any triples (x1, y1, 1) and (x2, y2, 1) to be
(x1x2 + Ny1y2, x1y2 + x2y1, 1).

5.4.5 (For readers familiar with hyperbolic functions.) Show that the functions
x = cosh u, y = 1√

N
sinh u define a one-to-one correspondence between the real

numbers u and the points (x, y) on the branch of the hyperbola x2−Ny2 = 1 where
x > 1. Show also that the Brahmagupta composite of (cosh u1,

1√
N

sinh u1, 1) and

(cosh u2,
1√
N

sinh u2, 1) is (cosh(u1+u2), 1√
N

sinh(u1+u2), 1); hence Brahmagupta’s
composition corresponds to addition of real numbers u.

5.4.6 Use the functions x = cos θ and y = sin θ parameterizing the unit circle to
show similarly that “Diophantus’s composition” of (x1, y1) and (x2, y2) to form
(x1x2 − y1y2, x1y2 + x2y1) corresponds to addition of angles θ.

5.5 Pell’s Equation in Bhâskara II

Brahmagupta found integer solutions of many Pell equations x2 − Ny2 = 1
by his composition method, but he was not able to apply it uniformly for
all values of N. The best he could do was show that if x2 − Ny2 = k has
an integer solution for k = ±1,±2, or ± 4 then x2 − Ny2 = 1 also has an
integer solution. His proofs that composition succeeds in these cases may
be found in Srinivasiengar (1967), p. 111.

The first general method for solving the Pell equation was given by
Bhâskara II in his Bı̂jagan. ita of 1150 ce. He completed Brahmagupta’s
program by giving a method, called the cakravâla or cyclic process, which
always succeeds in finding integers x, y, k with x2 − Ny2 = k and k =
±1,±2, or± 4. Admittedly, Bhâskara II did not give a proof that the cyclic
process always works—this was first done by Lagrange (1768)—but in
fact it does. A proof using only concepts accessible to Bhâskara II may be
found in Weil (1984), p. 22. We shall merely describe the cyclic process,
and one of its most spectacular successes—the solution of x2 − 61y2 = 1.
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Given relatively prime a and b such that a2 − Nb2 = k, we compose
the triple (a, b, k) with the triple (m, 1,m2 − N) obtained from the trivial
equation

m2 − N × 12 = m2 − N.

The result is the triple (am + Nb, a + bm, k(m2 − N)), which can be scaled
down to the (possibly nonintegral) triple

(
am + Nb

k
,

a + bm
k
,

m2 − N
k

)
.

We now choose m so that (a+bm)/k = b1 is an integer, and it turns out that
(am +Nb)/k = a1 and (m2 −N)/k = k1 are integers, too. If we also choose
m so that m2 − N is as small as possible, we are well on the road to a triple
(ai, bi, ki) with ki = ±1,±2, or ± 4.

Example. x2 − 61y2 = 1. (This is Bhâskara’s example. See Colebrooke
(1817), pp. 176–178.)

Solution. The equation 82 − 61 × 12 = 3 gives us the triple (a, b, k) =
(8, 1, 3). We compose (8, 1, 3) with (m, 1,m2 − 61), obtaining the triple
(8m + 61, 8 + m, 3(m2 − 61)) and hence

(
8m + 61

3
,

8 + m
3
,

m2 − 61
3

)
.

Choosing m = 7 (because 72 is the nearest square to 61 for which 3 divides
8 + m), we get the triple (39, 5,−4), so already k = −4. We scale down
further to the triple (39/2, 5/2,−1). Composing (39/2, 5/2,−1) with itself
gives (1523/2, 195/2, 1), and composing this again with (39/2, 5/2,−1)
gives the integer triple (29718, 3805,−1). Finally, composing the latter
with itself gives the triple (1766319049, 226153980, 1).

Thus the equation x2 − 61y2 = 1 has integer solution x = 1766319049,
y = 226153980. �

This amazing example was rediscovered by Fermat (1657), who posed
the equation x2 − 61y2 = 1 as a challenge to his colleague Frenicle. The
solution x = 1766319049, y = 226153980 is in fact the minimal nonzero
solution of x2 − 61y2 = 1, which suggests that the Pell equation has a lot
of hidden complexity—one does not expect such a short question to have
such a long answer. Presumably Bhâskara II and Fermat knew that the
Pell equation is particularly hard for N = 61. Among the Pell equations
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for N ≤ 100, this has one of the largest minimal solutions, and it is much
larger than any for N < 61.

The cyclic process is a little too successful on N = 61, because it
terminates before anything “cyclic” becomes apparent. In fact, the cyclic
process detects the same periodicity we previously observed in the contin-
ued fraction for

√
N (Section 3.3), and the size of the minimal solution is

related to the length of the period. These facts became clear only with the
work of Lagrange (1768), which is based on a study of continued fractions.

For a solution of the Pell equation that avoids continued fractions, see
Section 25.2.

Exercises

The surprising step in Bhaskara’s process, where choosing the integer m so
that (a + bm)/k is an integer also produces integers (am + Nb)/k and (m2 − N)/k,
deserves some explanation. It depends on choosing the initial a and b so that
gcd(a, b) = 1—as one normally would to make a2 − Nb2 = k small—because
there are counterexamples when gcd(a, b) > 1.

5.5.1 Suppose we choose a = 4, b = 2 in a2 − 2b2, so k = 8. Find an m for which
(a + bm)/k is an integer but (am + Nb)/k is not.

Supposing gcd(a, b) = 1, however, we can prove that if (a+bm)/k is an integer
then so is (am + Nb)/k. It follows that (m2 − N)/k is too, thanks to the equation

(
am + Nb

k

)2
− N

(
a + bm

k

)2
=

m2 − N
k

(*)

to which this triple corresponds. The proof that (am + Nb)/k is an integer goes as
follows. At the end it involves the “method of finding 1.”

5.5.2 Assuming a + bm = kl, substitute kl − mb for one copy of a in the equation
a2 − Nb2 = k, and hence show that k divides b(am + Nb).

5.5.3 Substituting kl − a for both copies of bm in the equation a2m2 − Nb2m2 =

km2, show that k divides a2(m2 − N).

5.5.4 Deduce from Exercise 5.5.3, and the other form of equation (*),

(am + Nb)2 − N(a + bm)2 = k(m2 − N),

that k2 divides a2(am + Nb)2, so that k divides a(am + Nb).

5.5.5 Deduce from Exercises 5.5.2 and 5.5.4 that k divides (ar+bs)(am+Nb) for
any integers r and s, and hence that k divides am + Nb.
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5.6 Rational Triangles

After the discovery of rational right-angled triangles, and their complete
description by Euclid (Section 1.2), a question one might expect to arise
is, what about rational triangles in general? Of course, any three rational
numbers can serve as the sides of a triangle, provided the sum of any two
of them is greater than the third. Thus a “rational triangle” should be one
that is rational not only in its side lengths, but also in some other quantity,
such as altitude or area. Since area = 1

2base × altitude, a triangle with
rational sides has rational area if and only all its altitudes are rational, so it
is reasonable to define a rational triangle to be one with rational sides and
rational area.

Many questions can be raised about rational triangles, but they rarely
occur in Greek mathematics. As far as we know, the first to treat them
thoroughly was Brahmagupta, in his Brâhma-sphut.a-siddhânta of 628 ce.
In particular, he found the following complete description of rational trian-
gles.

Parameterization of rational triangles. A triangle with rational sides a,
b, c and rational area is of the form

a =
u2

v
+ v, b =

u2

w
+ w, c =

u2

v
− v + u2

w
− w

for some rational numbers u, v, and w.

Brahmagupta (see Colebrooke (1817), p. 306) actually has a factor 1/2
in each of a, b, and c, but this is superfluous because, for example,

1
2

(
u2

v
+ v

)
=

(u/2)2

v/2
+ v/2 =

u1
2

v1
+ v1,

where u1 = u/2 and v1 = v/2 are likewise rational. The formula is stated
without proof, but it becomes easy to see if one rewrites a, b, c and makes
the following stronger claim.

Any triangle with rational sides and rational area is of the form

a =
u2 + v2

v
, b =

u2 + w2

w
, c =

u2 − v2
v
+

u2 − w2

w

for some rationals u, v, and w, with altitude h = 2u splitting side c into
segments c1 = (u2 − v2)/v and c2 = (u2 − w2)/w.
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The stronger claim says in particular that any rational triangle splits
into two rational right-angled triangles. It follows from the parameteriza-
tion of rational right-angled triangles, which was known to Brahmagupta.

Proof. For any triangle with rational sides a, b, c, the altitude h splits
c into rational segments c1 and c2 (Figure 5.1). This follows from the

a b

c1 c2

h

Figure 5.1: Splitting a rational triangle

Pythagorean theorem in the two right-angled triangles with sides c1, h, a
and c2, h, b, respectively. Namely,

a2 = c2
1 + h2,

b2 = c2
2 + h2.

Hence, by subtraction,

a2 − b2 = c2
1 − c2

2 = (c1 − c2)(c1 + c2) = (c1 − c2)c,

so

c1 − c2 =
a2 − b2

c
, which is rational.

But also
c1 + c2 = c, which is rational;

hence

c1 =
1
2

(
a2 − b2

c
+ c

)
, c2 =

1
2

(
c − a2 − b2

c

)

are both rational.
Thus if the area, and hence the altitude h, is also rational, the triangle

splits into two rational right-angled triangles with sides c1, h, a and c2, h, b.
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We know from Diophantus’s method (Section 1.3) that any rational
right-angled triangle with hypotenuse 1 has sides of the form

1 − t2

1 + t2
,

2t

1 + t2
, 1 for some rational t,

or, writing t = v/u,

u2 − v2
u2 + v2

,
2uv

u2 + v2
, 1 for some rational u, v.

Thus the arbitrary rational right-angled triangle with hypotenuse 1 is a mul-
tiple (by v/(u2 + v2)) of the triangle with sides

u2 − v2
v
, 2u,

u2 + v2

v
.

The latter therefore represents all rational right-angled triangles with al-
titude 2u, as the rational v varies. And it follows that any two rational

u2+v2

v

2u

u2−v2
v

u2+w2

w

2u

u2−w2

w

Figure 5.2: Assembling an arbitrary rational triangle

right-angled triangles with altitude 2u have sides

u2 − v2
v
, 2u,

u2 + v2

v
and

u2 − w2

w
, 2u,

u2 + w2

w

for some rational v and w. Putting the two together (Figure 5.2) gives an ar-
bitrary rational triangle, and its sides and altitude are of the required form.

�

Exercises

5.6.1 (Brahmagupta) Show that the triangle with sides 13, 14, 15 splits into two
integer right-angled triangles.



84 5 Number Theory in Asia

5.6.2 Show that for any triangle with sides a, b, c and altitude h on side c there are
real numbers u, v, w such that

a =
u2 + v2

v
, b =

u2 + w2

w
, c =

u2 − v2
v
+

u2 − w2

w
,

with the side c split into parts (u2 − v2)/v and (u2 − w2)/w by the altitude h = 2u.

5.6.3 Define the semiperimeter of the triangle with sides a, b, and c to be s =
(a + b + c)/2. Then, with the notation of Exercise 5.6.2, show that

s(s − a)(s − b)(s − c) = u2(v + w)2

(
u2

vw
− 1

)2
.

5.6.4 Deduce from Exercise 5.6.3 that

√
s(s − a)(s − b)(s − c) = u

(
u2 − v2
v
+

u2 − w2

w

)

is the area of the triangle with sides a, b, and c. (This formula for area in terms of
a, b, and c is named after the Greek mathematician Hero, or Heron, who lived in
the first century ce.)

5.7 Biographical Notes: Brahmagupta and
Bhâskara

Brahmagupta was born in 598 ce, the son of Jis.n. agupta, and lived until
at least 665. His book the Brâhma-sphut.a-siddhânta describes him as the
teacher from Bhillamâla, which is a town now known as Bhinmal in the
Indian state of Gujurat. Very little is known for certain about his life except
that he was prominent in astronomy as well as mathematics.

Apart from the contributions described above, Brahmagupta is known
for introducing a general solution formula for the quadratic equation (see
Section 6.3), and a remarkable formula for the area of a cyclic quadrilateral.
The latter states that if a quadrilateral has sides a, b, c, and d, semiperimeter
s, and all vertices on a circle, then its area is

√
(s − a)(s − b)(s − c)(s − d).

Notice that this generalizes the Heron formula mentioned in Exercise 5.6.4.
Brahmagupta’s parameterization of rational triangles leads naturally to

other rationality questions, about triangles and other figures. The most
famous of these is probably: is there a rational box? That is, is there a
solid with rational rectangular faces whose body diagonal and the three
face diagonals are all rational? According to Dickson (1920), p. 497, a
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mathematician named Paul Halcke found a box with rational sides and face
diagonals in 1719. Its sides are 44, 240, and 117. However, the body
diagonal of this box is irrational, and it is still not known whether a rational
box exists, despite the efforts of many mathematicians, including Euler and
Mordell.

Bhâskara II was born in 1114 or 1115 and died around 1185. He was
the son of Maheśvara, from the city of Bı̄jāpur. A great admirer of Brah-
magupta, Bhâskara became the greatest mathematician and astronomer in
12th-century India, serving as head of the observatory at Ujjain. His most
famous work, the Lı̄lāvatı̄, is said to be named after his daughter, to console
her for an astrological forecast that went wrong.

The story goes that Bhâskara used his astronomical knowledge (which
in those days included astrological “knowledge”) to choose the most pro-
pitious date and time for his daughter’s wedding. As the time approached,
one of her pearls fell into the water clock as she leaned over it, stopping the
outflow of water. Before anyone noticed, however, the crucial time passed,
and the wedding had to be called off. The hapless Lı̄lāvatı̄ never married,
and now she is remembered only through the book that bears her name.
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Polynomial Equations

Preview

The first phase in the history of algebra was the search for solutions of poly-
nomial equations. The “degree of difficulty” of an equation corresponds
rather neatly to the degree of the corresponding polynomial.

Linear equations are easily solved, and 2000 years ago the Chinese
were even able to solve n equations in n unknowns by the method we now
call “Gaussian elimination.”

Quadratic equations are harder to solve, because they generally require
the square root operation. But the solution—essentially the same as that
taught in high schools today—was discovered independently in many cul-
tures more than 1000 years ago.

The first really hard case is the cubic equation, whose solution requires
both square roots and cube roots. Its discovery by Italian mathematicians in
the early 16th century was a decisive breakthrough, and equations quickly
became the language of virtually all mathematics. (See, for example, ana-
lytic geometry in Chapter 7 and calculus in Chapter 9.)

Despite this breakthrough, the problem of polynomial equations re-
mained incompletely solved. The obstacle was the quintic equation—the
general equation of degree 5. In the 1820s it finally became clear that the
quintic equation is not solvable in the sense that equations of lower de-
gree are solvable. But explaining why this is so requires a new, and more
abstract, concept of algebra (see Chapter 19).

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 87
DOI 10.1007/978-1-4419-6053-5 6, c© Springer Science+Business Media, LLC 2010
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6.1 Algebra

The word “algebra” comes from the Arabic word al-jabr meaning “restor-
ing.” It passed into mathematics through the book Al-jabr w’al mûqabala
(Science of restoring and opposition) of al-Khwārizmı̄ in 830 ce, a work on
the solution of equations. In this context, “restoring” meant adding equal
terms to both sides and “opposition” meant setting the two sides equal. For
centuries, al-jabr more commonly meant the resetting of broken bones, and
the surgical meaning accompanied the mathematical one when “al-jabr”
became “algebra” in Spanish, Italian, and English. Even today the surgical
meaning is included in the Oxford English Dictionary. Al-Khwārizmı̄’s
own name has given us the word “algorithm,” so his work has had a lasting
impact on mathematics, even though its content was quite elementary.

His algebra went no further than the solution of quadratic equations,
which had already been understood by the Babylonians, presented from the
geometric viewpoint by Euclid, and reduced to a formula by Brahmagupta
(628) (see Section 6.3). Brahmagupta’s work, the high point of Indian
mathematics to that time, was more advanced than al-Khwārizmı̄’s in sev-
eral respects—notation, admission of negative numbers, and the treatment
of Diophantine equations—even though it predated al-Khwārizmı̄ and was
very likely known to him. Indian mathematics had spread to the Arab world
with the general promotion of culture by the eighth-century caliphs of
Baghdad, and Arab mathematicians acknowledged the Indian origin of cer-
tain ideas, for instance, decimal numerals. Why then did al-Khwārizmı̄’s
work rather than Brahmagupta’s become the definitive “algebra”?

Perhaps this is a case (like “Pell’s equation,” to mention another perti-
nent example) where a mathematical term caught on for accidental reasons.
However, it may be that the time was ripe for the idea of algebra to be cul-
tivated, and the simple algebra of al-Khwārizmı̄ served this purpose better
than those of his more sophisticated predecessors. In Indian mathematics,
algebra was inseparable from number theory and elementary arithmetic.
In Greek mathematics, algebra was hidden by geometry. Other possible
sources of algebra, Babylonia and China, were lost or cut off from the
West until it was too late for them to be influential. Arabic mathematics
developed at the right time and place to absorb both the geometry of the
West and the algebra of the East and to recognize algebra as a separate field
with its own methods. The concept of algebra that emerged—the theory of
polynomial equations—proved its worth by holding firm for 1000 years.
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Only in the 19th century did algebra grow beyond the bounds of the theory
of equations, and this was a time when most fields of mathematics were
outgrowing their established habitats.

The early algebraic methods seemed only superficially different from
geometric methods, as we shall see in the case of quadratic equations
in Section 6.3. Algebraic methods for solving equations became distinct
from, and superior to, the geometric only with the advent of new manip-
ulative techniques and efficient notation in the 16th century (Section 6.5).
Algebra did not break away from geometry, however, but actually gave ge-
ometry a new lease on life, thanks to the development of analytic geometry
by Fermat and Descartes around 1630. This recombination of algebra and
geometry at a higher level is discussed in Chapter 7. It led to the modern
field of algebraic geometry.

The story of algebraic geometry unfolds along with the story of polyno-
mial equations, becoming entwined with many other mathematical threads
in the process. We shall study several of the decisive early events in this
story. One we have already seen is Diophantus’s chord and tangent method
for finding rational solutions of equations (Section 3.5). Another relevant
event, though not in fact historically connected with Western mathemat-
ics, was the method of elimination developed by Chinese mathematicians
between the early Christian era and the Middle Ages. Since this method
predates any comparable method in the West, and concerns equations of
the lowest degree, it is logical to discuss it first.

6.2 Linear Equations and Elimination

The Chinese discovered a method for solving linear equations in any num-
ber of unknowns during the Han dynasty (206 bce–220 ce). It appears in the
famous book Jiuzhang suanshu (Nine Chapters of Mathematical Art; see
Shen et al. (1999)), which was written during this period, and survives to-
day in a third-century version with a commentary by Liu Hui. The method
was essentially what we call “Gaussian elimination,” systematically elimi-
nating terms in a system

a11x1 + a12x2 + · · · + a1nxn = b1

...

an1x1 + an2x2 + · · · + annxn = bn
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by subtracting a suitable multiple of each equation from the one below it
until a triangular system is obtained:

a′11x1 + a′12x2 + · · · + a′1nxn = b′1
a′22x2 + · · · + a′2nxn = b′2

. . .
...

a′nnxn = b′n

then solving for xn, xn−1, . . . , x1 in turn by successive substitutions. This
type of calculation was particularly suited to a Chinese device called the
counting board, which held the array of coefficients and facilitated manip-
ulations similar to those we perform with matrices. For further details, see
Li and Du (1987).

Around the 12th century, Chinese mathematicians discovered that elim-
ination could be adapted to simultaneous polynomial equations in two or
more variables. For example, one can eliminate y between the pair of equa-
tions

a0(x)ym + a1(x)ym−1 + · · · + am(x) = 0, (1)

b0(x)ym + b1(x)ym−1 + · · · + bm(x) = 0, (2)

where the ai(x), bj(x) are polynomials in x. The ym term can be eliminated
by forming the equation b0(x) × (1) − a0(x) × (2), say,

c0(x)ym−1 + c1(x)ym−2 + · · · + cm−1(x) = 0. (3)

We can form a second equation of degree m − 1 in y by multiplying (3) by
y, then again eliminating ym between (3) × y and (1), giving, say,

d0(x)ym−1 + d1(x)ym−2 + · · · + dm−1(x) = 0. (4)

The problem is now reduced to eliminating y between the equations (3)
and (4), which are of lower degree in y than (1) and (2). Thus one can
continue inductively until an equation in x alone is obtained. This method
was extended to four variables in the work of Zhū Shijié (1303) entitled
Siyuan yujian (Jade Mirror of Four Unknowns).

As we shall see in Chapter 7, the two-variable polynomial problem
arose in the West in the 17th century, in the context of finding intersections
of curves. This led first to a rediscovery of the method of elimination
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for polynomials; only later was this method based on an understanding of
linear equations. The well-known Cramer’s rule for the solution of linear
equations was named after its appearance in a book on algebraic curves,
Cramer (1750).

Exercises

The first interesting case of elimination between two-variable polynomials oc-
curs when the polynomials have degree 2. Geometrically, this amounts to finding
the intersections of two conic sections.

6.2.1 Derive an equation that is linear in y from the two equations

x2 + xy + y2 = 1,

4x2 + 3xy + 2y2 = 3,

and hence show that y = (1 − 2x2)/x.

6.2.2 Deduce that the intersections of the two curves in Exercise 6.2.1 occur
where x satisfies 3x4 − 4x2 + 1 = 0.

This example, where the two equations of degree 2 yield a single equation of
degree 4 (= 2×2), illustrates a general phenomenon where degrees are multiplied.
We shall observe other instances, and study it more deeply, as the book progresses.

The present example is not a typical equation of degree 4, since it is quadratic
in x2 = z. However, this makes it a lot easier to solve.

6.2.3 Solve 3z2−4z+1 = 0 for z = x2 by factorizing the left-hand side, and hence
find four solutions for x.

Give geometric reasons why you would expect two curves of degree 2 to
have up to four intersections. Could they have more than four?

The Jade Mirror of Four Unknowns does not go beyond four equations in
four unknowns (hence the name). The idea is quite general, but it becomes hard
to implement on the counting board when there are more than four unknowns. An
amusing problem in three unknowns from the Jade Mirror, which does not require
the full strength of the elimination method, is given in the exercises below.

6.2.4 Problem 2 in the Jade Mirror (see Hoe (1977), p. 135) is to find the side a
of a right-angled triangle (a, b, c) such that

a2 − (b + c − a) = ab,

b2 + (a + c − b) = bc.

The Jade Mirror suggests choosing the unknowns x = a and y = b + c.
Using a2 = c2 − b2, show that this implies

b = (y − x2/y)/2,

c = (y + x2/y)/2.
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6.2.5 Deduce that the first two equations in Exercise 6.2.4 are equivalent, respec-
tively, to

(−2 − x)y2 + (2x + 2x2)y + x3 = 0,

(2 − x)y2 + 2xy + x3 = 0.

6.2.6 By subtracting one equation in Exercise 6.2.5 from the other, deduce that
y = x2/2. Substitute this back to obtain a quadratic equation for x, with
solution x = a = 4. What are the values of b and c?

6.3 Quadratic Equations

As early as 2000 bce, the Babylonians could solve a pair of simultaneous
equations of the form

x + y = p,

xy = q,

which are equivalent to the quadratic equation

x2 + q = px.

The original pair was solved by a method that gave the two roots of the
quadratic,

x, y =
p
2
±
√( p

2

)2
− q,

when both were positive (the Babylonians did not admit negative numbers).
The steps in the method were as follows:

(i) Form x+y
2 .

(ii) Form
(

x+y
2

)2
.

(iii) Form
(

x+y
2

)2 − xy.

(iv) Form
√(

x+y
2

)2 − xy = x−y
2 .

(v) Find x, y by inspection of the values in (i), (iv).



6.3 Quadratic Equations 93

(See Boyer (1968), p. 34, for an actual example.) Of course, these steps
were not expressed in symbols but only applied to specific numbers. Nev-
ertheless, a general method is implicit in the many specific cases solved.

An explicit general method, expressed as a formula in words, was given
by Brahmagupta (628):

To the absolute number multiplied by four times the [coeffi-
cient of the] square, add the square of the [coefficient of the]
middle term; the square root of the same, less the [coefficient
of the] middle term, being divided by twice the [coefficient of
the] square is the value.

Colebrooke (1817), p. 346

This is the solution

x =

√
4ac + b2 − b

2a
of the equation

ax2 + bx = c,

yet one wonders whether Brahmagupta understood it quite this way when,
a few lines later, he gives another rule that is trivially equivalent to the first
when expressed in our notation:

x =

√
ac + (b/2)2 − (b/2)

a
.

The methods of the Babylonians and Brahmagupta clearly give correct
solutions, but their basis is not clear. The meaning of square roots, for ex-
ample, was not questioned as it was by Greeks. A rigorous basis for the so-
lution of quadratic equations can be found in Euclid’s Elements, Book VI.
Proposition 28 can be interpreted as a solution of the general quadratic
equation in the case where there is a positive root, as Heath (1925), Vol. 2,
p. 263 explains. However, the algebraic interpretation is far from obvious
even when one specializes the proposition, which is about parallelograms,
to one about rectangles. It seems unlikely that Euclid was aware of the
algebra, or he would have expressed it by much simpler geometry.

The transition from geometry to algebra can be seen in al-Khwārizmı̄’s
solution of a quadratic equation (Figure 6.1). The solution is still expressed
in geometric language, but now the geometry is a direct embodiment of the
algebra. It is really the standard algebraic solution, but with “squares” and
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“products” understood literally as geometric squares and rectangles. To
solve x2 + 10x = 39, represent x2 by a square of side x, and 10x by two
5 × x rectangles as in Figure 6.1. The extra square of area 25 “completes
the square” of side x + 5 to one of area 25 + 39, since 39 is the given value
of x2 + 10x. Thus the big square has area 64, hence its side x + 5 equals 8.
This gives the solution x = 3.

25 5x

5x x2

5 x

x

5

Figure 6.1: Solving a quadratic equation

Euclid and al-Khwārizmı̄ did not admit negative lengths, so the solu-
tion x = −13 to x2 + 10x = 39 does not appear. This is quite natural, since
geometry admits only one square with area 64. Avoidance of negative co-
efficients, however, causes some unnatural algebraic complications. There
is not one general quadratic equation, but three, corresponding to the differ-
ent ways of distributing positive terms between the two sides: x2 + ax = b,
x2 = ax + b, x2 + b = ax.

Exercises

Quadratic equations arise frequently in geometry because distance is gov-
erned by a quadratic equation (ultimately, by the Pythagorean theorem). In fact,
the points created from rational points by any ruler and compass construction can
be found by solving a series of linear or quadratic equations, which is why they
can be expressed by rational operations and square roots. This result, which was
claimed in Section 2.3, can be proved as follows.

6.3.1 Show that the line through two rational points has an equation with rational
coefficients.

6.3.2 Show that a circle whose center is a rational point and whose radius is ra-
tional has an equation with rational coefficients.
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Your proof should show, more generally, that a line or circle constructed from
any points has an equation with coefficients obtainable from the coordinates of
the given points by rational operations. It then suffices to show that intersections
of lines and circles can be obtained from the coefficients of their equations by
rational operations and square roots.

6.3.3 Show that the intersection of two lines can be computed by rational opera-
tions.

6.3.4 Show that the intersection of a line and a circle can be computed by rational
operations and a square root (because it depends on solving a quadratic
equation).

The last, and hardest, case is finding the intersection of two circles. Fortu-
nately, it is easy to reduce these two quadratic equations to the case just handled
in Exercise 6.3.4.

6.3.5 The equations of any two circles can be written in the form

(x − a)2 + (y − b)2 = r2,

(x − c)2 + (y − d)2 = s2.

Explain why. Now subtract one of these equations from the other, and
hence show that their common solutions can be found by rational opera-
tions and square roots.

When a sequence of quadratic equations is solved, the solution may involve

nested square roots, such as
√

(5 +
√

5)/2. This very number, in fact, occurs in
the icosahedron, as one sees from Pacioli’s construction in Section 2.2.

6.3.6 Show that the diagonal of a golden rectangle (which is also the diameter of

an icosahedron of edge length 1) is
√

(5 +
√

5)/2.

6.4 Quadratic Irrationals

The roots of quadratic equations with rational coefficients are numbers of
the form a +

√
b, where a, b are rational. Euclid took the theory of irra-

tionals further in Book X of the Elements with a very detailed study of

numbers of the form
√√

a ± √b, where a, b are rational. Book X is the
longest book in the Elements and it is not clear why Euclid devoted so much
space to this topic: perhaps because some of it is needed for the study of
regular polyhedra in Book XIII (see Section 2.2 and Exercise 6.3.6), per-
haps simply because it was Euclid’s favorite topic, or perhaps it was one in
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which he had some original contributions to show off. It is said that Apol-
lonius took the theory of irrationals further, but unfortunately his work on
the subject is lost.

After this, there seems to have been no progress in the theory of ir-
rationals until the Renaissance, except for a remarkable isolated result by
Fibonacci (1225). Fibonacci showed that the roots of x3 + 2x2 + 10x = 20
are not any of Euclid’s irrationals. This is not a proof, as some historians
have thought, that the roots cannot be constructed by ruler and compass.
Fibonacci did not rule out all expressions built from rationals and square
roots; nevertheless, it was the first step into the world of irrationals beyond
Euclid.

At this point it is worth asking how difficult it is to show that a specific
number, say,

3√
2, cannot be constructed from rational numbers by square

roots. The answer will depend on how well the reader manages the follow-
ing exercises. The manipulation required would certainly not have been
beyond the 16th-century algebraists. The subtle part is finding a suitable
classification of expressions according to complexity—extending Euclid’s
classification to expressions in which radical signs are nested to arbitrary
depth—and using induction on the level of complexity. This type of think-
ing did not emerge until the 1820s, hence the relatively late proof that

3√
2

is not constructible by ruler and compass, by Wantzel (1837).

Exercises

An elementary proof that
3√
2 is not constructible was found by the number

theorist Edmund Landau (1877–1938) when he was still a student. It is broken
down to easy steps below. But first we should check that

3√
2 is actually irrational.

6.4.1 Show that the assumption
3√
2 = m/n, where m and n are integers, leads to

a contradiction.

Landau’s proof now organizes all numbers involved in a construction into sets
F0, F1, F2, . . ., according to the “depth of nesting” of square roots.

6.4.2 Let

F0 = {rationals}, Fk+1 = {a + b
√

ck : a, b, ck ∈ Fk} for some ck ∈ Fk.

Show that each Fk is a field, that is, if x, y are in Fk, then so are x+ y, x− y,
xy, and x/y (for y � 0).

We know from Exercise 6.4.1 that
3√
2 is not in F0, but if it is constructible it

will occur in some Fk+1. A contradiction now ensues by considering (hypotheti-
cally) the first such Fk+1.
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6.4.3 Show that if a, b, c ∈ Fk but
√

c � Fk, then a+ b
√

c = 0 ⇔ a = b = 0. (For
k = 0 this is in the Elements, Book X, Prop. 79.)

6.4.4 Suppose
3√
2 = a+b

√
c, where a, b, c ∈ Fk, but that

3√
2 � Fk. (We know that

3√
2 � F0 from Exercise 6.4.1.) Cube both sides and deduce from Exercise

6.4.3 that
2 = a3 + 3ab2c and 0 = 3a2b + b3c.

6.4.5 Deduce from Exercise 6.4.4 that
3√
2 = a − b

√
c also, and explain why this

is a contradiction.

6.5 The Solution of the Cubic

In our own days Scipione del Ferro of Bologna has solved the
case of the cube and first power equal to a constant, a very el-
egant and admirable accomplishment. Since this art surpasses
all human subtlety and the perspicuity of mortal talent and is a
truly celestial gift and a very clear test of the capacity of men’s
minds, whoever applies himself to it will believe that there is
nothing that he cannot understand. In emulation of him, my
friend Niccolò Tartaglia of Brescia, wanting not to be outdone,
solved the same case when he got into a contest with his [Sci-
pione’s] pupil, Antonio Maria Fior, and, moved by my many
entreaties, gave it to me . . . having received Tartaglia’s solution
and seeking a proof of it, I came to understand that there were
a great many other things that could also be had. Pursuing
this thought and with increased confidence, I discovered these
others, partly by myself and partly through Lodovico Ferrari,
formerly my pupil.

Cardano (1545), p. 8

The solution of cubic equations in the early 16th century was the first
clear advance in mathematics since the time of the Greeks. It revealed
the power of algebra that the Greeks had not been able to harness, power
that was soon to clear a new path to geometry, which was virtually a royal
road (analytic geometry and calculus). Cardano’s elation at the discovery
is completely understandable. Even in the 20th century, personally discov-
ering the solution of the cubic equation has been the inspiration for at least
one distinguished mathematical career—see Kac (1984).
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As far as the history of the original discovery goes, we do not know
much more than Cardano tells us. Scipione del Ferro died in 1526, so the
first solution was known before then. Tartaglia discovered his solution on
February 12, 1535, probably independently, because he solved all problems
in the contest with del Ferro’s pupil Fior, whereas Fior did not. Cardano has
been accused by almost everyone, from Tartaglia on, of stealing Tartaglia’s
solution, but his own account seems to distribute credit quite fairly. For
more background, see the introduction and preface to Cardano (1545) and
Crossley (1987).

Cardano presents algebra in the geometric style of al-Khwārizmı̄
(whom he describes as the originator of algebra at the beginning of the
book), with the case distinctions that result from avoidance of negative co-
efficients. By ignoring these complications, his solution can be described
as follows. The cubic equation x3 + ax2 + bx + c = 0 is first transformed
into one with no quadratic term by a linear change of variable, namely,
x = y − a/3. One then has, say,

y3 = py + q.

By setting y = u + v, the left-hand side becomes

(u3 + v3) + 3uv(u + v) = 3uvy + (u3 + v3),

which will equal the previous right-hand side if

3uv = p,

u3 + v3 = q.

Eliminating v gives a quadratic in u3,

u3 +

( p
3u

)3
= q,

with roots
q
2
±
√(q

2

)2
−
( p

3

)3
.

By symmetry, we obtain the same values for v3. And since u3 + v3 = q, if
one of the roots is taken to be u3, the other is v3. Without loss of generality
we can take

u3 =
q
2
+

√(q
2

)2
−
( p

3

)3
,

v3 =
q
2
−
√(q

2

)2
−
( p

3

)3
,
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and hence

y = u + v =
3

√
q
2
+

√(q
2

)2
−
( p

3

)3
+

3

√
q
2
−
√(q

2

)2
−
( p

3

)3
.

Exercises

The two equations 3uv = p, u3 + v3 = q provide another instance of the
phenomenon noted in Exercise 6.2.2: when a variable is eliminated between two
equations, the degrees of the equations are multiplied.

6.5.1 The equation 3uv = p is of degree 2 in u and v, and u3 + v3 = q is of degree
3. What about the equation obtained by eliminating v?

The Cardano formula produces some surprising results, which we look at
again in Section 14.3. But first let us test it on a really simple cubic equation.

6.5.2 Use Cardano’s formula to solve y3 = 2. Do you get the obvious solution?

Now try one where the solution is less obvious.

6.5.3 Use Cardano’s formula to solve y3 = 6y + 6, and check your answer by
substitution.

6.6 Angle Division

Another important contributor to algebra in the 16th century was Viète
(1540–1603). He helped emancipate algebra from the geometric style of
proof by introducing letters for unknowns and using plus and minus signs
to facilitate manipulation. Yet at the same time he strengthened its ties
with geometry at a higher level by relating algebra to trigonometry. A case
in point is his solution of the cubic by circular functions (Viète (1591),
Ch. VI, Theorem 3), which shows that solving the cubic is equivalent to
trisecting an arbitrary angle.

Namely, if we take the cubic in the form

x3 + ax + b = 0,

we can reduce it to an equation

4y3 − 3y = c

with just one parameter, by setting x = ky and choosing k so that

k3

ak
=
−4
3
, or k =

√
−4a

3
.
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The point of the expression 4y3 − 3y is that

4 cos3 θ − 3 cos θ = cos 3θ;

hence by setting y = cos θ we obtain

cos 3θ = c.

If we are given c, then we can construct a triangle with angle cos−1 c = 3θ.
Trisection of this angle gives us the solution y = cos θ of the equation.
Conversely, the problem of trisecting an angle with cosine c is equivalent
to solving the cubic equation 4y3 − 3y = c.

Of course, there is a problem with trigonometric interpretation when
|c| > 1, which requires complex numbers for its resolution. Complex num-
bers are also involved in Cardano’s formula, since the expression under the
square root sign, (q/2)2−(p/3)3, can be negative. It so happens that Viète’s
method requires complex numbers only when Cardano’s does not, so be-
tween the two of them, complex numbers are avoided. Nevertheless, cubic
equations are the birthplace of complex numbers, as we shall see when we
study complex numbers in more detail later.

Astonishingly, the problem of dividing an angle into any odd number
of equal parts turns out to have an algebraic solution analogous to the alge-
braic solution of the cubic. Viète (1579) himself took the problem as far as
finding expressions for cos nθ and sin nθ as polynomials in cos θ and sin θ,
at least for certain values of n. Newton read Viète in 1663–4 and found the
equation

y = nx − n(n2 − 1)
3!

x3 +
n(n2 − 1)(n2 − 32)

5!
x5 + · · ·

relating y = sin nθ and x = sin θ (see Newton (1676a) in Turnbull (1960)).
He asserted this result for arbitrary n, but we are interested in the case of
odd integral n, when it reduces to a polynomial equation. The surprise is
that Newton’s equation then has a solution by nth roots analogous to the
Cardano formula for cubics,

x =
1
2

n

√
y +

√
y2 − 1 +

1
2

n

√
y −
√
y2 − 1, (1)

although only for n of the form 4m+1. This formula appears out of the blue
in de Moivre (1707). (It also appears in the unpublished Leibniz (1675),



6.7 Higher-Degree Equations 101

though without the restriction on n. See Schneider (1968), pp. 224–228.)
He does not explain how he found it, but it is comprehensible to us as

sin θ =
1
2

n√
sin nθ + i cos nθ +

1
2

n√
sin nθ − i cos nθ, (2)

a consequence of our version of de Moivre’s formula

(cos θ + i sin θ)n = cos nθ + i sin nθ (3)

when n = 4m + 1. (See Exercises 6.6.1 and 6.6.2.)
Viète himself came remarkably close to (3) in a posthumously pub-

lished work, Viète (1615). He observed that the products of sin θ, cos θ
that occur in cos nθ, sin nθ are the alternate terms in the expansion of
(cos θ + sin θ)n, except for certain minus signs. He failed only to notice
that the signs could be explained by giving sin θ the coefficient i. In any
case, such an explanation would not have seemed natural to his contempo-
raries, who were far more comfortable with Cardano’s formula than they
were with i. In Section 14.5 we shall see how the perception of de Moivre’s
formula changed with the development of complex numbers.

Exercises

The reasons why (1) and (2) hold only for certain integer values, while (3)
holds for all, can be understood by actually working out (sin θ + i cos θ)n.

6.6.1 Use (3) and sinα = cos(π/2 − α), cosα = sin(π/2 − α) to show that

(sin θ + i cos θ)n =

{
sin nθ + i cos nθ when n = 4m + 1
− sin nθ − i cos nθ when n = 4m + 3.

6.6.2 Deduce from Exercise 6.6.1 that (2) is correct for n = 4m + 1 and false for
n = 4m + 3, and hence that (1) is a correct relation between y = sin nθ and
x = sin θ only when n = 4m + 1.

6.6.3 Show that (1) is a correct relation between y = cos nθ and x = cos θ for all
n (de Moivre (1730)).

6.7 Higher-Degree Equations

The general fourth–degree, or quartic, equation

x4 + ax3 + bx2 + cx + d = 0
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was solved by Cardano’s student Ferrari, and the solution was published
in Cardano (1545), p. 237. A linear transformation reduces the equation to
the form

x4 + px2 + qx + r = 0,

or
(x2 + p)2 = px2 − qx + p2 − r.

Then for any y,

(x2 + p + y)2 = (px2 − qx + p2 − r) + 2y(x2 + p) + y2

= (p + 2y)x2 − qx + (p2 − r + 2py + y2).

The quadratic Ax2 + Bx + C on the right-hand side will be a square if
B2 − 4AC = 0, which is a cubic equation for y. We can therefore solve for
y and take the square root of both sides of the equation for x, which then
becomes quadratic and hence also solvable. The final result is a formula for
x using just square and cube roots of rational functions of the coefficients.

This impressive bonus to the solution of cubic equations raised hopes
that higher-degree equations could also be solved by formulas built from
the coefficients by rational operations and roots, and solution by radicals,
as it was called, became a major goal of algebra for the next 250 years.
However, all such efforts to solve the general equation of fifth degree (quin-
tic) failed. The most that could be done was to reduce it to the form

x5 − x − A = 0

with only one parameter. This was done by Bring (1786), and a sketch of
his method may be seen in Pierpont (1895). Bring’s result appeared in a
very obscure publication and went unnoticed for 50 years, or it might have
rekindled hopes for the solution of the quintic by radicals. As it happened,
Ruffini (1799) offered the first proof that this is impossible. Ruffini’s proof
was not completely convincing; however, he was vindicated when a sat-
isfactory proof was given by Abel (1826), and again with the beautiful
general theory of equations of Galois (1831b).

A positive outcome of Bring’s result was the nonalgebraic solution of
the quintic by Hermite (1858). The reduction to an equation with one pa-
rameter opened the way to a solution by transcendental functions, analo-
gous to Viète’s solution of the cubic by circular functions. The appropriate
functions, the elliptic modular functions, had been discovered by Gauss,
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Abel, and Jacobi, and Galois (1831a) had hinted at their relation to quintic
equations. This extraordinary convergence of mathematical ideas was the
subject of Klein (1884).

In view of the difficulties with the quintic, there was naturally very
little progress with the general equation of degree n. However, two simple
but important contributions were made by Descartes (1637). The first was
the superscript notation for powers we now use: x3, x4, x5, and so on.
(Though not x2, oddly enough. The square of x continued to be written xx
until well into the next century.) The second was the theorem of Descartes
(1637), p. 159, that a polynomial p(x) with value 0 when x = a has a
factor (x − a). Since division of a polynomial p(x) of degree n by (x − a)
leaves a polynomial of degree n−1, Descartes’s theorem raised the hope of
factorizing each nth-degree polynomial into n linear factors. As Chapter 14
shows, this hope was fulfilled with the development of complex numbers.

Exercises

The main steps in the proof of Descartes’s theorem go as follows. If the first
step does not seem sufficiently easy, begin with a = 1.

6.7.1 Show that xn − an has a factor x − a. What is the quotient (xn − an)/(x− a)?
(And what does this have to do with geometric series?)

6.7.2 If p(x) = ak xk + ak−1xk−1 + · · · + a1x + a0, use Exercise 6.7.1 to show that
p(x) − p(a) has a factor x − a.

6.7.3 Deduce Descartes’s theorem from Exercise 6.7.2.

6.8 Biographical Notes: Tartaglia, Cardano, and
Viète

Little is known about Scipione del Ferro, the discoverer of the first solution
to cubic equations, other than his dates (1465–1526) and the fact that he
was a professor of arithmetic and geometry at Bologna from 1496. This
has possibly resulted in Tartaglia and Cardano receiving more mathemat-
ical credit than they deserve. On the other hand, there is no denying that
Tartaglia’s and Cardano’s personalities, their contrasting lives, and their
quarrel make a story that is fascinating in its own right.

Niccolò Tartaglia (Figure 6.2) was born in Brescia in 1499 or 1500 and
died in Venice in 1557. The name “Tartaglia” (meaning “stutterer”) was
actually a nickname; his real name is believed to have been Fontana.
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Figure 6.2: Niccolò Tartaglia

Tartaglia’s childhood was scarred by poverty, following the death of
his father, a mail courier, around 1506, and injuries suffered when Brescia
was sacked by the French in 1512. Despite taking refuge in a cathedral,
Tartaglia received five serious head wounds, including one to the mouth,
which left him with his stutter. His life was saved only by the devoted
nursing of his mother, who literally licked his wounds. Around the age of
14 he went to a teacher to learn the alphabet, but he ran out of money for
his lessons by the letter K. This much is in Tartaglia’s own sketch of his
life, Tartaglia (1546), p. 69. After that, the story goes, he stole a copybook
and taught himself to read and write, sometimes using tombstones as slates
for want of paper.

By 1534 he had a family and, still short of money, he moved to Venice.
There he gave public mathematics lessons in the church of San Zanipolo
and published scientific works. The famous disclosure of his method for
solving cubic equations occurred on a visit to Cardano’s house in Milan
on March 25, 1539. When Cardano published it in 1545, Tartaglia angrily
accused him of dishonesty. Tartaglia (1546), p. 120, claimed that Cardano
had solemnly sworn never to publish the solution and to write it down only
in cipher. Ferrari, who had been an 18-year-old servant of Cardano at the
time, came to Cardano’s defense, declaring that he had been present and
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there had been no promise of secrecy. In a series of 12 printed pamphlets,
known as the Cartelli (reprinted by Masotti (1960)), Ferrari and Tartaglia
traded insults and mathematical challenges; the two finally squared off in
a public contest in the church of Santa Maria del Giardino, Milan, in 1548.
It seems that Ferrari got the better of the exchange, as there was little sub-
sequent improvement in Tartaglia’s fortunes. He died alone, still impover-
ished, nine years later.

Apart from his solution of the cubic, Tartaglia is remembered for other
contributions to science. It was he who discovered that a projectile should
be fired at 45◦ to achieve maximum range (Tartaglia (1546), p. 6). His con-
clusion was based on incorrect theory, however, as is clear from Tartaglia’s
diagrams of trajectories—for example, Figure 6.3; Tartaglia (1546), p. 16.

Figure 6.3: Tartaglia’s trajectory of a cannonball

Tartaglia’s Italian translation of the Elements was the first printed trans-
lation of Euclid in a modern language, and he also published an Italian
translation of some of Archimedes’ works. For information on these, and
Tartaglia’s mechanics, see Rose (1976), pp. 151–154.

Girolamo Cardano (Figure 6.4), often described in older English books
by the anglicized name Jerome Cardan, was born in Pavia in 1501 and died
in Rome in 1576. His father, Fazio, was a lawyer and physician who en-
couraged Girolamo’s studies but otherwise seems to have treated him rather
harshly, as did his mother, Chiara Micheri, whom Cardano described as
“easily provoked, quick of memory and wit, and a fat, devout little woman.”
Cardano entered the University of Pavia in 1520 and completed a doctorate
of medicine at Padua in 1526.

He married in 1531 and, after struggling until 1539 for acceptance, be-
came a successful physician in Milan—so successful, in fact, that his fame
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Figure 6.4: Girolamo Cardano

spread all over Europe. He evidently had a remarkable skill in diagnosis,
though his contributions to medical knowledge were slight in comparison
with those of his contemporaries Andreas Vesalius and Ambroise Paré.
Mathematics was one of his many interests outside his profession. Car-
dano also secured a niche in the history of cryptography for an encoding
device known as the Cardano grille (see Kahn (1967), pp. 143–145) and
in the history of probability, where he was the first to make calculations,
though not always correctly (see David (1962), pp. 40–60, and Ore (1953),
which contains a translation of Cardano’s book on games of chance).

The violence and intrigue of Renaissance Italy soured Cardano’s life
just as much as Tartaglia’s, though in a different way. An uncle died of
poisoning, attempts were made to poison both Cardano and his father (so
Cardano said), and in 1560 Cardano’s oldest son was beheaded for the
crime of poisoning his wife. Cardano, who thought his son’s only fault was
to marry the girl in the first place, never got over this calamity. He could
no longer bear to live in Milan and moved to Bologna. There he suffered
another blow when his protégé Ferrari died in 1565—supposedly poisoned
by his sister. In 1570 the Inquisition imprisoned Cardano for heresy. After
a few months he recanted, was released, and moved to Rome.
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In the year before he died, Cardano wrote The Book of My Life (Car-
dano (1575)), which is not so much autobiography as self-advertisement.
It contains a few scenes from his childhood and returns again and again to
the tragedy of his oldest son, but most of the book is devoted to boasting.
There is a chapter of testimonials from patients, a chapter on important
people who sought his services, a list of authors who cited his works, a list
of his sayings he considered quotable, and a collection of tall stories that
would have done Baron von Münchhausen proud. Admittedly, there is also
a (very short) chapter called “Things in Which I Have Failed” and frequent
warnings about the vanity of earthly things, but Cardano invariably tram-
ples all such outbreaks of humility in his rush to admire other facets of his
excellent self.

On the quarrel with Tartaglia, The Book of My Life is almost silent.
Among the authors who have cited him, Cardano lumps Tartaglia with
those of whom he “cannot understand by what impertinence they have
managed to get themselves into the ranks of the learned.” Only at the
end of the book does Cardano concede that “in mathematics I received a
few suggestions, but very few, from brother Niccolò.” Thus we are forced
back to the Cartelli and Tartaglia’s writings. The most accessible analy-
sis of these works, with translations of relevant passages, is in Ore (1953),
Chapter 4.

François Viète (Figure 6.5) was born in 1540 in Fontenay-le-Comte, a
town in what is now the Vendée department of France. His father, Etienne,
was a lawyer, and his mother, Marguerite Dupont, was well connected to
ruling circles in France. Viète was educated by the Franciscans in Fontenay
and at the University of Poitiers. He received his bachelor’s degree in law
in 1560 and then returned to Fontenay to commence practice.

For the rest of his life he was engaged mainly in law or related judi-
cial and court services, doing mathematics only in periods of leisure. His
clients are said to have included Queen Mary of England and Eleanor of
Austria, and from 1574 to 1584 he acted as an advisor and negotiator for
King Henry III of France. At that stage he was banished through the efforts
of political rivals, but he returned to court in 1589 when Henry III moved
his seat of government from Paris to Tours. Following the assassination of
Henry III in 1589, he served Henry IV until 1602. Viète died in 1603.

The most famous exploit of Viète’s professional career was his deci-
phering of Spanish dispatches for Henry IV during the war against Spain.
King Philip II of Spain, unable to believe that this was humanly possible,
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Figure 6.5: François Viète

protested to the pope that the French were using black magic. The pope
may well have been impressed, but not enough to believe that magic was
involved, as the Vatican’s own experts had broken one of Philip’s codes 30
years earlier (see Kahn (1967), pp. 116–118).

An equally famous mathematical feat of Viète’s, and equally magical
to his contemporaries, was his solution of a 45th-degree equation posed by
Adriaen van Roomen in 1593:

45x − 3795x3 + 95634x5 − · · · + 945x41 − 45x43 + x45 = N.

Viète saw immediately that this equation resulted from the expansion of
sin 45θ in powers of sin θ, and he was able to give 23 solutions (he did not
recognize negative solutions). This was one contest, incidentally, that did
not generate any bitterness—it led to a firm friendship between the two
mathematicians.



7

Analytic Geometry

Preview

The first field of mathematics to benefit from the new language of equa-
tions was geometry. Around 1630, both Fermat and Descartes realized that
geometric problems could be translated into algebra by means of coordi-
nates, and that many problems could then be routinely solved by algebraic
manipulation.

The language of equations also provides a simple but natural classifi-
cation of curves by degree. The curves of degree 1 are the straight lines;
the curves of degree 2 are the conic sections; so the first “new” curves are
those of degree 3, the cubic curves.

Cubic curves exhibit new geometric features—cusps, inflections, and
self-intersections—so they are considerably more complicated than the
conic sections. Nevertheless, Newton attempted to classify them, and in
doing so he discovered that cubic curves, when properly viewed, are not as
complicated as they seem.

We will find our way to the “right” viewpoint in Chapters 8 and 15. In
the meantime we discuss another theorem that depends on the “right” view-
point: Bézout’s theorem, according to which a curve of degree m always
meets a curve of degree n in mn points.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 109
DOI 10.1007/978-1-4419-6053-5 7, c© Springer Science+Business Media, LLC 2010
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7.1 Steps Toward Analytic Geometry

The basic idea of analytic geometry is the representation of curves by equa-
tions, but this is not the whole idea. If it were, then the Greeks would be
considered the first analytic geometers. Menaechmus was perhaps the first
to discover equations of curves, along with his discovery of the conic sec-
tions, and we have seen how he used equations to obtain

3√
2 as the inter-

section of a parabola and a hyperbola (Section 2.4). Apollonius’ study of
conics used equations obtained as by-products of geometric arguments.

What was lacking in Greek mathematics was both the inclination and
the technique to manipulate equations to obtain information about curves.
The Greeks used curves to study algebra rather than the other way around.
Menaechmus’s construction of

3√
2 is a fine example of this: extraction of

roots was not a given operation but one to be secured by geometric con-
struction. Similarly, an equation was not an entity in its own right but a
property of a curve that could be discovered after the curve had been con-
structed geometrically. This was a natural state of affairs as long as equa-
tions were written out in words. When, as in Apollonius, an equation takes
half a page to write out, it is difficult to form a general concept of equation,
function, or curve. Hence the lack of a general concept of curve in Greek
mathematics—it was just too complicated to handle in their language.

In the Middle Ages the idea of coordinates emerged in a different way
in the work of Oresme (around 1323–1382). Coordinates had been used
in astronomy and geography since Hipparchus (around 150 bce); in fact,
Oresme called his coordinates “longitude” and “latitude,” but he seems to
have been the first to use them to represent functions such as velocity as a
function of time. Setting up the coordinate system before determining the
curve was Oresme’s step beyond the Greeks, but he too lacked the algebra
to go further.

The step that finally made analytic geometry feasible was the solution
of equations and the improvement of notation in the 16th century, which we
discussed in the previous chapter. This step made it possible to consider
equations, and hence curves, in some generality and to have confidence
in one’s ability to manipulate them. As we shall see in the next section,
the two founders of analytic geometry, Fermat and Descartes, were both
strongly influenced by these developments.

For more details on the development of analytic geometry, the reader
is referred to an excellent book by Boyer (1956).
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Exercise

7.1.1 Generalize the idea of Menaechmus to show that any cubic equation

ax3 + bx2 + cx + d = 0 with d � 0

may be solved by intersecting the hyperbola xy = 1 with a parabola.

7.2 Fermat and Descartes

There have been several occasions in the history of mathematics when an
important discovery was made independently and almost simultaneously
by two individuals: non-Euclidean geometry by Bolyai and Lobachevsky,
elliptic functions by Abel and Jacobi, the calculus by Newton and Leib-
niz, for example. To the extent that we can rationally explain these re-
markable events, it must be on the basis of ideas already “in the air,” of
conditions becoming favorable for their crystallization. As I tried to show
in the previous section, conditions were favorable for analytic geometry at
the beginning of the 17th century. Thus it is not completely surprising that
the subject was independently discovered by Fermat (1629) and Descartes
(1637). (Descartes’s work La Géométrie may in fact have been started in
the 1620s. In any case it is independent of Fermat, whose work was not
published until 1679.)

It is a surprise to learn, however, that both Fermat and Descartes began
with an analytic solution of the same classical geometric problem, the four-
line problem of Apollonius, and that the main discovery of each was that
second-degree equations correspond to conic sections. Up to this point
Fermat was more systematic than Descartes, but that was as far as he went.
He was content to leave his work in a “simple and crude” state, confident
that it would grow in stature when nourished by new inventions.

Descartes, on the other hand, treated many higher-degree curves and
clearly understood the power of algebraic methods in geometry. He wanted
to withhold this power from his contemporaries, however, particularly the
rival mathematician Roberval, as he admitted in a letter to Mersenne (see
Boyer (1956), p. 104). La Géométrie was written to boast about his dis-
coveries, not to explain them. There is little systematic development, and
proofs are frequently omitted with a sarcastic remark such as, “I shall not
stop to explain this in more detail, because I should deprive you of the plea-
sure of mastering it yourself” (p. 10). Descartes’s conceit is so great that
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it is a pleasure to see him come a cropper occasionally, as on p. 91: “The
ratios between straight and curved lines are not known, and I believe can-
not be discovered by human minds.” He was referring to the then-unsolved
problem of determining the length of curves, but he spoke too soon, for
in 1657 Neil and van Heuraet found the length of an arc of the semicubi-
cal parabola y2 = x3, and the calculus soon made such problems routine.
(A full and interesting account of the story of arc length may be found in
Hofmann (1974), Ch. 8.)

Exercises

As we now know, all conic sections may be given by the following standard
form equations (from Section 2.4):

x2

a2
+
y2

b2
= 1 (ellipse), y = ax2 (parabola),

x2

a2
− y

2

b2
= 1 (hyperbola).

The reduction of an arbitrary quadratic equation in x and y to one of these forms
depends on suitable choice of origin and axes, as Fermat and Descartes discovered.
The main steps are outlined in the following exercises.

7.2.1 Show that a quadratic form ax2 + bxy + cy2 may be converted to a form
a′x′2 + b′y′2 by suitable choice of θ in the substitution

x = x′ cos θ − y′ sin θ,

y = x′ sin θ + y′ cos θ,

by checking that the coefficient of x′y′ is (c − a) sin 2θ + b cos 2θ.

7.2.2 Deduce from Exercise 7.2.1 that, by suitable rotation of axes, any quadratic
curve may be expressed in the form a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0.

7.2.3 If b′ = 0, but a′ � 0, show that the substitution x′ = x′′ + f gives either a
standard-form parabola, or the “double line” x′′2 = 0.

(Why is this called a “double line,” and is it a section of a cone?)

7.2.4 If both a′ and b′ are nonzero, show that a shift of origin gives the standard
form for either an ellipse or a hyperbola, or else a pair of lines.

7.3 Algebraic Curves

I could give here several other ways of tracing and conceiv-
ing a series of curved lines, each curve more complex than
any preceding one, but I think the best way to group together
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all such curves and then classify them in order is by recog-
nizing the fact that all points of those curves which we may
call “geometric,” that is, those which admit of precise and ex-
act measurement, must bear a definite relation to all points of a
straight line, and that this relation must be expressed by means
of a single equation.

Descartes (1637), p. 48

In this passage Descartes defines what we now call algebraic curves.
The fact that he calls them “geometric” shows his attachment to the Greek
idea that curves are the product of geometric constructions. He is using
the notation of equations not to define curves directly but to restrict the no-
tion of geometric construction more severely than the Greeks did, thereby
restricting the concept of curve. As we saw in Section 2.5, the Greeks con-
sidered some constructions, such as rolling one circle on another, that are
capable of producing transcendental curves. Descartes called such curves
“mechanical” and found a way to exclude them by his restriction to curves
“expressed by means of a single equation.” It becomes clear in the lines fol-
lowing the preceding quotation that he means polynomial equations, since
he gives a classification of equations by degree.

Descartes’s rejection of transcendental curves was short-sighted, since
the calculus soon provided techniques to handle them, but nevertheless it
was fruitful to concentrate on algebraic curves. The notion of degree, in
particular, was a useful measure of complexity. First-degree curves are the
simplest possible, namely, straight lines. Those of second degree are the
next simplest, conic sections. With third-degree curves one sees the new
phenomena of inflections, double points, and cusps. Inflection and cusp
are familiar from y = x3 and y2 = x3, respectively; we also saw a cusp
on the cissoid (Section 2.5). A classical example of a cubic with a double
point is the folium (leaf) of Descartes (1638),

x3 + y3 = 3axy.

The “leaf” is the closed portion to the right of the double point; Descartes
misunderstood the rest of the curve through neglect of negative coordi-
nates. The true shape of the folium was first given by Huygens (1692).
Figure 7.1 is Huygens’s drawing, which also shows the asymptote to the
curve.

An excellent account of the early history of curves can be found in
Brieskorn and Knörrer (1981), Chapter 1. Many individual curves, with
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Figure 7.1: Huygens’s drawing of the folium

diagrams, equations, and historical notes, can be found in Gomes Teixeira
(1995a,b,c). The development of Descartes’s concept of curve has been
studied by Bos (1981).

Exercises

The folium is a cubic curve to which Diophantus’s chord method (Section 3.5)
applies. One takes the line y = tx through the “obvious” rational point (0, 0) on
the curve, and finds its other point of intersection. This construction also enables
us to express an arbitrary point (x, y) on the curve in terms of the parameter t.

7.3.1 Show that the folium of Descartes has parametric equations

x =
3at

1 + t3
, y =

3at2

1 + t3

and use these equations to show that it is tangential to the axes at 0.

7.3.2 Show that the equation x3 + y3 = 3axy of the folium may be written in the
form

x + y =
3a

x
y
+
y
x − 1

.

7.3.3 Show that x/y and y/x tend to −1 as x → ±∞ on the folium, and hence
deduce the equation of its asymptote from Exercise 7.3.2.

A whole family of “multileaved” curves was studied by Grandi (1723).

7.3.4 The roses of Grandi are given by the polar equations

r = a cos nθ
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for integer values of n. Figure 7.2 shows some of these curves, as given by
Grandi (1723). Show that the roses of Grandi are algebraic.

Figure 7.2: Roses of Grandi

7.3.5 Show that the “rose” for n = 1 is a circle and that the “rose” for n = 2 has
cartesian equation

(x2 + y2)3 = a2(x2 − y2)2.

7.4 Newton’s Classification of Cubics

Since first- and second-degree curves are straight lines and conics, they
were well understood before the advent of analytic geometry. Up to the end
of the 18th century most mathematicians considered them not amenable to
further clarification, and hence an unsuitable subject for the new methods.
A famous example is the Greek-style treatment of planetary orbits in New-
ton’s Principia (1687). The classical attitude to low-degree curves was
summed up by d’Alembert in his article on geometry in the great French
Encyclopédie (p. 637 of volume 7, 1757):

Algebraic calculation is not to be applied to the propositions
of elementary geometry because it is not necessary to use this
calculus to facilitate demonstrations, and it appears that there
are no demonstrations which can really be facilitated by this
calculus except for the solution of problems of second degree
by the line and circle.

Thus the first new problem opened up by analytic geometry, and also
the first considered properly to belong to the subject, was the investigation
of cubic curves. These curves were classified, more or less completely, by
Newton (1695) (see Ball (1890) for a commentary).
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Newton (1667) began this work with the general cubic in x and y,

ay3 + bxy2 + cx2y + dx3 + ey2 + f xy + gx2 + hy + kx + l = 0,

making a general transformation of axes, leading to an equation with 84
terms, then showing that the latter equation could be reduced to one of the
forms

Axy2 + By = Cx3 + Dx2 + Ex + F,

xy = Ax3 + Bx2 +Cx + D,

y2 = Ax3 + Bx2 +Cx + D,

y = Ax3 + Bx2 +Cx + D.

Newton then divided the curves into species according to the roots of the
right-hand side, obtaining 72 species (and overlooking 6). His paper does
not contain detailed proofs; these were supplied by Stirling (1717), along
with four of the species Newton had missed. Newton’s classification was
criticized by some later mathematicians, such as Euler, for lacking a gen-
eral principle. A unifying principle was certainly desirable, to reduce the
complexity of the classification. And such a principle was already implicit
in one of Newton’s passing remarks, Section 29, “On the Genesis of Curves
by Shadows.” This principle, which will be explained in the next chapter,
reduces cubics to the five types seen in Figure 7.3 (taken from an English
translation of Newton’s paper published in 1710; see Whiteside (1964)).

The reader may wonder where the most familiar cubic, y = x3, appears
among these five. The answer is that it is equivalent to the one with a cusp,
in Newton’s Figure 75. This is explained in the next chapter.

Exercises

The cubic curves that Newton called “cuspidate” and “nodated” are alge-
braically simpler than the others. In particular, they can be parameterized by
rational functions.

7.4.1 Find a parameterization x = p(t), y = q(t) of the semicubical parabola
y2 = x3 by polynomials p and q, (i) by inspection, (ii) by finding the second
intersection point of the line y = tx through the cusp (0, 0).

7.4.2 Find rational functions x = r(t), y = s(t) that parameterize y2 = x2(x + 1),
by finding the second intersection of the line y = tx through the double
point of the curve.
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Figure 7.3: Newton’s classification of cubic curves
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7.5 Construction of Equations, Bézout’s Theorem

In Sections 7.1, 7.2, and 7.3 the development of analytic geometry is out-
lined from the first observations of equations as properties of curves to the
full realization that equations defined curves and that the concept of (poly-
nomial) equation was the key to the concept of (algebraic) curve. With
hindsight, we can say that Descartes’s La Géométrie (1637) was a major
step in the maturation of the subject, but the book does not conclusively es-
tablish what analytic geometry is. In fact, it is largely devoted to two tran-
sitional topics in the development of the subject: the 16th-century theory
of equations and the now almost forgotten discipline called “construction
of equations.”

The paradigm for construction of an equation was Menaechmus’s con-
struction of

3√
2 by intersecting a parabola and hyperbola. From a geometric

point of view, one is using familiar curves (parabola and hyperbola) to con-
struct a less familiar length (

3√
2). This becomes sharper when expressed

algebraically: curves of degree 2 are being used to solve an equation of de-
gree 3, x3 = 2. In the 1620s Descartes discovered something more general:
a method of solving any third- or fourth-degree equation by intersecting
curves of degree 2, a parabola and a circle. His friend Beeckman (1628)
reported in a note that “M. Descartes made so much of this invention that
he confessed never to have found anything superior himself and even that
nobody else had ever found anything better” (translation by Bos (1981),
p. 330). Descartes was not as superior as he thought, since Fermat (1629)
independently made the same discovery in an unpublished work, strength-
ening the already extraordinary coincidence between his work and that of
Descartes. However, Fermat apparently did not pursue the idea further, and
Descartes did.

In La Géométrie Descartes found a particular cubic curve, the so-called
cartesian parabola, whose intersections with a suitable circle yield the so-
lution of any given fifth- or sixth-degree equation. Descartes concludes the
book with this result, blithely telling the reader that

it is only necessary to follow the same method to construct all
problems, more and more complex, ad infinitum; for in the
case of a mathematical progression, whenever the first two or
three terms are given, it is easy to find the rest.

Descartes (1637), p. 240
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In reality it was not easy, and efforts to find a satisfactory general construc-
tion for nth-degree equations petered out around 1750. The story of the rise
and fall of this field of mathematics has been told by Bos (1981, 1984).

In their search for a general construction, mathematicians had casually
assumed that a curve of degree m meets a curve of degree n in mn points.
The first statement of this principle, which became known as Bézout’s the-
orem, seems to have been made by Newton on May 30, 1665:

For ye number of points in wch two lines may intersect can
never bee greater yn ye rectangle of ye numbers of their dimen-
sions. And they always intersect in soe many points, excepting
those wch are imaginarie onely.

Newton (1665b), p. 498

Bézout’s theorem leads one to expect that solutions of an equation r(x) = 0
of degree k = m · n might be obtainable from the intersections of a suitable
degree m curve with a suitable degree n curve. In algebraic terms, one
seeks equations

p(x, y) = 0, (1)

q(x, y) = 0 (2)

of degrees m, n respectively, from which elimination of y yields the given
equation

r(x) = 0 (3)

as “resultant.” This is how mathematicians in the West first encountered
the problem of elimination, which the Chinese had solved some centuries
earlier (Section 6.2).

However, apart from the fact that construction of equations was inverse
to elimination, and much harder, Western mathematicians needed two ad-
ditional facts about elimination itself: first, that elimination between equa-
tions of degrees m and n gave a resultant of degree mn; second, that an
equation of degree mn has mn roots. The second statement, as mentioned
in Section 6.7, becomes a fact only when complex numbers are admitted.
The first becomes a fact only when “points at infinity” are admitted. If, for
example, (1) and (2) are equations of parallel lines, then (3) is of “degree
0” and has no solutions. However, one can consider parallel lines to meet
“at infinity,” and the geometric framework for this idea, projective geome-
try, developed at about the same time as analytic geometry. Unfortunately,
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it was not realized until the 19th century that projective geometry and an-
alytic geometry needed each other. Until then, projective geometry devel-
oped without coordinates, and all attempts to prove Bézout’s theorem—
notably by Maclaurin (1720), Euler (1748b), Cramer (1750), and Bézout
(1779)—foundered for want of a proper method for counting points at in-
finity. As a result, Bézout’s theorem, which turned out to be the main
achievement of the theory of construction of equations, was not properly
proved until long after the theory itself had been abandoned.

The origins of projective geometry, and the fruits of its merger with
analytic geometry, are discussed in Chapter 8.

Exercises

We know from Section 6.7 that an arbitrary quartic equation is equivalent to
one of the form

x4 + px2 + qx + r = 0.

7.5.1 Show that any such equation may be solved by finding the intersection of the
parabola y = x2 with another quadratic curve (hence with a conic section).

7.5.2 Find two parabolas whose intersections give the solutions of x4 = x+1, and
hence show that this quartic equation has two real roots.

7.6 The Arithmetization of Geometry

We have stressed that early analytic geometers—Descartes in particular—
did not accept that geometry could be based on numbers or algebra. Per-
haps the first to take the idea of arithmetizing geometry seriously was Wal-
lis (1616–1703). Wallis (1657), Chs. XXIII and XXV, gave the first arith-
metic treatment of Euclid’s Books II and V, and Wallis (1655b) had earlier
given the first purely algebraic treatment of conic sections. He initially de-
rived equations from the classical definitions by sections of the cone but
then proceeded conversely to derive their properties from the equations,
“without the embranglings of the cone,” as he put it.

Wallis was ahead of this time. Thomas Hobbes, introduced at the be-
ginning of Chapter 2, described Wallis’s treatise on conics as a “scab of
symbols” and denounced “the whole herd of them who apply their alge-
bra of geometry” (Hobbes (1656), p. 316, and Hobbes (1672), p. 447). The
example and authority of Newton probably reinforced the opinion that al-
gebra was inappropriate in the geometry of lines or conic sections; we saw
in Section 7.4 how this remained the accepted view until at least 1750.
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Algebra did not catch on in elementary geometry until it was taken
up by Lagrange (1773b) and supported by influential textbooks of Monge
and Lacroix around 1800. But by the time elementary geometry had been
brought into the theory of equations, higher geometry had broken out, de-
pending more and more on calculus and the emerging theories of complex
functions, abstract algebra, and topology, which bloomed in the 19th cen-
tury. Higher geometry broke away to form differential geometry and alge-
braic geometry, leaving the elementary residue we call “analytic geometry”
today.

Despite its lowly status, analytic geometry was given an important
foundational role by Hilbert (1899). Hilbert took Wallis’s arithmetization
to its logical conclusion by assuming only the real numbers and sets as
given and constructing Euclidean geometry from them.

Thus from the set R of reals, one constructs the Euclidean plane as
the set of ordered pairs (x, y) (“points”) where x, y ∈ R. A straight line
is a set of points (x, y) in the plane such that ax + by + c = 0 for some
constants a, b, c. Lines are parallel if their x and y coefficients are pro-
portional. The distance between points (x1, y1) and (x2, y2) is defined to
be
√

(x2 − x1)2 + (y2 − y1)2. As explained in Section 1.6, this definition is
motivated by the Pythagorean theorem, which is the keystone in the bridge
from arithmetic to geometry.

With these definitions, all axioms and propositions of Euclid’s geome-
try become provable propositions about equations. For example, the axiom
that nonparallel lines have a point in common corresponds to the theorem
that linear equations

a1x + b1y + c1 = 0,

a2x + b2y + c2 = 0

have a solution when a1b2 − b1a2 � 0.
Hilbert did not believe, any more than Newton did, that numbers were

the true subject matter of geometry. He strongly supported geometric in-
tuition as a method of discovery, as the book Hilbert and Cohn-Vossen
(1932) makes clear. The purpose of his arithmetization was to give a se-
cure logical foundation to geometry after the 19th-century developments
that discredited geometry and installed arithmetic as the ultimate authority
in mathematics. This foundation is no longer quite as secure as it seemed
in 1900, as we shall see in Chapter 24; nevertheless, it is still the most
secure foundation we know.
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7.7 Biographical Notes: Descartes

René Descartes (Figure 7.4) was born in La Haye (now called La Haye-
Descartes) in the French province of Touraine in 1596 and died in Stock-
holm in 1650. His father, Joachim, was a councilor in the high court of
Rennes in Brittany; his mother, Jeanne, was the daughter of a lieutenant
general from Poitiers and the owner of property that was eventually to as-
sure Descartes of financial independence. His mother died in 1597, and
Descartes was raised by his maternal grandmother and a nurse. He does
not seem to have been close to his father, brother, or sister, seldom men-
tioning them to others and writing to them only on matters of business.

Figure 7.4: René Descartes

Joachim Descartes was away from home for half the year because of
his court duties, but he saw enough of René to observe his exceptional cu-
riosity, calling him his “little philosopher.” In 1606 he enrolled him in the
Jesuit College of La Flèche, which had recently been founded by Henry IV
in Anjou. The young Descartes was given special privileges at school, in
recognition of his intellectual promise and delicate health. He was one
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of the few boys to have his own room, was permitted books forbidden to
other students, and was allowed to stay in bed until late in the morning.
Spending several morning hours in bed thinking and writing became his
lifelong habit, and when he finally had to break it in the Swedish winter,
the consequences were fatal.

The most dramatic event of his schooldays was the assassination of
Henry IV in 1610. Since Henry IV was not only the founder of the school
but also the most popular king in French history, his death was a profound
shock. La Flèche became the venue for an elaborate funeral ceremony, the
climax of which was the burial of the king’s heart. Descartes was one of
24 students chosen to participate in the ceremony.

He left La Flèche in 1614 and, after legal studies at Poitiers, which
seem to have left no impression on him, went to Holland as an unpaid
volunteer in the army of Prince Maurice of Nassau in 1618. This was not
an unusual decision for a young Frenchman of means at the time, since the
Dutch were fighting France’s enemy, Spain, and Descartes seems to have
joined the army to see the world, not because of any taste for barracks life
or combat. As it happened, there was then a lull in the war, and Descartes
had two years of virtual leisure to reflect on science and philosophy.

When in Breda, on November 10, 1618, he saw a mathematical prob-
lem posted on a wall. Since his Dutch was not yet fluent, he asked a by-
stander to translate it for him. This was how Descartes met Isaac Beeck-
man, who became his first instructor in mathematics and a lifelong friend.
The following November 10, Descartes was in Bavaria. He spent a day
of intense thought in a heated room (“stove” he called it) and that night
had a dream he later considered to be a revelation of the path he should
follow in developing his philosophy. Whether the dream also revealed the
path to analytic geometry, as some have conjectured, will probably never
be known. Descartes’s own description of the dream has been lost, and we
have only a summary by his first biographer, Baillet (1691), p. 85, which is
not helpful. In any case, it seems a little ludicrous to award Descartes pri-
ority over Fermat on the basis of a dream. Could a counterclaim of priority
be lodged if the dream of a teenaged Fermat came to light?

In 1628 Descartes moved to Holland, where he spent most of the rest
of his life. He lived a simple but leisurely life and finally settled down
to working out the ideas conceived nine years earlier. The relative isola-
tion suited him, as he was hostile to other scientific giants of his time such
as Galileo, Fermat, and Pascal and preferred to communicate with schol-
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ars who could understand him without challenging his superiority. One
such was Marin Mersenne, who had been a senior student at La Flèche in
Descartes’s time and was his main scientific contact in France. Others, with
whom Descartes had extensive correspondences, were Princess Elizabeth
of Bohemia and Queen Christina of Sweden.

A positive side to Descartes’s intolerance of intellectual rivals was an
apparently genuine interest in the affairs of his neighbors in Holland. He
encouraged local youths who showed talent in mathematics, and he was
known in the region as someone to turn to in times of trouble (see Vrooman
(1970), pp. 194–196). The one serious love of his life was a servant girl
named Helen, who bore him a daughter, Francine, in 1635. Admittedly,
his interest in this case did not extend to marrying Helen, but the death of
Francine from scarlet fever in 1640 was the greatest sorrow of his life.

In 1649 Descartes agreed to journey to Stockholm to become tutor to
Queen Christina. This was the culmination of his correspondence with her
and of negotiations through Descartes’s friend Chanut, the French ambas-
sador. The queen, who was noted for her physical as well as mental vigor,
slept no more than five hours a night and rose at 4 a.m. Descartes had
to arrive at 5 a.m. to give her lessons in philosophy. The program com-
menced on January 14, 1650, during the coldest winter in over 60 years.
One can imagine the shock to Descartes’s system of such early rising fol-
lowed by a journey from the ambassador’s residence to the palace. How-
ever, it was actually Chanut who succumbed to the cold first. On January
18 he came down with pneumonia, and Descartes apparently caught it from
him. Chanut recovered but Descartes did not, and he died on February 11,
1650.

Descartes is, of course, as well known for his philosophy as his an-
alytic geometry. The Geometry was originally an appendix to his main
philosophical work, the Discourse on Method. The other appendices were
the Dioptrics, a treatise on optics, and the Meteorics, the first attempt to
give a scientific theory of the weather.

In the Dioptrics, Descartes did not inform his readers that Ptolemy, al-
Haytham, Kepler, and Snell had already discovered the main principles of
optics; nevertheless, he presented the subject with greater clarity and thor-
oughness than before, undoubtedly advancing both the theory and practice
of optical instrumentation. As for the Meteorics, we now know how pre-
mature it was to attempt a theory of the weather in 1637, so it is under-
standable that this treatise has more misses than hits. His big hit was a
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correct explanation of rainbows (except for the colors, whose explanation
was completed by Newton), which Descartes was able to give on the basis
of his optics. More typical, unfortunately, was his explanation of thunder:
it was caused by clouds bumping together, and not related to lightning.
An excellent survey of Descartes’s scientific work and philosophy, with a
particularly detailed analysis of the Geometry, is given by Scott (1952).
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Projective Geometry

Preview

At about the same time as the algebraic revolution in classical geometry,
a new kind of geometry also came to light: projective geometry. Based
on the idea of projecting a figure from one plane to another, projective
geometry was initially the concern of artists. In the 17th century, only a
handful of mathematicians were interested in it, and their discoveries were
not seen to be important until the 19th century.

The fundamental quantities of classical geometry, such as length and
angle, are not preserved by projection, so they have no meaning in projec-
tive geometry. Projective geometry can discuss only things that are pre-
served by projection, such a points and lines.

Surprisingly, there are nontrivial theorems about points and lines. One
of them was discovered by the Greek geometer Pappus around 300 ce, and
another by the French mathematician Desargues around 1640.

Even more surprisingly, there is a numerical quantity preserved by pro-
jection. It is a “ratio of ratios” of lengths called the cross-ratio. In projec-
tive geometry, the cross-ratio plays a role similar to that played by length
in classical geometry.

One of the virtues of projective geometry is that it simplifies the clas-
sification of curves. All conic sections, for example, are “projectively the
same,” and there are only five types of cubic curve.

The projective viewpoint also removes some apparent exceptions to
the theorem of Bézout. For example, a line (curve of degree 1) always
meets another line in exactly one point, because in projective geometry
even parallel lines meet.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 127
DOI 10.1007/978-1-4419-6053-5 8, c© Springer Science+Business Media, LLC 2010
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8.1 Perspective

Perspective may be simply described as the realistic representation of spa-
tial scenes on a plane. This of course has been a concern of painters since
ancient times, and some Roman artists seem to have achieved correct per-
spective by the first century bce; an impressive example is shown in Wright
(1983), p. 38. However, this may have been a stroke of individual genius
rather than the success of a theory, because the vast majority of ancient
paintings show incorrect perspective. If indeed there was a classical the-
ory of perspective, it was well and truly lost during the Dark Ages. Me-
dieval artists made some charming attempts at perspective but always got it
wrong, and errors persisted well into the 15th century. (Errors still survive
in 20th-century mathematics texts. Figure 8.1 shows a 15th-century artistic
example from Wright (1983), p. 41, alongside a 20th-century mathematical
example from the exposé of Grünbaum (1985).)

Figure 8.1: Errors in perspective

The discovery of a method for correct perspective is usually attributed
to the Florentine painter–architect Brunelleschi (1377–1446), around 1420.
The first published method appears in the treatise On Painting by Alberti
(1436). The latter method, which became known as Alberti’s veil, used
a piece of transparent cloth, stretched on a frame, and set in front of the
scene to be painted. Then, viewing the scene with one eye, in a fixed
position, one could trace the scene directly onto the veil. Figure 8.2 shows
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Figure 8.2: Dürer’s depiction of Alberti’s veil

this method, with a peephole to maintain a fixed eye position, as depicted
by Dürer (1525).

Alberti’s veil was fine for painting actual scenes, but to paint an imag-
inary scene in perspective some theory was required. The basic principles
Renaissance artists used were the following:

(i) A straight line in perspective remains straight.

(ii) Parallel lines either remain parallel or converge to a single point
(their vanishing point).

These principles suffice to solve a problem artists frequently encountered:
the perspective depiction of a square-tiled floor. Alberti (1436) solved the
special case of this problem in which one set of floor lines is horizontal, that
is, parallel to the horizon. Alberti’s method is shown in simplified form in
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Figure 8.3. The nonhorizontal floor lines are determined by spacing them
equally along the base line (imagined to touch the floor) and letting them
converge to a vanishing point on the horizon. The horizontal floor lines
are then determined by choosing one of them arbitrarily, thus determining
one tile in the floor, and then producing the diagonal of this tile to the
horizon. The intersections of this diagonal with the nonhorizontal lines are
the points through which the horizontal lines pass. This is certainly true on
the actual floor (Figure 8.4); hence it remains true in the perspective view.

Figure 8.3: Alberti’s method

Figure 8.4: The actual floor

Exercises

In almost all paintings of tiled floors, one set of lines is parallel to the horizon.
However, the principles (i) and (ii) suffice to generate a perspective view of a
tiled floor given an arbitrarily situated tile, and they show that no measurement is
needed to achieve equal spacing along the base line in Alberti’s method.

8.1.1 Use the lines shown in Figure 8.5 to determine all lines in a pavement gen-
erated by the given tile.

8.1.2 By using diagonals as in Exercise 8.1.1, show how to generate the lines in
the tiling when the baseline is parallel to the horizon, without making any
measurements.



8.2 Anamorphosis 131

Figure 8.5: Tiled floor with arbitrary orientation

8.2 Anamorphosis

It is clear from the Alberti veil construction that a perspective view will not
look absolutely correct except when seen from the viewpoint used by the
artist. Experience shows, however, that distortion is not noticeable except
from extreme viewing positions. Following the mastery of perspective by
the Italian artists, an interesting variation developed, in which the picture
looks right from only one, extreme, viewpoint. The first known example
of this style, known as anamorphosis, is an undated drawing by Leonardo
da Vinci from the Codex Atlanticus (compiled between 1483 and 1518).
Figure 8.6 shows part of this drawing, a child’s face which looks correct
when viewed with the eye near the right-hand edge of the page.

Figure 8.6: Leonardo’s drawing of a face

The idea was taken up by German artists around 1530. The most fa-
mous example occurs in Holbein’s painting The Two Ambassadors (1533).
A mysterious streak across the bottom of the picture becomes a skull when
viewed from near the picture’s edge. For an excellent view of this picture
and a history of anamorphosis, see Baltrušaitis (1977) and Wright (1983),
pp. 146–156. The art of anamorphosis reached its technically most ad-
vanced form in France in the early 17th century. It seems no coincidence
that this was also the time and place of the birth of projective geometry. In
fact, key figures in the two fields, Niceron and Desargues, were well aware
of each other’s work.

Niceron (1613–1646) was a student of Mersenne and, like him, a monk
in the order of Minims. He executed some extraordinary anamorphic wall
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paintings, up to 55 meters long, and also explained the theory in La per-
spective curieuse (1638). Figure 8.7 is his illustration of anamorphosis of
a chair (from Baltrušaitis (1977), p. 44). The anamorphosis, viewed nor-
mally, shows a chair like none ever seen, yet from a suitably extreme point
one sees an ordinary chair in perspective.

Figure 8.7: Niceron’s chair

This example exposes an important mathematical fact: a perspective
view of a perspective view is not in general a perspective view. Iteration of
perspective views gives what we now call a projective view, and Niceron’s
chair shows that projectivity is a broader concept than perspectivity. As
a consequence, projective geometry, which studies the properties that are
invariant under projection, is broader than the theory of perspective. Per-
spective itself became a mathematical theory, called descriptive geometry,
only at the end of the 18th century.

8.3 Desargues’s Projective Geometry

The mathematical setting in which one can understand Alberti’s veil is the
family of lines (“light rays”) through a point (the “eye”), together with
a plane V (the “veil”) (Figure 8.8). In this setting, the problems of per-
spective and anamorphosis were not very difficult, but the concepts were
interesting and a challenge to traditional geometric thought. Contrary to
Euclid, one had the following:

(i) Points at infinity (“vanishing points”) where parallels met.

(ii) Transformations that changed lengths and angles (projections).
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V

Figure 8.8: Seeing through Alberti’s veil

The first to construct a mathematical theory incorporating these ideas
was Desargues (1591–1661), although the idea of points at infinity had
already been used by Kepler (1604), p. 93. The book of Desargues (1639),
Brouillon projet d’une atteinte aux événemens des rencontres du cône avec
un plan (Schematic Sketch of What Happens When a Cone Meets a Plane),
suffered an extreme case of delayed recognition, being completely lost for
200 years. Fortunately, his two most important theorems, the so-called
Desargues’s theorem and the invariance of the cross-ratio, were published
in a book on perspective, Bosse (1648). The text of Desargues (1639) and
a portion of Bosse (1648) containing Desargues’s theorem may be found
in Taton (1951). An English translation, with an extensive historical and
mathematical analysis, is in Field and Gray (1987).

Kepler and Desargues both postulated one point at infinity on each line,
closing the line to a “circle of infinite radius.” All the lines in a family
of parallels share the same point at infinity. Nonparallel lines, having a
finite point in common, do not have the same point at infinity. Thus any
two distinct lines have exactly one point in common—a simpler axiom
than Euclid’s. Strangely enough, the line at infinity was only introduced
into the theory by Poncelet (1822), even though it is the most obvious
line in perspective drawing, the horizon. Desargues made extensive use
of projections in the Brouillon projet; he was the first to use them to prove
theorems about conic sections.

Desargues’s theorem is a property of triangles in perspective illustrated
by Figure 8.9. The theorem states that the points X, Y , Z at the intersections
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of corresponding sides lie on a line. This is obvious if the triangles are in
space, since the line is the intersection of the planes containing them. The
theorem in the plane is subtly but fundamentally different and requires a
separate proof, as Desargues realized. In fact, Desargues’s theorem was
shown to play a key role in the foundations of projective geometry by
Hilbert (1899) (see Section 20.7).

X
Y

Z

Figure 8.9: Desargues’s theorem

The invariance of the cross-ratio answers a natural question first raised
by Alberti: since length and angle are not preserved by projection, what
is? No property of three points on a line can be invariant because it is
possible to project any three points on a line to any three others (Exercise
8.3.1). At least four points are therefore needed, and the cross-ratio is in
fact a projective invariant of four points. The cross-ratio (ABCD) of points
A, B,C,D on a line (in that order) is CA

CB/
DA
DB . Its invariance is most simply

seen by reexpressing it in terms of angles using Figure 8.10. Let O be any
point outside the line and consider the areas of the triangles OCA, OCB,
ODA, and ODB. First compute them from bases on AB and height h, then
recompute using OA and OB as bases and heights expressed in terms of the
sines of angles at O:

1
2

h · CA = area OCA =
1
2

OA · OC sin ∠COA,

1
2

h · CB = area OCB =
1
2

OB · OC sin ∠COB,

1
2

h · DA = area ODA =
1
2

OA · OD sin ∠DOA,

1
2

h · DB = area ODB =
1
2

OB · OD sin ∠DOB.
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Substituting the values of CA, CB, DA, and DB from these equations we
find, following Möbius (1827), the cross-ratio in terms of angles at O:

CA
CB

/
DA
DB
=

sin ∠COA
sin ∠COB

/
sin ∠DOA
sin ∠DOB

.

Any four points A′, B′, C′, D′ in perspective with A, B, C, D from a point
O have the same angles (Figure 8.10); hence they will have the same cross-
ratio. But then so will any four points A′′, B′′, C′′, D′′ projectively related
to A, B, C, D, since a projectivity is by definition the product of a sequence
of perspectivities.

O

A B C D

h

O

A B C D

A′ B′ C′ D′

Figure 8.10: Evaluating the cross-ratio

Exercises

As mentioned above, we cannot hope for an invariant that is simpler than the
cross-ratio, because any three points in a line are projectively related to any other.

8.3.1 Show that any three points on a line can be sent to any other three points on
a line by projection. (If you need a hint, see Figure 23.1.)

The case of Desargues’s theorem in which the two triangles lie in the same
plane is proved by viewing the plane in space. The setup for the proof is shown
in Figure 8.11. The triangles A1B1C1 and A2B2C2 are in perspective from O in a
plane Π, P is a point in space outside Π, and the line OD1D2 meets Π only at O.

8.3.2 Show that the triangles A1C1D1 and A2C2D2 are in different planes, and in
perspective from O.

Thus it follows from the nonplanar version of Desargues’s theorem that the
intersections of the side pairs (A1D1, A2D2), (A1C1, A2C2), and (C1D1,C2D2) lie
on a line.
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O C2

A2

B2

A1

B1

C1

P

D2D1

Figure 8.11: The planar Desargues’s theorem

8.3.3 Show that these intersections are projected from P to the intersections of the
side pairs (A1B1, A2B2), (A1C1, A2C2), and (C1B1,C2B2), and hence deduce
the planar Desargues’s theorem.

8.3.4 Does this proof capture your intuitive idea of looking at the planar Desar-
gues configuration (Figure 8.9) and interpreting it three-dimensionally? If
so, what does the point P represent?

8.4 The Projective View of Curves

The problems of perspective drawing mainly involved the geometry of
straight lines. There were, it is true, problems such as drawing ellipses
to look like perspective views of circles, but artists were generally content
to solve such problems by interpolating smooth-looking curves in a suit-
able straight-line framework. An example is the drawing of a chalice by
Uccello (1397–1475) in Figure 8.12.

A mathematical theory of perspective for curves became possible with
the advent of analytic geometry. When a curve is specified by an equation
f (x, y) = 0, the equation of any perspective view is obtainable by suit-
ably transforming x and y. However, this transformational viewpoint, even
though quite simple algebraically, emerged only with Möbius (1827). The
first works in projective geometry, by Desargues (1639) and Pascal (1640),
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Figure 8.12: Drawing of a chalice by Uccello (Uffizi, Florence)

used the language of classical geometry, even though the language of equa-
tions was available from Descartes (1637). This was understandable, not
only because the analytic method was so obscure in Descartes, but also be-
cause the advantages of the projective method could be more clearly seen
when it was used in a classical setting. Desargues and Pascal confined
themselves to straight lines and conic sections, showing how projective ge-
ometry could easily reach and surpass the results obtained by the Greeks.
Moreover, the projective viewpoint gave something else that would have
been incomprehensible to the Greeks: a clear account of the behavior of
curves at infinity.
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For example, Desargues (1639) (in Taton (1951), p. 137) distinguished
the ellipse, parabola, and hyperbola by their numbers of points at infinity:
0, 1, and 2, respectively. The points at infinity on the parabola and hyper-
bola can be seen quite plainly by tilting the ordinary views of them into
perspective views (Figures 8.13 and 8.14). The parabola has just one point
at infinity because it crosses each ray through 0, except the y-axis, at just
one finite point. As for the hyperbola, its two points at infinity are where it
touches its asymptotes, as seen in Figure 8.14. The continuation of the hy-
perbola above the horizon results from projecting the lower branch through
the same center of projection (Figure 8.15).

x

y

x

y

Figure 8.13: The parabola

x

y

x

y

Figure 8.14: The hyperbola
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Figure 8.15: Branches of the hyperbola

Projective geometry goes beyond describing the behavior of curves at
infinity. The line at infinity is no different from any other line and can
be deprived of its special status. Thus, all projective views of a curve are
equally valid, and one can say, for example, that all conic sections are
ellipses when suitably viewed. This is no surprise if one remembers conic
sections not as second-degree curves but as sections of the cone. Of course
they all look the same from the vertex of the cone.

More surprisingly, a great simplification of cubic curves also occurs
when they are viewed projectively. As mentioned in Section 7.4, Newton
(1695) classified cubic curves into 72 types (and missed 6). However, in his
Section 29, “On the Genesis of Curves by Shadows,” Newton claimed that
each cubic curve can be projected onto one of just five types. As mentioned
in Section 7.4, this includes the result that y = x3 can be projected onto
y2 = x3. The proof of this is an easy calculation when coordinates are
introduced (see Exercise 8.7.2), but one already gets an inkling of it from
the perspective view of y = x3. See Figure 8.16. The lower half of the
cusp is the view of y = x3 below the horizon; the upper half comes from
projecting the view behind one’s head through P to the picture plane in
front.
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y

x

P

Figure 8.16: Perspective view of a cubic curve

Conversely, y2 = x3 has an inflection at infinity. Newton’s projective
classification comes about by studying the behavior at infinity of all cubics
and observing that each has characteristics already possessed, not neces-
sarily at infinity, by curves of the form

y2 = Ax3 + Bx2 +Cx + D.

Newton had already divided these into five types in his analytic classifica-
tion. They are the five shown in Figure 7.3. Newton’s result was improved
only in the 19th century, when projective classification over the complex
numbers reduced the number of types of cubics to just three. We discuss
this later in connection with the development of complex numbers (Sec-
tion 16.5).

Exercises

As suggested above, the points at infinity of a curve may be counted by con-
sidering intersections of the curve with lines through the origin, and observing
where they tend to infinity.

8.4.1 Use this method to explain why

• the hyperbola xy = 1 has two points at infinity,

• the curve y = x3 has one point at infinity.
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Figures 8.13 and 8.14 were made by taking Alberti’s veil to be the (x, z)-plane
in (x, y, z)-space, with the “eye” at (0,−4, 4) viewing the (x, y)-plane.

8.4.2 Find the parametric equations of the line from (0,−4, 4) to (x′, y′, 0), and
hence show that this line meets the veil where

x =
4x′

y′ + 4
, z =

4y′

y′ + 4
.

8.4.3 Renaming the coordinates x, z in the veil as X, Y respectively, show that

x′ =
4X

4 − Y
, y′ =

4Y
4 − Y

.

8.4.4 Deduce from Exercise 8.4.3 that the points (x′, y′) on the parabola y = x2

have image on the veil

X2 +
(Y − 2)2

4
= 1,

and check that this is the ellipse shown in Figure 8.13.

8.5 The Projective Plane

The way in which projective geometry allows infinity to be put on the same
footing as the finite points of the plane is intuitively clear when one thinks
of the horizon in a picture, which is a line like any other. But what, math-
ematically speaking, is this line we see? We can model the situation math-
ematically by taking the plane we look at to be the plane z = −1 in the
three-dimensional space with coordinates (x, y, z), and placing our eye at
the origin O = (0, 0, 0), as in Figure 8.17.

Points P1, P2, P3, . . . in the plane lie on “lines of sight” L1,L2,L3, . . .

through O, and as the point Pn tends to infinity its line of sight Ln tends to
horizontal. Therefore, it is natural to interpret each horizontal line through
O, which does not correspond to an actual point of the plane, as the line
of sight to a “point at infinity” of the plane. More boldly, we can define
the lines through O to be the points of a projective plane, called the real
projective plane RP2, and the planes through O to be the lines of RP2—the
so-called projective lines.

Modeling the points of the plane z = −1 by the non-horizontal lines
through O enables us to complete this ordinary plane to a projective plane
by using the remaining lines through O (which are not called “horizontal”
for nothing!) to model the points on its horizon. Moreover, the horizontal
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L1

P1

L2

P2

L3

P3M

z

x

y

Figure 8.17: Vision of the plane

plane through O models the horizon line, reinforcing our intuition that the
horizon is a line like any other.

This model of the projective plane is geometrically as natural as one
could wish, and it answers certain questions that are confusing for vision
alone. For example, we can see why it is proper for a lineM in the ordinary
plane to have only one point at infinity: because there is only one line
through O to which the lines through P1, P2, P3, . . . tend as Pn tends to
infinity, namely, the parallel toM through O. Thus, Kepler and Desargues
were not far wrong in thinking of a projective line as a circle. The two
“ends” of the line are joined by its single point at infinity.

While a projective line is essentially a circle, a projective plane is not
essentially a sphere, but something more peculiar, as was noticed by Klein
(1874). RP2 is essentially a sphere with antipodal points identified, where
antipodal points P, P′ are pairs such as those shown in Figure 8.18: the di-
ametrically opposite points at which a line through O meets the unit sphere
with center O. “Identifying” the points P, P′ means treating the pair (P, P′)
as a single point. This is appropriate since the pair corresponds to a single
line through O, that is, to a single point of RP2.

The surface RP2 modeled by the pairs (P, P′) is strikingly different from
the sphere of individual points P. For example, on a sphere, any simple
closed curve separates the surface into two parts. A “small” closed curve
in RP2—that is, one strictly contained in a hemisphere of the model—also
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P

P′

Figure 8.18: The projective plane of antipodal point pairs

separates it, but a “large” one may not. The equator, for instance, does not
separate the upper hemisphere from the lower, because the hemispheres
are the same place under antipodal point identification! A less paradoxical
view of this is seen by going back to the model of RP2 whose elements
are lines through O. The lines through the equator do not separate the lines
through the upper hemisphere from the lines through the lower hemisphere,
because these are the same lines.

Exercises

The model of the projective plane whose points are lines through O and whose
lines are planes through O also helps in visualizing other basic properties of pro-
jective lines.

8.5.1 Use this interpretation of projective lines to show that all lines in a family
of parallels have the same point at infinity.

8.5.2 Likewise, show that any two projective lines meet in exactly one point.

Now let us return to the interpretation of the projective plane as a surface, the
sphere with antipodal points identified. The following result shows another way
in which the projective plane differs from a sphere.

8.5.3 Show that a strip of the projective plane surrounding a projective line is a
Möbius band (Figure 8.19).

8.5.4 Why is the Möbius band not a part of the sphere?
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Figure 8.19: A Möbius band

8.6 The Projective Line

As we have seen, projective geometry arose from efforts to understand the
relationship between two and three dimensions. But the idea arising from
these efforts—that of projection or projective transformations—is interest-
ing even in one dimension. In this section we make a more detailed study
of projection from a line to a line, and use it to present a more sophisti-
cated concept of projective line. In the process, we will meet the concept
of linear fractional transformation, which plays a key role in many later
developments. In particular, we will show how linear fractional transfor-
mations give a new insight into the invariance of the cross-ratio.

We start by viewing the line as the number line R, and study how the
numerical values of points are related when we project one line onto an-
other. The simplest kind of projection is parallel projection (or projection
from infinity) of a line onto a parallel line, as shown in Figure 8.20.

L1

L2

0

l

1

1 + l

2

2 + l

3

3 + l

Figure 8.20: Projection from infinity

Clearly, when we make the natural choice of coordinates on the two
lines, parallel projection sends x on L1 to x + l on L2, for some constant l.
We abbreviate this mapping of coordinates by x �→ x + l.

If we project from a point P at a finite distance, then it is likewise clear
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from Figure 8.21 (where we align the zero point on each line with P) that x
on L1 is sent to kx on L2 for some nonzero constant k. We abbreviate this
mapping of coordinates by x �→ kx (k � 0).

L1

L2

P

0 kx

0 x

Figure 8.21: Projection from a finite point

A more remarkable case is shown in Figure 8.22, where we project a
line L1 onto a perpendicular line L2 from a point not on either line, but
equidistant from both. Then with suitable choice of coordinates, x on L1

is sent to 1/x on L2.

L1
0 x

L2 L

1/x

0

O

Figure 8.22: Projection of a line onto a perpendicular line

This makes L2 a highly distorted image of L1, with the equally spaced
points 1, 2, 3, 4, . . . on L2 going to the points 1, 1/2, 1/3, 1/4, . . . on L2.
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These image points tend to the point 0 on L2, which is not the projection
of any point on L1. However, if we extend L1 by an extra point ∞—its
point at infinity—then it seems right to view 0 on L2 as the projection of
∞ on the extended line L1 ∪ {∞}. It likewise seems right to extend L2 by
its point ∞ at infinity, and to view this point as the projection of 0 on L1.

If we still claim that this map sends x to 1/x, then we must admit that

1/0 = ∞ and 1/∞ = 0.

We have legalized division by zero! Is this valid? In this limited setting,
yes, because we are merely labeling each lineL through O by two symbols:
x and 1/x. If L is neither vertical nor horizontal, then x and 1/x are the
intersections of L with L1 and L2 respectively; if L is vertical, then x = 0
is its real intersection with L1 and 1/0 = ∞ is its “intersection at infinity”
with its parallel L2; if L is horizontal, then 1/x = 1/∞ = 0 is its real
intersection with L2 and ∞ is its “intersection at infinity” with its parallel
L1.

Actually, division by zero is valid in the more general and interesting
setting of linear fractional transformations:

f (x) =
ax + b
cx + d

, where ad − bc � 0.

These are precisely the functions obtainable as combinations of the func-
tions x �→ x + l, x �→ kx for k � 0, and x �→ 1/x, and they correspond
to arbitrary projections of one projective line onto another. To be precise,
each linear fractional function gives a well-defined and one-to-one map of
R ∪ {∞} to itself, and these maps realize all projections of the projective
line. These relationships are verified in the exercises below. Because of
this, we call R ∪ {∞}, together with its linear fractional functions, the real
projective line RP1.

The linear fractional functions give RP1 its “projective” nature. Un-
like the real line R, RP1 has no concept of length, because length is not
preserved by linear fractional functions. Not even the ratio of lengths is
preserved, as one can see with the function x �→ 1/x. However, the cross-
ratio is preserved by linear fractional functions, and hence by projections.

To see why, consider four points A, B,C,D on a line. If we view these
points as numbers, then their cross-ratio (defined in Section 8.3) becomes

CA · DB
CB · DA

=
(C − A)(D − B)
(C − B)(D − A)

.
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The function x �→ x + l, which adds l to each of A, B,C,D, obviously does
not change the cross-ratio. Neither does the function x �→ kx for k � 0,
which multiplies each of A, B,C,D by k. It is not so obvious that the cross-
ratio is preserved by the function x �→ 1/x, which sends each of A, B,C,D
to its reciprocal, but this is confirmed by a simple calculation. Thus the
cross-ratio is preserved by all combinations of x �→ x+ l, x �→ kx for k � 0,
and hence by all linear fractional functions.

Exercises

We can see why each linear fractional function is a combination of functions
of the forms x �→ x + l, x �→ kx for k � 0, and x �→ 1/x by a suitable breakdown
of the fraction ax+b

cx+d .

8.6.1 Show that ax+b
cx+d =

a
c +

bc−ad
c(cx+d) if c � 0.

8.6.2 Deduce from Exercise 8.6.1 that the function x �→ ax+b
cx+d is a combination of

functions x �→ x + l, x �→ kx, and x �→ 1/x when c � 0. What if c = 0?

8.6.3 What property of ax+b
cx+d is controlled by the condition ad − bc � 0?

8.6.4 Verify that the cross-ratio (C−A)(D−B)
(C−B)(D−A) remains unchanged when each of the

points A, B,C,D is replaced by its reciprocal.

It follows that the cross-ratio is preserved by any linear fractional function. It
remains to show that projections are realized by linear fractional functions. We
have already done this for projection of a line onto a parallel line. Hence it remains
to study projection of a line, say the x-axis, onto a line that intersects it, say y = cx.

8.6.5 Show that projection from the point (a, b) sends the point x = t on the x-axis
to the point on the line y = cx for which

x =
bt

ct + b − ca
,

which is a linear fractional function of t.

8.7 Homogeneous Coordinates

Representing the points of the projective plane RP2 by lines through O
gives coordinates to RP2 via the coordinates (x, y, z) of three-dimensional
space. Such coordinates were invented by Möbius (1827) and Plücker
(1830), and they are called homogeneous because each algebraic curve in
RP

2 is expressed by a homogeneous polynomial equation p(x, y, z) = 0.
The simplest case is that of a projective line, which, as we saw in Section



148 8 Projective Geometry

8.5, is represented by a plane through O. Its equation therefore has the
form

ax + by + cz = 0, for some constants a, b, c, not all zero.

Such an equation is called homogeneous of degree 1, because each nonzero
term is of degree 1 in the variables x, y, z.

The homogeneous coordinates of a point P in RP2 are simply the coor-
dinates of all points on the line through O that represents P. It follows that
if (x, y, z) is one coordinate triple for P, so is (tx, ty, tz) for any real number
t. And if p(x, y, z) = 0 is the equation of a curve in RP2, the polynomial p
must be such that

p(tx, ty, tz) = 0 for all real numbers t.

It follows that p(tx, ty, tz) = tn p(x, y, z) for some n, called the degree of p.
A typical example is the equation

x2 − yz = 0,

which is homogeneous of degree 2. To see what this curve looks like in an
ordinary plane, such as z = 1, we substitute for the appropriate variable.
With z = 1 we obtain

y = x2,

which is the equation of a parabola in the plane z = 1. Thus x2 − yz = 0
is the projective completion of a parabola, with a point at infinity added
(namely, the y-axis).

But x2 − yz = 0 is also the projective completion of a hyperbola. We
see this by intersecting the projective curve with the plane x = 1, obtaining
the hyperbola yz = 1. Surprising as this seems at first, it reflects a fact we
already know from Section 8.4—that all conic sections are projectively the
same.

Homogeneous coordinates also make it easy to show that certain cubic
curves have the same projective completion (see Exercise 8.7.2).

Bézout’s Theorem Revisited

As we saw in Section 7.5, to obtain Bézout’s theorem that a curve of de-
gree m meets a curve of degree n in mn points we need a precise account
of points at infinity. Homogeneous coordinates simplify this problem by
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changing it to one about homogeneous polynomials. If Cm is a curve with
homogeneous equation of degree m,

pm(x, y, z) = 0, (1)

and if Cn is a curve with homogeneous equation of degree n,

pn(x, y, z) = 0, (2)

one wishes to show that the equation

rmn(x, y) = 0, (3)

which results from eliminating z between (1) and (2), is homogeneous of
degree mn. This is not hard to do (see exercises), but it seems that a homo-
geneous formulation of Bézout’s theorem, with a rigorous proof that the
resultant rmn has degree mn, was not given until the late 1800s. According
to Kline (1972), p. 553, the “proper count of multiplicities” was first made
by Halphen in 1873.

An obvious condition must be included in the hypothesis of Bézout’s
theorem: that the curves Cm and Cn have no common component. The
algebraic equivalent of this condition is that the polynomials pm, pn have
no nonconstant common factor. Then the form of Bézout’s theorem that
can be proved with the help of homogeneous coordinates is curves Cm, Cn

with homogeneous equations pm(x, y, z) = 0, pn(x, y, z) = 0 of degrees m,
n and no common component have intersections given by the solutions of
a homogeneous equation rmn(x, y) = 0 of degree mn.

A useful consequence of Bézout’s theorem is that curves Cm, Cn of
degrees m, n with more than mn intersections have a common component.

Exercises

8.7.1 We know that the hyperbola yz = 1 has two points at infinity. To which lines
through O do they correspond in the projective completion x2 − yz = 0?

8.7.2 By considering the homogeneous polynomial equation x3 − y2z = 0, show
that the cubic curves y = x3 and y2 = x3 have the same projective comple-
tion.

As the Chinese discovered (see Section 6.2), the problem of elimination belongs
to linear algebra. In the case of Bézout’s theorem, this includes the determinant
criterion for a set of homogeneous equations to have a nonzero solution, and it
leads to an expression for the resultant rmn as a determinant.
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8.7.3 Suppose that

pm(x, y, z) = a0zm + a1zm−1 + · · · + am,

pn(x, y, z) = b0zn + b1zn−1 + · · · + bn

are homogeneous polynomials of degrees m, n. Thus ai(x, y) is homoge-
neous of degree i and b j(x, y) is homogeneous of degree j. By multiplying
pm and pn by suitable powers of z, show that the equations

pm = 0 and pn = 0

are equivalent to a system of m + n homogeneous linear equations in the
variables zm+n−1, . . . , z2, z1, z0, which in turn is equivalent to

rmn(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · am 0 · · · 0
0 a0 a1 · · · am 0 · · · 0
...

. . .
. . .

. . .

0
0 · · · 0 a0 · · · am

b0 b1 · · · bn 0 · · · 0

0 b0 b1 · · · bn
...

...
. . .

. . . 0
0 · · · 0 b0 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

8.7.4 Show that a polynomial p(x, y) is homogeneous of degree k ⇔ p(tx, ty) =
tk p(x, y).

8.7.5 Show that rmn(tx, ty) = tmnrmn(x, y). Hint: Multiply the rows of rmn(tx, ty)
by suitable powers of t to arrange that each element in any column contains
the same power of t. Then remove these factors from the columns so that
rmn(x, y) remains.

8.8 Pascal’s Theorem

Pascal’s Essay on Conics (1640) was written in late 1639, when Pascal
was 16. He probably had heard about projective geometry from his father,
who was a friend of Desargues. The Essay contained the first statement
of a famous result that became known as Pascal’s theorem or the mystic
hexagram. The theorem states that the pairs of opposite sides of a hexagon
inscribed in a conic section meet in three collinear points. (The vertices
of the hexagon can occur in any order on the curve. In Figure 8.23 the
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order was chosen to enable the three intersections to lie inside the curve.)
Pascal’s proof is not known, but he probably established the theorem for
the circle first, then trivially extended it to arbitrary conics by projection.

Figure 8.23: Pascal’s theorem

Plücker (1847) threw new light on Pascal’s theorem by showing it to
be an easy consequence of Bézout’s theorem. Plücker used an auxiliary
theorem about cubics which can be bypassed, giving the following direct
deduction from Bézout’s theorem.

Let L1, L2, . . . , L6 be the successive sides of the hexagon. The unions
of alternate sides, L1 ∪ L3 ∪ L5 and L2 ∪ L4 ∪ L6, can be regarded as cubic
curves

l135(x, y, z) = 0, l246(x, y, z) = 0,

where each l is a product of three linear factors. These two curves meet in
nine points: the six vertices of the hexagon and the three intersections of
opposite sides. Let

c(x, y, z) = 0 (1)

be the equation of the conic that contains the six vertices.
We can choose constants α, β so that the cubic curve

αl135(x, y, z) + βl246(x, y, z) = 0 (2)

passes through any given point P. Let P be a point on the conic, distinct
from the six vertices. Then the curves (1), (2) of degrees 2, 3, have 7 > 2×3
points in common, and hence a common component by Bézout’s theorem.
Since c has no nonconstant factor, by hypothesis, this common component
must be c itself. Hence

αl135 + βl246 = cp (3)
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for some polynomial p, which must be linear since the left-hand side of (3)
has degree 3 and c has degree 2. Since the curve αl135 + βl246 = 0 passes
through the nine points common to l135 = 0 and l246 = 0, while c = 0
passes through only six of them, the remaining three (the intersections of
opposite sides) must be on the line p = 0.

Exercises

8.8.1 Generalize the preceding argument to show that if two curves of degree
n meet in n2 points, nm of which lie on a curve of degree m, then the
remaining n(n − m) points lie on a curve of degree n − m.

An important special case of Pascal’s theorem was discovered around 300 ce
by Pappus, and it is called the theorem of Pappus. In this theorem, the conic is a
“degenerate” conic section, consisting of two straight lines.

The usual statement of Pappus’s theorem, like that of Pascal’s theorem, says
that the intersections of opposite sides of the hexagon are in a straight line. How-
ever, if we avail ourselves of the freedom to take this line to be at infinity, then
Pappus’s theorem takes a form that is easier to visualize and prove.

8.8.2 Interpret Figure 8.24 as an illustration of Pappus’s theorem.

O
P1

Q3
Q1

P3

Q2

P2

Figure 8.24: Illustration of Pappus’s theorem

8.8.3 Write down a statement of the theorem corresponding to Figure 8.24, the
conclusion of which is that P1Q3 and P2Q2 are parallel. (Equivalently,
OP1/OP2 = OQ3/OQ2.)

8.8.4 Deduce the required equation from two other equations that express paral-
lelism in Figure 8.24.

8.8.5 Also draw the figure and prove the theorem in the case where the two lines
P1P2 and Q1Q2 do not meet at O, that is, when they too are parallel.
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8.9 Biographical Notes: Desargues and Pascal

Girard Desargues was born in Lyons in 1591 and died in 1661. He was one
of nine children of Girard Desargues, a tithe collector, and Jeanne Croppet.
He was evidently brought up in Lyons, but information about his early life
is lacking. By 1626 he was working as an engineer in Paris and may have
used his expertise in the famous siege of La Rochelle in 1628, during which
a dike was built across the harbor to prevent English ships from relieving
the city.

In the 1630s he joined the circle of Marin Mersenne, which met regu-
larly in Paris to discuss scientific topics, and in 1636 contributed a chapter
to a book of Mersenne on music theory. In the same year he published
a 12-page booklet on perspective, the first hint of his ideas in projective
geometry. His Brouillon projet (1639) was published in an edition of only
50 copies and won very little support. In fact, its reception was generally
hostile, and Desargues was engaged in a pamphleteering battle for years
with his detractors (see Taton (1951), pp. 36–45). At first his only support-
ers were Pascal, most of whose work on projective geometry is also lost,
and the engraver Abraham Bosse, who expounded Desargues’s perspective
method (Bosse (1648)). Desargues became discouraged by the attacks on
his work and left the dissemination of his ideas up to Bosse, who was not
really mathematically equipped for the task. Projective geometry secured
a place in mathematics only with the publication of a book by Phillipe de
la Hire (1673), whose father, Laurent, had been a student of Desargues. It
seems quite likely that la Hire’s book influenced Newton. For this and more
on Desargues’s mathematical legacy, see Field and Gray (1987), Ch. 3.

Around 1645 Desargues turned his talents to architecture, perhaps to
demonstrate to his critics the practicality of his graphical methods. He was
responsible for various houses and public buildings in Paris and Lyons, ex-
celling in complex structures such as staircases. His best-known achieve-
ment in engineering, a system for raising water at the château of Beaulieu,
near Paris, is also interesting from the geometrical viewpoint. It makes
the first use of epicyclic curves (Section 2.5) in cogwheels, as was noted
by Huygens (1671). Huygens visited the château at the time when it was
owned by Charles Perrault, the author of Cinderella and Puss in Boots.

Desargues apparently returned to scientific circles in Paris toward the
end of his life—Huygens heard him give a talk on the existence of geo-
metric points on November 9, 1660—but information about this period is



154 8 Projective Geometry

scanty. His will was read in Lyons on October 8, 1661, but the date and
place of his death are unknown.

Blaise Pascal (Figure 8.25) was born in Clermont-Ferrand in 1623 and
died in Paris in 1662. His mother, Antoinette Bagon, died when he was
three, and Blaise was brought up by his father, Etienne. Etienne Pascal
was a lawyer with an interest in mathematics who belonged to Mersenne’s
circle and, as mentioned earlier, was a friend of Desargues. He has a curve
named after him, the limaçon of Pascal. In 1631 Etienne took Blaise and
his two sisters to Paris and gave up all official duties to devote himself to
their education. Thus Blaise Pascal never went to school or university, but
by the age of 16 he was learned in Latin, Greek, mathematics, and science.
And of course he had written his Essay on Conics and discovered Pascal’s
theorem.

Figure 8.25: Blaise Pascal

The Essay on Conics (1640) is a short pamphlet containing an outline
of the great treatise on conics he had begun to prepare, and which is now
lost. It includes a statement of Pascal’s theorem for the circle. Pascal
worked on his treatise until 1654, when it was nearly complete, but he
never mentioned it thereafter. Leibniz saw the manuscript when he was in
Paris in 1676, but no further sightings are known.
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In 1640 Pascal and his sisters joined their father in Rouen, where he had
become a tax official. Pascal got the idea of constructing a calculating ma-
chine to help his father in his work. He found a theoretical solution around
the end of 1642, based on toothed wheels, but difficulties in the production
of accurate parts delayed the appearance of the machine until 1645. This
was the first working computer. The gear mechanism for addition seems
rather obvious to us now, but in Pascal’s day it already raised questions of
the “Can a machine think?” kind. Pascal himself was sufficiently amazed
by the mechanism to say that “the arithmetical machine produces effects
which approach nearer to thought than all the actions of the animal. But
it does nothing which would enable us to attribute will to it, as to the an-
imals” (Pascal, Pensées, 340). The machine greatly impressed the French
chancellor, and Pascal was granted exclusive rights to manufacture and sell
it. Whether it was a commercial success is not known, but for a time, at
least, Pascal was diverted by the opportunity to cash in on his ideas.

The direction of Pascal’s life began to shift away from such worldly
concerns in 1646, when his father was treated for a leg injury by two lo-
cal bonesetters. The bonesetters were Jansenists, then a fast-growing sect
within the Catholic church. Their influence resulted in the conversion of
the whole family to Jansenism, and Pascal began to devote more time to re-
ligious thought. For some years, though, he continued with scientific work.
In 1647 he investigated the variation of barometric pressure with altitude,
resulting in his New Experiments Concerning the Vacuum, published the
same year; in 1651 he did pioneering work in hydrostatics, resulting in
his Great Experiment Concerning the Equilibrium of Fluids, published in
1663; and in 1654 he investigated the so-called Pascal’s triangle, making
fundamental contributions to number theory, combinatorics, and probabil-
ity theory. For more on this, see Chapter 11. In 1654 Pascal experienced a
“second conversion,” which led to his almost complete withdrawal from the
world and science and his increasing commitment to the Jansenist cause.
Only in 1658 and 1659 did he concentrate at times on mathematics (on one
occasion, so the story goes, to take his mind off the pain of a toothache).
His favorite topic at this stage was the cycloid, the curve generated by a
point on the circumference of a circle that rolls on a straight line. Later
in the 17th century the cycloid became important in the development of
mechanics and differential geometry (see Chapters 13 and 17).

Mathematicians are of course very sorry about Pascal’s withdrawal
from mathematics at an early age; however, it was not just religion that
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gained from Pascal’s conversion. The Provincial Letters, which he wrote
to promote Jansenist ideas, and his Pensées, which were edited by the
Jansenists after his death, became classics of French literature. Undoubt-
edly Pascal is the only great mathematician whose standing is equally great
among writers. Moreover, his devotion to the Jansenist ideal of serving the
needy had one enduring practical consequence: his idea of a public trans-
port system. Shortly before his death in 1662, Pascal saw the inauguration
of the world’s first omnibus service. Coaches could be taken from the Porte
Sainte-Antoine to the Luxembourg in Paris for 5 sous, with profits being
directed to the relief of the poor.
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Calculus

Preview

The shift towards algebraic thinking was not only a revolution in geometry.
It was decisive in the second and greatest mathematical revolution of the
17th century: the invention of calculus. It is true that some results we
now obtain by calculus were known to the ancients; for example, the area
of the parabolic segment was found by Archimedes. But the systematic
computation of areas, volumes, and tangents became possible only when
symbolic computation—that is, algebra—became available.

The dependence of calculus on algebra is particularly clear in the work
of Newton, whose calculus is essentially the algebra of infinite polynomials
(power series). Moreover, Newton’s starting point was a basic theorem
about the polynomial (1+ x)n, the binomial theorem, which he extended to
fractional values of n.

The calculus of Leibniz was likewise based on algebra—in his case
the algebra of infinitesimals. Despite doubts about the meaning and exis-
tence of infinitesimals, Leibniz and his followers obtained correct results
by computing with them.

Results that we now obtain through a combination of algebra and limit
processes were obtained by Leibniz through the algebra of infinitesimals.
Our derivative dy/dx was, for Leibniz, literally the quotient of the infinites-
imal dx by the infinitesimal dy. And our integral

∫
f (x) dx was, for Leib-

niz, literally the sum of the infinitesimals f (x) dx (hence the symbol
∫

,
which is an elongated S for “sum”).

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 157
DOI 10.1007/978-1-4419-6053-5 9, c© Springer Science+Business Media, LLC 2010
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9.1 What Is Calculus?

Calculus emerged in the 17th century as a system of shortcuts to results ob-
tained by the method of exhaustion and as a method for discovering such
results. The types of problem for which calculus proved suitable were
finding lengths, areas, and volumes of curved figures and determining lo-
cal properties such as tangents, normals, and curvature—in short, what we
now recognize as problems of integration and differentiation. Equivalent
problems of course arise in mechanics, where one of the dimensions is time
instead of distance; hence it was calculus that made mathematical physics
possible—a development we shall consider in Chapter 13. In addition, cal-
culus was intimately connected with the theory of infinite series, initiating
developments that became fundamental in number theory, combinatorics,
and probability theory.

The extraordinary success of calculus was possible, in the first instance,
because it replaced long and subtle exhaustion arguments by short routine
calculations. As the name suggests, calculus consists of rules for calcu-
lating results, not their logical justification. Mathematicians of the 17th
century were familiar with the method of exhaustion and assumed they
could always fall back on it if their results were challenged, but the flood
of new results became so great that there was seldom time to do so. As
Huygens (1659a), p. 337, wrote,

Mathematicians will never have enough time to read all the
discoveries in Geometry (a quantity which is increasing from
day to day and seems likely in this scientific age to develop
to enormous proportions) if they continue to be presented in a
rigorous form according to the manner of the ancients.

The progress in geometry when Huygens wrote was indeed impressive,
considering the very simple system of calculus then available. Virtually all
that was known was the differentiation and integration of powers of x (pos-
sibly fractional) and implicit differentiation of polynomials in x, y. How-
ever, when allied with algebra and analytic geometry, this was sufficient
to find tangents, maxima, and minima for all algebraic curves. And when
allied with Newton’s calculus of infinite series, discovered in the 1660s,
the rules for powers of x formed a complete system for differentiation and
integration of all functions expressible in power series.

The subsequent development of calculus is a puzzling exception to the
normal process of simplification in mathematics. Nowadays we have a
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much less elegant system, which downplays the use of infinite series and
complicates the system of rules for differentiation and integration. The
rules for differentiation are still complete, given a sensible set of opera-
tions for constructing functions, but the rules for integration are patheti-
cally incomplete. They do not suffice to integrate simple algebraic func-
tions like

√
1 + x3, or even rational functions with undetermined constants

like 1/(x5− x−A). Moreover, it is only in recent decades that we have been
able to tell which algebraic functions are integrable by our rules. (This
little-known result is expounded by Davenport (1981).)

The conclusion seems to be that, apart from streamlining the language
slightly, we cannot make calculus any simpler than it was in the 17th cen-
tury! It is certainly easier to present the history of the subject if we refrain
from imposing modern ideas. This approach also has the advantage of em-
phasizing the highly combinatorial nature of calculus—it is about calcula-
tion, after all. In view of the current controversy over the relative merits of
calculus and combinatorics, it may be useful to remember that most clas-
sical combinatorics was part of the algebra of series, and hence a part of
calculus. We develop this theme at greater length in the chapter on infinite
series that follows.

Much has been written on the history of calculus, and some particu-
larly useful books are Boyer (1959), Baron (1969), and Edwards (1979).
However, historians tend to harp on the question of logical justification and
to spend a disproportionate amount of time on the way it was handled in
the 19th century. This not only obscures the boldness and vigor of early
calculus, but it is overly dogmatic about the way in which calculus should
be justified. Apart from the justification already available in the 17th cen-
tury (the method of exhaustion), there is also a 20th-century justification
(the theory of infinitesimals of Robinson (1966)), and the sheer diversity
of foundations for calculus suggests that we have not yet got to the bottom
of it.

9.2 Early Results on Areas and Volumes

The idea of integration is often introduced by approximating the area un-
der curves y = xk by rectangles (Figure 9.1), say, from 0 to 1. If the base
of the region is divided into n equal parts, then the heights of the rect-
angles are (1/n)k , (2/n)k, . . . , (n/n)k, and finding the area occupied by the
rectangles depends on summing the series 1k + 2k + · · · + nk. If the curve
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is revolved around the x-axis, then the rectangles sweep out cylinders of
cross-sectional area πr2, where r = (1/n)k , (2/n)k, . . . , (n/n)k, which ne-
cessitates summing the series 12k + 22k + · · · + n2k.

y = xk

O 1
n

2
n

3
n

· · · n−1
n

n
n

Figure 9.1: Approximating an area by rectangles

After the time of Archimedes, the first new results on areas and vol-
umes were in fact based on summing these series. The Arab mathematician
al-Haytham (around 965–1039) summed the series 1k + 2k + · · · + nk for
k = 1, 2, 3, 4, and used the result to find the volume of the solid obtained
by rotating the parabola about its base. See Baron (1969), p. 70, or Ed-
wards (1979), p. 84, for al-Haytham’s method of summing the series, and
the exercises for another method.

Cavalieri (1635) extended these results up to k = 9, using them to
obtain the equivalent of

∫ a

0
xk dx =

ak+1

k + 1

and conjecturing this formula for all positive integers k. This result was
proved in the 1630s by Fermat, Descartes, and Roberval. Fermat even
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obtained the result for fractional k (see Baron (1969), pp. 129, 185, and
Edwards (1979), p. 116). Cavalieri is best known for his “method of in-
divisibles,” an early method of discovery which considered areas divided
into infinitely thin strips and volumes divided into infinitely thin slices.
Archimedes’ Method used similar ideas but, as mentioned in Section 4.1,
this was not known until the 20th century. Remarkably, Cavalieri’s con-
temporary Torricelli (the inventor of the barometer) speculated that such
a method may have been used by the Greeks. Torricelli himself obtained
many results using indivisibles, one being almost identical with an area
determination for the parabola given by Archimedes in the Method (Torri-
celli (1644)). Another of his discoveries, which caused astonishment at the
time, was that the infinite solid obtained by revolving y = 1/x about the x
axis from 1 to ∞ has finite volume (Torricelli (1643) and Exercise 9.2.3).
The philosopher Hobbes (1672) wrote of Torricelli’s result that “to under-
stand this for sense, it is not required that a man should be a geometrician
or logician, but that he should be mad.”

Exercises

9.2.1 Find 1 + 2 + · · · + n by summing the identity (m + 1)2 − m2 = 2m + 1 from
m = 1 to n. Similarly find 12 + 22 + · · · + n2 using the identity

(m + 1)3 − m3 = 3m2 + 3m + 1

together with the previous result. Likewise, find 13 + 23 + · · ·+ n3 using the
identity

(m + 1)4 − m4 = 4m3 + 6m2 + 4m + 1

and so on.

9.2.2 Show that the approximation to the area under y = x2 by rectangles in
Figure 9.1 has value (2n + 1)n(n + 1)/6n3, and deduce that the area under
the curve is 1/3.

9.2.3 Show that the volume of the solid obtained by rotating the portion of y =
1/x from x = 1 to ∞ about the x-axis is finite. Show, on the other hand,
that its surface area is infinite.

Cavalieri’s most elegant application of his method of indivisibles was to prove
Archimedes’ formula for the volume of a sphere. His argument is simpler than
that of Archimedes, and it goes as follows.

9.2.4 Show that the slice z = c of the sphere x2 + y2 + z2 = 1 has the same area as
the slice z = c of the cylinder x2 + y2 = 1 outside the cone x2 + y2 = z2.

9.2.5 Deduce from Exercise 9.2.4, and the known volume of the cone, that the
volume of the sphere is 2/3 the volume of the circumscribing cylinder.
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9.3 Maxima, Minima, and Tangents

The idea of differentiation is now considered to be simpler than integration,
but historically it developed later. Apart from the construction of the tan-
gent to the spiral r = aθ by Archimedes, no examples of the characteristic
limiting process

lim
Δx→0

f (x + Δx) − f (x)
Δx

appeared until it was introduced by Fermat in 1629 for polynomials f and
used to find maxima, minima, and tangents. Fermat’s work, like his dis-
covery of analytic geometry, was not published until 1679, but it became
known to other mathematicians through correspondence after a more com-
plicated tangent method was published by Descartes (1637).

Fermat’s calculations involve a sleight of hand also used by Newton
and others: introduction of a “small” or “infinitesimal” element E at the
beginning, dividing by E to simplify, then omitting E at the end as if it
were zero. For example, to find the slope of the tangent to y = x2 at any
value x, consider the chord between the points (x, x2) and (x + E, (x + E)2)
on it:

slope =
(x + E)2 − x2

E

=
2xE + E2

E
= 2x + E.

We now get the slope of the tangent by neglecting E. This procedure en-
raged the philosophers, who thought it was being claimed that 2x+E = 2x
and at the same time E � 0. Of course, it is only necessary to claim that
limE→0(2x + E) = 2x, but 17th-century mathematicians did not know how
to say this. In any case, they were too carried away with the power of the
method to worry about such criticisms (and it was difficult to take philoso-
phers seriously when they were as obstinate as Hobbes; see Section 9.2).
Fermat’s method applies to all polynomials p(x), since the highest-degree
term in p(x+E) is always canceled by the highest-degree term in p(x), leav-
ing terms divisible by E. Fermat was also able to extend it to curves given
by polynomial equations p(x, y) = 0. He did this in 1638 when Descartes,
hoping to stump him, proposed finding the tangent to the folium.

The generality of Fermat’s method entitles him to be regarded as one
of the founders of calculus. He could certainly find tangents to all curves
given by polynomial equations y = p(x) and probably to all algebraic
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curves p(x, y) = 0. A completely explicit rule for the latter problem was
found by Sluse about 1655 (but not published until Sluse (1673)) and by
Hudde in 1657 (published in the 1659 edition of Descartes’s La Géométrie,
Schooten (1659)). In our notation, if

p(x, y) =
∑

ai jx
iy j = 0,

then
dy
dx
= −

∑
iai j xi−1y j

∑
jai j xiy j−1

.

Nowadays, this result is easily obtained by implicit differentiation (see the
exercises below), but it can also be obtained by direct manipulation of poly-
nomials.

Exercises

For evidence that tangents to algebraic curves may be found without calculus,
it is enough to look more closely at what we called Diophantus’s tangent method
in Section 3.5. In his Arithmetica, Problem 18, Book VI (previously mentioned in
Exercise 3.5.1), Diophantus finds the tangent y = 3x

2 + 1 to y2 = x3 − 3x2 + 3x + 1
at the point (0, 1), apparently by inspection. Without mentioning its geometric
interpretation, he simply substitutes 3x

2 + 1 for y in y2 = x3 − 3x2 + 3x + 1.

9.3.1 Check that this substitution gives the equation

x3 − 21
4

x2 = 0.

What is the geometric interpretation of the double root x = 0?

9.3.2 What would you substitute for y to find the tangent at (0, 1) to the curve
y2 = x3 − 3x2 + 5x + 1?

These examples show how tangents can be found by looking for double roots,
though it requires some foresight to make the right substitution. With calculus,
the process is more mechanical.

9.3.3 Derive the formula of Hudde and Sluse by differentiating
∑

ai jxiy j = 0 with
respect to x.

9.3.4 Use differentiation to find the tangent to the folium x3 + y3 = 3axy at the
point (b, c).
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9.4 The Arithmetica Infinitorum of Wallis

Wallis’s efforts to arithmetize geometry were noted in Section 7.6. In his
Arithmetica Infinitorum, Wallis (1655a) made a similar attempt to arithme-
tize the theory of areas and volumes of curved figures. Some of his results
were, understandably, equivalent to results already known. For example,
he gave a proof that ∫ 1

0
xp dx =

1
p + 1

for positive integers p by showing that

0p + 1p + 2p + · · · + np

np + np + np + · · · + np
→ 1

p + 1
as n→ ∞.

However, he made a new approach to fractional powers, finding
∫ 1

0 xm/n dx
directly rather than by consideration of the curve yn = xm, as Fermat had

done. He first found
∫ 1

0 x1/2 dx,
∫ 1

0 x1/3 dx, . . . by considering the areas
complementary to those under y = x2, y = x3, . . . (Figure 9.2), then guessed
the results for other fractional powers by analogy with those already ob-
tained.

x

x

∫ 1
0 x2 dx = 1

3
=⇒ ∫ 1

0 x1/2 dx = 2
3

Figure 9.2: Areas used by Wallis

Like other early contributors to calculus, Wallis was ambivalent about
quantities that tended to zero, treating them as nonzero one minute and
zero the next. For this he received a ferocious blast from his arch-enemy
Thomas Hobbes: “Your scurvy book of Arithmetica infinitorum; where
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your indivisibles have nothing to do, but as they are supposed to have quan-
tity, that is to say, to be divisibles” (Hobbes (1656), p. 301). Quite apart
from this fault, which is easily remedied by limit arguments, the reasoning
of Wallis is extremely incomplete by today’s standards. Observing a pat-
tern in formulas for p = 1, 2, 3, for example, he will immediately claim a
formula for all positive integers p “by induction” and for fractional p “by
interpolation.” His boldness reached new heights toward the end of the
Arithmetica infinitorum in deriving his famous infinite product formula,

π

4
=

2
3
· 4

3
· 4

5
· 6

5
· 6

7
· · · ·

An exposition of his reasoning may be found in Edwards (1979), pp. 171–
176, where it is described as “one of the more audacious investigations by
analogy and intuition that has ever yielded a correct result.”

However, we must bear in mind that Wallis was offering primarily a
method of discovery, and what a discovery he made! His infinite product
for π was not the first ever given, since Viète (1593) had discovered

2
π
= cos

π

4
cos
π

8
cos
π

16
· · ·

=

√
1
2
·
√√

1
2

⎛⎜⎜⎜⎜⎜⎝1 +
√

1
2

⎞⎟⎟⎟⎟⎟⎠ ·
√√√√√

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +
√√

1
2

⎛⎜⎜⎜⎜⎜⎝1 +
√

1
2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · · · ·

However, the formula of Viète is based on a clever but simple trick (see
exercises), whereas that of Wallis is of deeper significance. By relating π to
the integers through a sequence of rational operations, Wallis uncovered a
sequence of fractions, obtained by terminating the product at the nth factor,
that he called “hypergeometric.” Similar sequences were later found to
occur as coefficients in series expansions of many functions, which led to
a broad class of functions being called “hypergeometric” by Gauss. Also,
Wallis’s product was closely related to two other beautiful formulas for π
based on sequences of rational operations:

4
π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + · · ·
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and
π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · · .

The continued fraction was obtained by Brouncker from Wallis’s product
and also published in Wallis (1655b). The series is a special case of the
series

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · ·

discovered by the Indian mathematician Mādhava in the 15th century (see
Section 10.1) and rediscovered by Newton, Gregory, and Leibniz. Eu-
ler (1748a), p. 311, gave a direct transformation of the series for π/4 into
Brouncker’s continued fraction. Besides setting off this spectacular chain
reaction, Wallis’s method of “interpolation” had important consequences in
the work of Newton, who used it to discover the general binomial theorem
(Section 10.2).

Exercises

9.4.1 Use the identity sin x = 2 sin(x/2) cos(x/2) to show that

sin x
2n sin(x/2n)

= cos
x
2

cos
x

22
· · · cos

x
2n
,

whence
sin x

x
= cos

x
2

cos
x

22
cos

x
23
· · · .

9.4.2 Deduce Viète’s product by substituting x = π/2.

The equation relating the series for π/4 to the continued fraction for 4/π,
namely

1 − 1
3
+

1
5
− 1

7
+ · · · = 1

1 +
12

2 +
32

2 +
52

2 +
72

2 + · · ·
follows immediately from a more general equation

1
A
− 1

B
+

1
C
− 1

D
+ · · · = 1

A +
A2

B − A +
B2

C − B +
C2

D −C + · · ·
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proved by Euler (1748a), p. 311. The following exercises give a proof of Euler’s
result.

9.4.3 Check that
1
A
− 1

B
=

1

A +
A2

B − A

.

9.4.4 When 1
B on the left side in Exercise 9.4.3 is replaced by 1

B − 1
C , which

equals 1

B+ B2
C−B

by Exercise 9.4.3, show that B on the right should be replaced

by B + B2

C−B . Hence show that

1
A
− 1

B
+

1
C
=

1

A +
A2

B − A +
B2

C − B

.

Thus when we modify the “tail end” of the series (replacing 1
B by 1

B − 1
C ), only

the “tail end” of the continued fraction is affected. This situation continues:

9.4.5 Generalize your argument in Exercise 9.4.4 to obtain a continued fraction
for a series with n terms, and hence prove Euler’s equation.

9.5 Newton’s Calculus of Series

Newton made many of his most important discoveries in 1665/6, after
studying the works of Descartes, Viète, and Wallis. In Schooten’s edi-
tion of La Géométrie he encountered Hudde’s rule for tangents to algebraic
curves, which was virtually a complete differential calculus from Newton’s
viewpoint. Although Newton made contributions to differentiation that are
useful to us—the chain rule, for example—differentiation was a minor part
of his calculus, which depended mainly on the manipulation of infinite se-
ries. Thus it is misleading to describe Newton as a founder of calculus
unless one understands calculus, as he did, as an algebra of infinite series.
In this calculus, differentiation and integration are carried out term by term
on powers of x and hence are comparatively trivial.

At the beginning of his main work on calculus, A Treatise of the Meth-
ods of Series and Fluxions (also known by its abbreviated Latin name of
De methodis), Newton clearly states his view of the role of infinite series:
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Since the operations of computing in numbers and with vari-
ables are closely similar . . . I am amazed that it has occurred
to no one (if you except N. Mercator with his quadrature of
the hyperbola) to fit the doctrine recently established for dec-
imal numbers in similar fashion to variables, especially since
the way is then open to more striking consequences. For since
this doctrine in species has the same relationship to Algebra
that the doctrine in decimal numbers has to common Arith-
metic, its operations of Addition, Subtraction, Multiplication,
Division and Root extraction may be easily learnt from the
latter’s.

Newton (1671), pp. 33–35

The quadrature (area determination) of the hyperbola mentioned by
Newton was the result that we would write as∫ x

0

dt
1 + t

= x − x2

2
+

x3

3
− x4

4
+ · · · ,

first published in Mercator (1668). Newton had discovered the same result
in 1665, and it was partly his dismay in losing priority that led him to
write De methodis and an earlier work De analysi (Newton (1669); the full
title in English is On Analysis by Equations Unlimited in Their Number of
Terms). Newton also independently discovered the series for tan−1 x, sin x,
and cos x in De analysi, without knowing that all three series had already
been discovered by Indian mathematicians. See Section 10.1.

The Mercator and Indian results were both obtained by the method of
expanding a geometric series and integrating term by term. In our notation,∫ x

0

dt
1 + t

=

∫ x

0
(1 − t + t2 − t3 + · · · ) dt

= x − x2

2
+

x3

3
− x4

4
+ · · ·

and

tan−1 x =
∫ x

0

dt

1 + t2

=

∫ x

0
(1 − t2 + t4 − t6 + · · · ) dt

= x − x3

3
+

x5

5
− x7

7
+ · · · .
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Newton routinely used these methods in De analysi and De methodis, but
he greatly extended their scope by algebraic manipulation. Not only did
he obtain sums, products, quotients, and roots, as foreshadowed in his in-
troduction to De methodis, but his root extractions also extended to the
general construction of inverse functions by the new idea of inverting in-
finite series. For example, after Newton (1671), p. 61, found the series
x − (x2/2) + (x3/3) − · · · , for

∫ x

0
dt/(1 + t), which is log(1 + x), he set

y = x − x2

2
+

x3

3
− · · · (1)

and solved (1) for x (which we recognize to be the exponential function ey,
minus 1). His method amounts to setting x = a0 + a1y + a2y

2 + · · · , sub-
stituting in the right-hand side of (1), and determining a0, a1, a2, . . ., suc-
cessively by comparing with the coefficients on the left-hand side. Newton
found the first few terms,

x = y +
1
2
y2 +

1
6
y3 +

1
24
y4 +

1
120
y5 + · · · ,

then confidently guessed that an = 1/n! in the manner of Wallis. As he put
it, “Now after the roots have been extracted to a suitable period, they may
sometimes be extended at pleasure by observing the analogy of the series.”

De Moivre (1698) gave a formula for inverting series that justifies such
conclusions; Newton astonishes us by finding such an elegant result by
such a forbidding method. His discovery of the sine series (Newton (1669),
pp. 233, 237) is even more amazing. First he used the binomial series

(1 + a)p = 1 + pa +
p(p − 1)

2!
a2 +

p(p − 1)(p − 2)
3!

a3 + · · ·

(though not with the natural choice a = −x2, p = − 1
2 ) to obtain

sin−1 x = z = x +
1
2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · ·

by term-by-term integration, and then casually stated “I extract the root,
which will be

x = z − 1
6

z3 +
1

120
z5 − 1

5040
z7 +

1
362880

z9 − · · · ”

adding a few lines later that the coefficient of z2n+1 is 1/(2n + 1)!.
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Exercises

Newton inverted series by a tabular method like the following, which shows
the coefficients of 1, y, y2, y3, . . . in x and its powers.

1 y y2 y3 . . .

x a0 a1 a2 a3 . . .
x2 a2

0 2a0a1 2a0a2 + a2
1 2a0a3 + 2a1a2 . . .

9.5.1 Use the rows shown to substitute series in powers of y for x and x2 in y =
x − x2

2 + · · · , and hence show that a0 = 0, a1 = 1, and a2 = 1/2 in turn, by
comparing coefficients on the two sides of the equation.

9.5.2 Compute the first few entries in the third row of the table (the coefficients
of x3), and hence show that a3 = 1/6.

This shows why the inverse function x = ey − 1 has a power series that begins

y +
1
2
y2 +

1
6
y3 + · · · .

9.5.3 Show that the binomial series gives

1√
1 − t2

= 1 +
1
2

t2 +
1 · 3
2 · 4 t4 +

1 · 3 · 5
2 · 4 · 6 t6 + · · · .

9.5.4 Use Exercise 9.5.3 and sin−1 x =
∫ x

0
dt/
√

1 − t2 to derive Newton’s series

for sin−1 x.

9.6 The Calculus of Leibniz

Newton’s epoch-making works (1669, 1671) were offered to the Royal So-
ciety and Cambridge University Press but, incredible as it now seems, were
rejected for publication. One theory is that printers were short of paper,
since large quantities had been destroyed by the great fire of London in
1666. At any rate, the first published paper on calculus was not by Newton
but by Leibniz (1684). This led to Leibniz’s initially receiving credit for
the calculus and later to a bitter dispute with Newton and his followers over
the question of priority for the discovery.

There is no doubt that Leibniz discovered calculus independently, that
he had a better notation, and that his followers contributed more to the
spread of calculus than did Newton’s. Leibniz’s work lacked the depth
and virtuosity of Newton’s, but then Leibniz was a librarian, a philoso-
pher, and a diplomat with only a part-time interest in mathematics. His
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Nova methodus (1684) is a relatively slight paper, though it does lay down
some important fundamentals—the sum, product, and quotient rules for
differentiation—and it introduces the dy/dx notation we now use. How-
ever, dy/dx was not just a symbol for Leibniz, as it is for us, but literally a
quotient of infinitesimals dy and dx, which he viewed as differences (hence
the symbol d) between neighboring values of y and x, respectively.

He also introduced the integral sign,
∫

, in his De geometria (1686) and
proved the fundamental theorem of calculus, that integration is the inverse
of differentiation. This result was known to Newton and even, in a geo-
metric form, to Newton’s teacher Barrow, but it became more transparent
in Leibniz’s formalism. For Leibniz,

∫
meant “sum,” and

∫
f (x) dx was

literally a sum of terms f (x)dx, representing infinitesimal areas of height
f (x) and width dx. The difference operator d yields the last term f (x) dx
in the sum, and dividing by the infinitesimal dx yields f (x). So voila!

d
dx

∫
f (x) dx = f (x)

—the fundamental theorem of calculus.
Leibniz’s strength lay in the identification of important concepts, rather

than in their technical development. He introduced the word “function”
and was the first to begin thinking in function terms. He made the dis-
tinction between algebraic and transcendental functions and, in contrast to
Newton, preferred “closed-form” expressions to infinite series. Thus the
evaluation of

∫
f (x) dx for Leibniz was the problem of finding a known

function whose derivative was f (x), whereas for Newton it was the prob-
lem of expanding f (x) in series, after which integration was trivial.

The search for closed forms was a wild goose chase but, like many
efforts to solve intractable problems, it led to worthwhile results in other
directions. Attempts to integrate rational functions raised the problem of
factorization of polynomials and led ultimately to the fundamental theorem
of algebra (see Chapter 14). Attempts to integrate 1/

√
1 − x4 led to the

theory of elliptic functions (Chapter 12).
As mentioned in Section 9.1, the problem of deciding which algebraic

functions may be integrated in closed form has been solved only recently,
though not in a form suitable for calculus textbooks, which continue to
remain oblivious to most of the developments since Leibniz. (One thing
that has changed: it is now much easier to publish a calculus book than it
was for Newton!)
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Exercises

Leibniz (1702) was stymied by the integral
∫

dx
x4+1 , because he did not spot the

factorization of x4 + 1 into real quadratic factors.

9.6.1 Writing x4 + 1 = x4 + 2x2 + 1 − 2x2 or otherwise, split x4 + 1 into real
quadratic factors.

9.6.2 Use the factors in Exercise 9.6.1 to express 1
x4+1 in the partial fraction form

x +
√

2
q1(x)

+
x − √2
q2(x)

,

where q1(x) and q2(x) are real quadratic polynomials.

9.6.3 Without working out all the details, explain how the partial fractions in
Exercise 9.6.2 can be integrated in terms of rational functions and the tan−1

function.

9.7 Biographical Notes: Wallis, Newton, and
Leibniz

John Wallis (Figure 9.3) was born in 1616 in Ashford, Kent, and died in
Oxford in 1703. He was one of five children of John Wallis, the rector of
Ashford, and Joanna Chapman. He had two older sisters and two younger
brothers. Young John Wallis was recognized as the academic talent of
the family and at 14 was sent to Felsted, Essex, to attend the school of
Martin Holbech, a famous teacher of the time. At school he learned Latin,
Greek, and Hebrew, but he did not meet mathematics until he was home on
Christmas vacation in 1631. One of his brothers was learning arithmetic to
prepare for a trade, and Wallis asked him to explain it. This turned out to
be the only mathematical instruction Wallis ever received, even though he
later studied at Emmanuel College in Cambridge.

As Wallis explained in his autobiography:

Mathematicks were not, at that time, looked upon as Acca-
demical Learning, but the business of Traders, Merchants, Sea-
men, Carpenters, land-measurers, or the like; or perhaps some
Almanak-makers in London. And of more than 200 at that
time in our College, I do not know of any two that had more
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Figure 9.3: John Wallis

of Mathematicks than myself, which was but very little; hav-
ing never made it my serious studie (otherwise than as a pleas-
ant diversion) till some little time before I was designed for a
Professor in it.

Wallis (1696), p. 27

At Emmanuel College, Wallis studied divinity from 1632 to 1640,
when he gained a master of arts degree. College life evidently agreed with
him, and he would have stayed on as a fellow, had there been a place avail-
able. He did become a fellow of Queens College, Cambridge, for a year
but, since fellows had to remain unmarried, relinquished the fellowship
when he married in 1645. Thus it was that Wallis spent most of the 1640s
in the ministry.

The 1640s were a decisive decade in English history, with the rise of
the parliamentary opposition to Charles I and the king’s execution in 1649.
Partly by luck and partly by adaptation to the new political conditions,
Wallis changed the direction of his life toward mathematics. Early in the
conflict he found he had the very valuable ability to decipher coded mes-
sages. To quote the autobiography again:
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About the beginning of our Civil Wars, in the year 1642, a
Chaplain of Sr. William Waller showed me an intercepted Let-
ter written in Cipher. . . . He asked me (between jest and earnest)
if I could make any thing of it. . . . I judged it could be no more
than a new Alphabet and, before I went to bed, I found it out,
which was my first attempt upon Deciphering.

Wallis (1696), p. 37

This was the first in a series of successes Wallis had in codebreaking for
the Parliamentarians, which gained him not only political favor but also a
reputation for mathematical skill. (For more information on Wallis’s cryp-
tography see Kahn (1967), p. 166.) When the royalist Peter Turner was
expelled from the Savilian Chair of Geometry of Oxford in 1649, Wallis
was appointed in his place. At last his dormant mathematical ability had a
chance to develop, and from then on he was active in mathematics almost
continually until the end of his life.

Isaac Newton (Figure 9.4) was born on Christmas Day, 1642, at Wools-
thorpe, Lincolnshire. His family background and early life did not augur
well for future greatness. Newton’s father, also named Isaac, was fairly
well off but illiterate, and he died three months before Newton was born.
His mother, Hannah Ayscough, remarried when Newton was three, only
to abandon him on the insistence of his stepfather. The boy was left in
the care of the Ayscough family, a circumstance that helped his education
(Hannah’s brother William had studied at Cambridge, and eventually he
directed Newton there) but did not compensate emotionally for the absence
of his father and mother. Newton became intensely neurotic, secretive, and
suspicious in later life; he never married and tended to make enemies rather
than friends.

The young Newton was more interested in building intricate machines,
such as model windmills, than academic studies, though once he set his
mind to it he became top of his school. In 1661 he entered Trinity Col-
lege, Cambridge, as a sizar. Sizars had to earn their keep as servants to
the wealthier students, and it was indicative of his mother’s meanness that
he had to become one, for she could afford to support him but chose not
to. Newton’s early studies were in Aristotle, the standard curriculum of
the time. The first thinker to make an impression on him was Descartes,
whose works were then creating a stir in Cambridge. By 1664, in a series
of notes he called Quaestiones quaedam philosophicae, Newton was ab-
sorbed with questions of mechanics, optics, and the physiology of vision.
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He was also struck by Descartes’s geometry, preferring it to Euclid, which
in his first encounter “he despised . . . as a trifling book” (according to later
reminiscences of de Moivre).

The years 1664 to 1666 were the most important in Newton’s mathe-
matical development and perhaps the most creative period in the life of any
mathematician. In 1664 he devoured the mathematics of Descartes, Viète,
and Wallis and began his own investigations. Late in 1664 he conceived the
idea of curvature, from which much of differential geometry was to grow
(see Chapter 17). The university was closed in 1665, which was the disas-
trous plague year in much of England. Newton returned to Woolsthorpe,
where his mathematical reflections became an all-consuming passion. Fifty
years later, Newton recalled the time as follows:

In the beginning of the year 1665 I found the Method of ap-
proximating series & the Rule for reducing any dignity of any
Binomial into such a series. The same year in May I found
the method of Tangents of Gregory & Slusius, & in November
had the direct method of fluxions & the next year in January
had the Theory of Colours & in May following I had entrance
into ye inverse method of fluxions. And in the same year I
began to think of gravity extending to ye orb of the Moon &
. . . from Keplers rule of the periodical times of the Planets . . . I
deduced that the forces wch keep the Planets in the Orbs must
[be] reciprocally as the squares of their distance from the cen-
ters. . . . All this was in the two plague years of 1665–1666.
For in those days I was in the prime of my age for invention
& minded Mathematicks & Philosophy more then [sic] at any
time since.

Whiteside (1966), p. 32

In addition to the achievements mentioned, Newton’s discoveries in this
period included the series for log(1 + x) and, at least in preliminary form,
the classification of cubic curves.

As we have seen, Newton’s first attempts to publish his results were un-
successful; nevertheless, there were some who read them and recognized
his genius. In 1669 the Lucasian Professor of Mathematics at Trinity, Isaac
Barrow, resigned to devote himself to theology, and Newton was appointed
to the chair on Barrow’s recommendation. Newton held the position until
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1696, when he made the puzzling decision to accept the position of mas-
ter of the Mint in London. The outstanding achievement of his Lucasian
professorship was the classic Principia (1687), or, to give it its full title,
Philosophiae naturalis principia mathematica (Mathematical Principles of
Natural Philosophy).

The Principia, which developed the theory of gravitation based on
Newton’s inverse square law of 1665, owes its existence to a visit by Ed-
mund Halley to Cambridge in 1684. The hypothesis of the inverse square
law was in the air at this stage—Wren, Hooke, and Halley himself had
thought of it—but a mathematical derivation of its consequences was lack-
ing. Halley asked Newton what curve a planet would describe under this
law and was delighted to learn that Newton had calculated it to be an el-
lipse. When asked to supply his demonstration, Newton had some trouble
reconstructing it, eventually sending Halley a nine-page paper, De motu
corporum in gyrum (On the Motion of Bodies in an Orbit), three months
later. De motu was the Principia in embryonic form.

Figure 9.4: Isaac Newton

Realizing the importance of Newton’s results, Halley communicated
them to the Royal Society and urged Newton to expand them for publi-
cation. His prodding came at just the right time. The excitement over
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Newton’s early discoveries had died down, and for the preceding six or
seven years he had been wasting his time on alchemical experiments. With
his interest in mathematics rekindled, Newton devoted the next 18 months
almost exclusively to Principia “so intent, so serious upon his studies, yt

he eat very sparingly, nay, ofttimes he has forget to eat at all,” as a Cam-
bridge contemporary noticed (see Westfall (1980), p. 406). When Book I
was delivered to the Royal Society in April 1686, they were still reluctant
to publish, and it took heroic efforts from Halley to bring them round. He
not only risked his own money on the venture, but had to coax Newton to
go through with it, as Newton flew into tantrums when Hooke raised his
own claims of priority. Finally in 1687 the Principia was published and
Newton’s fame was secure, at least in Britain.

In the early 1690s Newton worked on revising the Principia and bring-
ing some of his earlier investigations into order. As we have seen, the final
form of his classification of cubic curves dates from this period. In 1693
he had a nervous breakdown, and this may have influenced him to leave
Cambridge for the Mint in 1696. He did not completely abandon science,
becoming president of the Royal Society in 1703, but his mathematical
activity was mainly confined to the priority dispute with Leibniz over the
invention of the calculus. Newton died in 1727 and was buried in West-
minster Abbey. Westfall (1980) is an excellent recent biography.

Gottfried Wilhelm Leibniz (Figure 9.5) was born in Leipzig in 1646
and died in Hannover in 1716. His father, Friedrich, was professor of moral
philosophy at Leipzig, and his mother, Katherina Schmuck, also came from
an academic family. From the age of six Leibniz was given free access to
his father’s library, and he became a voracious reader. At 15 he entered
the University of Leipzig and received a doctorate in law from Altdorf
in 1666 (Leipzig refused him a doctorate because of his youth). During
1663, on a summer visit to the University of Jena, he learned a little of
Euclid, but otherwise his studies were in law and philosophy, the subjects
that were to be the basis of his subsequent career. The lack of early prac-
tice in mathematics left its mark on Leibniz’s later mathematical style, in
which good ideas are sometimes insufficiently developed through lack of
technical skill. Often he seemed to lack not only the technique but also the
patience to develop the ideas conceived by his wide-ranging imagination.
It now appears that Leibniz was a pioneer in combinatorics, mathematical
logic, and topology, but his ideas in these fields were too fragmentary to be
of use to his contemporaries.
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An interest in logic led Leibniz to his first mathematical venture, the
essay Dissertatio de arte combinatoria (1666). His aim was “a general
method in which all truths of reason would be reduced to a kind of cal-
culation.” Leibniz foresaw that permutations and combinations would be
involved, but he did not make enough progress to interest 17th-century
mathematicians in the project. The dream of a universal logical calculus
was revived in the 19th century but finally shattered by the results of Gödel
(1931) (see Chapter 24). Nevertheless, Leibniz benefited greatly from his
work on combinatorics; it led him to his ideas in calculus.

Figure 9.5: Gottfried Wilhelm Leibniz

Following his doctorate in law, Leibniz had commenced a legal career
in the service of the elector of Mainz. In 1672 his duties took him to Paris,
where he met Huygens and for the first time gained a firm grasp of math-
ematics. The years 1672 to 1676 were crucial in Leibniz’s mathematical
life and have been covered in detail by Hofmann (1974). Beginning with
“Pascal’s triangle,” which he had used in his Dissertatio (1666), Leibniz
became interested in the differences between successive terms of series.
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Using differences, he developed a method of interpolation for functions
that, as we shall see in Section 10.2, was also the independent discovery
of Newton and Gregory. Leibniz showed his discovery to Huygens, who
encouraged him to use differences in the summation of infinite series by
posing the problem of evaluating

∑∞
n=1 1/n(n + 1). Leibniz succeeded (af-

ter some time) and used the same method in other cases. This was his
introduction to the infinite processes of the calculus and also, perhaps, the
origin of his preference for “closed-form” solutions. In 1673 he advanced
to a higher level, using term-by-term integration to discover

π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · ·

and
1
2

log 2 =
1

2.4
+

1
6.8
+

1
10.12

+ · · · .
By 1676 he had virtually completed his formulation of the calculus, includ-
ing the fundamental theorem, the dx notation, and the integral sign.

The first period of Leibniz’s mathematical activity came to an end in
1676. He had failed to obtain an academic position in Paris or London
and, seeking a better salary, he moved to Hannover to enter the service of
the Duke of Brunswick-Lüneburg. His main duties were to act as adviser,
librarian, and consultant on certain engineering works. When the duke
died in 1679 his successor commissioned Leibniz to compile a genealogy
of the House of Brunswick in order to bolster the family’s dynastic claims.
Leibniz threw himself into this project with a zeal that is hard to admire,
given the purpose of the genealogy, though it did enable him to travel,
visit libraries, and meet scholars throughout Europe. He helped found the
journal Acta Eruditorum in 1682 and used it to publish his discoveries in
calculus, as well as those of his brilliant successors, Jakob and Johann
Bernoulli. This led to the rapid spread of Leibniz’s notation and methods
throughout the Continent.

With the succession of a new Duke of Brunswick in 1698, Leibniz fell
somewhat from favor, though he retained his job and, with the support of
other family members, founded the Berlin Academy in 1700 and became
its first president. His final years were embittered by the priority dispute
over the calculus and his employer’s neglect. He was still doggedly trying
to complete the history of the House of Brunswick when he died in 1716.
His secretary was the only person to attend his funeral, and the history was
not published until 1843.
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Infinite Series

Preview

As we saw in the previous chapter, many calculus problems have a solution
that can be expressed as an infinite series. It is therefore useful to be able
to recognize important individual series and to understand their general
properties and capabilities. This is the aim of the present chapter.

Starting with the infinite geometric series, already known to Euclid, we
discuss the handful of examples known before the invention of calculus.
These include the harmonic series 1 + 1/2 + 1/3 + 1/4 + · · · , studied by
Oresme around 1350, and the stunning series for the inverse tangent, sine,
and cosine, discovered by Indian mathematicians in the 15th century.

The invention of calculus in the 17th century released a flood of new
series, mostly of the form a0 + a1x + a2x2 + · · · (called power series), but
also some variations, such as fractional power series.

The 18th century brought new applications. De Moivre (1730) used
power series to find a formula for the nth term of the Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, . . . . Euler (1748a) introduced a generalization of the har-
monic series,

1 + 1/2s + 1/3s + 1/4s + · · · ,
and showed that, for s > 1, it equals the infinite product

(1 − 1/2s)−1(1 − 1/3s)−1(1 − 1/5s)−1 · · · (1 − 1/ps)−1 · · ·
over all the prime numbers p. This discovery of Euler’s opened a new path
to the secrets of the primes, exploration of which continues to this day.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 181
DOI 10.1007/978-1-4419-6053-5 10, c© Springer Science+Business Media, LLC 2010
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10.1 Early Results

Infinite series were present in Greek mathematics, though the Greeks tried
to deal with them as finitely as possibly by working with arbitrary finite
sums a1 + a2 + · · · + an instead of infinite sums a1 + a2 + · · · . However,
this is just the difference between potential and actual infinity. There is no
question that Zeno’s paradox of the dichotomy (Section 4.1), for example,
concerns the decomposition of the number 1 into the infinite series

1
2
+

1

22
+

1

23
+

1

24
+ · · ·

and that Archimedes found the area of the parabolic segment (Section 4.4)
essentially by summing the infinite series

1 +
1
4
+

1

42
+

1

43
+ · · · = 4

3
.

Both these examples are special cases of the result we express as summa-
tion of a geometric series

a + ar + ar2 + ar3 + · · · = a
1 − r

when |r| < 1.

The first examples of infinite series other than geometric series ap-
peared in the Middle Ages. In a book from around 1350, called the Liber
calculationum, Richard Suiseth (or Swineshead, known as the Calculator)
used a very lengthy verbal argument to show that

1
2
+

2
22
+

3
23
+

4
24
+ · · · = 2.

The argument is reproduced in Boyer (1959), p. 78. At about the same
time, Oresme (1350b), pp. 413–421, summed this and similar series by
geometric decomposition as in Figure 10.1, showing that

2 =
1
2
+

2

22
+

3

23
+

4

24
+ · · · .

Actually Oresme gives only the last picture in the figure, but it seems
likely he arrived at it by cutting up an area of two square units as shown,
judging from his opening remark: “A finite surface can be made as long
as we wish, or as high, by varying the extension without increasing the
size.” The region constructed by Oresme, incidentally, is perhaps the first
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1

1

= 1

1
2

1
4

1
8

...

= 1
2

1
4

1
8

1
4

1
8

1
8

Figure 10.1: Oresme’s summation

example of the phenomenon encountered by Torricelli (Section 9.2) in his
hyperbolic solid of revolution—infinite extent but finite content.

Another important discovery of Oresme (1350a) was the divergence of
the harmonic series

1 +
1
2
+

1
3
+

1
4
+

1
5
+ · · · .

His proof was by an elementary argument that is now standard:

1 +

(
1
2

)
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+ · · ·

> 1 +

(
1
2

)
+

(
1
4
+

1
4

)
+

(
1
8
+

1
8
+

1
8
+

1
8

)
+ · · ·

= 1 +
1
2
+

1
2
+

1
2
+ · · · .

Thus by repeatedly doubling the number of terms collected in succes-
sive groups, we can indefinitely obtain groups of sum > 1

2 , enabling the
sum to grow beyond all bounds.

As mentioned in Section 9.4, the Indian mathematician Mādhava found
the series

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · ·
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with its important special case

π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · ·

in the 15th century. The series for π was the first satisfactory answer to
the classical problem of squaring the circle, for although the expression
is infinite (as it would have to be, in view of Lindemann’s theorem on the
transcendence of π), the rule for generating successive terms is as finite and
transparent as it could possibly be. It is sad that the Indian series became
known in the West too late to have any influence or even to become well
known until recently. Rajagopal and Rangachari (1977, 1986) showed that
the series for tan−1 x, sin x, and cos x were known in the Kerala school of
Mādhava before 1540, and probably before 1500. For more recent infor-
mation on the Kerala school, in the context of trigonometry and of Indian
mathematics in general, see Van Brummelen (2009) and Plofker (2009)
respectively.

Exercises

Oresme’s proof by partitioning the harmonic series into

1 +

(
1
2

)
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+ · · ·

has the following geometric counterpart.

x

y

O 1 2 3 4 n n + 1

Figure 10.2: Comparing 1 + 1
2 +

1
3 + · · · + 1

n with an area

10.1.1 By referring to Figure 10.2, show that

1 +
1
2
+

1
3
+ · · · + 1

n
> area under y = 1

x between x = 1 and x = n + 1.
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10.1.2 Now partition this area under y = 1/x into the pieces between x = 1 and
x = 2, x = 2 and x = 4, x = 4 and x = 8, . . ., and show that all these pieces
have the same area. (This can even be done without using calculus, if you
use the argument of Exercises 4.4.1 and 4.4.2.)

10.1.3 Deduce from Exercise 10.1.2 that the area from x = 1 to x = n, and hence
the sum 1 + 1

2 +
1
3 + · · · + 1

n , tends to infinity.

The area under y = 1/x from x = 1 to x = n + 1 is of course log(n + 1), so Figure
10.2 shows that 1 + 1

2 +
1
3 + · · · + 1

n > log(n + 1). As n → ∞, these two functions
of n remain about the same size.

10.1.4 By comparing the curved area with suitable rectangles beneath the curve,
show that

1
2
+

1
3
+ · · · + 1

n
< log(n + 1),

and hence that 0 < 1 + 1
2 +

1
3 + · · · + 1

n − log(n + 1) < 1.

10.1.5 Also show, by a geometric argument, that 1 + 1
2 +

1
3 + · · · + 1

n − log(n + 1)
increases as n increases, so that it has a finite limit < 1.

The value of the limit is known as Euler’s constant γ, and γ is approximately
0.577. However, little is known about the nature of γ—not even whether it is
irrational.

10.2 Power Series

The Indian series for tan−1 x was the first example, apart from geometric
series such as 1 + x + x2 + x3 + · · · = 1/(1 − x), of a power series, that is,
the expansion of a function f (x) in powers of x. The idea of power series
turned out to be fruitful not only in the representation of functions but even
in the study of numerical series. Most of the interesting numerical series
turned out to be instances of power series for particular values of x, for
example, the series for π/4 is the x = 1 instance of the series for tan−1 x.

The theory began with the series published by Mercator (1668):

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · .

As we have seen, this was obtained by integrating the geometric series

1
1 + x

= 1 − x + x2 − x3 + · · ·
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term by term. Now the most important transcendental functions—logs,
exponentials, and the related circular and hyperbolic functions—are ob-
tained by integration and inversion from algebraic functions, and fairly
simple algebraic functions at that. For example, ey is the inverse function
of y = log x, and

log(1 + x) =
∫ x

0

dt
1 + t

,

sin y is the inverse function of y = sin−1 x and

sin−1 x =
∫ x

0

dt√
1 − t2

, tan−1 x =
∫ x

0

dt

1 + t2
,

and so on. Thus the key to finding power series is finding series expansions
of simple algebraic functions. Once this is done, term-by-term integration
and Newton’s method of series inversion (Section 9.5) yield power series
for all the common functions.

Rational functions, such as 1/(1 + t2), can be expanded using geomet-
ric series; the crucial step was accomplished by Newton (1665a) when he
discovered the general binomial theorem,

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)
3!

x3 + · · · ,

yielding the expansion of functions such as 1/
√

1 − t2 = (1 − t2)−1/2. This
theorem was also discovered independently by Gregory (1670). Both New-
ton and Gregory were inspired by the loose heuristic method of interpola-
tion used by Wallis (1655a), but they refined it into a result now known as
the Gregory–Newton interpolation formula:

f (a + h) = f (a) +
h
b
Δ f (a) +

(h/b)(h/b − 1)
2!

Δ2 f (a) + · · · , (1)

where

Δ f (a) = f (a + b) − f (a),

Δ2 f (a) = Δ f (a + b) − Δ f (a) = f (a + 2b) − 2 f (a + b) + f (a),

Δ3 f (a) = Δ2 f (a + b) − Δ2 f (a) = f (a + 3b) − 3 f (a + 2b) + 3 f (a + b) − f (a),

...

This wonderful formula finds the value of f at an arbitrary point a+h from
the values at an infinite arithmetic sequence of points a, a + b, a + 2b, . . . .
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The first n terms give an nth-degree polynomial in h taking the same
values as f at a, a+ b, . . . , a+ nb. Hence the formula is valid for any f that
is the limit of its own approximating polynomials. This means all functions
representable by power series, provided that the points a, a + b, a + 2b, . . .,
are sensibly chosen. (The points π, 2π, 3π, . . ., are a bad choice for sin x,
since the x-axis is a polynomial curve through all of them).

Newton discovered the formula (1) after his special investigations on
interpolation that led to the binomial theorem. Gregory discovered the
general formula first and then used it to derive the binomial theorem (see
exercises below), all independently of Newton. It even appears that Gre-
gory used the interpolation theorem to discover Taylor’s theorem 44 years
before Brook Taylor. There is strong evidence that Gregory used Taylor’s
series for other results (Gregory (1671)), and Taylor’s series

f (a + h) = f (a) + h f ′(a) +
h2

2!
f ′′(a) + · · · (2)

is just the limiting case of (1) as b → 0. Indeed, this is how it was derived
by Taylor (1715). The passage from (1) and (2) is simple if one assumes
plausible limiting behavior for the infinite sum. Notice that

Δ f (a)
b
=

f (a + b) − f (a)
b

→ f ′(a) as b→ 0

and similarly

Δ2 f (a)

b2
→ f ′′(a),

Δ3 f (a)

b3
→ f ′′′(a),

and so on. We write (1) as

f (a + h) = f (a) + h
Δ f (a)

b
+

h(h − b)
2!

Δ2 f (a)

b2
+ · · ·

and observe that the nth term

h(h − b)(h − 2b) · · · (h − (n − 1)b)
n!

Δn f (a)
bn → hn

n!
f n(a) as b→ 0.

Assuming that the limit of the infinite sum is the sum of these limits, we
then get Taylor’s series (2) as the limit of (1) as b→ 0.

Exercises

Here is how to derive the general binomial series from the Gregory–Newton
interpolation formula.
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10.2.1 Show that

Δn f (a) =
n∑

i=0

(−1)n−i

(
n
i

)
f (a + ib),

where
(

n
i

)
is the ordinary binomial coefficient.

10.2.2 If a = 0, b = 1, and f (x) = (1+ k)x, show that Δn f (0) = kn using the finite
binomial series

(1 + h)n =

n∑
i=0

(
n
i

)
hi.

10.2.3 Deduce the general binomial series

(1 + k)x = 1 + xk +
x(x − 1)

2!
k2 +

x(x − 1)(x − 2)
3!

k3 + · · ·

using the Gregory–Newton interpolation formula.

10.3 An Interpolation on Interpolation

The importance of interpolation in the development of calculus seems to
have been greatly underestimated. The topic rarely appears in calculus
books today, and then only as a numerical method. Yet three of the most
important founders of calculus, Newton, Gregory, and Leibniz, began their
work with interpolation, and we have seen how this led to two of their most
important results, the binomial theorem and Taylor’s theorem. (For Leib-
niz’s work, see Hofmann (1974).) With the relegation of interpolation to
numerical methods, this connection has been lost. Of course, interpola-
tion is a numerical method in practice, when one uses only a few terms of
the Gregory–Newton series, but the full series is exact and hence of much
greater interest. It was this interest in infinite expansions per se that set off
Newton, Gregory, and Leibniz (as well as Wallis) from their predecessors
in interpolation.

Interpolation goes back to ancient times as a method for estimating the
values of functions between known values. But perhaps the first to glimpse
the possibility of exact interpolation were Thomas Harriot (1560–1621)
and Henry Briggs (1556–1630). A formula has been found in Harriot’s pa-
pers that is equivalent to the first terms of the Gregory–Newton series (see
Lohne (1965)). Lohne dates this work of Harriot at 1611. Briggs may have
learned something about interpolation from Harriot when the two were at
Oxford around 1620. Briggs’s Arithmetica logarithmica (1624), which is
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concerned with the calculation of logarithms, uses series for interpolation,
and in the process gives the first instance of the binomial theorem for a
fractional exponent

(1 + x)1/2 = 1 +
1
2

x − 1 · 1
2 · 4 x2 +

1 · 1 · 3
2 · 4 · 6 x3 − 1 · 1 · 3 · 5

2 · 4 · 6 · 8 x4 + · · · .

Gregory knew of Briggs’s work, and Newton certainly could have known
of it, though no strong evidence that he did has yet been found. For more
information on the history of interpolation, see Whiteside (1961) and Gold-
stine (1977).

10.4 Summation of Series

The results on infinite series that we have seen so far are mostly decom-
positions or expansions rather than summations. That is, one begins with
a “known” quantity or function and decomposes it into an infinite series.
Solutions of the converse problem, summation of a given series, were com-
paratively rare. Archimedes’ summation of 1 + 1/4 + 1/42 + · · · was one.
Perhaps the next were of series such as 1/1·2+1/2·3+· · ·+1/n(n+1)+· · · ,
given by Mengoli (1650). The series

∑
1/n(n+1) is easily summed because

of the happy accident that

1
n(n + 1)

=
1
n
− 1

n + 1
,

whence

1
1 · 2 +

1
2 · 3 + · · · +

1
n(n + 1)

=

(
1 − 1

2

)
+

(
1
2
− 1

3

)
+ · · · +

(
1
n
− 1

n + 1

)

= 1 − 1
n + 1

.

By letting n→ ∞ we then obtain the sum 1 for the infinite series.
The first really tough summation problem was 1 + 1/22 + 1/32 + · · · .

Mengoli tackled this without success, as did the brothers Jakob and Johann
Bernoulli in a series of papers (1704). The Bernoulli brothers were able to
sum similar series, rediscovering Mengoli’s

∑
1/n(n+1) and also summing∑

1/(n2−1), but for
∑

1/n2 itself they could obtain only trivial results such
as

1

22
+

1

42
+

1

62
+ · · · = 1

4

(
1 +

1

22
+

1

32
+ · · ·

)
.
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The solution was finally obtained by Euler (1734), long after the death
of Jakob Bernoulli, and Johann Bernoulli exclaimed, “In this way my
brother’s most ardent wish is satisfied . . . if only my brother were still
alive!” (Johann Bernoulli, Opera, Vol. 4, p. 22). In fact, after hearing
that the sum is π2/6, Johann Bernoulli himself discovered a proof, which
turned out to be the same as Euler’s.

Euler (1707–1783) was the greatest virtuoso of series manipulation,
and his first summation of 1 + 1/22 + 1/32 + · · · was one of his most
audacious. (Later he gave more rigorous proofs.) Consider the equation

sin
√

x√
x
= 1 − x

3!
+

x2

5!
− x3

7!
+ · · · = 0 , (1)

easily obtained from the sine series of Section 9.5. This equation has roots
x1 = π

2, x2 = (2π)2, x3 = (3π)2, . . ., but not 0, because sin
√

x/
√

x→ 1 as
x→ 0. Now if a polynomial equation

1 + a1x + a2x2 + · · · + anxn = 0

has roots x = x1, x2, . . . , xn, Descartes’s factor theorem (Section 6.7) gives

1 + a1x + · · · + anxn =

(
1 − x

x1

) (
1 − x

x2

)
· · ·

(
1 − x

xn

)
. (2)

Also
1
x1
+

1
x2
+ · · · + 1

xn
= −coefficient of x = −a1,

since each x term in the expansion of the right-hand side of (2) comes
from a term −x/xi in one factor multiplied by 1’s in all the other factors.
Assuming that this is also true of the “infinite polynomial” equation (1),
we get

1
x1
+

1
x2
+

1
x3
+ · · · = −coefficient of x = −

(
− 1

3!

)
,

that is,
1

π2
+

1

(2π)2
+

1

(3π)2
+ · · · = 1

6
.

Hence

1 +
1
22
+

1
32
+ · · · = π

2

6
. Q.E.D.!

Exercises

Euler’s reasoning also leads to a correct infinite product formula for sin x,
which in turn gives the Wallis product for π/4 (Section 9.4).
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10.4.1 Deduce an infinite product for sin
√

x√
x

from Euler’s reasoning, and hence
show that

sin x = x

(
1 − x2

π2

) (
1 − x2

22π2

) (
1 − x2

32π2

)
· · · .

10.4.2 By substituting x = π/2 in the infinite product for sin x, show that

2
π
=

1 · 3
2 · 2 ·

3 · 5
4 · 4 ·

5 · 7
6 · 6 · · · ,

and hence obtain Wallis’s product for π/4.

10.5 Fractional Power Series

The introduction of power series helped to make mathematicians conscious
of the function concept (see also Section 13.6) by drawing attention to the
generality of the expression a0 + a1x + a2x2 + · · · . However, not every
function f (x) is expressible as a power series a0 + a1x + a2x2 + · · · . This
is obvious in the case of functions that tend to infinity as x → 0, since
the power series has value a0 when x → 0. For other functions, such as
f (x) = x1/2, the behavior at 0 disallows a power-series expansion for a
more subtle reason. These functions have branching behavior at 0; they
are many-valued, and hence they are not functions in the strict sense. The
function x1/2, for example, is two-valued because each number has two
square roots, one the negative of the other.

Such behavior is not reflected in a power series a0 + a1x + a2x2 + · · · ,
which can be assigned only one value for each value of x. All fractional
powers of x are many-valued—x1/3 is three-valued, x1/4 is four-valued,
and so on—and many-valued behavior is typical of algebraic functions in
general. We say that y is an algebraic function of x if x and y satisfy a poly-
nomial equation p(x, y) = 0. It follows from the impossibility of solving
most polynomial equations by radicals (Section 6.7) that algebraic func-
tions are not generally expressible by radicals, that is, by finite expressions
built from +,−,×,÷, and fractional powers.

Nevertheless, it was the remarkable discovery of Newton (1671) that
any algebraic function y can be expressed as a fractional power series in x:

y = a0 + a1xr1 + a2xr2 + a3xr3 + · · · ,
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where r1, r2, r3, . . ., are rational numbers. Furthermore, the series can be
rewritten in the form

a0 + b1xs1(c00 + c01x + c02x2 + · · · )
+ b2xs2(c10 + c11x + c12x2 + · · · )
...

+ bnxsn(cn0 + cn1x + cn2x2 + · · · )
that is, as a finite sum of ordinary power series with fractional powers of x
as multipliers. This means that in the neighborhood of x = 0, the behavior
of y is like that of a finite sum of fractional powers.

For example, if y2(1 + x)2 = x, we have

y =
x1/2

1 + x
= x1/2(1 − x + x2 − x3 + · · · ),

and near the origin, y has behavior similar to x1/2; in particular there are
two values of y for each x. Newton’s contribution was an ingenious al-
gorithm for obtaining the successive powers of x. The fractional powers
themselves were not properly understood until the variables x and y were
taken to be complex. This was done in the 19th century, and on this basis a
more rigorous derivation of Newton’s series was given by Puiseux (1850).
For this reason, the fractional power-series expansions of algebraic func-
tions are now called Puiseux expansions.

Exercise

The impossibility of an ordinary power series for x1/2 can be shown as fol-
lows.

10.5.1 Any ordinary power-series expansion of x1/2 would have to be of the form

x1/2 = a1x + a2x2 + a3x3 + · · ·
because x1/2 = 0 when x = 0. Now square both sides and deduce a contra-
diction.

10.6 Generating Functions

Fibonacci (1202) introduced a famous sequence now known as the Fi-
bonacci sequence

1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,



10.6 Generating Functions 193

in which each term (after the first two) is the sum of two preceding terms.
Despite this simple law of formation, there is no obvious formula for the
nth term of the sequence. Such a formula was not discovered for more than
500 years, by de Moivre (1730), and independently by Daniel Bernoulli
(1728). In doing so, de Moivre introduced a powerful new application of
infinite series, the method of generating functions. This method, which is
of great importance in combinatorics, probability, and number theory, will
be illustrated using the Fibonacci sequence itself.

It is technically convenient to begin with F0 = 0 and F1 = 1, then take
subsequent terms as above (so F2 = 1, F3 = 2, F4 = 3, . . .) by defining

Fn+2 = Fn+1 + Fn for n ≥ 0.

This is an example of linear recurrence relation, and it was to solve such
relations in probability theory that de Moivre introduced generating func-
tions. The generating function for the Fibonacci sequence is

f (x) = F0 + F1x + F2x2 + F3x3 + · · · .
We notice that

x f (x) = F0x+F1x2 + F2x3 + · · · ,
x2 f (x) = F0x2 + F1x3 + · · · .

Hence

f (x) − x f (x) − x2 f (x) = F0 + F1x − F0x

+ (F2 − F1 − F0)x2

+ (F3 − F2 − F1)x3

+ · · · ,
that is, f (x)(1 − x − x2) = F0 + F1x − F0x = x because all the coefficients
Fn+2 − Fn+1 − Fn equal 0 by definition of the Fibonacci sequence. Thus

f (x) =
x

1 − x − x2
,

and using the roots (−1± √5)/2 = 2/(1± √5) of 1− x− x2 = 0 to factorize
the denominator we get

f (x) =
x

[1 − ((1 +
√

5)/2)x][1 − ((1 − √5)/2)x]
.
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Then splitting into partial fractions

f (x) =
1√
5

[
1

1 − ((1 +
√

5)/2)x
− 1

1 − ((1 − √5)/2)x

]
,

and using the geometric series expansions

1

1 − ((1 +
√

5)/2)x
= 1 +

1 +
√

5
2

x +

⎛⎜⎜⎜⎜⎝1 +
√

5
2

⎞⎟⎟⎟⎟⎠
2

x2 + · · · ,

1

1 − ((1 − √5)/2)x
= 1 +

1 − √5
2

x +

⎛⎜⎜⎜⎜⎝1 − √5
2

⎞⎟⎟⎟⎟⎠
2

x2 + · · · ,

we finally get

f (x) =
1√
5

⎡⎢⎢⎢⎢⎣1 +
√

5
2

− 1 − √5
2

⎤⎥⎥⎥⎥⎦ x + · · ·

+
1√
5

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

√
5

2

⎞⎟⎟⎟⎟⎠
n

−
⎛⎜⎜⎜⎜⎝1 − √5

2

⎞⎟⎟⎟⎟⎠
n⎤⎥⎥⎥⎥⎥⎦ xn + · · · .

Equating this with the definition f (x) = F0 + F1x + F2x2 + · · · gives

Fn =
1√
5

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

√
5

2

⎞⎟⎟⎟⎟⎠
n

−
⎛⎜⎜⎜⎜⎝1 − √5

2

⎞⎟⎟⎟⎟⎠
n⎤⎥⎥⎥⎥⎥⎦ . (1)

No wonder a formula for Fn was hard to find! One would not have
expected the irrational

√
5 to be involved in the integer-valued function

Fn. The explanation is that the Fibonacci sequence actually defines
√

5,
because Fn+1/Fn → (1 +

√
5)/2 (the golden ratio) as n → ∞, so (1) in

effect defines the individual terms of the Fibonacci sequence in terms of
the sequence as a whole (or, if one prefers, in terms of the behavior of the
sequence at infinity). The remarkable fact that the definition of Fn becomes
explicit, rather than recursive, when expressed in terms of (1 +

√
5)/2 is

due to the simplicity of the generating function f (x), which encodes the
whole sequence.

The recursive property of Fibonacci numbers used in de Moivre’s proof
is that they satisfy a linear recurrence relation; that is, Fn is expressed as
a fixed linear combination of earlier terms in the sequence. The proof is
easily generalized to show that the generating function

∑
anxn of any se-

quence {an} defined by a linear recurrence relation is rational. Also, the
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proof can be reversed to show that the power series of any rational function
has coefficients that satisfy a linear recurrence relation. Thus rational func-
tions can be characterized in terms of their power series, a fact that was
noticed by Kronecker (1881), Section IX.

Exercises

The formula Fn =
1√
5

[(
1+
√

5
2

)n

−
(

1−√5
2

)n]
gives several interesting limit and

approximation properties of Fn. For example:

10.6.1 Show that Fn+1
Fn
→ 1+

√
5

2 as n→ ∞.

10.6.2 Show that Fn = nearest integer to 1√
5

(
1+
√

5
2

)n
.

10.6.3 Using 1/(1 + Fn/Fn+1) = Fn+1/Fn+2, or otherwise, show that

1 +
√

5
2

= 1 +
1

1 +
1

1 +
1

1 + · · ·

.

10.7 The Zeta Function

The purpose of a generating function is to encode a complicated sequence
by a function (of a real or complex variable) that is in some ways simpler.
The method of encoding need not be as direct as taking the nth term of
the sequence to be the coefficient of xn. For example, a famous product
formula of Euler (1748a), p. 288, encodes the sequence 2, 3, 5, 7, 11, . . ., of
prime numbers as the following sum of powers of 1, 2, 3, 4, . . .

ζ(s) = 1 +
1
2s +

1
3s +

1
4s + · · ·

(the zeta function). Euler’s formula is

1
(1 − 1/2s)

1
(1 − 1/3s)

1
(1 − 1/5s)

1
(1 − 1/7s)

1
(1 − 1/11s)

· · ·

= 1 +
1
2s +

1
3s +

1
4s + · · · .

The factors on the left-hand side are (1−1/ps
n)−1, where pn is the nth prime.

We expand each such factor as a geometric series

1 +
1
ps

n
+

1

p2s
n
+

1

p3s
n
+ · · · .
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Multiplying all these series together, we get the reciprocal of each possible
product of primes, to the sth power, exactly once. That is, the left-hand
side is the sum

1 +
∑ 1

pm1s
1 pm2 s

2 · · · pmr s
r
= 1 +

∑ 1

(pm1
1 pm2

2 · · · pmr
r )s
,

in which each product pm1
1 pm2

2 · · · pmr
r of primes occurs exactly once. But

each natural number ≥ 2 is expressible in just one way as a product of
primes (Section 3.3), hence the latter sum equals the right-hand side of
Euler’s formula

1 +
1
2s
+

1
3s
+

1
4s
+ · · · .

Initially the exponent s > 1 was there only to ensure convergence. We
saw in Section 10.1 that ζ(s) diverges when s = 1; it converges when s > 1.
Riemann (1859) discovered that ζ(s) becomes much more powerful when s
is taken to be a complex variable. In recognition of this, ζ(s) is often called
the Riemann zeta function. Euler’s result of Section 10.4 can be rephrased
as ζ(2) = π2/6. The values of ζ(4), ζ(6), ζ(8), . . . were also found by Euler
and turn out to be rational multiples of π4, π6, π8, . . ., respectively. The
values of ζ(3), ζ(5), . . . have no known relationship to π or other standard
constants, though Apéry (1981) showed that ζ(3) is irrational. The most
famous conjecture about ζ(s), and one of the most sought-after results in
mathematics today, is the so-called Riemann hypothesis: ζ(s) = 0 only
when Re(s) = 1

2 (excluding the “trivial zeros” described below).

Exercises

Although ζ(s) is not defined for s = 1 (because this gives the divergent series
1 + 1

2 +
1
3 +

1
4 + · · · ), this situation can be exploited to give a new proof that there

are infinitely many primes. (Thus the Euler product formula encapsulates two
apparently unrelated results—unique prime factorization, and the infinite number
of primes.)

10.7.1 (Euler) Show that if there are only finitely many primes p1, . . . , pn, then

1
1 − 1/p1

· 1
1 − 1/p2

· · · · · 1
1 − 1/pn

= 1 +
1
2
+

1
3
+

1
4
+ · · · .

Deduce that there are infinitely many primes.

The statement of the Riemann hypothesis needs some qualification, because
ζ(s) can be defined for certain values of s for which the series 1+ 1

2s +
1
3s +

1
4s + · · ·

is not meaningful. This follows from the formula

ζ(1 − s) = 2(2π)−s cos
sπ
2
Γ(s)ζ(s)
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discovered by Riemann and called the functional equation for the zeta function.
The functional equation enables us to define ζ(1 − s) when ζ(s) is known, and
it also shows that there are certain “trivial zeros” of ζ(1 − s), namely, where s
satisfies cos sπ

2 = 0.

10.7.2 Which s give a trivial zero of ζ(1 − s)?

The function Γ in the functional equation is the gamma function, introduced
by Euler to generalize the factorial function: Γ(n) = (n − 1)! for integer values
of n. An amusing consequence of the functional equation is that we can assign
values to certain divergent series, such as 1+ 2+ 3+ 4+ · · · , by interpreting them
as ζ(1 − s), then reinterpreting ζ(1 − s) by the functional equation.

10.7.3 By suitable reinterpretation, show that

1 + 2 + 3 + 4 + · · · = −1/12.

Euler (1770a), p. 157, found another trick for the zeta function: giving a natural
formula for the seemingly unnatural Euler constant γ. Recall from Exercise 10.1.5
that γ is defined to be the limit of 1 + 1

2 +
1
3 + · · · + 1

n − log(n + 1) as n→ ∞.

10.7.4 Using the Mercator series for log(1 + 1
k ), show that

1
k
− log(k + 1) + log(k) =

1
2k2
− 1

3k3
+

1
4k4
− · · · .

10.7.5 By adding the instances of the formula in Exercise 10.7.4 from k = 1 to
k = n, show that(

1 +
1
2
+

1
3
+ · · · + 1

n

)
− log(n + 1) =

1
2

(
1
12
+

1
22
+ · · · + 1

n2

)
−1

3

(
1
13
+

1
23
+ · · · + 1

n3

)
+

1
4

(
1
14
+

1
24
+ · · · + 1

n4

)
− · · · .

10.7.6 Deduce from Exercise 10.7.5 that γ = ζ(2)
2 − ζ(3)

3 +
ζ(4)

4 − ζ(5)
5 + · · · .

10.8 Biographical Notes: Gregory and Euler

James Gregory was born in 1638 in Drumoak, near Aberdeen, the youngest
of three sons of John Gregory, the town’s minister. He received his early
education from his mother, Janet Anderson, whose uncle Alexander had
been secretary to Viète and editor of Viète’s posthumously published works.
The middle brother, David, also had mathematical ability and after their
father’s death in 1651, he encouraged James in his subsequent studies at
grammar school and Marischal College in Aberdeen.
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Figure 10.3: James Gregory

Gregory’s first major achievement was the invention of the reflecting
telescope, which he described in his book Optica promota of 1663. Un-
fortunately, he failed to get a satisfactory instrument constructed, and his
design was overtaken by the simpler type invented by Newton. In the
meantime, Gregory had decided to improve his scientific knowledge on
the Continent, and he spent most of 1664 to 1668 studying mathemat-
ics in Italy. His teacher was Stefano degli Angeli (1623–1697) of Padua,
from whom Gregory learned the methods of Cavalieri. The influence of
the Italian school was evident in Gregory’s geometric approach to integra-
tion problems in his first mathematical works, Vera circuli et hyperbolae
quadratura (1667) and Geometriae pars universalis (1668), but so too was
Gregory’s originality. The books received glowing reviews in London and,
when Gregory went there on his return from Italy, he was elected to the
Royal Society.

The Geometriae pars universalis was mainly a systematization of the
results in differentiation and integration then known, but it included the
first published proof of the fundamental theorem of calculus. Important as
this was, the theorem was not Gregory’s alone, since Newton and Leibniz
discovered it independently. What really set Gregory apart from other 17th-
century mathematicians was the Vera quadratura (True Quadrature), an
extraordinarily bold and imaginative attempt to prove that the numbers π
and e are transcendental.
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As mentioned in Section 2.3, transcendence of e and π was not proved
until the 19th century, and certainly not by 17th-century methods, so it is
understandable that Gregory’s attempt fell short. Nevertheless, it is full of
brilliant ideas: the unification of circular and hyperbolic functions (without
the use of complex numbers), the concept of convergence, and the distinc-
tion between algebraic and transcendental functions. Gregory showed that
areas cut off from both the circle and the hyperbola (giving π and vari-
ous logarithms as special cases) could be obtained as the limit of alternate
geometric and harmonic means:

in+1 =
√

inIn,

1
In+1
=

1
2

(
1

in+1
+

1
In

)
,

lim
n→∞ in = lim

n→∞ In = I.

If i0 = 2 and I0 = 4, then I (the geometric–harmonic mean of 2 and 4) is π.
If, on the other hand, i0 = 99/20 and I0 = 18/11, then I is log 10. These ex-
amples given by Gregory illustrate the way his geometric–harmonic mean
embraces both circular and hyperbolic functions. The alternating proce-
dure used to define the mean had an interesting echo in the work of Gauss,
who investigated the analogously defined arithmetic–geometric mean in
the 1790s, with far-reaching results (Section 12.6).

In 1669 Gregory returned to Scotland to take up the chair of mathemat-
ics at St. Andrew’s. He married a young widow, Mary Burnet, the daughter
of artist George Jameson, who was also descended from the Anderson fam-
ily. James and Mary had two daughters and a son, who became professor
of medicine in Aberdeen. The rather impressive Gregory family tree may
be found in Turnbull’s short biography of Gregory (Turnbull (1939)).

Gregory stayed at St. Andrew’s for five years, during which he obtained
his important results on series. However, his contact with other scientists
was restricted to letters from London, and on hearing of Newton’s related
results he assumed that he had been anticipated and did not publish. The
lack of contact, and hostility to mathematics at St. Andrew’s, led him to
accept the offer of a chair at Edinburgh in 1674. Alas, he had been in Ed-
inburgh barely a year when he collapsed, apparently from a stroke, while
showing the moons of Jupiter to a group of students. He died a few days
later, in October 1675, too soon for the world to have understood the im-
portance of his work.
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Leonhard Euler was born in Basel in 1707 and died in St. Petersburg in
1783. His father, Paul, studied theology at the University of Basel, where
he also attended the mathematics lectures of Jakob Bernoulli. After grad-
uation he became a Protestant minister and married a minister’s daughter,
Margarete Bruckner. Leonhard was the first of their six children. The fam-
ily was quite poor and, soon after Euler’s birth, moved to a village outside
Basel where they lived in a two-room house. Euler received his first math-
ematical instruction at home from his father. He later moved back to Basel
to attend secondary school, but mathematics was not taught there, so he
took some private lessons from a university student.

At 13, Euler entered the University of Basel, which had become the
mathematical center of Europe under Johann Bernoulli, the younger brother
and successor of Jakob. Bernoulli advised Euler to study mathematics on
his own and made himself available on Saturday afternoons to help with
any difficulties. Euler’s official studies were in philosophy and law. Af-
ter receiving his master’s degree in philosophy in 1723, he followed his
father’s wish by entering the department of theology. However, he was
falling increasingly under the spell of mathematics and realized he would
have to drop the idea of becoming a minister.

There were few opportunities for mathematicians in Switzerland, and
in 1727 Euler left Basel for St. Petersburg. Johann Bernoulli’s sons, Daniel
and Nicholas, had been appointed to the new Academy of Sciences there,
and they persuaded the authorities to find a place for Euler. Euler had
already shown promise with a couple of papers in Acta Eruditorum and
an honorable mention in the Paris Academy competition of 1727, but in
St. Petersburg he surpassed all expectations, producing top-quality work
at a rate that has astounded mathematicians ever since. The early years
in St. Petersburg with the Bernoullis must have been a young mathemati-
cian’s dream. Yet it is equally true that Euler’s productivity was unaffected
by later setbacks, including the loss of his sight. He filled half the pages
published by the St. Petersburg Academy from 1729 until over 50 years af-
ter his death (!), and he also accounted for half the production of the Berlin
Academy between 1746 and 1771.

The first major changes in Euler’s life in St. Petersburg occurred in
1733, when Daniel Bernoulli returned to Basel. Euler then became profes-
sor of mathematics but also had to take over the Department of Geography.
In the same year, he married a compatriot, Katharina Gsell, the daughter
of an artist who taught in St. Petersburg. They were eventually to have
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13 children, 5 of whom reached maturity. Euler’s duties in geography in-
cluded the preparation of a map of Russia, a task that strained his eyes and
perhaps led to the fever that destroyed the sight of his right eye in 1738.
Figure 10.4 is a portrait from his good side.

Figure 10.4: Leonhard Euler

By 1740 the political situation in St. Petersburg had become unset-
tled and Euler moved to Berlin, where Frederick the Great had just re-
organized the Berlin Academy. Euler became director of the mathematical
section and stayed in Berlin for 25 years. Some of his most famous works
date from this period, in particular the Introductio in analysin infinitorum
(1748a) and the Letters à une princesse d’Allemagne sur divers sujets de
physique et de philosophie, one of the classics of popular science. How-
ever, Euler was not comfortable in Berlin. There were quarrels over the
leadership of the Academy, and the cynical Frederick tended to sneer at
the pious and unassuming Euler. In 1762 Catherine the Great came to the
throne in Russia, and the St. Petersburg Academy, with which Euler had
maintained contact throughout, began to look attractive again.
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In 1766 he moved back to St. Petersburg with his family (as a bonus,
his eldest son gained the chair of physics there). Soon after his arrival Euler
suffered an illness that destroyed most of his remaining sight, and in 1771
he became completely blind. If anything, blindness concentrated Euler’s
mind more wonderfully. He had always had an extraordinary memory—
knowing Virgil’s Aeneid by heart, for example—and with assistance from
two of his sons and other collaborators his flow of publications continued
at a greater rate than ever. His Algebra, Euler (1770b), was dictated to
his valet, yet it became the most successful mathematics textbook since
Euclid’s Elements.

One of Euler’s most admirable qualities was a willingness to explain
how his discoveries were made. Mathematicians of the 18th century were
less secretive than their 16th- and 17th-century predecessors, but Euler
was unique in revealing his preliminary guesses, experiments, and partial
proofs. Some of the most interesting of these exposés are presented in the
book Pólya (1954b) on plausible reasoning. Chapter 6 of the book, for
example, includes a translation of the memoir in which Euler announced
the pentagonal number theorem. It is impossible to summarize all of Eu-
ler’s contributions to mathematics here, though several of the highlights
are presented in the chapters that follow. The best summary available is in
Yushkevich’s article on Euler in the Dictionary of Scientific Biography.
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The Number Theory Revival

Preview

After the work of Diophantus, number theory in Europe languished for
about 1000 years. In Asia there was significant progress, as we saw in
Chapter 5, on topics such as Pell’s equation. The first signs of reawakening
in Europe came in the 14th century, when Levi ben Gershon found formu-
las for the numbers of permutations and combinations, using rudimentary
induction proofs.

Interest in number theory gathered pace with the rediscovery of Dio-
phantus by Bombelli, and the publication of a new edition by Bachet de
Méziriac (1621). It was this book that inspired Fermat and launched num-
ber theory as a modern mathematical discipline.

Fermat mastered and extended the techniques of Diophantus, such as
the chord and tangent method for finding rational points on cubic curves.
He also shifted the emphasis from rational solutions to integer solutions.
He proved “Fermat’s little theorem” that np − n is divisible by p for any
prime p, and claimed “Fermat’s last theorem” that xn + yn = zn has no
positive integer solutions when n > 2.

We know that Fermat had a proof of his “last theorem” for n = 4, but he
seems to have been mistaken in thinking that he could prove it for arbitrary
n. The proof now known uses highly sophisticated ideas, not conceivable in
the 17th century. Nevertheless, it is strangely appropriate that the modern
proof reduces Fermat’s last theorem to a problem about cubic curves.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 203
DOI 10.1007/978-1-4419-6053-5 11, c© Springer Science+Business Media, LLC 2010
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11.1 Between Diophantus and Fermat

Some important results in number theory were discovered in the Middle
Ages, though they failed to take root until they were rediscovered in the
17th century or later. Among these were the discovery of Pascal’s trian-
gle and the “Chinese remainder theorem” by Chinese mathematicians, and
formulas for permutations and combinations by Levi ben Gershon (1321).
The early development of the Chinese remainder theorem is discussed in
Chapter 5, and the theorem did not reemerge until after the period we are
about to discuss. A full account of its history may be found in Libbrecht
(1973), Chapter 5. Pascal’s triangle, on the other hand, began to flourish in
the 17th century after a long dormancy, so it is of interest to see what was
known of it in medieval times and what Pascal did to revive it.

The Chinese used Pascal’s triangle as a means of generating and tab-
ulating the binomial coefficients, that is, the coefficients occurring in the
formulas

(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

(a + b)7 = a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7

and so on. When the binomial coefficients are tabulated as follows (with a
trivial row 1 added at the top, corresponding to the power 0 of a + b),

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

and so on, the kth element
(
n
k

)
of the nth row is the sum

(
n−1
k−1

)
+
(
n−1

k

)
of

the two elements above it in the (n − 1)th row, as follows from the formula



11.1 Between Diophantus and Fermat 205

(Exercise 11.1.1)

(a + b)n = (a + b)n−1a + (a + b)n−1b.

The triangle appears to a depth of six in Yáng Huı́ (1261) and to a depth of
eight in Zhū Shijié (1303) (Figure 11.1). Yáng Huı́ attributes the triangle
to Jia Xiàn, who lived in the 11th century.

Figure 11.1: Chinese Pascal’s triangle

The number
(
n
k

)
appears in medieval Hebrew writings as the number of

combinations of n things taken k at a time. Levi ben Gershon (1321) gives
the formula (

n
k

)
=

n!
(n − k)!k!
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together with the fact that there are n! permutations of n elements. In his
treatment of permutations and combinations Levi ben Gershon comes very
close to using mathematical induction, if not actually inventing it. As we
now formulate this method of proof, a property P(n) of natural numbers n
is proved to hold for all n if one can prove P(1) (the base step) and, for
arbitrary n, one can prove P(n) ⇒ P(n + 1) (the induction step). Rabi-
novitch (1970) offered an exposition of some of Levi ben Gershon’s proofs
that certainly seems to show a division into a base step and induction step,
but the induction step needs some notational help to become a proof for
truly arbitrary n. Levi ben Gershon does not say “Consider n elements
a, b, c, d, . . . , e,” as we might, but only “Let the elements be a, b, c, d, e,”
since he does not have the device of ellipses.

In view of these excellent results, why do we call the table of bino-
mial coefficients “Pascal’s triangle”? It is of course not the only instance
of a mathematical concept being named after a rediscoverer rather than a
discoverer, but in any case Pascal deserves credit for more than just re-
discovery. In his Traité du triangle arithmétique, Pascal (1654) united the
algebraic and combinatorial theories by showing that the elements of the
arithmetic triangle could be interpreted in two ways: as the coefficients of
an−kbk in (a + b)n and as the number of combinations of n things taken k
at a time. In effect, he showed that (a + b)n is a generating function for the
numbers of combinations. As an application, he founded the mathematical
theory of probability by solving the problem of division of stakes (Exer-
cise 11.1.2), and as a method of proof he used mathematical induction for
the first time in a really conscious and unequivocal way. Altogether, quite
some progress!

In going to Pascal’s work in 1654 we have overshot the end of the pre-
Fermat period in number theory, since Fermat was already active in this
field in the 1630s. However, it is convenient to have some background of
binomial coefficients established, since Fermat’s early work appears in this
setting.

Exercises

The basic properties of the binomial coefficients, for example the fact that
each is the sum of the two above it in Pascal’s triangle, follow easily from their
interpretation as the coefficients in the expansion of (a + b)n.

11.1.1 Use the identity

(a + b)n = (a + b)n−1a + (a + b)n−1b
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to prove the sum property of binomial coefficients:
(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

This property gives an easy way to calculate Pascal’s triangle to any depth,
and hence compute a fair division of stakes in a game that has to be called off
with n plays remaining. We suppose that players I and II have an equal chance of
winning each play, and that I needs to win k of the remaining n plays to carry off
the stakes.

11.1.2 Show that the ratio of I’s winning the stakes to that of II’s winning is
(
n
n

)
+

(
n

n − 1

)
+ · · · +

(
n
k

)
:

(
n

k − 1

)
+

(
n

k − 2

)
+ · · · +

(
n
0

)
.

The sum property of the binomial coefficients also explains the presence of
some interesting numbers in Pascal’s triangle.

11.1.3 Explain why the third diagonal from the left in the triangle, namely 1, 3,
6, 10, 15, 21, . . . , consists of the triangular numbers.

11.1.4 The numbers on the next diagonal, namely 1, 4, 10, 20, 35. . . , can be
called “tetrahedral numbers.” Why is this an apt description?

11.2 Fermat’s Little Theorem

The best-known theorem actually proved by Fermat (1640a), and known
as his “little” or “lesser” theorem to distinguish it from his “last” or “great”
theorem (next section), is the following.

If p is prime and n is relatively prime to p, then

np−1 ≡ 1 (mod p).

Equivalent statements of the conclusion, which avoid using the “congruent
mod p” language unknown in Fermat’s time, are

np−1 − 1 is divisible by p

or
np − n is divisible by p.

The latter holds because np − n = n(np−1 − 1) is divisible by p only if
np−1 − 1 is, since p is prime and does not divide n.
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Fermat’s little theorem has recently become indispensable in areas of
applied mathematics, such as cryptography, so it is thought-provoking to
learn that it originated in one of the least applied problems in mathemat-
ics, the construction of perfect numbers. As we saw in Section 3.2, this
depends on the construction of prime numbers of the form 2m − 1, and it
was initially for this reason that Fermat became interested in conditions for
2m −1 to have divisors. At the same time (mid-1630s) he was investigating
the binomial coefficients, and the combination of these two interests very
likely led to the discovery of his little theorem, for n = 2.

His actual proof is unknown, but various authors (for example, Weil
(1984), p. 56) have pointed out that the theorem follows immediately from
the fact that

(
p
1

)
,
(

p
2

)
, . . . ,

(
p

p−1

)
, for p prime, are divisible by p:

2p = (1 + 1)p = 1 +

(
p
1

)
+

(
p
2

)
+ · · · +

(
p

p − 1

)
+ 1,

hence

2p − 2 =

(
p
1

)
+

(
p
2

)
+ · · · +

(
p

p − 1

)

is divisible by p, and therefore so is 2p−1 − 1.
But how does one prove that

(
p
1

)
,
(

p
2

)
, . . . ,

(
p

p−1

)
are divisible by p? This

follows easily from the Levi ben Gershon formula
(
p
k

)
=

p!
(p − k)!k!

,

which shows that the prime p is a factor of the numerator but not of the
denominator. The denominator nevertheless divides the numerator, since(

p
k

)
is an integer, so the factor must remain intact after the division has taken

place. Fermat may not have had precisely this result, since he did not yet
have Pascal’s combinatorial interpretation of the binomial coefficients, but
he did have the formula

n

(
n + m − 1

m − 1

)
= m

(
n + m − 1

m

)
,

which implies it and from which the divisibility property may be extracted
(see Weil (1984), p. 47).

Thus far we have a proof of Fermat’s little theorem for n = 2. Weil
(1984) suggests two possible routes to the general theorem from this point.
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One is by iteration of the binomial theorem, a method that was used in the
first published proof of Fermat’s theorem by Euler (1736). The other is by
direct application of the multinomial theorem, the method of the earliest
known proof, which is in an unpublished paper of Leibniz from the late
1670s (see Weil (1984), p. 56).

Just as

coefficient of ap−kbk in (a + b)p = p!/(p − k)!k!,

coefficient of aq1
1 aq2

2 · · · aqn
n in (a1 + a2 + · · · + an)p = p!/q1!q2! · · · qn!,

where q1+q2+ · · ·+qn = p (Exercise 11.2.4). This multinomial coefficient
is divisible by p, by the same argument as before, provided no qi = p. Thus
the coefficients of all but ap

1 , a
p
2 , . . . , a

p
n in (a1 + a2 + · · ·+ an)p are divisible

by the prime p. It follows, by replacing each of the n terms a1, a2, . . . , an

by 1, that

(1 + 1 + · · · + 1)p = 1p + 1p + · · · + 1p + terms divisible by p,

that is, np − n is divisible by p. Then if n itself is relatively prime to p
(hence not divisible by p), we have np−1 − 1 divisible by p, or the general
Fermat little theorem.

Exercises

The binomial theorem may be iterated to show that p divides np−n as follows.

11.2.1 Use the result 2p = (1 + 1)p = 2 + terms divisible by p, and its method of
proof, to show that

3p = (2 + 1)p = 3 + terms divisible by p.

11.2.2 Build on the idea of Exercise 11.2.1 to show that np − n is divisible by p
for any positive integer n.

11.2.3 Observe the terms divisible by p in the first few rows of Pascal’s triangle,
computed in the previous section.

Like the binomial theorem, the multinomial theorem can be proved combinato-
rially by considering the number of ways a term aq1

1 aq2

2 · · · aqn
n can arise from the

factors of (a1 + a2 + · · · + an)p.

11.2.4 Prove the formula for the multinomial coefficient given above by observ-
ing that the coefficient equals the number of ways of partitioning p things
into disjoint subsets of sizes q1, q2, . . . , qn.
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11.3 Fermat’s Last Theorem

On the other hand, it is impossible for a cube to be written as
a sum of two cubes or a fourth power to be written as a sum
of two fourth powers or, in general, for any number which
is a power higher than second to be written as a sum of two
like powers. I have a truly marvellous demonstration of this
proposition which this margin is too small to contain.

Fermat (1670), p. 241

This remark, written in the margin of his copy of Bachet’s Diophantus
when he was studying that work in the late 1630s, is the second item in
Fermat’s Observations on Diophantus, published posthumously in 1670.
Fermat was responding to Diophantus’s treatment of the problem of ex-
pressing a square as a sum of two squares. As we saw in Chapter 1, this
is the problem of finding Pythagorean triples (a, b, c) or, equivalently, of
finding the rational points (a/c, b/c) on the circle x2 + y2 = 1.

Fermat’s last theorem, the claim that there are no triples (a, b, c) of
positive integers such that

an + bn = cn, where n > 2 is an integer,

became the most famous problem in mathematics. Many mathematicians
contributed solutions for particular values of n: Euler for n = 3, Fermat
himself for n = 4 (see next section), Legendre and Dirichlet for n = 5,
Lamé for n = 7, Kummer for all prime n < 100 except 37, 59, 67. A
thorough account of these early results may be found in Edwards (1977).
Of course it is sufficient to prove the theorem for prime exponents, since a
counterexample

an + bn = cn

for a nonprime exponent n = mp, where p is prime, would also be a coun-
terexample

(am)p + (bm)p = (cm)p

for the prime exponent p.
After Kummer, not much progress was made until the 1980s, when two

new approaches were opened up. Faltings (1983) showed that for each ex-
ponent n there were at most finitely many counterexamples to Fermat’s last
theorem. This is a consequence of Faltings’ much more general theorem,
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settling a conjecture of Mordell (1922) that each curve of genus > 1 has
at most finitely many rational points. The concept of genus is explained in
Chapter 15. For the moment we mention only that the “Fermat curve”

xn + yn = 1

has genus 0 when n = 2, genus 1 when n = 3, and genus >1 otherwise.
Thus Faltings’ theorem showed that the Fermat curve could have at most
finitely many rational points (and hence an + bn = cn could have at most
finitely many integer solutions) in the cases not already settled.

The second approach was initiated by Frey (1986), who made the as-
tonishing suggestion that a counterexample an + bn = cn to Fermat’s last
theorem might imply something impossible about the cubic curve

y2 = x(x − an)(x + bn).

At the time, the property in question—called nonmodularity—was only
conjectured to be impossible, and it was also not known to be implied by
a counterexample to Fermat’s last theorem. However, Ribet (1990) proved
that a counterexample implies nonmodularity, and in 1994 Andrew Wiles
proved that nonmodularity is impossible for cubic curves of the above
form. Thus no counterexample to Fermat’s last theorem can exist.

There was a dramatic twist to this closing chapter in the story of Fer-
mat’s last theorem, because Wiles first announced his result in 1993 (after
seven years working on it in seclusion), only to discover within months that
there was a serious gap in his proof. However, with the help of Richard
Taylor, the gap was filled in 1994, and the completed proof was published
in Wiles (1995). The proof is highly sophisticated, but we can at least ex-
plain its general setting of cubic curves and elliptic functions; indeed these
are important threads throughout the whole of this book.

11.4 Rational Right-Angled Triangles

The area of a right-angled triangle the sides of which are ra-
tional numbers cannot be a square number. This proposition,
which is my own discovery, I have at length succeeded in prov-
ing, though not without much labour and hard thinking. I give
the proof here, as this method will enable extraordinary devel-
opments to be made in the theory of numbers.

Fermat (1670), p. 271
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This is number 45 of Fermat’s Observations on Diophantus, responding
to a problem posed by Bachet: to find a right-angled triangle whose area
equals a given number. The observation is important not only for the theo-
rem and the method announced, but also because it is followed by the only
reasonably complete proof left by Fermat in number theory. As a bonus,
the proof implicitly settles Fermat’s last theorem for n = 4 (see exercises)
and is an excellent illustration of his “method” of infinite descent, which
did indeed lead to extraordinary developments in the theory of numbers.
In what follows, the statements that make up Fermat’s proof, appearing
indented like the quote above, are expanded and expressed in modern no-
tation following the reconstruction of Zeuthen (1903), p. 163. We use the
translation of Fermat given by Heath (1910), p. 293, in his version of the
reconstruction.

If the area of a right-angled triangle were a square, there would
exist two biquadrates the difference of which would be a square
number. Consequently there would exist two square numbers
the sum and difference of which would be squares.

By choosing a suitable unit of length, we can express the sides of a rational
right triangle as a Pythagorean triple of relatively prime integers p2 − q2,
2pq, p2 + q2, as noted in Section 1.2. Since their gcd is 1, gcd(p, q) = 1
also. Therefore, since 2pq is even, p2 − q2 and its factors p+ q, p− q must
be odd. Also, no two of p, q, p + q, p − q have a common prime divisor,
otherwise p, q would. Then if the area pq(p + q)(p − q) is a square, its
factors must all be squares:

p = r2, q = s2, p + q = r2 + s2 = t2, p − q = r2 − s2 = u2. (1)

Thus the sum and difference of the squares r2, s2 are also squares, so

r4 − s4 = (r2 + s2)(r2 − s2) = t2u2 = v2.

Therefore we should have a square number which would be
equal to the sum of a square and the double of another square,
while the squares of which this sum is made up would them-
selves have a square number for their sum.

From (1) we have

t2 − u2 = 2s2, that is, t2 = u2 + 2s2. (2)
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And also from (1),
u2 + s2 = r2.

But if a square is made up of a square and the double of an-
other square, its side, as I can very easily prove, is also made
up of a square and the double of another square.

Since (t + u)(t − u) = t2 − u2 = 2s2 from (2), (t + u)(t − u) is even. Then
one of t + u, t − u is even, and consequently so is the other. Put

t + u = 2w, t − u = 2x. (3)

Then
s2 = (t + u)(t − u)/2 = 2wx.

Tracing back through (3), (2), (1) we see that any common divisor of w, x
would also be common to t, u, to t2, u2, to r2, s2, and hence to p, q. Thus
w, x are relatively prime and therefore, since wx is twice a square, we have
either

w = y2, x = 2z2 or w = 2z2, x = y2.

In either case,
t = w + x = y2 + 2z2. (4)

From this we conclude that the said side is the sum of the sides
about the right angle in a right-angled triangle, and that the
simple square contained in the sum is the base, and the double
of the other square the perpendicular.

If we let y2, 2z2 be the sides of a right triangle, then the hypotenuse h
satisfies

h2 = (y2)2 + (2z2)2 =
1
2

(
(y2 + 2z2)2 + (y2 − 2z2)2

)

=
1
2

(t2 + u2) by (3) and (4)

= r2. by (1)

Hence h = r and the triangle is rational.

This right-angled triangle will thus be formed from two squares,
the sum and difference of which will be squares. But both
these squares can be shown to be smaller than the squares
originally assumed to be such that both their sum and their
difference are squares.
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The original squares with sum and difference equal to squares were p = r2,
q = s2, coming from the perpendicular sides p2−q2 and 2pq of the rational
right triangle whose area was assumed to be a square. We now have a ratio-
nal (indeed integral) right triangle with perpendicular sides y2, 2z2 whose
area y2z2 is also a square. This triangle is smaller, since its hypotenuse r
is less than side 2pq of the original triangle, so it gives a smaller pair of
(integer) squares p′, q′, whose sum and difference are squares.

Thus, if there exist two squares such that the sum and differ-
ence are both squares, there will also exist two other integer
squares which have the same property but a smaller sum. By
the same reasoning we find a sum still smaller than the last
found, and we can go on ad infinitum finding integer square
numbers smaller and smaller with the same property. This is,
however, impossible because there cannot be an infinite series
of numbers smaller than any given integer we please.

This contradiction means that the initial assumption of a rational right tri-
angle with square area is false. The versions of Zeuthen and Heath proceed
more directly to a contradiction than Fermat by observing that the descent
from the hypothetical initial triangle to the one with area y2z2 can be iter-
ated to give an infinite descending sequence of integer areas. Weil (1984),
p. 77, shortens the proof even further.

The logical principle involved in Fermat’s method of descent is of
course the same as that on which mathematical induction is based: any
set of natural numbers has a least member. However, the circumstances in
which the two methods can be applied are quite different. With induction,
one needs a suitable hypothesis on which to make the induction step; with
descent, one needs a suitable quantity on which to descend. In practice,
descent is a much more special method, being associated with geometric
properties of certain curves: the curves of genus 1 we shall meet in Section
11.6 and later chapters (see also Weil (1984), p. 140). The general problem
raised by Bachet—deciding which numbers n are the areas of rational right
triangles—is intimately connected with the theory of genus 1 curves, and
its 20th-century resurgence is beautifully covered by Koblitz (1985).

Exercises

Two of the propositions that arise in the descent from the hypothetical ratio-
nal right triangle with square area are of independent interest and are also false
because they imply the existence of such a triangle.
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11.4.1 Show that the existence of squares r2 and s2 for which r2+s2 and r2−s2 are
both squares implies the existence of a rational right triangle with square
area.

11.4.2 Show that a nonzero integer solution of r4 − s4 = v2 implies the existence
of a rational right triangle with square area. (Hint: It’s the same triangle as
in Exercise 11.4.1.)

11.4.3 From Exercise 11.4.2, deduce Fermat’s last theorem for n = 4.

The impossibility of a nonzero integer solution r4 − s4 = v2 can also be shown
by a more direct descent that avoids some of the steps used by Fermat. The main
steps are as follows, assuming r, s, and hence v have no common prime divisor.

r4 − s4 = v2 =⇒ r2 = a2 + b2, s2 = 2ab, v = a2 − b2

for some nonzero integers a, b

=⇒ a = c2 − d2, b = 2cd

for some nonzero integers c, d

=⇒ c = e2, d = f 2 and c2 − d2 are squares

because s2 = 4cd(c2 − d2)

and c, d, c2 − d2 have no common prime divisor

=⇒ e4 − f 4 = g2

for an integer pair (e, f ) smaller than (r, s).

11.4.4 Justify the steps in this argument.

11.5 Rational Points on Cubics of Genus 0

It may be doubted that Fermat had a correct proof of Fermat’s last theorem
because most of his work deals with curves of low degree (≤ 4), and it
is highly unlikely that he could have foreseen Frey’s reduction of the nth-
degree Fermat problem to a question about cubic curves. Admittedly, we
do not know for certain what Fermat’s methods were, and he did not talk
in terms of finding rational points on curves. Nevertheless, this is the most
natural way to interpret his solutions of Diophantine equations and to link
them with earlier and later results in the same vein by Diophantus and
Euler, respectively. We have already described methods for finding rational
points on curves of degree 2 (in Section 1.3) and 3 (in Section 3.5). Now
we shall reexamine them from the point of view of genus, which becomes
increasingly important as curves of higher degree are considered. In this
section we confine attention to genus 0.
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One of the properties of a curve C of degree 2 that we observed in Sec-
tion 1.3 is that a rational line L through a rational point P on C meets C
in a second rational point, provided the equation of C has rational coeffi-
cients. Also, one obtains all rational points Q on C in this way by rotating
L about C. There is another important consequence of this construction,
not depending on the rationality of C or L. It is that by expressing the x
and y coordinates of Q in terms of the slope t of L we obtain a parameter-
ization of C by rational functions (recall that a rational function need not
have rational coefficients).

x
O

y

P

Q y = t(x + 1)

Figure 11.2: Parameterizing the circle

For example, this construction on the circle x2 + y2 = 1 in Section 1.3
gave the parameterization

x =
1 − t2

1 + t2
, y =

2t

1 + t2

(Figure 11.2). Genus 0 curves can be defined as those that admit parameter-
ization by rational functions. I shall now show that genus 0 includes some
cubic curves by applying a similar construction to the folium of Descartes.

The folium was defined in Section 7.3 as the curve with equation

x3 + y3 = 3axy. (1)
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The origin O is an obvious rational point on the folium; moreover, O is
a double point of the curve, as Figure 11.3 makes clear. The line y = tx
through O therefore meets the folium at one other point P, and varying t
gives all other points P on the curve. By finding the coordinates of P as
functions of t, we therefore obtain a parameterization.

x

y

O
P

y = tx

Figure 11.3: Parameterizing the folium

To find P we substitute y = tx in (1), obtaining

x3 + t3x3 = 3axtx,

hence
x(1 + t3) = 3at

and

x =
3at

1 + t3
, (2)

and therefore

y =
3at2

1 + t3
. (3)

(These parametric equations were pulled out of the air in Exercise 7.3.1.)
A similar construction applies to any cubic with a double point, or more
generally to any curve of degree n+ 1 with an n-tuple point; hence all such
curves are of genus 0.



218 11 The Number Theory Revival

Exercises

It should be noted that a double point on a curve p(x, y) = 0 yields a double
root of the equation p(x,mx + c) = 0 for the intersections of a line y = mx + c
through the double point.

11.5.1 Observe the double root of the equation obtained by substituting y = tx in
equation (1) above.

11.5.2 Explain, using the general double root property, why a line of rational
slope through a rational double point on a cubic curve with rational coeffi-
cients necessarily meets the curve at another rational point.

We note also that, as in the construction for quadratic curves, all rational
points on the folium are obtained by this method.

11.5.3 Show that if x and y are rational, then so is t in (2) and (3).

11.5.4 Deduce from Exercise 11.5.3 that the rational points on the folium are
precisely those with rational t-values.

11.6 Rational Points on Cubics of Genus 1

We cannot yet give a precise definition of genus 1, but it so happens that
this is the genus of all cubic curves that are not of genus 0. We know
from Section 11.5 that cubics of genus 1 cannot have double points, and in
fact they also cannot have cusps because both these cases lead to rational
parameterizations. (For one case of a cusp, see Exercise 7.4.1.) What
we have yet to exhibit are functions that do parameterize cubics of genus
1. Such functions, the elliptic functions, were not defined until the 19th
century, and they were first used by Clebsch (1864) to parameterize cubics.

Many clues to the existence of elliptic functions were known before
this, but at first they seemed to point in other directions. Initially, the mys-
tery was how Diophantus and Fermat generated solutions of Diophantine
equations. Newton’s (1670s) interpretation of their results by the chord–
tangent construction (Section 3.5) cleared up this first mystery—or would
have if anyone had noticed it at the time. But before mathematicians
really became conscious of the chord–tangent construction, they had to
explain some puzzling relations between integrals of functions such as
1/
√

ax3 + bx2 + cx + d, found by Fagnano (1718) and Euler (1768). Even-
tually Jacobi (1834) noticed that the chord–tangent construction explained
this mystery too. Jacobi’s explanation was cryptic, and, even though el-
liptic functions were then known in connection with integrals, they were



11.6 Rational Points on Cubics of Genus 1 219

not fully absorbed into number theory and the theory of curves until the
appearance of Poincaré (1901).

The analytic origins of elliptic functions will be explained in the next
chapter. In this section we shall prepare to link up with this theory by
deriving the algebraic relation between collinear points on a cubic curve.
A much deeper treatment of the whole story appears in Weil (1984).

We start with Newton’s form of the equation for a cubic curve (Sec-
tion 7.4):

y2 = ax3 + bx2 + cx + d. (1)

Figure 11.4 shows this curve when y = 0 for three distinct real values of x.

x

y

P1
P2

P3

Figure 11.4: Collinear points on a cubic curve

In Section 3.5 we found that if a, b, c, d are rational, and if P1, P2 are
rational points on the curve, then the straight line through P1, P2 meets the
curve at a third rational point P3. If the equation of this straight line is

y = tx + k, (2)
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then the result of substituting (2) in (1) is an equation

ax3 + bx2 + cx + d − (tx + k)2 = 0 (3)

for the x coordinates x1, x2, x3 of the three points P1, P2, P3. But if the
roots of (3) are x1, x2, x3 its left-hand side must have the form

a(x − x1)(x − x2)(x − x3).

In particular, the coefficient of x2 must be

−a(x1 + x2 + x3).

Comparing this with the actual coefficient of x2 in (3), we find

b − t2 = −a(x1 + x2 + x3);

hence

x3 = −(x1 + x2) − b − t2

a
. (4)

If P1 = (x1, y1), P2 = (x2, y2), then t = (y2 − y1)/(x2 − x1), and substituting
this in (4) we finally obtain

x3 = −(x1 + x2) − b − [(y2 − y1)/(x2 − x1)]2

a
, (5)

giving x3 as an explicit rational combination of the coordinates of P1, P2.
If P1, P2 are rational points, then (5) shows that x3 (and hence y3 = tx3+k)
is also rational, as we already knew.

What is unexpected is that (5) is also an addition theorem for elliptic
functions. This has the consequence that the curve can be parameterized by
elliptic functions x = f (u), y = g(u) such that (5) is precisely the equation
expressing x3 = f (u1 + u2) in terms of f (u1) = x1, f (u2) = x2, g(u1) = y1,
and g(u2) = y2. Thus the straight-line construction of x3 from x1 and x2

can also be interpreted as addition of parameter values, u1 and u2 of x1 and
x2. The first addition theorems were found by Fagnano (1718) and Euler
(1768) by means of transformation of integrals. Euler realized that there
was a connection between such transformations and number theory, but he
could never quite put his finger on it. Even earlier, Leibniz had suspected
such a connection when he wrote:
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I . . . remember having suggested (what could seem strange to
some) that the progress in our integral calculus depended in
good part upon the development of that type of arithmetic
which, so far as we know, Diophantus has been the first to
treat systematically.

Leibniz (1702), as translated by Weil (1984)

Jacobi (1834) apparently saw the connection for the first time after
receiving a volume of Euler’s works on the transformation of integrals, but
considerable clarification of elliptic functions was needed before Jacobi’s
insight became generally available. We describe some of the main steps in
this process of clarification in Chapters 12 and 16.

Exercises

A proof that genus 1 curves cannot be parameterized by rational functions can
be modeled on Fermat’s proof that r4 − s4 = v2 is impossible in positive integers.
The reason is that the behavior of rational functions is surprisingly similar to that
of rational numbers, with polynomials playing the role of integers, and degree
being the measure of size. The most convenient curve to illustrate the idea is
y2 = 1 − x4, which happens to be of genus 1.

11.6.1 Show that a parameterization of y2 = 1 − x4 by rational functions of u
implies that there are polynomials r(u), s(u), and v(u) with

r(u)4 − s(u)4 = v(u)2.

Now to imitate the rest of Fermat’s proof (or the simplified version in Exercise
11.4.4) one needs a theory of divisibility for polynomials. Like the theory for
natural numbers, this can be based on the Euclidean algorithm. It follows the
same basic lines as in Section 3.3, so we shall omit it.

One also needs the formula for “Pythagorean triples” of rational functions.
This can be found by the geometric method of Section 1.3, carried out in the “ra-
tional function plane” where each “point” is an ordered pair (x(u), y(u)) of rational
functions.

11.6.2 Convince yourself that “lines” and “slope” make sense in the rational func-
tion plane, and hence show that each point � (0,−1) on the “unit circle”

x(u)2 + y(u)2 = 1

is of the form

x(u) =
1 − t(u)2

1 + t(u)2
, y(u) =

2t(u)
1 + t(u)2

for some rational function t(u).



222 11 The Number Theory Revival

11.6.3 Deduce from Exercise 11.6.2 a formula for “Pythagorean triples” of poly-
nomials, like Euclid’s formula for ordinary Pythagorean triples.

It is now possible to imitate Fermat’s proof, showing that r(u)4− s(u)4 = v(u)2

is impossible for polynomials, and hence that y2 = 1− x4 has no parameterization
by rational functions. It follows that the same is true of certain cubic curves.

11.6.4 Substitute x = (X + 1)/X and y = Y/X2 in y2 = 1 − x4, and hence show

Y2 = cubic polynomial in X.

Deduce that if this cubic curve in X, Y has a rational parameterization, then
so has y2 = 1 − x4.

11.7 Biographical Notes: Fermat

Pierre Fermat (Figure 11.5) was born in Beaumont, near Toulouse, in 1601
and died in Castres, also near Toulouse, in 1665. His life, like his mathe-
matics, is not known in detail, but it seems to have been relatively unevent-
ful. Fermat’s father, Dominique, was a wealthy merchant and lawyer, his
mother, Claire de Long, came from a prominent family, and they had two
sons and two daughters. Pierre went to school in Beaumont, commenced
university studies in Toulouse, and completed them with a law degree from
Orléans in 1631. Thus Fermat’s academic progress was far from meteoric,
and not necessarily because he was distracted by mathematics. As far as
we know, his earliest mathematical work was the analytical geometry of
1629 and, in the opinion of Weil (1984), his number theory did not mature
until Fermat was in his late thirties.

On the evidence available, Fermat seems to defy the usual clichés about
mathematical genius: he didn’t start young, didn’t work with passionate in-
tensity, and was generally unwilling to publish his results (though he did
sometimes boast about them). It is true that few mathematicians of Fer-
mat’s era actually did mathematics for a living, but Fermat was the purest
of amateurs. It seems that mathematics never caused any interruption to
his professional life.

In fact, after getting his law degree in 1631 he married a distant cousin
on his mother’s side, Louise de Long, collected a generous dowry, and
settled into a comfortable legal career. His position entitled him to be ad-
dressed as Monsieur de Fermat, hence the name Pierre de Fermat by which
he is now known. He and Louise had five children, the oldest of whom,
Clement-Samuel, edited his father’s mathematical works (Fermat (1670)).
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Figure 11.5: Pierre de Fermat

Probably the most dramatic, and terrifying, experience of Fermat’s life was
his contracting the plague during an outbreak of the disease in Toulouse in
1652 or 1653. He was at first reported to be dead but was among the lucky
few who recovered.

During the 1660s Fermat was in ill health. A meeting with Pascal in
1660 had to be called off because neither was well enough to travel. As a
result, Fermat missed his only chance to meet a major mathematician. He
never traveled far from Toulouse and all his work was done by correspon-
dence, mostly with members of Mersenne’s circle in Paris. After 1662 his
letters cease to refer to scientific work, but he was signing legal documents
until three days before his death. He died in Castres while on the court cir-
cuit, and was buried there. However, in 1675 his remains were transferred
to the Fermat family vault in the Church of the Augustines in Toulouse.

Fermat’s apparent refusal to put mathematics ahead of his profession
makes the depth and range of his mathematical achievement all the more
perplexing. We may never know enough about Fermat to understand his
mathematical thought, but the attempts that have been made so far raise
hopes that more can be done. Mahoney (1973) gives a survey of all of
Fermat’s mathematics but fails to do justice to the number theory. Weil
(1984) has a brilliant analysis of Fermat’s number theory, but other facets
of Fermat’s mathematics have yet to be analyzed with comparable insight.
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Elliptic Functions

Preview

Elliptic functions, like many innovations in mathematics, arose as a way
around an impasse. As we saw in Section 9.6, the search for closed-form
solutions in integral calculus foundered on integrands such as 1/

√
1 − x4,

because no “known” function f (x) has derivative 1/
√

1 − x4.
Eventually, mathematicians accepted the fact that

∫ x

0
dt√
1−t4

is a new
function. It is one of a family called the elliptic integrals, because one of
them is the integral that defines the arc length of the ellipse.∫ x

0
dt√
1−t4

is the simplest elliptic integral to investigate, and many of
its properties were found by analogy with those of the arcsine integral∫ x

0
dt√
1−t2

. However, these were feats of virtuosity, like finding properties
of the arcsine integral without using the sine function.

The real innovation came around 1800, when Gauss realized that one
should not study the elliptic integral u =

∫ x

0
dt√
1−t4

, but rather its inverse

function x as a function of u (just as one should study the sine function
rather than the arcsine integral). He wrote x = sl(u) and found that sl, like
the sine function, is periodic:

sl(u + 2�) = sl(u), where � is a certain real number.

More surprisingly, sl has second period 2i�, so sl is better viewed as a
function of complex numbers.

These results first became widely known when they were rediscovered
and published by Abel and Jacobi in the 1820s. Further insights into double
periodicity were obtained in the 1850s, as we will see in Chapter 16.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 225
DOI 10.1007/978-1-4419-6053-5 12, c© Springer Science+Business Media, LLC 2010



226 12 Elliptic Functions

12.1 Elliptic and Circular Functions

The story of elliptic functions is one of the most curious in the history of
mathematics, beginning with a complicated analytic idea—integrals of the
form

∫
R(t,
√

p(t)) dt, where R is a rational function and p is a polynomial
of degree 3 or 4—and reaching a climax with a simple geometric idea—
the torus surface. Perhaps the best way to understand it is to compare it
with a fictitious history of circular functions that begins with the integral∫

dt/
√

1 − t2 and ends with the discovery of the circle. Unlikely as this
fiction is, it was paralleled by the actual development of elliptic functions
between the 1650s and the 1850s.

The late recognition of the geometric nature of elliptic functions was
due to late recognition of the existence and geometric nature of complex
numbers. In fact, the later history of elliptic functions unfolds alongside
the development of complex numbers, which is the subject of Chapters 14
to 16. In the present chapter we are concerned mainly with the history up
to 1800, before complex numbers entered in a really essential way. How-
ever, there are some subplots of the main story that do not require complex
numbers for their understanding and nicely show the parallel with the fic-
titious history of circular functions. It is convenient to relate one of these
now, because it illustrates the parallel in a simplified way and also ties up
a loose end from Chapter 11—the parameterization of cubic curves.

12.2 Parameterization of Cubic Curves

To see how to construct parameterizing functions for a cubic curve, we first
reconstruct the parameterizing functions

x = sin u,

y = cos u

for the circle x2 + y2 = 1, pretending that we do not know this curve
geometrically but only as an algebraic relation between x and y.

The sine function can be defined as the inverse f of f −1(x) = sin−1 x,
which in turn is definable as the integral

f −1(x) =
∫ x

0

dt√
1 − t2

.
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Finally, the integral can be viewed as an outgrowth of the equation y2 =
1− x2, because the integrand 1/

√
1 − x2 is simply 1/y. Why do we use this

integrand rather than any other to define u = f −1(x) and hence obtain x as
a function f (u)? The answer is that we then obtain y as f ′(u); hence x, y
are both functions of the parameter u. This is confirmed by the following
calculation:

f ′(u) =
dx
du
= 1
/du

dx

and
du
dx
=

d
dx

∫ x

0

dt√
1 − t2

=
1√

1 − x2
=

1
y

;

hence y = f ′(u) (which of course is cos u).
Exactly the same construction can be used to parameterize any relation

of the form y2 = p(x). We put

u = g−1(x) =
∫ x

0

dt√
p(t)

to get x = g(u), and then find that y = g′(u) by differentiation of u. Thus
in a sense it is trivial to parameterize curves of the form y2 = p(x) (which
we know from Section 8.4 to include all cubic curves, up to a projective
transformation of x and y). As we shall see in the next section, the inte-
grals

∫
dt/
√

p(t) had been studied since the 1600s for p a polynomial of
degree 3 or 4; however, no one thought to invert them until about 1800.
Jacobi had a deep knowledge of both the integrals and inversion when he
wrote his cryptic paper, Jacobi (1834), pointing out the relation between
integrals and rational points on curves (cf. Sections 11.6 and 12.5). Thus it
seems likely he understood the preceding parameterization, though such a
parameterization was first given explicitly by Clebsch (1864).

Exercises

It may happen that the integral
∫ x

0
dt/
√

p(t) does not converge because of

the behavior of 1/
√

p(t) at t = 0. But in that case one can use the parameter
u = f −1(x) =

∫ x

a
dt/
√

p(t) for some other value of a.

12.2.1 Check that y = f ′(u) remains true with this change of definition.

When the cubic curve is y2 = x3, which has a rational parameterization, the
parameterizing functions constructed above indeed turn out to be rational.

12.2.2 Given y = x3/2, find x = f (u) and y = f ′(u), where u = f −1(x) =
∫ x

a
dt

t3/2 .
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12.3 Elliptic Integrals

Integrals of the form
∫

R(t,
√

p(t)) dt, where R is a rational function and p
is a polynomial of degree 3 or 4 without multiple factors, are called elliptic
integrals, because the first example occurs in the formula for the arc length
of the ellipse. (The functions obtained by inverting elliptic integrals are
called elliptic functions, and the curves that require elliptic functions for
their parameterization are called elliptic curves. This drift in the meaning
of “elliptic” is rather unfortunate because the ellipse, being parameterizable
by rational functions, is not an elliptic curve!)

Elliptic integrals arise in many important problems of geometry and
mechanics, for example, finding arc lengths of the ellipse and hyperbola,
period of the simple pendulum, and deflection of a thin elastic bar. See
Chapter 13 and, for example, Melzak (1976), pp. 253–269. When these
problems first arose in the late 17th century they posed the first obstacle
to Leibniz’s program of integration in “closed form” or “by elementary
functions.” As mentioned in Section 9.6, Leibniz considered the proper
solution of an integration problem

∫
f (x) dx to be a known function g(x)

with the property g′(x) = f (x). The functions then “known,” and now
called “elementary,” were those composed from algebraic, circular, and
exponential functions and their inverses.

All efforts to express elliptic integrals in these terms failed, and as early
as 1694 Jakob Bernoulli conjectured that the task was impossible. The
conjecture was eventually confirmed by Liouville (1833), in the course of
showing that a large class of integrals is nonelementary. In the meantime,
mathematicians had discovered so many properties of elliptic integrals, and
the elliptic functions obtained from them by inversion, that they could be
considered known even if not elementary.

The key that unlocked many of the secrets of elliptic integrals was the
curve known as the lemniscate of Bernoulli (Figure 12.1). This curve is
mentioned briefly in Section 2.5 as one of the spiric sections of Perseus. It
has cartesian equation

(x2 + y2)2 = x2 − y2

and polar equation

r2 = cos 2θ.

The first to consider it in its own right was Jakob Bernoulli (1694). He
showed that its arc length is expressed by the elliptic integral

∫ x

0 dt/
√

1 − t4,
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x

y

Figure 12.1: The lemniscate of Bernoulli

subsequently known as the lemniscatic integral, and thus he gave this for-
mal expression a concrete geometric interpretation. Many later develop-
ments in the theory of elliptic integrals and functions grew out of inter-
play between the lemniscate and the lemniscatic integral. Being the sim-
plest elliptic integral, or at any rate the most analogous to the arcsine in-
tegral

∫ x

0
dt/
√

1 − t2, the lemniscatic integral
∫ x

0
dt/
√

1 − t4 was the most
amenable to manipulation. It was often possible, after some property had
been extracted from the lemniscatic integral, to extend the argument to
more general elliptic integrals.

The most notable example of this methodology was in the discovery of
the addition theorems, which we discuss in the next section.

Exercises

The properties of the lemniscate mentioned above are easily proved by some
standard analytic geometry and calculus.

12.3.1 Deduce the cartesian equation of the lemniscate from its polar equation

r2 = cos 2θ.

12.3.2 Use the polar equation of the lemniscate and the formula for the element
of arc in polar coordinates,

ds =
√

(r dθ)2 + dr2

to deduce that arc length of the lemniscate is given by

s =
∫

dθ
r
.
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12.3.3 Conclude, by changing the variable of integration to r, that the total length

of the lemniscate is 4
∫ 1

0
dr/
√

1 − r4.

Unlike the arcsine integrand 1/
√

1 − t2, which is rationalized by substituting
2v/(1 + v2) for t, the lemniscatic integrand 1/

√
1 − t4 cannot be rationalized by

replacing t by any rational function.

12.3.4 Explain how this follows from the exercises in Section 11.6.

It was this connection between the lemniscatic integral and Fermat’s theorem
on the impossibility of r4 − s4 = v2 in positive integers that led Jakob Bernoulli
to suspect the impossibility of evaluating the lemniscatic integral by known func-
tions.

12.4 Doubling the Arc of the Lemniscate

An addition theorem is a formula expressing f (u1 + u2) in terms of f (u1)
and f (u2), and perhaps also f ′(u1) and f ′(u2). For example, the addition
theorem for the sine function is

sin(u1 + u2) = sin u1 cos u2 + sin u2 cos u1.

Since the derivative, cos u, of sin u equals
√

1 − sin2 u, we can also write
the addition theorem as

sin(u1 + u2) = sin u1

√
1 − sin2 u2 + sin u2

√
1 − sin2 u1,

showing that sin(u1 + u2) is an algebraic function of sin u1 and sin u2.
To simplify the comparison with elliptic functions we consider the fol-

lowing special case of the sine addition theorem:

sin 2u = 2 sin u
√

1 − sin2 u. (1)

If we let

u = sin−1 x =
∫ x

0

dt√
1 − t2

,

then

2u = 2
∫ x

0

dt√
1 − t2

.

But from (1) we also have

2u = sin−1(2x
√

1 − x2),
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so

2
∫ x

0

dt√
1 − t2

=

∫ 2x
√

1−x2

0

dt√
1 − t2

. (2)

Bearing in mind that sin−1 x =
∫ x

0 dt/
√

1 − t2 represents the angle u seen in
Figure 12.2, equation (2) tells us that the angle (or arc length) u is doubled
by going from x to 2x

√
1 − x2. The latter number, since it is obtained from

x by rational operations and square roots, is constructible from x by ruler
and compass (confirming the geometrically obvious fact that an angle can
be duplicated by ruler and compass).

O 1x

u

2x
√

1 − x2

Figure 12.2: Doubling a circular arc

All this has a remarkable parallel in the properties of the lemniscate
and its arc-length integral

∫ x

0 dt/
√

1 − t4. The discovery of a formula for
doubling the arc of the lemniscate by Fagnano (1718) showed that geomet-
ric information could be extracted from the previously intractable elliptic
integrals, and we can also view it as the first step toward the theory of
elliptic functions. In our notation, Fagnano’s formula is

2
∫ x

0

dt√
1 − t4

=

∫ 2x
√

1−x4/(1+x4)

0

dt√
1 − t4

. (3)

Since 2x
√

1 − x4/(1 + x4) is obtained from x by rational operations and
square roots, (3) shows, like (2), that the arc can be doubled by ruler and
compass construction.
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Exercises

Fagnano derived his formula by two substitutions that, as Siegel (1969), p. 3,
points out, are analogous to a natural substitution for the arcsine integral. The fol-
lowing exercises compare the effect of the substitution t = 2v/(1+v2) in dt/

√
1 − t2

with analogous substitutions for t2 in dt/
√

1 − t4.

12.4.1 Show that substituting t = 2v/(1+ v2) gives
√

1 − t2 = (1− v2)/(1+ v2) and
hence that dt/

√
1 − t2 = 2dv/(1 + v2).

12.4.2 Show that t2 = 2v2/(1 + v4) gives
√

1 − t4 = (1 − v4)/(1 + v4) and hence

dt√
1 − t4

=
√

2
dv√

1 + v4
.

It follows that this change of variable corresponds to a certain relation be-
tween integrals, which turns out to be “half way” to the Fagnano formula.

12.4.3 Deduce from Exercise 12.4.2 that

√
2
∫ x

0

dv√
1 + v4

=

∫ √
2x/
√

1+x4

0

dt√
1 − t4

.

To complete the journey to the Fagnano formula we make a second, similar,
substitution that recreates the lemniscatic integral.

12.4.4 Similarly show that the substitution v2 = 2w2/(1 − w4) gives

dv√
1 + v4

=
√

2
dw√

1 − w4
.

12.4.5 Check that the result of the substitutions in Exercises 12.4.2 and 12.4.4 is

t =
2w
√

1 − w4

1 + w4

and that the corresponding relation between integrals is the Fagnano dupli-
cation formula.

12.5 General Addition Theorems

Fagnano’s duplication formula remained a little-known curiosity until Eu-
ler received a copy of Fagnano’s works on December 23, 1751, a date later
described by Jacobi as “the birth day of the theory of elliptic functions.”
Euler was the first to see that Fagnano’s substitution trick was not just a
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curious fluke but a revelation into the behavior of elliptic integrals. With
his superb manipulative skill Euler was quickly able to extend it to very
general addition theorems; first to the addition theorem for the lemniscatic
integral,

∫ x

0

dt√
1 − t4

+

∫ y
0

dt√
1 − t4

=

∫ (x
√

1−y4+y√1−x4)/(1+x2y2)

0

dt√
1 − t4

;

then to
∫

dt/
√

p(t), where p(t) is an arbitrary polynomial of degree 4. An
ingenious reconstruction of Euler’s train of thought, by analogy with the
arcsine addition theorem

∫ x

0

dt√
1 − t2

+

∫ y
0

dt√
1 − t2

=

∫ x
√

1−y2+y√1−x2

0

dt√
1 − t2

,

has been given by Siegel (1969), pp. 1–10. Brilliant as his results were,
Euler was dealing only with elliptic integrals, not with elliptic functions,
their inverses, so one could still quibble with Jacobi’s assessment. But
one has to remember that Jacobi could see an elliptic function a mile off,
probably more easily than we can see that the arcsine addition theorem is
really a theorem about sines!

It should be mentioned that Euler’s addition theorems do not cover all
elliptic integrals. The general form

∫
R(t,
√

p(t)) dt does, however, reduce
to just three kinds, of which Euler’s are the first and most important. The
classical theory of elliptic integrals of the different kinds, with their vari-
ous addition and transformation theorems, was systematized by Legendre
(1825). Ironically, this was just before the appearance of elliptic functions,
which made much of Legendre’s work obsolete.

These early investigations exploited some of the formal similarities be-
tween

∫
dt/
√

p(t), where p is a polynomial of degree 4, and
∫

dt/
√

q(t),
where q is a quadratic. There is no real difference if p is of degree 3, as
an easy transformation shows (Exercise 12.5.1). This is why

∫
dt/
√

p(t) is
also called an elliptic integral when p is of degree 3. In fact, it eventually
turned out that the most convenient integral to use as a basis for the theory
of elliptic functions is

∫
dt/
√

4t3 − g2t − g3, whose inverse is known as the
Weierstrass ℘-function.

The addition theorem for this integral is
∫ x1

0

dt√
4t3 − g2t − g3

+

∫ x2

0

dt√
4t3 − g2t − g3

=

∫ x3

0

dt√
4t3 − g2t − g3

,
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where x3 is none other than the x-coordinate of the third point on

y2 = 4x3 − g2x − g3

of the straight line through (x1, y1) and (x2, y2) (see Section 11.6). Now that
we know, from Section 12.2, that this curve is parameterized by x = ℘(u),
y = ℘′(u), defined by inverting the integral, some connection between the
geometry of the curve and the addition theorem is understandable. But the
stunning simplicity of the relationship seems to demand a deeper expla-
nation. This lies in the realm of complex numbers, which we shall enter
briefly in the next section and more thoroughly in Sections 16.4 and 16.5.

Exercises

12.5.1 Show that the substitution t = 1/u transforms

dt√
(t − a)(t − b)(t − c)

into
−du√

u(1 − ua)(1 − ub)(1 − uc)
.

Conversely, we can transform quartic polynomials under the square root sign to
cubics, even in cases where the quartic is not of the form obtained in Exercise
12.5.1.

12.5.2 Transform

dt√
1 − t4

into
du√

cubic polynomial in u

by making a suitable substitution for t.

12.6 Elliptic Functions

The idea of inverting elliptic integrals to obtain elliptic functions is due to
Gauss, Abel, and Jacobi. Gauss had the idea in the late 1790s but did not
publish it; Abel had the idea in 1823 and published it in 1827, indepen-
dently of Gauss. Jacobi’s independence is not quite so clear. He seems to
have been approaching the idea of inversion in 1827, but he was stung into
action only by the appearance of Abel’s paper. At any rate, his ideas subse-
quently developed at an explosive rate, and he published the first book on
elliptic functions, the Fundamenta nova theoriae functionum ellipticarum,
two years later (Jacobi (1829)).

Gauss first considered inverting an elliptic integral in 1796, in the case
of
∫

dt/
√

1 − t3. The following year he inverted the lemniscatic integral
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and made better progress. Defining the “lemniscatic sine function” x =
sl(u) by

u =
∫ x

0

dt√
1 − t4

,

he found that this function is periodic, like the sine, with period

2� = 4
∫ 1

0

dt√
1 − t4

.

Gauss also noticed that sl(u) invites complex arguments, since it follows
from i2 = −1 that

d(it)√
1 − (it)4

= i
dt√

1 − t4
;

hence sl(iu) = isl(u) and the lemniscatic sine has a second period 2i�.
Thus Gauss discovered double periodicity, one of the key properties of the
elliptic functions, though at first he did not realize its universality. The
scope and importance of elliptic functions hit him on May 30, 1799, when
he discovered an extraordinary numerical coincidence. His diary entry of
that day reads:

We have established that the arithmetic-geometric mean be-
tween 1 and

√
2 is π/� to 11 places; the demonstration of this

fact will surely open up an entirely new field of analysis.

Gauss had been fascinated by the arithmetic–geometric mean since
1791, when he was 14. The arithmetic–geometric mean of two positive
numbers a and b is the common limit, agM(a, b), of the two sequences {an}
and {bn} defined by

a0 = a, b0 = b,
an+1 =

an+bn
2 , bn+1 =

√
anbn.

For more information on the theory and history of the agM function, see
Cox (1984).

It is indeed true that agM(1,
√

2) = π/�, as Gauss soon proved, and
the “entirely new field of analysis” he created from the merger of these
ideas was extraordinarily rich. It encompassed elliptic functions in general,
the theta functions later rediscovered by Jacobi, and the modular functions
later rediscovered by Klein. The theory was not clearly improved until the
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1850s, when Riemann showed that double periodicity becomes obvious
when elliptic integrals are placed in a suitable geometric setting.

Unfortunately, Gauss released virtually none of his results on elliptic
functions. Apart from publishing an expression for agM(a, b) as an elliptic
integral (Gauss (1818)), he did nothing until Abel’s results appeared in
1827—then promptly claimed them as his own. He wrote to Bessel (Gauss
(1828)):

I shall most likely not soon prepare my investigations on the
transcendental functions which I have had for many years—
since 1798. . . . Herr Abel has now, as I see, anticipated me
and relieved me of the burden in regard to one third of these
matters.

It was disingenuous of Gauss to claim he had more results than Abel,
because Abel also had results unknown to Gauss. True, Gauss had prior-
ity on the key ideas of inversion and double periodicity, but priority isn’t
everything, as Gauss himself perhaps knew. His own cherished discovery
of the relation between agM and elliptic integrals had not only been found
earlier, but even published by Lagrange (1785).

Exercises

The following exercises show how the lemniscatic sine and its derivative are
quite analogous to the ordinary sine and its derivative, the cosine.

12.6.1 Show that sl′(u) =
√

1 − sl4(u).

12.6.2 Deduce from the Euler addition theorem (Section 12.4) that

sl(u + v) =
sl(u)sl′(v) + sl(v)sl′(u)

1 + sl2(u)sl2(v)
.

12.7 A Postscript on the Lemniscate

The duplication of the arc of the lemniscate had some interesting conse-
quences for the lemniscate itself. Fagnano showed, by similar arguments,
that a quadrant of the lemniscate can be divided into two, three, or five
equal arcs by ruler and compass (see Ayoub (1984)). This raised a ques-
tion: for which n can the lemniscate be divided into n equal parts by ruler
and compass? Recall from Section 2.3 that the corresponding question for
the circle had been answered by Gauss (1801), Art. 366. As mentioned
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in Section 2.3, the answer is n = 2m p1 p2 · · · pk, where the pi are distinct
primes of the form 22h

+ 1. In the introduction to his theory (Art. 355),
Gauss claims:

The principles of the theory which we are going to explain
actually extend much further than we will indicate. For they
can be applied not only to circular functions but just as well to
other transcendental functions, e.g. to those which depend on
the integral

∫
(1/
√

1 − x4) dx.

However, his surviving papers do not include any result on the lemnis-
cate as incisive as his result on the circle. There is only a diary entry of
March 21, 1797, stating divisibility of the lemniscate into five equal parts.

The answer to the problem of dividing the lemniscate into n equal parts
was found by Abel (1827), transforming Gauss’s obscurity into crystal clar-
ity: division by ruler and compass is possible for precisely the same n as
for the circle. This wonderful result serves, perhaps better than any other,
to underline the unifying role of elliptic functions in geometry, algebra, and
number theory. A modern proof of it may be found in Rosen (1981).

12.8 Biographical Notes: Abel and Jacobi

Niels Henrik Abel was born in the small town of Finnøy, on the southwest-
ern coast of Norway, in 1802 and died in Oslo in 1829. In his short life he
managed to win the esteem of the best mathematicians in Europe, but he
fell victim to official indifference, terrible family burdens, and tuberculo-
sis. His heart-breaking story is not unlike that of his great contemporary in
another field, the poet John Keats (1797–1823).

Like several mathematicians before him (Wallis, Gregory, Euler), Abel
was the son of a Protestant minister. His father, Søren, distinguished him-
self in theology and philology at the University of Copenhagen and was a
supporter of the new literary and social movements of his time. Søren’s lib-
erality, particularly toward the consumption of alcohol, was unfortunately
not matched by good judgment, and his marriage to Anne Marie Simonsen
in 1799 eventually led to disaster. The beautiful Anne Marie was a talented
pianist and singer but completely irresponsible and later openly unfaithful
to her husband. The family held together during Abel’s early years, when
he was educated by his father, but both parents were becoming frequently
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drunk and unstable by 1815, when Niels and his older brother, Hans Math-
ias, were sent to the Cathedral School in Oslo.

At first school was not much better than home. Some of its best teach-
ers had gone to the recently opened Oslo University, and discipline had
deteriorated to the point where fights between staff and students were com-
mon. The mathematics teacher, Bader, was particularly brutal, beating
even good students like Abel, and injuring one boy severely enough to
cause his death. This led to Bader’s dismissal (without his being brought
to court, however) and to the appointment of a new mathematics teacher,
Bernt Michael Holmboe, in 1818. Although not a creative mathematician,
Holmboe knew his subject and was an inspiring teacher. He introduced
Abel to Euler’s calculus texts, and Abel soon abandoned all other reading
for the works of Newton, Lagrange, and Gauss, among others. By 1819
Holmboe was writing in his report book, “With the most excellent genius
he combines an insatiable interest and desire for mathematics, so that if
he lives he probably will become a great mathematician” (see Ore (1957),
p. 33). Ore informs us that the last three words are a revision, probably
of the phrase “the world’s foremost mathematician,” which Holmboe may
have been asked to tone down by the school principal. Why Holmboe chose
to balance the phrase with the ominous “if he lives” is a mystery, though
uncomfortably close to correct prophecy.

During his last two years at the Cathedral School, around 1820, Abel
believed he had discovered the solution of the quintic equation. The math-
ematicians in Oslo were skeptical but unable to fault Abel’s argument, so it
was sent to the Danish mathematician Ferdinand Degen. Degen, too, was
unable to find an error, but he prudently asked Abel for more details and
a numerical illustration. When Abel attempted to compute one he discov-
ered his error. However, Degen also had another suggestion: Abel would
do better to apply his energy to “the elliptic transcendentals.”

Meanwhile, Abel’s family was disintegrating. Hans Mathias, after a
promising start at the Cathedral School, slipped to the bottom of the class
and was sent home, eventually to become feeble-minded. His father drank
himself to death in 1820, leaving the family penniless. Niels Henrik, now
the oldest responsible member of the family, took steps that were to save
his sister Elisabeth and younger brother Peder. He found another home for
Elisabeth and took Peder with him when he entered the University of Oslo
in 1821.

Before long, Abel had read most of the advanced mathematical works
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in the university library, and his own research began in earnest. By 1823 he
had discovered the inversion that was the key to elliptic functions, proved
the unsolvability of the quintic, and discovered a wonderful general theo-
rem on integration, now known as Abel’s theorem, which implicitly intro-
duces the concept of genus. On a trip to Copenhagen in 1823 to tell Degen
of these results, he met and fell in love with Christine (“Crelly”) Kemp.
Like Abel, she came from an educated but impoverished family; she was
making a living for herself by tutoring. The remaining six years of Abel’s
life were consumed by the struggle for recognition of his mathematics and
attempts to gain a position that paid enough to allow him to marry Crelly.

In 1824 he won a government grant to travel and meet other scientists,
and he became engaged to Crelly at Christmas. She was now working in
Oslo as a governess, a job that Abel had arranged for her. The grant was
mainly intended to take him to Paris, but when he finally set off, late in
1825, he impulsively detoured to Berlin to visit friends. There he also met
August Crelle, an engineer and amateur mathematician, who was about to
found the first German mathematical journal. The meeting was fortuitous,
because Crelle was able to give an international circulation to Abel’s first
important results, while Abel could supply papers of a quality that ensured
the success of the new journal. In meeting influential mathematicians Abel
was less lucky. He made no effort to visit Gauss while in Germany, be-
ing convinced that Gauss was “absolutely unapproachable,” and failed to
make an impression on Cauchy in Paris, though he presented him with a
copy of the memoir on Abel’s theorem. During his stay in Paris, Abel dis-
covered his theorem on the lemniscate and sat for his only known portrait
(Figure 12.3).

By the end of 1826 Abel was running out of money and eating only
one meal a day. He feared he was losing touch with Crelly, since she had
returned to Copenhagen and her letters were infrequent. He left Paris for
Berlin on December 29, while he still had money to pay for the journey, and
found a letter from Crelly waiting. Some good news at last! Crelly stood
by him as ever, and their plans for the future were revived. Abel returned to
Oslo in May 1827, via Copenhagen, and arranged another job in Norway
for Crelly. Unfortunately, the university was still unwilling to give him
more than a temporary appointment, which paid barely enough to meet his
family’s debts. In September 1827 Abel’s first memoir on elliptic functions
was published in Crelle’s journal. In the same month, Jacobi appeared on
the scene with the first announcement of his results. There were results
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Figure 12.3: Niels Henrik Abel

that Abel knew how to prove, and when Jacobi’s proofs appeared, some
months later, Abel was shocked to see Jacobi using the method of inver-
sion without acknowledging its previous appearance in Abel’s paper. Abel
was initially bitter over this blow and strove to “knock out” Jacobi with
a second memoir. However, he ceased to bear a grudge after he learned
how much Jacobi really admired his work. Jacobi in fact admitted that his
first announcement had been based on guesswork and that he had realized
inversion was the key to the proof only after reading Abel.

In May 1828 Abel finally received a decent job offer from Berlin, only
to have it withdrawn two months later. Crelle had been working in support
of Abel, but another candidate had pushed in ahead of him. Then a group
of French mathematicians petitioned the king of Norway–Sweden to use
his influence on Abel’s behalf, but still the University of Oslo remained
unmoved. By now, time was running out. Abel’s health worsened and in
January 1829 he began spitting blood. Crelle renewed his efforts in Berlin,
but it was too late. Abel died on April 6, 1829, just two days before the
arrival of a letter from Crelle informing him of his appointment as professor
in Berlin.

For a recent biography of Abel, very thorough on his life and times, but
less so on his mathematics, see Stubhaug (2000).
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Carl Gustav Jacob Jacobi (Figure 12.4) was born in Potsdam in 1804
and died in Berlin in 1851. He was the second of three sons of Simon Ja-
cobi, a banker. The oldest son, Moritz, became a physicist and inventor of
a popular pseudoscience called “galvanoplastics,” which made him more
famous in his time than Carl. The youngest, Eduard, carried on the family
business, and there was also a sister, Therese. Jacobi’s mother’s name has
not come down to us, though her side of the family was also important,
one of her brothers taking charge of Jacobi’s education until he entered
secondary school in 1816. He was promoted to the top class after only a
few months, but he had to remain in school for four years, until he became
old enough to enter university. During his school days Jacobi excelled in
classics and history as well as mathematics. He studied Euler’s Introduc-
tio in analysin infinitorum and attempted, like Abel, to solve the quintic
equation.

Figure 12.4: Carl Gustav Jacob Jacobi

Entering the University of Berlin in 1821, Jacobi continued his broad
classical education for two years, before private study of the works of Eu-
ler, Lagrange, Laplace, and Gauss convinced him that he had time only for
mathematics. He gained his first degree in 1824 and began lecturing (on
differential geometry) at the University of Berlin in 1825. Despite a repu-
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tation for bluntness and sarcasm, Jacobi made rapid progress in his career.
He moved to Königsberg in 1826, becoming associate professor there in
1827 and full professor in 1832. Overriding Jacobi’s sometimes abrasive
manner were his exceptional energy and enthusiasm for both research and
teaching. He managed to combine the two by lecturing up to 10 hours a
week on elliptic functions, incorporating his latest discoveries. Such high-
intensity instruction was unheard of then, as it is now, yet Jacobi built up a
school of talented pupils.

In 1831 he married Marie Schwink, the daughter of a formerly wealthy
man who had lost his fortune through speculation. Nine years later, with
a growing family (eventually five sons and three daughters), Jacobi found
himself in a similar predicament. His father’s fortune had vanished and
he had to support his widowed mother. In 1843 he suffered a breakdown
from overwork, and diabetes was diagnosed. His friend Dirichlet managed
to secure a grant for Jacobi to travel to Italy for the sake of his health.
After eight months there, Jacobi was well enough to return. He was given
permission to move to Berlin, because of its milder climate, and an increase
in salary to meet the higher living costs in the capital. However, in 1849 the
salary bonus was retracted. Jacobi had to move out of his house to an inn,
and he sent the rest of his family to the small town of Gotha, where housing
was cheaper. Early in 1851 he came down with influenza after visiting
them. Before he had quite recovered, he was stricken with smallpox and
died within a week.

Jacobi is remembered for his contributions to many fields of mathe-
matics, including differential geometry, mechanics, and number theory as
well as elliptic functions. He was a great admirer of Euler and planned
the edition of Euler’s works that eventually began to appear, on a reduced
scale, in 1911. In fact, in many ways Jacobi was a second, if lesser, Euler.
He saw elliptic functions not so much as things in themselves, as Abel did,
but as a source of dazzling formulas with implications in number theory.
An astounding collection of formulas may be found in his major work on
elliptic functions, the Fundamenta nova (1829). At the same time, he was
deeply impressed by Abel’s ideas and selflessly campaigned to make them
better known. He introduced the terms “Abelian integral” and “Abelian
function” for the generalizations of elliptic integrals and functions consid-
ered by Abel as well as “Abelian theorem” for Abel’s theorem, which he
described as “the greatest mathematical discovery of our time.”
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Mechanics

Preview

In Chapter 9 we introduced the concepts of derivative and integral geo-
metrically, as tangents and areas respectively. Geometry was certainly an
important source of calculus problems and concepts, but not the only one.
From the beginning, mechanics was just as important.

Mechanics is conceptually important because the derivative and the
integral are inherent in the concept of motion: velocity is the derivative
of displacement (with respect to time), and displacement is the integral of
velocity.

Also, mechanics was initially the only source of nonalgebraic curves;
for example, the cycloid, which is generated by rolling a circle along a
line. The “mechanical” curves spurred the development of calculus for the
simple reason that they were not accessible to pure algebra.

An even greater spur was the development of continuum mechanics,
which studies the behavior of such things as flexible and elastic strings,
fluid motion, and heat flow. Continuum mechanics involves functions of
several variables, and their various derivatives, hence partial differential
equations.

Some of the most important partial differential equations, such as the
wave equation and the heat equation, are clearly inseparable from their ori-
gins in continuum mechanics. Yet these very equations confronted mathe-
maticians with basic questions in pure mathematics: for example, what is
a function?

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 243
DOI 10.1007/978-1-4419-6053-5 13, c© Springer Science+Business Media, LLC 2010
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13.1 Mechanics Before Calculus

The ambiguous title reflects the dual purpose of this section: to give a
brief survey of the mechanics that came before calculus and to make the
claim that mechanics was psychologically, if not logically, a prerequisite
for calculus itself. The remainder of the chapter expands on this claim,
showing how several important fields in calculus (and beyond) originated
in the study of mechanical problems. Lack of space, not to mention lack
of expertise, prevents my venturing far into the history of mechanical con-
cepts. I assume some understanding of time, velocity, acceleration, force,
and the like, and concentrate on the mathematics that emerged from re-
flection on these notions. These developments will be pursued as far as
the 19th century. More details may be found in Dugas (1957, 1958) and
Truesdell (1954, 1960). In the last 100 years, mathematics seems to have
been the motivation for mechanics rather than the other way around. The
outstanding mechanical concepts of the 20th century—relativity and quan-
tum mechanics—would not have been conceivable without 19th-century
advances in pure mathematics, some of which we discuss later.

It is mentioned in Section 4.5 that Archimedes made the only sub-
stantial contribution to mechanics in antiquity by introducing the basics of
statics (balance of a lever requires equality of moments on the two sides)
and hydrostatics (a body immersed in a fluid experiences an upward force
equal to the weight of fluid displaced). Archimedes’ famous results on
areas and volumes were in fact discovered, as he revealed in his Method,
by hypothetically balancing thin slices of different figures. Thus the ear-
liest nontrivial results in calculus, if by calculus one means a method for
discovering results about limits, relied on concepts from mechanics.

The medieval mathematician Oresme also was mentioned (Section 7.1)
for his use of coordinates to give a geometric representation of functions.
The relationship Oresme represented was in fact velocity v as a function
of time t. He understood that displacement is then represented by the area
under the curve, and hence in the case of constant acceleration (or “uni-
formly deformed velocity,” as he called it) the displacement equals total
time × velocity at the middle instant (Figure 13.1). This result is known
as the “Merton acceleration theorem” (see, for example, Clagett (1959),
p. 355) because it originated in the work of a group of mathematicians at
Merton College, Oxford, in the 1330s. The first proofs were arithmetical
and far less transparent than Oresme’s figure.
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Figure 13.1: The Merton acceleration theorem

While constant acceleration was understood theoretically in the 1330s,
it was not clear that it was actually a natural occurrence—namely, with
falling bodies—until the time of Galileo (1564–1642). Galileo announced
the equivalent result, that displacement of a body falling from rest at time
t = 0 is proportional to t2, in a letter (Galileo (1604)). At first he was
uncertain whether this derived from a velocity proportional to time v = kt
(that is, constant acceleration) or one proportional to distance v = ks, but
he resolved the question correctly in favor of v = kt later (Galileo (1638)).
By composing the uniformly increasing vertical velocity with constant hor-
izontal velocity, Galileo derived for the first time the correct trajectory of a
projectile: the parabola.

The motion of projectiles was of weighty importance in the Renais-
sance, and was presumably observed often, yet the trajectories suggested
before Galileo were quite preposterous (see, for example, Figure 6.3). The
belief, deriving from Aristotle, that motion could be sustained only by con-
tinued application of a force led mathematicians to ignore the evidence
and to draw trajectories in which the horizontal velocity dwindled to zero.
Galileo overthrew this mistaken belief by affirming the principle of inertia:
a body not subject to external forces travels with constant velocity.

Exercises

Galileo’s result that the path of a projectile is a parabola follows easily from
the assumption that the only force is vertical, and hence the projectile has zero
acceleration in the horizontal direction.

13.1.1 Show, by consideration of areas, that the distance covered in time t by a
body moving with constant acceleration a is of the form c + at2/2.

13.1.2 Assuming that a projectile has constant vertical acceleration a and zero
horizontal acceleration, show that its position (x, y) at time t is given by the
equations x = bt, y = c + at2/2.

13.1.3 Deduce from Exercise 13.1.2 that the path of the projectile is a parabola.
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13.2 The Fundamental Theorem of Motion

When Oresme assumed that the distance covered by any body equals the
area under its velocity–time graph, he possibly thought of dividing the area
under the graph into a number of thin vertical strips, corresponding to small
time intervals (Figure 13.2). In each such interval the velocity is virtually
constant; hence its product by the time interval—the area of the strip—
virtually equals the distance covered in that time interval. By adding all
the thin strips, one sees that total area equals total distance. Whether or not
this was Oresme’s argument, he had glimpsed an important relationship.

time

velocity

O

Figure 13.2: Distance represented by area

The inverse of this relationship, describing how velocity is derived
from distance, was discovered in the 1630s. At this time, mathematicians
became interested in the problem of finding tangents to curves, and they
found it helpful to view the curve as the path of a moving point and the
direction of the tangent as the instantaneous direction of its motion. In
cases where the motion of the point could be viewed as the resultant of two
velocities u and v, the direction of the tangent could be found as the vector
sum u + v (Figure 13.3).

u

v

u + v

Figure 13.3: The vector sum of u and v

The idea of vector addition is due to Roberval, who used it to find the
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tangent to the cycloid, the curve generated by a point on a circle that rolls
along a line. He found the velocity of the moving point as the vector sum
of its velocities in the direction of the line (constant) and in the direction of
the circle (constant in speed, but in the direction of the tangent to the circle
at the current position of the point).

Now the distance–time graph of any point moving along a vertical line,
with velocity v at time t, say, is generated by a point that moves with con-
stant horizontal velocity 1 and vertical velocity v at time t (Figure 13.4).

time

distance

O

1

v

t

Figure 13.4: Distance–time graph of a vertically moving point

Thus the slope of the tangent at time t is simply v/1 = v. In other words,
velocity is the slope of the distance–time graph. This relationship between
velocity and distance was noticed around 1640 by Torricelli. Torricelli was
also aware of the idea of distance as the area under the velocity–time graph
(though he had not learned it from Oresme, but from his teacher Galileo),
so it was probably he who first glimpsed the inverse relationship between
velocity and distance:

Distance is the area of velocity (with respect to time).
Velocity is the slope of distance (with respect to time).

It seems reasonable to call this the fundamental theorem of motion.
It corresponds to a fundamental theorem about graphs, saying that

“slope” is the inverse operation of “area.” If we start with the graph of any
quantity (not necessarily velocity), apply the “area” operation, and then
the “slope” operation, we get back the original quantity. Such a theorem
was first stated by Isaac Barrow in his Lectiones Geometricae of 1670. It
was almost the fundamental theorem of calculus, but not quite, because the
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“calculus” was missing. There was not yet a general method for calculat-
ing slopes and areas of curves. However, the first step was to notice that
there was an inverse relationship between slope and area, and the concept
of motion brought this relationship to light.

The other crucial ingredient in mechanics is the relationship between
force and motion. This was provided by Newton, whose starting point was
Galileo’s principle of inertia; indeed, it is often called Newton’s first law.
It is a special case of his second law, in Newton (1687), p. 13, that force
is proportional to mass × acceleration. Under this law, the motion of a
body is determined by composition of the forces acting on it. The correct
law for the composition of forces, that forces add vectorially, had been
discovered in the case of perpendicular forces by Stevin (1586) and in the
general case by Roberval (published in Mersenne (1636)). The motion is
thus determined by vector addition of the corresponding accelerations, the
method Galileo used in the case of the projectile.

The determination of velocity and displacement from acceleration are
problems of integration, so mechanics contributed a natural class of prob-
lems to calculus just as the subject was emerging. But more than this was
true. The early practitioners of calculus believed that continuity was an es-
sential attribute of functions, and ultimately the only way they were able to
define continuity was by falling back on the dependence of a velocity or a
displacement on time. From this viewpoint, all problems of integration and
differentiation were problems of mechanics, and Newton described them as
such when explaining how his calculus of infinite series could be applied:

It now remains, in illustration of this analytical art, to deliver
some typical problems and such especially as the nature of
curves will present. But first of all I would observe that diffi-
culties of this sort may all be reduced to these two problems
alone, which I may be permitted to propose with regard to the
space traversed by any local motion however accelerated or
retarded:

1. Given the length of space continuously (that is, at every
time), to find the speed of motion at any time proposed.

2. Given the speed of motion continuously, to find the length
of space described at any time proposed.

Newton (1671), p. 71
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Of course we now know that the first problem requires differentiability
rather than continuity for its solution, but the pioneers of calculus thought
that differentiability was implied by continuity, and hence did not recognize
it as a distinct notion. In fact it was a mechanical question—the problem
of the vibrating string—whose investigation brought the distinction to light
(see Section 13.6).

13.3 Kepler’s Laws and the Inverse Square Law

Astronomy has been a powerful stimulus to mathematics since ancient
times. The epicyclic theory of Apollonius and Ptolemy introduced an in-
teresting family of algebraic and transcendental curves, as we saw in Sec-
tion 2.5, and the theory itself ruled Western astronomy until the 17th cen-
tury. Even Copernicus (1472–1543), when he overthrew Ptolemy’s earth-
centered system with a sun-centered system in his De revolutionibus or-
bium coelestium (1543), was unwilling to give up epicycles. Taking the
sun as the center of the system simplifies the orbits of the planets but does
not make them circular, so Copernicus, who accepted the Ptolemaic phi-
losophy that orbits must be generated by circular motions, modeled them
by epicycles. In fact he used more epicycles than Ptolemy.

Epicyles were finally overthrown by Kepler, who found that the sim-
plest way to explain existing observations of Mars was to assume that its
orbit was an ellipse, with the sun at one focus. This, and further study of
the known planetary observations, led him to postulate three laws; the first
two are in Kepler (1609), and the third in Kepler (1619). Kepler’s laws are:

1. The orbit of each planet is an ellipse, with the sun at one focus.

2. The line from sun to planet sweeps out area at a constant rate.

3. The period of revolution of a planet is proportional to R3/2, where R
is half the major axis of the planet’s orbit.

These laws, by including time as well as space (unlike Kepler’s misguided
attempt to explain the size of the planetary orbits in terms of the regular
polyhedra) pointed the way to the next great advance in astronomy: New-
ton’s explanation of Kepler’s laws in terms of gravitational force in his
Principia (1687). There he showed that the laws follow from the assump-
tion of a gravitational force between any two bodies, jointly proportional
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to their masses and inversely proportional to the square of the distance
between them.

We will not describe Newton’s proofs here, though you are invited to
try your hand at the second law in the exercises below. It is not very obvious
why the inverse square law implies elliptic orbits. Instead, we will show
why the inverse square law is necessary if Kepler’s third law is to hold.
Newton himself did this in his Corollary VI to Proposition IV in Book II
of the Principia.

It suffices to consider the special case of a circular orbit, in which case
symmetry tells us that the planet travels with constant speed in the tangen-
tial direction. We suppose that the radius of the orbit is r and the tangential
speed is v(r). Newton’s second law says that the force exerted by the sun is
proportional to the planet’s acceleration towards the sun, so our first prob-
lem is to find the acceleration, towards the center of the circle, of a body
traveling around a circle of radius r with constant speed v(r).

Figure 13.5 shows the relevant information for calculating the acceler-
ation: the velocity vectors v1 and v2 at two nearby points on the circle, and
a diagram of these two vectors and the difference between them. The two

v1

v2

dθ v1v2

dθ

dv

Figure 13.5: Velocity vectors of a planet in circular orbit

nearby points differ in position by a small angle dθ, which is also the angle
between the velocity vectors v1 and v2. Since both v1 and v2 have magni-
tude v(r), their difference, dv, has magnitude tending to v(r)dθ as dθ → 0,
and direction tending to perpendicular to both v1 and v2; that is, towards
the center of the circle.
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It follows that the acceleration of the planet, dv
dt , is directed towards the

sun and has magnitude
v(r)dθ

dt
.

But also, because the planet covers arc length r dθ in time dt,

v(r) =
d
dt

r dθ = r
dθ
dt
.

Thus

acceleration = v(r)
dθ
dt
=
v(r)2

r
.

Since the circumference of the orbit is 2πr, it follows that

period of orbit =
2πr
v(r)
.

On the other hand, according to Kepler’s third law,

period of orbit = ar3/2, for some constant a.

Equating the two expressions of the period, we get

ar3/2 =
2πr
v(r)
,

so

v(r) =
b

r1/2
, for some constant b.

Then, using the expression for acceleration above, we get

acceleration =
v(r)2

r
=

b

r2
, directed towards the sun.

Finally, since force equals mass × acceleration by Newton’s second law,
we find

force =
mb

r2
, directed towards the sun,

where m is the mass of the planet.

Exercises

Kepler’s second law does not depend on the inverse square law. Surprisingly,
it holds for motion under any force directed towards a fixed “sun,” as was shown
by Newton in the Principia, Book I, Proposition II.
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S

A1

A2

A′3
A3

B

Figure 13.6: Motion under an impulsive central force

Newton approximates the smooth motion under continuous attraction towards
the point S by motion under no force except for instantaneous “impulses” towards
S at small, constant time intervals. Consequently, the planet travels in a polygonal
path (denoted by . . .A1A2A3 . . . in Figure 13.6) that changes direction at the points
. . . , A1, A2, A3, . . . where the impulses towards S are received.

13.3.1 Explain why the lengths of the segments A1A2, A2A3, . . . are proportional
to the speeds at which the planet travels along these segments.

Now suppose that the planet receives an impulse towards S at point A2, chang-
ing its velocity by an amount proportional to length A2B and in the direction of
A2B. Because of this impulse, the planet arrives at point A3 at the end of the next
time interval, instead of at the point A′3 that it would have reached had it continued
with unchanged velocity.

13.3.2 Explain why BA2A′3A3 is a parallelogram.

13.3.3 Deduce from Exercise 13.3.2 that the triangles S A1A2 and S A2A′3 have
equal area.

13.3.4 Deduce from Exercise 13.3.3 that the triangles S A1A2 and S A2A3 have
equal area.

13.3.5 Now let the time interval between impulses tend to zero. Conclude that,
when a planet P moves smoothly under a continuous force from S , the line
S P sweeps out area at a constant rate.



13.4 Celestial Mechanics 253

13.4 Celestial Mechanics

Kepler was extremely lucky with his first law for two reasons. First, the
system of one planet and the sun is exceptional in having a familiar curve
(the ellipse) as the orbit. Second, if the observations at Kepler’s disposal
had been more accurate—so that the perturbing effects of other planets and
moons were detectable—then he would have found that the orbits of the
planets were not ellipses after all, but more complicated curves.

When Newton derived orbits from the inverse square law of gravitation
in the Principia, Book I, Section III, he showed that there was a deeper
level of explanation—the infinitesimal level—where simplicity could be
attained even when it was not possible at the global level. The force on
a given body B1 is simply the vector sum of the forces due to the other
bodies B2, . . . , Bn in the system, determined by their masses and distances
from B1 by the inverse square law. By Newton’s second law, this deter-
mines the acceleration of B1. The accelerations of B2, . . . , Bn are similarly
determined, hence the behavior of the system is completely determined by
the inverse square law, once initial positions and velocities are given. The
inverse square law is an infinitesimal law in the sense that it describes the
limiting behavior of a body—its acceleration—and not its global behavior
such as the shape or period of its orbit.

As we now know, it is rarely possible to describe the global behavior
of a dynamical system explicitly. So, by directing attention to infinitesimal
behavior, Newton found the only viable basis for dynamics. Unfortunately,
he communicated this insight poorly (for today’s audience) by expressing
it in geometrical terms, perhaps in the belief that calculus did not belong
in a serious publication. By the 18th century this belief had been dispelled
by Leibniz and his followers, and definitive formulations of dynamics in
terms of calculus were given by Euler and Lagrange. The latter recog-
nized that the infinitesimal behavior of a dynamical system was typically
described by a system of differential equations and that the global behavior
was derivable from these equations, in principle, by integration.

The question remained, however, whether the inverse square law did
indeed account for the observed global behavior of the solar system. In
a system with only two bodies, Newton (1687), p. 166, showed that each
describes a conic section relative to the other—in normal cases an ellipse
as stated by Kepler. With a three-body system, such as the earth–moon–
sun, no simple global description was possible, and Newton could obtain
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only qualitative results through approximations. With the many bodies in
the solar system, extremely complex behavior was possible, and for 100
years mathematicians were unable to account for some of the phenomena
actually observed.

A famous example was the so-called secular variation of Jupiter and
Saturn, which was detected by Halley in 1695 from the observations then
available. For several centuries Jupiter had been speeding up (spiraling to-
ward the sun) and Saturn had been slowing down (spiraling outward). The
problem was to explain this behavior and to determine whether it would
continue, with the eventual destruction of Jupiter and disappearance of Sat-
urn. Euler and Lagrange worked on the problem without success; then, in
the centenary year of Principia, Laplace (1787) succeeded in explaining
the phenomenon. He showed that the secular variation was actually peri-
odic, with Jupiter and Saturn returning to their initial positions every 929
years. Laplace viewed this as confirmation not only of the Newtonian the-
ory but also of the stability of the solar system, though it seems that the
latter is still an open question.

Laplace introduced the term “celestial mechanics” and left no doubt
that the theory had arrived with his monumental Mécanique céleste, a work
of five volumes that appeared between 1799 and 1825. In astronomy, the
theory had its finest hour in 1846, with the discovery of Neptune, whose po-
sition had been computed by Adams and Leverrier from observed perturba-
tions in the orbit of Uranus. The difficult question of stability was taken up
again in the three-volume Les méthodes nouvelles de la mécanique céleste
of Poincaré (1892, 1893, 1899). In this work Poincaré directed attention
toward asymptotic behavior, in a sense complementing Newton’s infinites-
imal view with a view toward infinity, and his methods have become highly
influential in 20th-century dynamics.

A surprising phenomenon brought to light by Poincaré is what we now
call chaos, or “sensitive dependence on initial conditions.” In many dy-
namical systems, such as a system of three or more bodies under their mu-
tual gravitational attraction, a small change in initial conditions can pro-
duce a large change in outcome. Thus, even though the evolution of the
system may be predictable in principle, it can be unpredictable in practice
because the initial conditions need to be known with infinite accuracy.

An amazing example of “unpredictable” behavior occurs in the three-
body system discovered by Sitnikov (1960). Sitnikov’s system consists of
two “suns” that revolve periodically about each other in ellipses, while an
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infinitesimal “planet” oscillates on a line through the center of mass of the
two suns and perpendicular to their plane. Suppose we take the “year” for
this system to be the period of revolution of the “suns.” Also suppose that
we have a record of the “years” in which the planet has crossed the plane
of the “suns,” and that this record extends infinitely far into the past. Thus
the record of crossings is some nondecreasing sequence of integers, say

. . . , −1000000, −997, −300, −14, −13, −3, −2, −1

The amazing property of Sitnikov’s system is that any nondecreasing se-
quence of integers can be realized in this way. And therefore, even if the
years of all past crossings are known, the year of the next crossing cannot
be predicted.

Another astonishing kind of behavior that can occur in many-body sys-
tems is escape to infinity in finite time. That is, in a system of n bodies, all
initially at finite distance and with finite velocity, one of the bodies can
accelerate so fast that it reaches infinite distance (and infinite velocity) in
finite time. This was first proved by Xia (1992), for n = 5.

For an entertaining account of the many kinds of pathological behavior
recently discovered in celestial mechanics, see Diacu and Holmes (1996).

Exercises

Xia’s example of escape to infinity seems implausible at first, because it seems
impossible for a body to acquire the infinite energy required. However, infinite
velocity (and hence infinite kinetic energy) can be acquired even in the system of
two point bodies moving on a straight line. The catch is that the infinite velocity
is acquired at the moment when the two bodies collide. We suppose that the two
bodies lie on the x axis and that one of them is taken to be the origin.

13.4.1 Show that d2 x
dt2 =

d
dx

1
2

(
dx
dt

)2
.

13.4.2 Deduce from Exercise 13.4.1 that, in the straight-line two-body problem,
with one body at O, the other body reaches infinite speed when x = 0.

13.4.3 Also show (without finding a formula for distance) that the body reaches
x = 0 in finite time.

13.5 Mechanical Curves

When Descartes gave his reasons for restricting La Géométrie to algebraic
curves (which he called “geometric”; see Section 7.3), he explicitly ex-
cluded certain classical curves on the rather vague grounds that they
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belong only to mechanics, and are not among those curves
that I think should be included here, since they must be con-
ceived of as described by two separate movements whose re-
lation does not admit of exact determination.

Descartes (1637), p. 44

The curves that Descartes relegated “to mechanics” were those the
Greeks had defined by certain hypothetical mechanisms, for example, the
epicycles (described by rolling one circle on another) and the spiral of
Archimedes (described by a point moving at constant speed along a uni-
formly rotating line). He was probably aware that the spiral is transcenden-
tal by virtue of the fact that it meets a straight line in infinitely many points.
This is contrary to the behavior of an algebraic curve p(x, y) = 0, which
meets a straight line y = mx+c in only finitely many points, corresponding
to the finitely many solutions of p(x,mx + c) = 0. This proof that there
are transcendental curves was given explicitly by Newton (1687), Lemma
XXVIII.

We do not know whether Descartes distinguished, say, the algebraic
epicycles from the transcendental ones; nevertheless, it is broadly true that
his “mechanical” curves were transcendental. This remained true with the
great expansion of mechanics and calculus in the 17th century, and indeed
most of the new transcendental curves originated in mechanics. In this
section we shall look at three of the most important of them: the catenary,
the cycloid, and the elastica.

The catenary is the shape of a hanging cord, assumed to be perfectly
flexible and with mass uniformly distributed along its length. In practice,
the flexibility and uniformity of mass are realized better by a hanging chain,
hence the name “catenary,” which comes from the Latin catena for chain.
Hooke (1675) observed that the same curve occurs as the shape of an arch
of infinitesimal stones. The catenary looks very much like a parabola and
was at first conjectured to be one by Galileo. This was disproved by the
17-year-old Huygens (1646), though at the time Huygens was unable to
determine the correct curve. He did show, however, that the parabola was
the shape assumed by a flexible cord loaded by weights that are uniformly
distributed in the horizontal direction (as is approximately the case for the
cable of a suspension bridge).

The problem of the catenary was finally solved independently by Jo-
hann Bernoulli (1691), Huygens (1691), and Leibniz (1691), in response
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to a challenge from Jakob Bernoulli in 1690. Johann Bernoulli showed that
the curve satisfies the differential equation

dy
dx
=

s
a
,

where a is constant and s = arc length OP (Figure 13.7).

F0

F1

O

P
dx

dy

W

Figure 13.7: The catenary

He derived this equation by replacing the portion OP of the chain,
which is held in equilibrium by the tangential force F1 at P and the hor-
izontal force F0, which is independent of P, by a point mass W equal to
the weight of OP (hence proportional to s) held in equilibrium by the same
forces. Comparing the directions and magnitudes of the forces gives

dy
dx
=

W
F0
=

s
a
.

By ingenious transformations Bernoulli reduced the equation to

dx =
a dy√
y2 − a2

,
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in other words, to an integral. This solution was as simple as could be
stated at the time, since x is a transcendental function of y and hence can
be expressed, at best, as an integral. Today, of course, we recognize the
function as one of the “standard” ones and abbreviate the solution as

y = a cosh
x
a
− a.

The cycloid is the curve generated by a point on the circumference of a
circle rolling on a straight line. Despite being a natural limiting case in the
epicyclic family, the cycloid does not seem to have been investigated until
the 17th century, when it became a favorite curve with mathematicians. It
has many beautiful geometric properties, and even more remarkable me-
chanical properties. The first of these, discovered by Huygens (1659b),
is that the cycloid is the tautochrone (equal-time curve). A particle con-
strained to slide along an inverted cycloid takes the same time to descend
to the lowest point, regardless of its starting point.

Huygens (1673) made a classic application of this property to pendu-
lum clocks, using a geometric property of the cycloid (Huygens, 1659c). If
the pendulum, taken to be a weightless cord with a point mass at the end,
is constrained to swing between two cycloidal “cheeks,” as Huygens called
them (Figure 13.8), then the point mass will travel along a cycloid.

Figure 13.8: The cycloidal pendulum

Consequently, the period of the cycloidal pendulum is independent of
amplitude. This makes it theoretically superior to the ordinary pendulum
whose period, though approximately constant for small amplitudes, actu-
ally involves an elliptic function. In practice, problems such as friction
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make the cycloidal pendulum no more accurate than the ordinary pendu-
lum, but its theoretical superiority shut the ordinary pendulum out of me-
chanics for some time. Newton’s Principia, for example, often mentions
the cycloidal pendulum but never the simple pendulum.

The second remarkable property of the cycloid is that it is the brachis-
tochrone, the curve of shortest time. Johann Bernoulli (1696) posed the
problem of finding the curve, between given points A and B, along which a
point mass descends in the shortest time. He already knew that the solution
was a cycloid, and solutions were found independently by Jakob Bernoulli
(1697), l’Hôpital (1697), Leibniz (1697), and Newton (1697). The prob-
lem is deeper than that of the tautochrone, because the cycloid has to be
singled out from all possible curves between A and B. Jakob Bernoulli’s
solution was the most profound because it recognized the “variable curve”
aspect of the problem, and it is now considered to be the first major step in
the development of the calculus of variations.

The elastica was another of Jakob Bernoulli’s discoveries, and like-
wise important in the development of another field—the theory of elliptic
functions. The elastica is the curve assumed by a thin elastic rod com-
pressed at the ends. Jakob Bernoulli (1694) showed that the curve satisfies
a differential equation that he reduced to the form

ds =
dx√

1 − x4
.

To interpret this integral geometrically, he introduced the lemniscate and
showed that its arc length is expressed by precisely the same integral. This
was the beginning of the investigations of the lemniscatic integral, which
included the important discoveries of Fagnano and Gauss mentioned in the
last chapter. Euler’s investigations of elliptic integrals were also stimulated
by the elastica. Euler (1743) gave pictures of elasticas that show they have
periodic forms (Figure 13.9). These drawings were the first to show the
real period of elliptic functions, though of course periodicity was implicit
in the first elliptic integral, the arc length of the ellipse (the real period
being the circumference of the ellipse).

Exercises

The derivation of the cosh function from the catenary equation is helped by a

tricky formula for d2y
dx2 , based on Exercise 13.4.1, which you should verify first if

it is not familiar to you.
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Figure 13.9: Forms of the elastica

13.5.1 Use

ds =
√

dx2 + dy2 and
d2y

dx2
=

d
dy

1
2

(
dy
dx

)2

to transform the differential equation

dy
dx
=

s
a

to
dx
dz
=

a√
1 + z2

, (1)

where z = dy/dx.

13.5.2 Solve (1) for x and hence show that the original equation has solution

y = a cosh
x
a
+ const.

It is considerably easier to solve the suspension bridge equation, which per-
haps is why Huygens was able to do it at age 17, and before much calculus was
known.

13.5.3 How should the formula dy
dx =

s
a be modified if the load is uniformly dis-

tributed in the horizontal direction (as in a suspension bridge)?

13.5.4 Solve the modified equation from Exercise 13.5.3, and hence show that
the solution is a parabola.

Finally, we can verify that the catenary is indeed a transcendental curve.

13.5.5 Show that the functions sin and cos, and hence the functions sinh and cosh,
are transcendental. Hint: You may need to use complex numbers.
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13.6 The Vibrating String

The problem of the vibrating string is one of the most fertile in mathemat-
ics, being the source of such diverse fields as partial differential equations,
Fourier series, and set theory. It is also remarkable in being perhaps the
only setting in which the sense of hearing led to important mathemati-
cal discoveries. As we saw in Section 1.5, the Pythagoreans discovered
the relationship between pitch and length by hearing the harmonious tones
produced by two strings whose lengths were in a simple whole-number
ratio. Thus in a sense it was possible to “hear the length of the string,”
and some later discoveries of mathematically significant properties of the
strings—overtones, for example—were initially prompted by hearing. See
Dostrovsky (1975).

Various authors in ancient times suggested that the physical basis of
pitch was frequency of vibration, but it was not until the 17th century that
the precise relationship between frequency and length was discovered, by
Descartes’s mentor Isaac Beeckman. In 1615 Beeckman gave a simple
geometric argument to show that frequency is inversely proportional to
length; hence the Pythagorean ratios of lengths can also be interpreted as
(reciprocal) ratios of frequencies. The latter interpretation is more funda-
mental because frequency alone determines pitch, whereas length deter-
mines pitch only when the material, cross section, and tension of the string
are fixed. The relation between frequency ν, and tension T , cross-sectional
area A, and length l was discovered experimentally by Mersenne (1625) to
be

ν ∝ 1
l

√
T
A
.

The first derivation of Mersenne’s law from mathematical assumptions
was given by Taylor (1713), in a paper that marks the beginning of the
modern theory of the vibrating string. In it he discovered the simplest
possibility for the instantaneous shape of the string, the half sine wave

y = k sin
πx
l
,

and established generally that the force on an element is proportional to
d2y/dx2.

The latter result was the starting point for a dramatic advance in the
theory by d’Alembert (1747). Taking into account the dependence of y
on time t as well as x, d’Alembert realized that acceleration should be
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expressed by ∂2y/∂t2 and the force found by Taylor by ∂2y/∂x2, so that
partial derivatives are involved. Newton’s second law then gives what is
now called the wave equation,

∂2y

∂x2
=

1

c2

∂2y

∂t2
,

writing the constant of proportionality as 1/c2. Undeterred by the novelty
of this partial differential equation, d’Alembert forged ahead to a general
solution as follows. The equation may be simplified by a change of time
scale s = ct to

∂2y

∂x2
=
∂2y

∂s2
. (1)

The chain rule gives

d

(
∂y

∂x
± ∂y
∂s

)
=
∂2y

∂x2
dx +

∂2y

∂x∂s
(ds ± dx) ± ∂

2y

∂s2
ds

=

(
∂2y

∂s2
± ∂

2y

∂x∂s

)
(ds ± dx),

from which d’Alembert concluded that

∂2y

∂s2
+
∂2y

∂x∂s

is a function of s + x and
∂2y

∂s2
− ∂

2y

∂x∂s

is a function of s − x, whence, say,

∂y

∂x
+
∂y

∂s
=

∫ (
∂2y

∂s2
+
∂2y

∂x∂s

)
d(s + x) = f (s + x)

and similarly
∂y

∂x
− ∂y
∂s
= g(s − x).

This gives

∂y

∂x
=

1
2

( f (s + x) + g(s − x)) ,
∂y

∂s
=

1
2

( f (s + x) − g(s − x)) ,
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and finally

y =

∫ (
∂y

∂x
dx +

∂y

∂s
ds

)

=

∫
1
2

( f (s + x)(ds + dx) − g(s − x)(ds − dx))

= Φ(s + x) + Ψ(s − x).

Reversing the argument, we see that the functions Φ andΨ can be arbitrary,
at least as long as they admit the various differentiations involved.

But how arbitrary is an arbitrary function? Is it as arbitrary as an ar-
bitrarily shaped string? The vibrating-string problem caught 18th-century
mathematicians unprepared to answer these questions. They had under-
stood a function to be something expressed by a formula, possibly an infi-
nite series, and this had been thought to guarantee differentiability. Yet the
most natural shape of the vibrating string was one with a nondifferentiable
point—the triangle of the plucked string as it is released—so nature seemed
to demand an extension of the concept of function beyond the world of for-
mulas.

The confusion was heightened when Daniel Bernoulli (1753) claimed,
on physical grounds, that a general solution of the wave equation could be
expressed by a formula, the infinite trigonometric series

y = a1 sin
πx
l

cos
πct
l
+ a2 sin

2πx
l

cos
2πct

l
+ · · · .

This amounts to claiming that any mode of vibration results from the su-
perposition of simple modes, a fact he considered to be intuitively evident.
The nth term in the series represents the nth mode, generalizing Taylor’s
formula for the fundamental mode and building in the time dependence;
but Daniel Bernoulli gave no method for calculating the coefficient an.

We now know that his intuition was correct and that the triangular wave
form, among others, is representable by a trigonometric series. However,
it was well into the 19th century before anything like a clear understand-
ing of trigonometric series was obtained. The fact that the triangular wave
could be represented by a series made it a bona fide function by classical
standards; hence mathematicians were brought to the realization that a se-
ries representation does not guarantee differentiability. Later, continuity
was also called into question, and infinitely subtle problems concerning
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the convergence of trigonometric series led Cantor to develop the theory of
sets (see Chapter 24).

These remarkably remote consequences of what seemed at first to be a
purely physical question were of course not the only fruits of the vibrating
string investigations. Trigonometric series proved to be valuable all over
mathematics, from the theory of heat, where Fourier applied them with
such success that they became known as Fourier series, to the theory of
numbers. Their most famous application to number theory is probably the
Dirichlet (1837) proof that any arithmetic progression a, a + b, a + 2b, . . .,
where gcd(a, b) = 1, contains infinitely many primes. Pythagoras would
surely have approved!

Exercises

The simplest heat equation is the one-dimensional version,

∂T
∂t
= κ
∂2T
∂x2
,

for the temperature T at time t and position x along an infinite straight wire. This
equation may be derived from Newton’s law of cooling, which asserts that the rate
of heat flow between two points is proportional to their temperature difference.

Thus the approximate difference ∂T∂x dx between T at x and x + dx will induce
heat to flow from x + dx to x at a rate proportional to ∂T∂x dx. However, at the same
time, heat will flow from x − dx to x at approximately the same rate. To find the
net flow toward x, and hence the rate ∂T

∂t of temperature increase, we need to take

into account the rate of change of ∂T
∂x , namely ∂

2T
∂x2 .

13.6.1 By pursuing this line of argument, give a plausible derivation of the heat
equation

∂T
∂t
= κ
∂2T
∂x2
.

Sines and cosines arise from the heat equation when one solves it by the
method of separation of variables.

13.6.2 Suppose the heat equation has a solution of the form T (x, t) = X(x)Y(t),
where X and Y are functions of the single variables x and t, respectively.
Show that

1
Y(t)

dY(t)
dt
=
κ

X(x)
d2X(x)

dx2
= constant.

13.6.3 Now explain how sines and cosines are involved in solving for X(x).
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13.7 Hydrodynamics

The properties of fluid flow have been investigated since ancient times,
initially in connection with practical questions such as water supply and
water-powered machinery. However, nothing like a mathematical theory
was obtained before the Renaissance, and until the advent of calculus it
was possible to deal only with fairly coarse macroscopic quantities such
as the average speed of emission from an opening in a container. Newton
(1687), Book II, introduced infinitesimal methods into the study of fluids,
but much of his reasoning is incomplete, based on inappropriate mathemat-
ical models, or simply wrong. As late as 1738, when the field of hydrody-
namics finally got its name in the Hydrodynamica of Daniel Bernoulli, the
basic infinitesimal laws of fluid motion had still not been discovered.

The first important law was discovered by Clairaut (1740), in a context
that was essentially static. Clairaut was interested in a burning question
of the time, the shape (or “figure”) of the earth. Newton had argued that
the earth must bulge somewhat at the equator as a result of its spin. Natu-
ral as this seems now (and indeed then, since the phenomenon was clearly
observable in Jupiter and Saturn), it was opposed by the anti-Newtonian
Cassini, who argued for a spindle-shaped earth, elongated toward the poles.
Clairaut actually took part in an expedition to Lapland that confirmed New-
ton’s conjecture by measurement, but he also attacked the problem theoret-
ically by studying the conditions for the equilibrium of a fluid mass.

He considered the vector field of force acting on the fluid and observed
that it must be what we now call a conservative, or potential field. That
is, the integral of the force around any closed path must be zero; other-
wise the fluid would circulate. Equivalently, the integral between any two
points must be independent of the path. In the special two-dimensional
case where there are components P,Q of force in the x and y directions,
the quantity to be integrated is P dx + Q dy.

Clairaut argued that for the integral to be path-independent, this quan-
tity must be a complete differential

d f =
∂ f
∂x

dx +
∂ f
∂y

dy.

Consequently, P = ∂ f /∂x, Q = ∂ f /∂y and P, Q satisfy the condition

∂P
∂y
=
∂Q
∂x
. (1)
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This condition is indeed necessary, but the existence of the potential f
involved more mathematical subtleties than could have been foreseen at
the time. Clairaut derived the corresponding equations for the components
P, Q, R in the physically more natural three-dimensional case and went
as far as studying the equipotential surfaces f = constant. He also found
a satisfying solution to the problem of the figure of the earth. When the
force at a point is the resultant of gravity and the rotational force, then an
ellipsoid of revolution is an equilibrium figure, with the axis of rotation
being the shorter axis of the ellipse (Clairaut (1743), p. 194).

The two-dimensional equation (1), despite being physically special if
not unnatural, turned out to have a deep mathematical significance. This
was discovered in the dynamic situation, with P, Q taken to be components
of velocity rather than force. In this case, (1) still holds when the flow is
independent and irrotational as d’Alembert (1752) showed by an argument
similar to Clairaut’s. The crucial additional fact that now emerges is that
P, Q satisfy a second relation,

∂P
∂x
+
∂Q
∂y
= 0, (2)

derived by d’Alembert as a consequence of the incompressibility of the
fluid. He considered an infinitesimal rectangle of fluid with corners at the
points (x, y), (x+dx, y), (x, y+dy), (x+dx, y+dy), and the parallelogram into
which it is carried in an infinitesimal time interval by the known velocities
(P,Q), (P + (∂P/∂x)dx,Q + (∂Q/∂x)dx), . . . . Equating areas of the two
parallelograms leads to (2). In three dimensions one similarly gets

∂P
∂x
+
∂Q
∂y
+
∂R
∂z
= 0,

but the significance of (1) and (2), as d’Alembert discovered, is that they
can be combined into a single fact about the complex function P+ iQ. This
flash of inspiration became the basis for the theory of complex functions
developed in the 19th century by Cauchy and Riemann (see Section 16.1).

Exercises

To understand the concept of irrotational flow more directly, it helps to con-
sider a flow that is clearly rotational, for example a rigid rotation of the plane
about the origin at constant angular velocity ω.
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13.7.1 For this flow, show that the velocity components at the point (x, y) are

P = −ωy, Q = ωx,

and deduce that ∂P
∂y
− ∂Q
∂x = −2ω.

Thus the quantity ∂P∂y − ∂Q∂x is a measure of the amount of rotation of the flow.
It is, in fact, sometimes called the “rotation” but it is more often called the curl, a
term James Clerk Maxwell introduced in 1870.

The quantity ∂P
∂x +

∂Q
∂y

is called the divergence because it measures the amount
of “expansion” of the fluid. As one would expect, the divergence is zero for the
rigid flow above.

13.7.2 Check that the divergence is zero for the rigid rotation about the origin.

A more direct way to see that divergence is zero for any incompressible flow
in the plane is to consider a fixed rectangle, with fluid flowing through it.

Consider the rectangle with corners fixed in the plane at (x, y), (x + dx, y),
(x, y + dy), (x + dx, y + dy), and consider the instantaneous flux of fluid through
it. Fluid flows in the x end at speed P, so the influx is proportional to P dy, and it
flows out the x + dx end at speed P + (∂P/∂x) dx, etc.

13.7.3 Show that the net influx of fluid is

−
(
∂P
∂x
+
∂Q
∂y

)
dx dy,

and hence that the divergence is zero for incompressible flow.

13.7.4 Show similarly that
∂P
∂x
+
∂Q
∂y
+
∂R
∂z
= 0

for an incompressible flow in three dimensions.

13.8 Biographical Notes: The Bernoullis

Undoubtedly the most outstanding family in the history of mathematics
was the Bernoulli family of Basel, which included at least eight excel-
lent mathematicians between 1650 and 1800. Three of these, the broth-
ers Jakob (1654–1705) and Johann (1667–1754) and Johann’s son Daniel
(1700–1782), were among the great mathematicians of all time, as one may
guess from their contributions already mentioned in this chapter. In fact,
all the mathematicians Bernoulli were important in the history of mechan-
ics. One can trace their influence in this field in Szabó (1977), which also
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contains portraits of most of them, and in Truesdell (1954, 1960). How-
ever, Jakob, Johann, and Daniel are of interest from a wider point of view,
in mathematics, as well as in their personal lives. The Bernoulli family,
with all its mathematical talent, also had more than its share of arrogance
and jealousy, which turned brother against brother and father against son.
In three successive generations, fathers tried to steer their sons into non-
mathematical careers, only to see them gravitate back to mathematics. The
fiercest conflict occurred among Jakob, Johann, and Daniel.

Figure 13.10: Portrait of Jakob Bernoulli by Nicholas Bernoulli

Jakob, the first mathematician in the family, was the oldest son of
Nicholas Bernoulli, a successful pharmacist and civic leader in Basel, and
Margaretha Schönauer, the daughter of another wealthy pharmacist. There
were three other sons: Nicholas, who became an artist and in 1686 painted
the portrait of Jakob seen here (Figure 13.10); Johann; and Hieronymus,
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who took over the family business. Their father’s wish was that Jakob
should study theology, which he initially did, obtaining his licentiate in
1676. However, Jakob also began to teach himself mathematics and as-
tronomy, and he traveled to France in 1677 to study with the followers of
Descartes. In 1681 his astronomy brought him into conflict with the theolo-
gians. Inspired by the appearance of a great comet in 1680, he published a
pamphlet that proposed laws governing the behavior of comets and claim-
ing that their appearances could be predicted. His theory was not actually
correct (this was six years before Principia), but it certainly clashed with
the theology of the time, which exploited the unexpectedness of comets
in claiming they were signs of divine displeasure. Jakob decided that his
future was in mathematics rather than theology, and he adopted the motto
Invito Patre, Sidera verso (Against my father’s will, I will turn to the stars).
He made a second study tour, to the Netherlands and England, where he
met Hooke and Boyle, and began to lecture on mechanics in Basel in 1683.

He married Judith Stepanus in 1684, and they eventually had a son and
daughter, neither of whom became a mathematician. In a sense, the math-
ematical heir of Jakob was his nephew Nicholas (son of the painter), who
carried on one of Jakob’s most original lines of research, probability the-
ory. He arranged for the posthumous publication of Jakob’s book on the
subject, the Ars conjectandi (1713), which contains the first proof of a law
of large numbers. Jakob Bernoulli’s law described the behavior of long
sequences of trials for which a positive outcome has a fixed probability p
(such trials are now called Bernoulli trials). In a precise sense, the propor-
tion of successful trials will be “close” to p for “almost all” sequences.

In 1687 Jakob became professor of mathematics in Basel and, together
with Johann (whom he had been secretly teaching mathematics), set about
mastering the new methods of calculus that were then appearing in the pa-
pers of Leibniz. This proved to be difficult, perhaps more for Jakob than
Johann, but by the 1690s the brothers equaled Leibniz himself in the bril-
liance of their discoveries. Jakob, the self-taught mathematician, was the
slower but more penetrating of the two. He sought to get to the bottom of
every problem, whereas Johann was content with any solution, the quicker
the better.

Johann was the tenth child of the family, and his father intended him
to have a business career. When his lack of aptitude for business became
clear, he was allowed to enter the University of Basel in 1683 and became
a master of arts in 1685. During this time he also attended his brother’s
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lectures and, as mentioned earlier, learned mathematics from him privately.
Their rivalry did not come to the surface until the catenary contest of 1690,
but Jakob may have felt uneasy about his younger brother’s talent as early
as 1685. In that year he persuaded Johann to take up the study of medicine,
making the highly optimistic forecast that it offered great opportunities for
the application of mathematics. Johann went into medicine quite seriously,
obtaining a licentiate in 1690 and a doctorate in 1695, but by that time he
was more famous as a mathematician. With the help of Huygens he gained
the chair of mathematics in Groningen, and thus became free to concentrate
on his true calling.

The great applications of mathematics to medicine did not eventuate,
though Johann Bernoulli did make an amusing application of geometric
series that still circulates today as a piece of physiological trivia. In his
De nutritione, Johann Bernoulli (1699) used the assumption that a fixed
proportion of bodily substance, homogeneously distributed, is lost each
day and replaced by nutrition to calculate that almost all the material in the
body would be renewed in three years. This result provoked a serious theo-
logical dispute at the time, since it implied the impossibility of resurrecting
the body from all its past substance.

Johann Bernoulli made several important contributions to calculus in
the 1690s, outside mechanics. One was the first textbook in the subject,
the Analyse des infiniment petits. This was published under the name of
his student, the Marquis l’Hôpital (1696), apparently in return for generous
financial compensation. Another contribution, made jointly with Leibniz,
was the technique of partial differentiation. The two kept this discovery
secret for 20 years in order to use it as a “secret weapon” in problems
about families of curves (see Engelsman (1984)). Other discoveries still
remain outside the territory usually explored in calculus, for example,

∫ 1

0
xx dx = 1 − 1

22
+

1

33
− 1

44
+ · · · .

This startling result of Johann Bernoulli (1697) can be proved using a suit-
able series expansion of xx and integration by parts (see exercises).

The rivalry between Jakob and Johann turned to open hostility in 1697
over the isoperimetric problem, the problem of finding the curve of given
length that encloses the greatest area. Jakob correctly recognized that this
was a calculus of variations problem but withheld his solution, whereas Jo-
hann persisted in publicizing an incorrect solution and claiming that Jakob
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had no solution at all. Jakob presented his solution to the Paris Academy in
1701, but it somehow remained in a sealed envelope until after his death.
Even when the solution was made public in 1706, Johann refused to admit
his own error or the superiority of Jakob’s analysis.

Johann was married to Dorothea Falkner, the daughter of a parliamen-
tary deputy in Basel, and through his father-in-law’s influence was awarded
the chair of Greek in Basel in 1705. This enabled him to return to Basel
from Groningen, but his real goal was the chair of mathematics, not Greek.
Jakob was then in ill health, and his last days were embittered by the belief
that Johann was plotting to take his place, using the Greek offer as a step-
ping stone. This is precisely what happened, for when Jakob died in 1705
Johann became the professor of mathematics.

With the death of Jakob and the virtual retirement of Leibniz and New-
ton, Johann enjoyed about 20 years as the leading mathematician in the
world. He was particularly proud of his successful defense of Leibniz
against the supporters of Newton:

When in England war was declared against M. Leibniz for
the honour of the first invention of the new calculus of the
infinitely small, I was despite my wishes involved in it; I was
pressed to take part. After the death of M. Leibniz the contest
fell to me alone. A crowd of English antagonists fell upon
my body. It was my lot to meet the attacks of Messrs Keil,
Taylor, Pemberton, Robins and others. In short I alone like
the famous Horatio Cocles kept at bay at the bridge the entire
English army.

Translation by Pearson (1978), p. 235

His portrait from this era shows the Bernoulli arrogance at its peak
(Figure 13.11).

Johann Bernoulli finally met his match at the hands of his own pupil
Euler in 1727. There was no open warfare, just a polite exchange of cor-
respondence on the logarithms of negative numbers, but it revealed that
Johann Bernoulli understood some of his own results less well than Eu-
ler did. Johann Bernoulli persisted in his stubborn misunderstanding for
another 20 years, while Euler went on to develop his brilliant theory of
complex logarithms and exponentials (see Section 16.1). Johann Bernoulli
seems not to have minded his pupil’s success at all; instead, he became
consumed with jealousy over the success of his son Daniel.
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Figure 13.11: Johann Bernoulli

Daniel Bernoulli (Figure 13.12) was the middle of Johann’s three sons,
all of whom became mathematicians. The oldest, Nicholas (called Nicholas
II by historians to distinguish him from the first mathematician Nicholas),
died of a fever in St. Petersburg in 1725 at the age of 30. The youngest,
Johann II, was the least distinguished of the three, but he fathered the next
generation of Bernoulli mathematicians, Jakob II and Johann III.

Daniel’s path to mathematics was very similar to his father’s. During
his teens he was tutored by his older brother; his father wanted him to go
into business, but when that career failed Daniel was permitted to study
medicine.

He gained his doctorate in 1721 and made several attempts to win the
chair of anatomy and botany in Basel, finally succeeding in 1733. By that
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Figure 13.12: Daniel Bernoulli

time, however, he had drifted into mathematics, with such success that he
had been called to the St. Petersburg Academy. During his years there
(1725–1733) he conceived his ideas on modes of vibration and produced
the first draft of his Hydrodynamica. Although he missed finding the basic
partial differential equations of hydrodynamics, the Hydrodynamica made
other important advances. One was the systematic use of a principle of
conservation of energy; another was the kinetic theory of gases, including
the derivation of Boyle’s law that is now standard.

Unfortunately, publication of the Hydrodynamica was delayed until
1738. This left Daniel’s priority open to attack, and the one to take ad-
vantage of him was his own father. The self-styled Horatius of the priority
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dispute between Leibniz and Newton attempted the most brazen priority
theft in the history of mathematics by publishing a book on hydrodynam-
ics in 1743 and dating it 1732. Daniel was devastated, and wrote to Euler:

Of my entire Hydrodynamics, not one iota of which do in fact
I owe to my father, I am all at once robbed completely and
lose thus in one moment the fruits of the work of ten years.
All propositions are taken from my Hydrodynamics, and then
my father calls his writings Hydraulics, now for the first time
disclosed, 1732, since my Hydrodynamics was printed only in
1738.

Daniel Bernoulli (1743), in the Truesdell (1960) translation

The situation was not quite as clear-cut as Daniel claimed (a detailed
assessment is in Truesdell (1960)), but at any rate Johann Bernoulli’s move
backfired. His reputation was so tarnished by the episode that he did not
even receive credit for parts of his work that were original. Daniel went
on to enjoy fame and a long career, becoming professor of physics in 1750
and lecturing to enthusiastic audiences until 1776.

Exercises

13.8.1 Use integration by parts to show that

∫ 1

0
xn(log x)n dx =

(−1)nn!
(n + 1)n+1

.

13.8.2 Deduce that ∫ 1

0
xx dx = 1 − 1

22
+

1
33
− 1

44
+ · · ·

using a series expansion of xx = ex log x.
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Complex Numbers in Algebra

Preview

The next three chapters revisit the topics of algebra, curves, and functions,
observing how they are simplified by the introduction of complex num-
bers. That’s right: the so-called “complex” numbers actually make things
simpler.

In the present chapter we see where complex numbers came from (not
from quadratic equations, as you might expect, but from cubic equations)
and observe how they simplify the study of polynomial equations. Equa-
tions become simpler because they always have solutions in the complex
numbers, and it follows that they have the “right” number of solutions.

One of the reasons for the simplifying power of complex numbers is
their two-dimensional nature. The extra dimension gives more room for
solutions of equations to exist. For example, the equation xn = 1, which
has only one or two solutions in the real numbers, has n different solutions
in the complex numbers, equally spaced around the unit circle.

More generally, complex numbers give a way to divide any angle into n
equal parts. This comes about because multiplication of complex numbers
involves addition of angles, and is related to the famous de Moivre formula
in trigonometry.

The equation xn = 1 is not the only one with the “right” number of
solutions in the complex numbers. In fact, any equation of degree n has n
complex solutions, when solutions are properly counted. This is the funda-
mental theorem of algebra, and it follows from intuitively simple properties
of the plane and continuous functions.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 275
DOI 10.1007/978-1-4419-6053-5 14, c© Springer Science+Business Media, LLC 2010
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14.1 Impossible Numbers

Over the last few chapters it has often been claimed that certain mysteries—
de Moivre’s formula for sin nθ (Section 6.6), factorization of polynomials
(Section 6.7), classification of cubic curves (Section 8.4), branch points
(Section 10.5), genus (Section 11.3), and behavior of elliptic functions
(Sections 11.6 and 12.6)—are clarified by the introduction of complex
numbers. That complex numbers do all this and more is one of the mir-
acles of mathematics. At the beginning of their history, complex num-
bers a + b

√−1 were considered to be “impossible numbers,” tolerated
only in a limited algebraic domain because they seemed useful in the solu-
tion of cubic equations. But their significance turned out to be geometric
and ultimately led to the unification of algebraic functions with conformal
mapping, potential theory, and another “impossible” field, non-Euclidean
geometry. This resolution of the paradox of

√−1 was so powerful, un-
expected, and beautiful that only the word “miracle” seems adequate to
describe it.

In the present chapter we shall see how complex numbers emerged
from the theory of equations and enabled its fundamental theorem to be
proved—at which point it became clear that complex numbers had meaning
far beyond algebra. Their impact on curves and function theory, which is
where conformal mapping and potential theory come in, is described in
Chapters 15 and 16. Non-Euclidean geometry had entirely different origins
but arrived at the same place as function theory in the 1880s, thanks to
complex numbers. This unexpected meeting is described in Chapter 18,
after some geometric preparations in Chapter 17.

14.2 Quadratic Equations

The usual way to introduce complex numbers in a mathematics course
is to point out that they are needed to solve certain quadratic equations,
such as the equation x2 + 1 = 0. However, this did not happen when
quadratic equations first appeared, since at that time there was no need for
all quadratic equations to have solutions. Many quadratic equations are im-
plicit in Greek geometry, as one would expect when circles, parabolas, and
the like are being investigated, but one does not demand that every geo-
metric problem have a solution. If one asks whether a particular circle and
line intersect, say, then the answer can be yes or no. If yes, the quadratic
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equation for the intersection has a solution; if no, it has no solution. An
“imaginary solution” is uncalled for in this context.

Even when quadratic equations appeared in algebraic form, with Dio-
phantus and the Arab mathematicians, there was initially no reason to ad-
mit complex solutions. One still wanted to know only whether there were
real solutions, and if not the answer was simply—no solution. This is
plainly the appropriate answer when quadratics are solved by geometri-
cally completing the square (Section 6.3), as was still done up to the time
of Cardano. A square of negative area did not exist in geometry. The
story might have been different had mathematicians used symbols more
and dared to consider the symbol

√−1 as an object in its own right, but
this did not happen until quadratics had been overtaken by cubics, at which
stage complex numbers became unavoidable, as we shall now see.

14.3 Cubic Equations

The del Ferro–Tartaglia–Cardano solution of the cubic equation

y3 = py + q

is

y =
3

√
q
2
+

√(q
2

)2
−

( p
3

)3
+

3

√
q
2
−

√(q
2

)2
−

( p
3

)3

as we saw in Section 6.5. The formula involves complex numbers when
(q/2)2 − (p/3)3 < 0. However, it is not possible to dismiss this as a case
with no solution, because a cubic always has at least one real root (since
y3 − py − q is positive for sufficiently large positive y and negative for
sufficiently large negative y). Thus the Cardano formula raises the problem
of reconciling a real value, found by inspection, say, with an expression of
the form

3
√

a + b
√−1 +

3
√

a − b
√−1

Cardano did not face up to this problem in his Ars magna (1545). He
did, it is true, once mention complex numbers, but in connection with a
quadratic equation and accompanied by the comment that these numbers
were “as subtle as they are useless” (Cardano (1545), Ch. 37, Rule II).

The first to take complex numbers seriously and use them to achieve
the necessary reconciliation was Bombelli (1572). Bombelli worked out
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the formal algebra of complex numbers, with the particular aim of reducing

expressions
3
√

a + b
√−1 to the form c + d

√−1. His method enabled him
to show the reality of some expressions resulting from Cardano’s formula.
For example, the solution of

x3 = 15x + 4

is

x =
3
√

2 + 11
√−1 +

3
√

2 − 11
√−1

according to the formula. On the other hand, inspection gives the solution
x = 4. Bombelli had the hunch that the two parts of x in the Cardano
formula were of the form 2 + n

√−1, 2 − n
√−1, and he found by cubing

these expressions formally [using (
√−1)2 = −1] that indeed

3
√

2 + 11
√−1 = 2 +

√−1,

3
√

2 − 11
√−1 = 2 − √−1,

hence the Cardano formula also gives x = 4.
Figure 14.1 is a facsimile of the manuscript page on which Bombelli

stated his result. It is not hard to pick out the preceding expressions when
one allows for the notation and the fact that 11

√−1 is written as
√

0 − 121.
Much later, Hölder (1896) showed that any algebraic formula for the

solution of the cubic must involve square roots of quantities that become
negative for particular values of the coefficients. A proof of Hölder’s result
may be found in van der Waerden (1949), p. 180.

Exercises

14.3.1 Check that (2 +
√−1)3 = 2 + 11

√−1.

It is possible to work backwards and concoct a cubic equation with an “obvious”
solution that can be reconciled with the hideous solution in the Cardano formula.
Here is an example.

14.3.2 Check that (3 +
√−1)3 = 18 + 26

√−1.

14.3.3 Hence explain why

6 = (3 +
√−1) + (3 − √−1) =

3
√

18 + 26
√−1 +

3
√

18 − 26
√−1.
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Figure 14.1: Bombelli’s manuscript

14.3.4 Find p and q such that

18 =
q
2

and 26
√−1 =

√(q
2

)2
−

( p
3

)3
.

14.3.5 Check that 6 is a solution of the equation x3 = px + q for the values of p
and q found in Exercise 14.3.4.

14.4 Wallis’s Attempt at Geometric Representation

Despite Bombelli’s successful use of complex numbers, most mathemati-
cians regarded them as impossible, and of course even today we call them
“imaginary” and use the symbol i for the imaginary unit

√−1. The first
attempt to give complex numbers a concrete interpretation was made by



280 14 Complex Numbers in Algebra

Wallis (1673). This attempt was unsatisfactory, as we shall see, but nev-
ertheless an interesting “near miss.” Wallis wanted to give a geometric
interpretation to the roots of the quadratic equation, which we shall write
as

x2 + 2bx + c2 = 0, b, c ≥ 0.

The roots are
x = −b ±

√
b2 − c2

and hence real when b ≥ c. In this case the roots can be represented by
points P1, P2 on the real number line that are determined by the geometric
construction in Figure 14.2. When b < c, lines of length b attached to Q
are too short to reach the number line, so the points P1, P2 “cannot be had
in the line,” and Wallis seeks them “out of that line . . . (in the same Plain).”
He is on the right track, but he arrives at unsuitable positions for P1, P2 by
sticking too closely to his first construction.

O−bP2 P1

Q

b c b

Figure 14.2: Wallis’s construction of real roots

Figure 14.3 compares his representation of P1, P2 = −b ± i
√

c2 − b2

when b < c with the modern representation. Apparently Wallis thought +
and − should continue to correspond to “right” and “left,” though this has
the unacceptable consequence that i = −i (let b→ 0 in his representation).
This was an understandable oversight, since in Wallis’s time even nega-
tive numbers were still under suspicion, and there was confusion about the
meaning of (−1) × (−1), for example. Confusion was compounded by the
introduction of square roots, and as late as 1770 Euler gave a “proof” in
his Algebra that

√−2 × √−3 =
√

6 (Euler (1770b), p. 43).
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O−b

Q

P1P2

bcb

Wallis’s representation

O

P1

P2

−b

c

b

c

Modern representation

Figure 14.3: Construction of complex roots

Exercises

The claim that
√−2 × √−3 =

√
6 is wrong only if one uses the convention

that
√

6 means the positive square root of 6, as we normally do today. It is not
unreasonable to let

√
6 denote the pair ±√6 of square roots of 6, in which case

Euler’s claim is correct.

14.4.1 Supposing that
√−2 denotes the pair of square roots of −2, that

√−3
denotes the pair of square roots of −3, and that

√−2 × √−3 denotes all
possible products, show that

√−2 × √−3 =
√

6.

14.4.2 Is it also true (as in the usual interpretation) that
√−2 × √−3 = −√6?

14.5 Angle Division

In Section 6.6 we saw how Viète related angle trisection to the solution of
cubic equations, and how Leibniz (1675) and de Moivre (1707) solved the
angle n-section equation by the Cardano-type formula

x =
1
2

n

√
y +

√
y2 − 1 +

1
2

n

√
y −

√
y2 − 1. (1)

We also saw how this and Viète’s formulas for cos nθ and sin nθ could
easily be explained by the formula

(cos θ + i sin θ)n = cos nθ + i sin nθ (2)
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usually associated with de Moivre. Actually, de Moivre never stated (2)
explicitly. The closest he came was to give a formula for (cos θ + i sin θ)1/n

in de Moivre (1730). (See Smith (1959) for a series of extracts from the
work of de Moivre on angle division). It seems that the clues in the algebra
of circular functions were not strong enough to reveal (2) until a deeper
reason for it had been brought to light by calculus.

Complex numbers made their entry into the theory of circular func-
tions in a paper on integration by Johann Bernoulli (1702). Observing that√−1 = i makes possible the partial fraction decomposition

1

1 + z2
=

1/2
1 + zi

+
1/2

1 − zi
,

Bernoulli saw that integration would give an expression for tan−1 z as an
imaginary logarithm, though he did not write down the expression in ques-
tion and was evidently puzzled as to what it could mean. In Section 16.1 we
shall see how Euler clarified Johann Bernoulli’s discovery and developed
it into the beautiful theory of complex logarithms and exponentials. What
is relevant here is that Johann Bernoulli (1712) took up the idea again,
and this time he carried out the integration to obtain an algebraic relation
between tan nθ and tan θ. His argument is as follows. Given

y = tan nθ, x = tan θ,

we have
nθ = tan−1 y = n tan−1 x;

hence, taking differentials gives

dy

1 + y2
=

n dx

1 + x2
,

or

dy

(
1
y + i

− 1
y − i

)
= n dx

(
1

x + i
− 1

x − i

)
.

Integration gives

log(y + i) − log(y − i) = n log(x + i) − n log(x − i),

that is,

log
y + i
y − i

= log
( x + i

x − i

)n

,
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whence
(x − i)n(y + i) = (x + i)n(y − i). (3)

This formula was the first of the de Moivre type actually to use i explic-
itly and the first example of a phenomenon later articulated by Hadamard:
the shortest route between two truths in the real domain sometimes passes
through the complex domain. Solving (3) for y as a function of x expresses
tan nθ as a rational function of tan θ, which is difficult to obtain using real
formulas alone. In fact, it is easy to show from (3) that y is the quotient
of the polynomials consisting of alternate terms in (x + 1)n, provided with
alternate + and − signs (see exercises).

During the 18th century, mathematicians were ambivalent about
√−1.

They were willing to use it en route to results about real numbers but
doubted whether it had a concrete meaning of its own. Cotes (1714) even
used a +

√−1b to represent the point (a, b) in the plane (as Euler did
later), apparently without noticing that (a, b) was a valid interpretation of
a +
√−1b. Since results about

√−1 were suspect, they were often left un-
stated when it was possible to state an equivalent result about reals. This
may explain why de Moivre stated (1) but not (2). Another example of the
avoidance of results about

√−1 is the remarkable theorem on the regular
n-gon discovered by Cotes in 1716 and published posthumously in Cotes
(1722):

If A0, . . . , An−1 are equally spaced points on the unit circle with center
O, and if P is a point on OA0 such that OP = x, then (Figure 14.4)

PA0 · PA1 · · · PAn−1 = 1 − xn.

This theorem not only relates the regular n-gon to the polynomial xn−1
but in fact geometrically realizes the factorization of xn − 1 into real linear
and quadratic factors. By symmetry one has PA1 = PAn−1, . . ., so

PA0 · PA1 · · ·PAn−1 =

⎧⎪⎨⎪⎩
PA0 · PA2

1 · PA2
2 · · · PA2

(n−1)/2 n odd,
PA0 · PA2

1 · PA2
2 · · · PA2

n/2−1PAn/2 n even.

PA0 = 1− x is a real linear factor, as is PAn/2 when n is even, and it follows
from the cosine rule in triangle OPAk that

PA2
k = 1 − 2x cos

2kπ
n
+ x2.
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O
A0

2π/n

A1

P

An−1

A2

An−2

Figure 14.4: Cotes’s theorem

The easiest route from here to the theorem is by splitting PA2
k into complex

linear factors and using de Moivre’s theorem, though we can only spec-
ulate that this was Cotes’s method, since he stated the theorem without
proof. There is a second half to Cotes’s theorem, which similarly decom-
poses 1 + xn into real linear and quadratic factors. These factorizations
were needed to integrate 1/(1 ± xn) by resolution into partial fractions,
which was in fact Cotes’s main objective. Such problems were then high
on the mathematical agenda, and they motivated subsequent research into
the factorization of polynomials, in particular the first attempts to prove the
fundamental theorem of algebra.

Exercises

Johann Bernoulli’s formula relating y = tan nθ to x = tan θ is false for some
values of n, because it neglects a possible constant of integration. The result of
integration should be

log(y + i) − log(y − i) = n log(x + i) − n log(x − i) +C,

for some C, leading to
y + i
y − i

= D
(x + i)n

(x − i)n
, (*)

for some constant D (equal to eC). Sometimes D = 1 gives the correct formula,
but sometimes we need D = −1.
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14.5.1 Show that D = 1 gives the correct formula when n = 1.

14.5.2 Using formulas for sin 2θ and cos 2θ, or otherwise, show that

tan 2θ =
2 tan θ

1 − tan2 θ
,

and check that this follows from (*) for D = −1, but not for D = 1.

14.5.3 Use the formula in Exercise 14.5.2 to express tan 4θ in terms of tan 2θ, and
hence in terms of tan θ.

14.5.4 Letting y = tan 4θ and x = tan θ, express the result of Exercise 14.5.3 as

y =
4x − 4x3

x4 − 6x2 + 1
,

and check that this follows from (*) when D = −1.

14.6 The Fundamental Theorem of Algebra

The fundamental theorem of algebra is the statement that every polynomial
equation p(z) = 0 has a solution in the complex numbers. As Descartes
observed (Section 6.7), a solution z = a implies that p(z) has a factor z− a.
The quotient q(z) = p(z)/(z − a) is then a polynomial of lower degree;
hence if every polynomial equation has a solution, we can also extract a
factor from q(z), and if p(z) has degree n, we can go on to factorize p(z)
into n linear factors. The existence of such a factorization is of course
another way to state the fundamental theorem.

Initially, interest was confined to polynomials p(z) with real coeffi-
cients, and in this case d’Alembert (1746) observed that if z = u + iv is
a solution of p(z) = 0, then so is its conjugate z = u − iv. Thus the imag-
inary linear factors of a real p(z) can always be combined in pairs to form
real quadratic factors:

(z − u − iv)(z − u + iv) = z2 − 2uz + (u2 + v2).

This gave another equivalent of the fundamental theorem: each (real) poly-
nomial p(z) can be expressed as a product of real linear and quadratic fac-
tors. The theorem was usually stated in this way during the 18th century,
when its main purpose was to make possible the integration of rational
functions (see Section 14.5). This also avoided mention of

√−1.
It has often been said that attempts to prove the fundamental theorem

began with d’Alembert (1746), and that the first satisfactory proof was
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given by Gauss (1799). This opinion should not be accepted without
question, since the source of it is Gauss himself. Gauss (1799) gave a
critique of proofs from d’Alembert on, showing that they all had serious
weaknesses, then offered a proof of his own. His intention was to convince
readers that the new proof was the first valid one, even though it used one
unproved assumption (which is discussed further in the next section). The
opinion as to which of two incomplete proofs is more convincing can of
course change with time, and I believe that Gauss (1799) might be judged
differently today. We can now fill the gaps in d’Alembert (1746) by appeal
to standard methods and theorems, whereas there is still no easy way to fill
the gap in Gauss (1799).

Both proofs depend on the geometric properties of the complex num-
bers and the concept of continuity for their completion. The basic geo-
metrical insight—that the complex number x + iy can be identified with
the point (x, y) in the plane—mysteriously eluded all mathematicians until
the end of the 18th century. This was one of the reasons that d’Alembert’s
proof was unclear, and the use of this insight by Argand (1806) was an
important step in d’Alembert’s reinstatement. Gauss seems to have had the
same insight but concealed its role in his proof, perhaps believing that his
contemporaries were not ready to view the complex numbers as a plane.

As for the concept of continuity, neither Gauss nor d’Alembert un-
derstood it very well. Gauss (1799) seriously understated the difficulties
involved in the unproved step, claiming that “no one, to my knowledge,
has ever doubted it. But if anybody desires it, then on another occasion
I intend to give a demonstration which will leave no doubt” (translation
from Struik (1969), p. 121). Perhaps to preempt criticism, he gave a sec-
ond proof, Gauss (1816), in which the role of continuity was minimized.
The second proof is purely algebraic except for the use of a special case of
the intermediate value theorem. Gauss assumed that a polynomial function
p(x) of a real variable x takes all values between p(a) and p(b) as x runs
from a to b. The first to appreciate the importance of continuity for the
fundamental theorem of algebra was Bolzano (1817), who proved the con-
tinuity of polynomial functions and attempted a proof of the intermediate
value theorem. The latter proof was unsatisfactory because Bolzano had
no clear concept of real number on which to base it, but it did point in the
right direction. When a definition of real numbers emerged in the 1870s
(for example, with Dedekind cuts; Section 4.2), Weierstrass (1874) rigor-
ously established the basic properties of continuous functions, such as the
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intermediate value theorem and extreme value theorem. This completed
not only the second proof of Gauss but also the proof of d’Alembert, as we
shall see in the next section.

Exercises

Complex roots of an equation with real coefficients occur in conjugate pairs
because of the fundamental properties of conjugates.

14.6.1 Show directly from the definition u + iv = u − iv that

z1 + z2 = z1 + z2 and z1 · z2 = z1 · z2

for any complex numbers z1, z2.

14.6.2 Deduce from Exercise 14.6.1 that p(z) = p(z) for any polynomial p(z)
with real coefficients, and hence that the complex roots of p(z) = 0 occur
in conjugate pairs.

14.7 The Proofs of d’Alembert and Gauss

The key to d’Alembert’s proof is a proposition now known as d’Alembert’s
lemma: if p(z) is a nonconstant polynomial function and p(z0) � 0, then
any neighborhood of z0 contains a point z1 such that |p(z1)| < |p(z0)|.

The proof of this lemma offered by d’Alembert depended on solving
the equation w = p(z) for z as a fractional power series in w. As mentioned
in Section 9.5, such a solution was claimed by Newton (1671), but it was
made clear and rigorous only by Puiseux (1850). Thus d’Alembert’s argu-
ment did not stand on solid ground, and in any case it was unnecessarily
complicated.

A simple elementary proof of d’Alembert’s lemma was given by Ar-
gand (1806). Argand was one of the co-discoverers of the geometric rep-
resentation of complex numbers (probably the first was Wessel (1797), but
his work remained almost unknown for 100 years), and he offered the fol-
lowing proof as an illustration of the effectiveness of the representation.

The value of p(z0) = x0 + iy0 is interpreted as the point (x0, y0) in the
plane, so that |p(z0)| is the distance of (x0, y0) from the origin. We wish to
find a Δz such that p(z0 + Δz) is nearer to the origin than p(z0). If

p(z) = a0zn + a1zn−1 + · · · + an,
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then

p(z0 + Δz) = a0(z0 + Δz)n + a1(z0 + Δz)n−1 + · · · + an

= a0zn
0 + a1zn−1

0 + · · · + an + A1Δz + A2(Δz)2 + · · · + An(Δz)n

for some constants Ai depending on z0, not all zero,

because p is not constant

= p(z0) + AΔz + ε,

where A = Ai(Δz)i contains the first nonzero Ai and |ε| is small compared
with |AΔz| when |Δz| is small (because ε contains higher powers of Δz). It is
then clear (Figure 14.5) that by choosing the direction of Δz so that AΔz is
opposite in direction to p(z0), we get |p(z0 + Δz)| < |p(z0)|. This completes
the proof of d’Alembert’s lemma.

O

p(z0) p(z0) + ε

p(z0) + ε + AΔz

Figure 14.5: Construction for d’Alembert’s lemma

To complete the proof of the fundamental theorem of algebra, take an
arbitrary polynomial p and consider the continuous function |p(z)|. Since
p(z) ≈ a0zn for |z| large, |p(z)| increases with |z| outside a sufficiently large
circle |z| = R. We now get a z for which |p(z)| = 0 from the extreme value
theorem of Weierstrass (1874); a continuous function on a closed bounded
set assumes maximum and minimum values. By this theorem, |p(z)| takes
a minimum value for |z| ≤ R. The minimum is ≥ 0 by definition, and if it
is > 0 we get a contradiction by d’Alembert’s lemma: either a point z with
|z| ≤ R where |p(z)| takes a value less than its minimum or a point z with
|z| > R where |p(z)| is less than its values on |z| = R. Thus there is a point z
where |p(z)| = 0 and hence p(z) = 0.
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The proof of Gauss also used the fact that p(z) behaves like its highest-
degree term a0zn for |z| large and likewise relied on a continuity argument
to show that p(z) = 0 inside some circle |z| = R. Gauss considered the
real and imaginary parts of p(z),Re[p(z)] and Im[p(z)], and investigated
the curves

Re[p(z)] = 0 and Im[p(z)] = 0.

(These are easily seen to be algebraic curves p1(x, y) = 0 and p2(x, y) = 0
by expanding the powers zk = (x + iy)k and collecting real and imaginary
terms.) His aim was to find a point where these curves meet, because at
such a point

0 = Re[p(z)] = Im[p(z)] = p(z).

For |z| large, the curves are close to the curves Re(a0zn) and Im(a0zn) = 0,
which are families of straight lines through the origin. Moreover, the lines
where Re(a0zn) = 0 alternate with those where Im(a0zn) = 0 as one makes
a circuit around the origin. For example, Figure 14.6 shows Re(z2) = 0 and
Im(z2) = 0 as alternate solid and dashed lines. It follows that the curves
Re[p(z)] = 0 and Im[p(z)] = 0 meet a sufficiently large circle |z| = R
alternately. Up to this point the argument is comparable to d’Alembert’s
lemma, and it can be made just as rigorous.

Im(z2) = 0

Re(z
2 ) =

0

Figure 14.6: Lines for the Gauss proof
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To complete this proof we have to show that the curves meet inside the
circle, and this is the step Gauss thought nobody could doubt. He assumed
that the separate pieces of the algebraic curve Re[p(z)] = 0 outside the
circle |z| = R would join inside the circle, as would the separate pieces of
Im[p(z)] = 0. Then, since the pieces of Re[p(z)] = 0 alternate with those
of Im[p(z)] on |z| = R, it would be “patently absurd” for their connecting
pieces inside the circle not to meet. One has only to visualize a situation
like that seen in Figure 14.7 to feel sure that Gauss was right. However, the
existence of the connecting pieces is extremely hard to prove (and proving
that they meet is not trivial either, being at least as hard as the intermediate
value theorem). The first proof was given by Ostrowski (1920).

Figure 14.7: Curves for the Gauss proof

From our present perspective, d’Alembert’s route to the fundamental
theorem of algebra seems basically easy because it proceeds through gen-
eral properties of continuous functions. The route of Gauss, although ap-
pearing equally easy from a distance, goes through the still-unfamiliar ter-
ritory of real algebraic curves. The intersections of real algebraic curves
are harder to understand than the intersections of complex algebraic curves,
and in retrospect they are harder to understand than the fundamental theo-
rem of algebra. Indeed, as we shall see in the next chapter, the fundamental
theorem gives us Bézout’s theorem, which in turn settles the problem of
counting the intersections of complex algebraic curves.
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Exercises

The expression in d’Alembert’s lemma for p(z0+Δz) is an instance of Taylor’s
series, previously discussed in Section 10.2. When the function is a polynomial
p, as here, its Taylor series is finite because p has only finitely many nonzero
derivatives.

14.7.1 Show that A1 = na0zn−1
0 + (n − 1)a1zn−2

0 + · · · + an−1 and that the latter
expression is p′(z0).

14.7.2 Show that A2 =
n(n−1)

2 a0zn−2
0 +

(n−1)(n−2)
2 a1zn−3

0 + · · ·+an−2 and that the latter
expression is p′′(z0)/2.

14.7.3 Using the binomial theorem, show that Ak = p(k)(z0)/k!, and hence that

p(z0 + Δz) = a0zn
0 + a1zn−1

0 + · · · + an + A1Δz + A2(Δz)2 + · · · + An(Δz)n

is an instance of the Taylor series formula.

14.8 Biographical Notes: d’Alembert

Jean le Rond d’Alembert (Figure 14.8) was born in Paris in 1717 and died
there in 1783. He was the illegitimate son of the Chevalier Destouches-
Canon, a cavalry officer, and salon hostess Madame de Tencin. His mother
abandoned him at birth near the church of St. Jean-le-Rond in the cloisters
of Notre Dame, and so he was christened Jean le Rond, following the cus-
tom for foundlings. He was subsequently located by his father, who found
a home for him with a glazier named Rousseau and his wife. The name
d’Alembert came later, for reasons that are unclear.

The Rousseaus must have been devoted foster parents, for d’Alembert
lived with them until 1765. He received an annuity from his father, who
also arranged for him to be educated at the Jansenist Collège de Quatre-
Nations in Paris. There he received a good grounding in mathematics and
developed a permanent distaste for theology. After brief studies in law and
medicine he turned to mathematics in 1739.

In that year he began sending communications to the Académie des
Sciences, and his ambition and talent rapidly carried him to fame. He be-
came a member of the Académie in 1741 and published his best-known
work, the Traité de dynamique, in 1743. Having struggled to the top from
humble beginnings, d’Alembert did not want to lose his position. Once
in the Académie, his struggle was to stay ahead of his rivals. Whether by
accident or inborn competitiveness, d’Alembert always seemed to be work-
ing on the same problems as other top mathematicians—initially Clairaut,
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Figure 14.8: Jean Baptiste le Rond d’Alembert

later Daniel Bernoulli and Euler. He was always fearful of losing prior-
ity and fell into a cycle of hasty publication followed by controversy over
the meaning and significance of his work. Despite the fact that he was an
excellent writer (elected to the Académie Française in 1754), his mathe-
matics was almost always poorly presented. Many of his best ideas were
not understood until Euler overhauled them and gave them masterly expo-
sitions. Since Euler often did this without giving credit, d’Alembert was
understandably furious, but he squandered his energy in quarreling instead
of giving his own work the exposition it deserved.

Another reason for d’Alembert’s lack of attention to his mathemat-
ics was his involvement in the broader intellectual life of his time. When
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d’Alembert came on the scene in the 1740s, mathematics was enjoying
great prestige in philosophical circles, largely because of Newton’s suc-
cess in explaining the motions of the planets. Mathematics was a model of
rational inquiry that, it was hoped, would allow the proper organization of
all knowledge and the proper conduct of all human affairs. The movement
to reorganize knowledge and conduct along rational lines became known as
the Enlightenment, and it was particularly strong in France, where philoso-
phers saw it as a means to overthrow existing institutions, particularly the
Church. Around 1745, d’Alembert became immersed in the ferment of the
Enlightenment, then bubbling in the salons and cafés of Paris. He made
friends with the leading lights—Diderot, Condillac, Rousseau—and was
in demand at the most fashionable salons for his wit and gift for mimicry.

The Enlightenment was not all talk, however, and one of its most solid
achievements was the 17-volume Encyclopédie, edited by Diderot between
1745 and 1772. D’Alembert wrote the introduction to the Encyclopédie,
the Discours préliminaire, and in it summed up his views on the unity of all
knowledge. It contributed greatly to the success of the project, and was the
main reason for his election to the Académie Française. D’Alembert was
also scientific editor and wrote many of the mathematics articles. Eventu-
ally a split developed among the encyclopedists between the extreme mate-
rialists, led by Diderot, and the more moderate faction of Voltaire. Diderot
leaned toward biology, for which he conjectured an absurd pseudomathe-
matical basis, while deploring the “impracticality” of ordinary mathemat-
ics. D’Alembert sided with Voltaire and cut his ties with the Encyclopédie
in 1758.

Nevertheless, intellectual fashion was moving away from mathemat-
ics, and in the 1760s d’Alembert found himself with only one philosopher
friend still interested in it, the probability theorist Condorcet. At about this
time, d’Alembert met the one love of his life, Julie de Lespinasse. Julie
was the cousin of Madame du Deffand, whose salon d’Alembert attended.
After a quarrel over poaching the salon’s members, Julie set up a salon of
her own, with d’Alembert’s help. When Julie became ill with smallpox,
d’Alembert nursed her back to health; when he himself fell sick, she per-
suaded him to move in with her. This was in 1765, when he finally left his
foster home. For the next ten years his life revolved around Julie’s salon,
and her death in 1776 came as a cruel blow. Humiliation was added to
sorrow when he discovered from her letters that she had been passionately
involved with other men throughout their time together.
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D’Alembert spent his last seven years in a small apartment in the Lou-
vre, to which he was entitled as permanent secretary of the Académie
Française. He found himself unable to work in mathematics, although it
was the only thing that still interested him, and he became gloomy about
the future of mathematics itself. Despite his gloom, he did what he could to
support and encourage young mathematicians. Perhaps the finest achieve-
ment of d’Alembert’s later years was to launch the careers of Lagrange and
Laplace, whose work in mechanics ultimately completed much of his own.
It must have given him some satisfaction to anticipate the future successes
of his gifted protégés, even though they effectively ended the theory of me-
chanics as d’Alembert knew it. What he could not have anticipated was
that a minor element of his work, the use of complex numbers, would blos-
som in the next century (see Sections 16.1 and 16.2) and that mathematics
would break out of the bounds set by 18th-century thinking.



15

Complex Numbers and
Curves

Preview

The fundamental theorem of algebra—that a polynomial of degree k has
exactly k complex roots—enables us to get the “right” number of intersec-
tions between a curve of degree m and a curve of degree n. However, it
is not enough to introduce complex coordinates: getting the right count of
intersections also requires us to adjust our viewpoint in two other ways.

1. We must count intersections according to their multiplicity, which
amounts to counting a root x = r of a polynomial equation p(x) = 0
as many times as the factor (x − r) occurs in p(x).

2. We must view curves projectively, so that intersections at infinity are
included.

For these reasons, and others, algebraic geometry moved to the setting of
complex projective space in the 19th century. In this chapter we see how
this viewpoint affects our picture of algebraic curves.

The simplest such curve is the complex projective line, which turns out
to look like a sphere. Other algebraic curves also look like surfaces, but
they can be more complicated than the sphere.

It was discovered by Riemann that rational curves (curves that can be
parameterized by rational functions) are essentially the same as the sphere,
but nonrational curves have “holes” and hence are essentially different.
This discovery reveals the role of topology in the study of algebraic curves.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 295
DOI 10.1007/978-1-4419-6053-5 15, c© Springer Science+Business Media, LLC 2010
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15.1 Roots and Intersections

There is a close connection between intersections of algebraic curves and
roots of polynomial equations, going back as far as Menaechmus’s con-
struction of

3√
2 (a root of the equation x3 = 2) by intersecting a parabola

and a hyperbola (Section 2.4). The most direct connection, of course, oc-
curs in the case of a polynomial curve

y = p(x) (1)

whose intersections with the axis y = 0 are just the real roots of the equa-
tion

p(x) = 0. (2)

If (2) has k real roots, then the curve (1) has k intersections with the axis
y = 0. Here we must count intersections the same way we count roots,
according to multiplicity. A root r of (2) has multiplicity μ if the factor
(x − r) occurs μ times in p(x), and the root r is then counted μ times.

This way of counting is also geometrically natural because if, for ex-
ample, the curve y = p(x) meets the axis y = 0 with multiplicity 2 at 0,
then a line y = εx “close” to the axis meets the curve twice—once near
the intersection with the axis and once precisely there. The intersection of
y = x2 with y = 0 (Figure 15.1) can therefore be considered as two coinci-
dent points to which the distinct intersections with y = εx tend as ε → 0.
Likewise, an intersection of multiplicity 3 can be explained as the limit of
three distinct intersections, for example, of y = εx with y = x3 (Figure
15.2)

y = 0

y = εx

Figure 15.1: Intersection of multiplicity 2

At first glance this idea seems to break down with multiplicity 4, since
y = εx meets y = x4 at only two points, x = 0 and x = 3

√
ε. The explanation

is that there are also two complex roots in this case ( 3
√
ε times the two
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y = 0

y = εx

Figure 15.2: Intersection of multiplicity 3

complex cube roots of 1), hence we cannot neglect complex roots if we
want to get the geometrically “correct” number of intersections.

The fundamental theorem of algebra (Section 14.6) gives us n roots of
an nth-degree equation (2) and consequently n intersections of the polyno-
mial curve (1) with the axis y = 0. To get n roots, however, we have to
admit complex values of x, hence we have to consider “curves” for which
x and y are complex in order to obtain n intersections. This, and other
tidy consequences of the fundamental theorem of algebra (for example,
the “coincident point” interpretation of multiplicity; see Exercise 15.1.1),
persuaded 18th-century mathematicians to admit complex numbers into the
theory of curves before complex numbers themselves were understood—
and even before the fundamental theorem of algebra was proved.

The most elegant consequence was Bézout’s theorem that a curve Cm

of degree m meets a curve Cn of degree n at mn points. As we saw in
Section 8.6, if homogeneous coordinates are used to take account of points
at infinity, then the intersections of Cm and Cn correspond to the solutions
of an equation rmn(x, y) = 0, which is homogeneous of degree mn. We can
now use the fundamental theorem of algebra to show that rmn(x, y) is the
product of mn linear factors as follows:

rmn(x, y) = ymnrmn

(
x
y
, 1

)

= ymn
p∏

i=1

(
bi

x
y
− ai

)
for some p ≤ mn

by the fundamental theorem, since rmn(x/y, 1) is a polynomial of degree
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p ≤ mn in the single variable x/y. But then

rmn(x, y) = ymn−p
p∏

i=1

(bix − aiy)

=

mn∏
i=1

(bix − aiy)

since each factor y in front (if any) is trivially of the form bix − aiy.
It follows that the equation rmn(x, y) = 0 has mn solutions, and hence

there are mn intersections of Cm and Cn, counting multiplicities.

Exercises

15.1.1 Show that y = εx meets y = xn in n distinct points when ε � 0, and list
them (for example, with the help of de Moivre’s theorem).

If a curve K has a double point at O, then a line y = tx may have double
contact with K at O even though nearby lines y = (t+ ε)x do not meet K at nearby
points other than O. In this case the double contact may be explained as contact
with the two branches of the curve at O.

15.1.2 Consider the lines y = tx through the double point O of y2 = x2(x + 1).
Show that each such line has double contact with the curve at O, except
when t = ±1. How do you account for the multiplicities when t = ±1?

15.1.3 Show that y = tx also has double contact with y2 = x3 at its cusp point O.
Try to explain this by viewing y2 = x3 as the result of “shrinking the loop”
of y2 = x2(x + ε) (letting ε→ 0).

15.1.4 Show that the line y = tx has double contact at O with the lemniscate
(x2 + y2)2 = x2 − y2 except for two values of t, for which it has quadruple
contact.

15.1.5 Explain the multiplicities found in Exercise 15.1.4 with the help of the
known shape of the lemniscate (Figure 12.1).

15.2 The Complex Projective Line

We saw in Section 8.5 that adding a point at infinity to the real line R in
R × R forms a closed curve that is qualitatively like a circle. Indeed, a
real projective line in the sphere model of the real projective plane RP2 has
much the same geometric properties as a great circle on a sphere, after one
allows for the fact that antipodal points on the sphere are the same point on
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RP
2. The situation with the complex “line” C is similar but more difficult

to visualize. C is already two-dimensional, as we saw in Gauss’s proof of
the fundamental theorem of algebra; hence the complex “plane” C × C is
four-dimensional and virtually impossible to visualize.

To avoid an excursion into four-dimensional space, we first revise our
approach to the real projective line. In Section 8.5 we considered ordinary
lines L, in a horizontal plane not passing through the origin, and extended
each to a projective line whose “points” are the lines through the origin
O, in the plane through O and L. The nonhorizontal lines in this family
correspond to points of L, and the horizontal line in the family to the point
at infinity of L. We now use this construction again to demonstrate di-
rectly the qualitative, or more precisely topological, equivalence between
a projective line and a circle (Figure 15.3).

R

N

x′

x

Figure 15.3: The real projective line

The origin N is taken to be the top point of a circle that, at its bottom
point, touches our line L = R. There is a continuous one-to-one correspon-
dence between lines through N and points of the circle. Each nonhorizon-
tal line corresponds to its intersection x′ � N with the circle, while the
horizontal line corresponds to N itself. Thus the projective completion of
R, which we now call RP1, is topologically the same as the circle, in the
sense that there is a continuous one-to-one correspondence between them.
Moreover, we can understand projective completion of R topologically as a
process of adding one “point” that is “approached” as one tends to infinity,
in either direction, along R, for as x tends to infinity in either direction, x′
tends to the same point, N, on the circle.
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We can now view projective completion of C in the same way using
Figure 15.4, which shows the so-called stereographic projection of the
plane C into a sphere. Each point z ∈ C is projected to a point z′ on the
tangential sphere S by the ray through z and the north pole N of S . This
establishes a continuous one-to-one correspondence between points z of C
and points z′ � N on S . Moreover, as z tends to infinity in any direction,
z′ tends to N; hence the projective completion of CP1 of C is topologically
the same as the complete sphere S , with the point at∞ of C corresponding
to N.

C

N

z′

z

Figure 15.4: The complex projective line

Since one also wants to complete C by a point ∞ in this way for com-
plex analysis, geometry and analysis are both served by passing from C
to CP1. Gauss seems to have been the first to appreciate the advantages
of C ∪ {∞} over C; hence one often calls CP1 the Gauss sphere in analy-
sis. (Unfortunately, only a few unpublished, undated fragments of Gauss’s
work on this topic seem to have survived; see Gauss (1819).) Algebraic ge-
ometers call CP1 the (complex) projective line, since it is the formal equiv-
alent of a real line, even though it is topologically a surface. Similarly,
complex curves are topologically surfaces, known to analysts as Riemann
surfaces, though algebraic geometers prefer to call them “curves.”

The “surface” viewpoint is helpful when studying intrinsic properties
of complex curves. For example, genus (introduced in connection with
parameterization in Sections 11.3 to 11.5) turns out to have a very simple
meaning in the topology of surfaces (see Section 15.4). On the other hand,
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the “curve” viewpoint is helpful when studying intersections of curves and
their embedding in C×C or its projective completion CP2. Instead of trying
to imagine two planes meeting in a single point of C × C, for example, it
is better to imagine the intersection as analogous to that of real lines in a
real plane—as the single solution of two linear equations. After all, we are
working with C to remove anomalies that occur with R, not for the sake of
doing something different, and we expect that much of the behavior of real
curves will recur with complex ones.

Exercises

Since addition and multiplication are continuous functions, it is quite easy to
find one-to-one continuous maps between certain complex algebraic curves and
the sphere.

15.2.1 Show that the projective completion of the curve Y = X2 is topologically
a sphere by considering its parameterization

X = t, Y = t2,

where t ranges over the sphere C ∪ {∞}. Namely, show that the mapping
t 
→ (t, t2) is one-to-one and continuous.

15.2.2 Similarly show that the projective completion of Y2 = X3 is topologically
a sphere by considering its parameterization

X = t2, Y = t3

and the continuous mapping t 
→ (t2, t3).

15.2.3 Consider the mapping of the t sphere onto the projective completion of
Y2 = X2(X + 1) defined by t 
→ P(t), where P(t) is the third intersection of
the curve with the line Y = tX through the double point (found in Exercise
7.4.2).

Show that this mapping is continuous and that it is one-to-one except at
the points t = ±1, which are both mapped to the point O on the curve.
Conclude that the curve is topologically the same as a sphere with two
points identified (Figure 15.5).

15.3 Branch Points

The key to the topological form of a complex curve p(x, y) = 0 lies in its
branch points, the points α where the Newton–Puiseux expansion of y be-
gins with a fractional power of (x − α) (see Section 10.5). The nature of
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Figure 15.5: The singular sphere

branch points was first described by Riemann (1851) as part of a revolu-
tionary new geometric theory of complex functions. Riemann’s idea, one
of the most illuminating in the history of mathematics, was to represent a
relation p(x, y) = 0 between complex x and complex y by covering a plane
(or sphere) representing the x variable by a surface representing the y vari-
able, the point or points of the y surface over a given point x = α being
those values of y that satisfy p(α, y) = 0.

If the equation p(α, y) = 0 is of degree n in y, there will in general be
n distinct y values for a given α, consequently n “sheets” of the y surface
lying over the x-plane in the neighborhood of x = α. At finitely many
exceptional values of x, sheets merge due to concidence of roots, and the
Newton–Puiseux theory says that at such a point y behaves like a fractional
power of x at 0. Our main problem, therefore, is to understand the behavior
of the Riemann surface for y = xm/n in the neighborhood of 0.

The idea can be grasped sufficiently well from seeing the special case
y = x1/2. If we consider the unit disk in the y-plane and try to deform it so
that the points y = ±√x lie above the point x in the unit disk of the x-plane,
then the result is something like Figure 15.6.

The angles θ on the disk boundaries are the arguments of the corre-
sponding points eiθ = cos θ + i sin θ, as we explain in Section 16.1. If

x = eiθ = ei(θ+2π)

then
y = eiθ/2, ei(θ/2+π),
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Figure 15.6: Branch point for the square root

giving the values shown. A more graphic depiction of the branch point
is seen in Figure 15.7, taken from an early textbook on Riemann’s theory
(Neumann (1865), endpaper).

Figure 15.7: Neumann’s picture of a branch point
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It should be noted that the awkward appearance of the branch point, in
particular the line of self-intersection, is a consequence of representing the
relation y2 = x in fewer dimensions than the four it really requires. If we
similarly attempt to represent the relation y2 = x between real x and y by
laying the y-axis along the x-axis so that y = ±√x are on top of x, then
the result is an awkward folded “branch point” at 0 (Figure 15.8). This
is a consequence of trying to represent the relation in one dimension. In
reality, as the second part of the figure shows, when viewed as a curve
in the plane the relation is just as smooth at 0 as anywhere else. (Notice,
incidentally, that the folded line in Figure 15.8, the real y-axis, corresponds
to the self-intersection line in Figure 15.7.)

O

+
√

x

−√x

x
O

+
√

x

−√x

x

Figure 15.8: A one-dimensional branch point

15.4 Topology of Complex Projective Curves

To understand the complete structure of the complex projective curve de-
fined by y2 = x we need to know its behavior at infinity. At ∞ there is
another branch point like the one at 0 (just replace x by 1/u and y by 1/v
and notice that we are looking at v2 = u near y = 0, v = 0—the same
situation as before). The topological nature of the relation between x and
y can then be captured by the model seen in Figure 15.9. A sphere (the x
sphere) is covered by two spheres (like skins of an onion), slit along a line
from 0 to ∞ and cross-joined. The slit from 0 to ∞ is arbitrary, but the
cross-joining is necessary to produce the branch point structure at 0 and∞.

The covering of the x sphere by this two-sheeted surface expresses the
“covering projection map” (x, y) 
→ x from a general point on the curve
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0

∞

Figure 15.9: Covering the sphere

y2 = x to its x coordinate and shows that it is two-to-one except at the
branch points 0, ∞. The two-sheeted surface itself captures the intrinsic
topological structure of the curve, and this structure can be more readily
seen by separating the two skins from the x sphere and each other, then
joining the required edges (Figure 15.10). Edges to be joined are labeled
by the same letters, and we see that the resulting surface is topologically a
sphere.

a b ∪ b a = a b

Figure 15.10: Joining the separated sheets

This result could have been obtained more directly by projecting each
point (x, y) on the curve to y, since this is a one-to-one continuous map
between the curve and the y-axis, which we know to be topologically a
sphere (when ∞ is included). The curve here was modeled by cutting and
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joining sheets on the sphere because this method extends to all algebraic
curves. The Newton–Puiseux theory implies that any algebraic relation
p(x, y) = 0 can be modeled by a finite-sheeted covering of the sphere, with
finitely many branch points. The most general branch point structure is
given by a prescription for cross-joining (permuting) the sheets, and by
slitting the sheets between branch points (or, if necessary, to an auxiliary
point) they can be rejoined to produce the prescribed branching behavior.

The most interesting case of this method is the cubic curve

y2 = x(x − α)(x − β).
This relation defines a covering in the x sphere that is two-sheeted, since
for each x there are + and − values for y, with branch points at 0, α, β, and
∞. (The branch point at ∞ is explained in the exercises below.) Thus if
we slit the sheets from 0 to α and from β to ∞, the required joining is like
that shown in Figure 15.11. We find, as Riemann did, that the surface is
a torus, and hence not topologically the same as a sphere. This discovery
proved to be a revelation for the understanding of cubic curves and elliptic
functions, as we see in the next chapter.

∪
c d

a b

d c

b a
=

c d

a b

d c

b a

=

c d

a b

Figure 15.11: Joining the sheets of a cubic curve

One quickly sees that by considering relations of the form

y2 = (x − α1)(x − α2) · · · (x − α2n)

it is possible to obtain Riemann surfaces of the form shown in Figure 15.12.
These surfaces are distinguished topologically from each other by the num-
ber of “holes”: 0 for the sphere, 1 for the torus, and so on. This simple
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topological invariant turns out to be the genus, which also determines the
type of functions that can parameterize the corresponding complex curve.
Other geometric and analytic properties of genus will unfold over the next
few chapters. The topological importance of genus was established by
Möbius (1863), when he showed that any closed surface in ordinary space
is topologically equivalent to one of the form seen in Figure 15.12.

Figure 15.12: A general Riemann surface

Exercises

We can transfer the “one-dimensional branch point” (Figure 15.8) to infinity
to see the topology of the real projective curve y2 = x.

15.4.1 Explain why the real projective curve y2 = x has a branch point at infinity
like the one at 0, and hence conclude that this curve is topologically a circle.

The explanation of the branch point at infinity of a cubic curve goes as fol-
lows.

15.4.2 Use the substitution x = 1/u, y = 1/v to show that the curve

y2 = x(x − α)(x − β)
behaves at infinity as the curve

v2 = u3(1 − uα)−1(1 − uβ)−1

does at 0, which in turn is qualitatively like the behavior of

v = u3/2.

15.4.3 Show, by considering the points lying above u = eiθ, that v = u3/2 has a
branch point at 0 like that of v = u1/2.
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15.5 Biographical Notes: Riemann

Bernhard Riemann (Figure 15.13) was born in the village of Breselenz,
near Hannover, in 1826, and died at Selasca in Italy in 1866. He was the
second of six children of Friedrich Riemann, a Protestant minister, and
Charlotte Ebell. Up to the age of 13 he was taught by his father, with the
help of the village schoolmaster, but he showed such a grasp of mathe-
matics that sometimes they were unable to follow him. In 1840 Riemann
went to live with his grandmother in Hannover in order to attend secondary
school. After her death in 1842 he continued his studies at a school in
Lüneburg, which was nearer to home, his father having moved to a new
parish in the village of Quickborn. In Lüneburg it was his good fortune
to have a headmaster who recognized his talent and gave him books by
Euler and Legendre to read. The story goes that he mastered Legendre’s
800-page Théorie des Nombres in six days.

Figure 15.13: Bernhard Riemann
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The bright side of Riemann’s life, described above, was not unlike
Abel’s. But, as with Abel, there was a darker side as well. Riemann’s fam-
ily was also poor and suffered from tuberculosis. His mother, three sisters,
and Riemann himself eventually died from the disease. At least Riemann
was spared the family discord and very early death that made Abel’s life
so tragic. At all times he maintained a close and loving relationship with
his family, he lived long enough to marry and become a father, and he also
had time to develop his major ideas to maturity and to gain a significant
following. Riemann’s published work—just a single volume—is in fact
less copious than that of any important mathematician who lived to his for-
tieth year. But no other single volume has had such an impact on modern
mathematics.

Riemann’s career as a mathematician began soon after he entered the
University of Göttingen in 1846. He intended to follow in his father’s foot-
steps by studying theology but, like Euler and the Bernoullis before him,
he found the call of mathematics too strong and obtained his father’s per-
mission to switch fields. The switch to mathematics was in recognition of
where his greatest talent lay, not because of disdain for theology or philos-
ophy. In fact, Riemann was deeply pious and well read in philosophy—so
much so that readers ever since have lamented the influence of German
philosophical writing on his style.

Göttingen in 1846 was not the mecca for mathematicians one would
have expected it to be with the great Gauss in the chair of mathematics.
Professors kept aloof from students and did not encourage original think-
ing or lecture on current research. Even Gauss himself taught only elemen-
tary courses. After a year, Riemann transferred to the University of Berlin,
where the atmosphere was more democratic and where Jacobi, Dirichlet,
Steiner, and Eisenstein shared their latest ideas. Riemann was too shy to
immerse himself fully in this radically different environment, but he be-
came friendly with Eisenstein, who was just three years his senior, and
learned a great deal from Dirichlet. Riemann’s later work made highly
original use of some of Dirichlet’s ideas, in particular a quasi-physical
principle (actually first stated by Kelvin) that Riemann called Dirichlet’s
principle. Among the remarkable conclusions he drew from this principle
was the theorem that curves of topological genus 0 are precisely those that
can be parameterized by rational functions.

Dirichlet’s forte was the use of analysis in pure mathematics, partic-
ularly in number theory, and Riemann too has been broadly classified as
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an analyst. However, he was not a specialist as analysts usually are today.
His field was all of mathematics, seen from the analytic viewpoint. He
saw where analysis could be used to illuminate mathematics from number
theory to geometry, but he also saw where analysis itself was in need of il-
lumination from outside. The concept of a Riemann surface, and the topo-
logical concept of genus in particular, made many previously hard-won
results of analysis almost obvious. A vivid example of the illumination of
analysis by topology is Riemann’s explanation of the double periodicity of
elliptic functions, which we shall see in Section 16.4.

Riemann surfaces were introduced in Riemann’s doctoral thesis (Rie-
mann (1851)). He had returned to Göttingen in 1849 and, after gaining
his doctorate, began working to qualify for a Privatdozent (lecturing) posi-
tion. One of the requirements was an essay, which he met with a memoir
on Fourier series in which he introduced the “Riemann integral” concept.
The Riemann integral is not really one of Riemann’s best ideas—although
it is the one best known to students today—since the integral later intro-
duced by Lebesgue is far better suited to the subject (see Chapter 24). The
other requirement was a lecture, for which he had to submit three titles
to the university faculty. Gauss chose the third, which was the most dif-
ficult, on the foundations of geometry. However, Riemann rose brilliantly
to the occasion, and his lecture Über die Hypothesen, welche der Geome-
trie zu Grunde liegen became one of the classics of mathematics (Riemann
(1854b)). In it he introduced the main ideas of modern differential geom-
etry: n-dimensional spaces, metrics and curvature, and the way in which
curvature controls global geometric properties of a space. In the special
case of two dimensions, these ideas had already been grasped by Gauss
(see Chapter 17), so it was a joy and a revelation to Gauss, then in the last
year of his life, to see how much further Riemann had carried them.

Riemann succeeded in becoming a lecturer and had the satisfaction of
attracting an unexpectedly large class (eight students!). During the next
few years he developed the material for perhaps his greatest work, Rie-
mann (1857), which did for algebraic geometry what his earlier Riemann
(1854b) did for differential geometry. One of his students at this time was
Dedekind, who later recast Riemann’s theory into the more algebraic form
that is used today. Dedekind also coedited Riemann’s collected works and
wrote an essay on Riemann’s life (Dedekind (1876)), which is the main
biographical source for this section. The lecturer’s position was very pro-
ductive mathematically, but it brought in only voluntary fees from students,



15.5 Biographical Notes: Riemann 311

and Riemann was close to starvation. Other setbacks he suffered were the
death of his father and sister Clara and a nervous breakdown brought on by
overwork.

When Gauss died in 1855 and was succeeded by Dirichlet there was an
unsuccessful move to appoint Riemann as associate professor. This move
failed, but Riemann was granted a regular salary, and when Dirichlet died
in 1859 Riemann succeeded him. In 1862 he married Elise Koch, a friend
of his sisters, and their daughter, Ida, was born in Pisa in 1863. Riemann
had begun traveling to Italy for the sake of his health in 1862, and he spent
much time there during his remaining years. He loved Italy and its art trea-
sures and also received a warm reception from Italian mathematicians. Two
of his friends in Pisa, Enrico Betti and Eugenio Beltrami, were inspired by
Riemann’s ideas to make important contributions to topology and differen-
tial geometry. Beltrami saw how Riemann’s concept of curved space could
be used as a basis for non-Euclidean geometry, a revolutionary discovery
that even Riemann may not have anticipated (see Chapter 18).

Riemann’s sojourn in Italy was all too short. He died at Selasca on Lake
Maggiore in the summer of 1866, with his wife beside him. Dedekind de-
scribed his last days as follows (not in his usual style, but no doubt sensitive
to the feelings of Riemann’s widow):

On the day before his death he lay beneath a fig tree, filled with
joy at the glorious landscape, writing his last work, unfortu-
nately left incomplete. His end came gently, without struggle
or death agony; it seemed as though he followed with inter-
est the parting of the soul from his body; his wife had to give
him bread and wine, he asked her to convey his love to those at
home, saying “Kiss our child.” She said the Lord’s prayer with
him, he could no longer speak; at the words “Forgive our tres-
passes” he raised his eyes devoutly, she felt his hand in hers
becoming colder, and after a few more breaths his pure, noble
heart ceased to beat. The gentle mind implanted in him in his
father’s house stayed with him all his life, and he remained
true to his God as his father had, though not in the same form.

Dedekind (1876)

It was said of Abel that he left enough to keep mathematicians busy for
500 years, and the same might be said of Riemann. Today, more than 130
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years after Riemann’s death, the major unsolved problem in pure mathe-
matics is the so-called Riemann hypothesis, a conjecture made casually by
Riemann (1859) in his paper on the distribution of prime numbers. Rie-
mann considered Euler’s function (discussed in Section 10.7),

ζ(s) = 1 +
1
2s +

1
3s + · · · ,

introducing the zeta notation for it, and extended it to complex values of
s. He observed that if ζ(s) = 0, then 0 ≤ Re(s) ≤ 1, and added that it
was quite likely that all zeros of ζ(s) had real part 1/2. He did not pursue
the matter further, since his initial observation was enough for his purpose,
which was to derive an infinite series for F(x), the number of primes less
than a positive integer x. Mathematicians later realized that Riemann’s
hypothesis governs the distribution of prime numbers to an extraordinary
extent, which is why its proof is so eagerly sought. Since all the efforts of
the best mathematicians have failed so far, perhaps only another Riemann
will succeed.



16

Complex Numbers and
Functions

Preview

The insight into algebraic curves afforded by complex coordinates—that a
complex curve is topologically a surface—has important repercussions for
functions defined as integrals of algebraic functions, such as the logarithm,
exponential, and elliptic functions.

The complex logarithm turns out to be “many-valued,” due to the differ-
ent paths of integration in the complex plane between the same endpoints.
It follows that its inverse function, the exponential function, is periodic. In
fact, the complex exponential function is a fusion of the real exponential
function with the sine and cosine: ex+iy = ex(cos y + i sin y).

The double periodicity of elliptic functions also becomes clear from
the complex viewpoint. The integrals that define them are taken over paths
on a torus surface, on which there are two independent closed paths.

The two-dimensional nature of complex numbers imposes interesting
and useful constraints on the nature of differentiable complex functions.
Such functions define conformal (angle-preserving) maps between sur-
faces. Also, their real and imaginary parts satisfy equations, called the
Cauchy–Riemann equations, that govern fluid flow. So complex functions
can be used to study the motion of fluids.

Finally, the Cauchy–Riemann equations imply Cauchy’s theorem. This
fundamental theorem guarantees that differentiable complex functions have
many good features, such as power series expansions.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 313
DOI 10.1007/978-1-4419-6053-5 16, c© Springer Science+Business Media, LLC 2010
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16.1 Complex Functions

When Bombelli (1572) introduced complex numbers, he implicitly intro-
duced complex functions as well. The solution y of the cubic equation
y3 = py + q,

y =
3

√
q
2
+

√(q
2

)2
−
( p

3

)3
+

3

√
q
2
−
√(q

2

)2
−
( p

3

)3
,

involves the cube root of a complex argument when (q/2)2 < (p/3)3. It
could have been a revelation to see that complex numbers explain the coin-
cidence of algebraic (Cardano) and geometric (Viète) solutions of the cubic
equation, and more generally the Leibniz–de Moivre theorem that

x =
1
2

n

√
y +

√
y2 − 1 +

1
2

n

√
y −
√
y2 − 1 ,

when x = sin θ and y = sin nθ (Section 6.6). In the case of the cubic,
this revelation can now be savored in Needham (1997), pp. 59–60. But
mathematicians were not concerned about the meaning of these complex
functions as long as they produced results that could be checked by algebra.

The need to understand complex functions became pressing only with
transcendental functions, particularly those defined by integration. A key
example is the logarithm function, which comes from integrating dz/(1+z).
Once this function was understood, the reason for algebraic miracles like
the Leibniz–de Moivre theorem became much clearer.

Johann Bernoulli (1702) opened the story of the complex logarithm
when he noted that

dz

1 + z2
=

dz

2(1 + z
√−1)

+
dz

2(1 − z
√−1)

and drew the conclusion that “imaginary logarithms express real circular
sectors.” He did not actually perform the integration, but he may have
found

tan−1 z =
1
2i

log
i − z
i + z

,

since Euler gives him credit for a similar formula when writing to him in
Euler (1728b). However, this may have been the young Euler’s deference
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to his former teacher, because Johann Bernoulli showed poor understand-
ing of logarithms as the correspondence continued. He persistently claimed
that log(−x) = log(x) on the grounds that

d
dx

log(−x) =
1
x
=

d
dx

log(x)

despite a reminder from Euler (1728b) that equality of derivatives does
not imply equality of integrals. Euler went on to suggest that the complex
logarithm had infinitely many values.

In the meantime, Cotes (1714) had also discovered a relation between
complex logarithms and circular functions:

log(cos x + i sin x) = ix.

Recognizing the importance of this result, he entitled his work Harmonia
mensurarum (Harmony of measures). The “measures” in question were the
logarithm and inverse tangent functions, which “measure” the hyperbola
and the circle, respectively, via the integrals

∫
dx/(1+ x) and

∫
dx/(1+ x2).

A wide class of integrals had been reduced to these two types, but it was not
understood why two apparently unrelated “measures” should be required.
Cotes’s result was the first (apart from the near-miss of Johann Bernoulli
(1702)) to relate the two, showing that in the wider domain of complex
functions the logarithm and inverse circular functions are essentially the
same.

The most compact statement of their relationship was attained around
1740, when Euler shifted attention from the logarithm function to its in-
verse, the exponential function. The definitive formula

eix = cos x + i sin x

was first published by Euler (1748a), who derived it by comparing series
expansions of both sides. Euler’s formulation in terms of the single-valued
function eix gave a simple explanation of the many values of the logarithm
(which Cotes had missed) as a consequence of the periodicity of cos and
sin. A direct explanation, based on the definition of log as an integral,
was not possible until Gauss (1811) clarified the meaning of complex in-
tegrals and pointed out their dependence on the path of integration (see
Section 16.3).

Euler’s formula also shows that

(cos x + i sin x)n = einx = cos nx + i sin nx
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and hence gives a deeper explanation of the Leibniz–de Moivre formula.
More generally, the addition theorems for cos and sin (Section 12.4) could
be seen as consequences of the much simpler addition formula for the ex-
ponential function

eu+v = eu · ev.
The imaginary function eix was so much more coherent than its real con-
stituents cos x and sin x that it was difficult to do without it, and Euler’s
formula gave mathematicians a strong push toward the eventual acceptance
of complex numbers. A more detailed account of the role of the logarithm
and exponential functions in the development of complex numbers may be
found in Cajori (1913).

At almost the same time that Euler elucidated cos and sin, d’Alembert
found many real functions occurring naturally in pairs as the real and imag-
inary parts of complex functions—in hydrodynamics. As mentioned in
Section 13.7, d’Alembert (1752) discovered the equations

∂P
∂y
− ∂Q
∂x
= 0, (1)

∂P
∂x
+
∂Q
∂y
= 0 (2)

relating the velocity components P, Q in two-dimensional steady irrota-
tional fluid flow. Equations (1) and (2) come from the requirements that
Q dx + P dy and P dx − Q dy be complete differentials, in which case an-
other complete differential is

Q dx + P dy + i(P dx − Q dy) = (Q + iP)

(
dx +

dy
i

)
= (Q + iP)d

(
x +
y

i

)
.

D’Alembert concluded that this means Q + iP is a function f of x+ y/i, so
that Q = Re( f ) and P = Im( f ).

To feel the force of this result, one has to forget the modern definition
of function, under which u(x, y) + iv(x, y) is a function of x + iy for any
functions u, v. In the 18th-century context, a “function” f (x + iy) of x + iy
was calculable from x+ iy by elementary operations; at worst, f (x+ iy) was
a power series in x + iy. This imposes a strong constraint on u, v, namely
that

∂u
∂x
=
∂v

∂y
,
∂u
∂y
= − ∂v
∂x
.
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These were just the equations d’Alembert found in his hydrodynamical
investigations, but they came to be named the Cauchy–Riemann equations,
because the latter mathematicians stressed their key role in the study of
complex functions. The concept of complex function was solidified when
Cauchy (1837) showed that a function f (z), where z = x + iy, merely
had to be differentiable in order to be expressible as a power series in z.
Thus it suffices to define a complex function f (z) to be one that is dif-
ferentiable with respect to z in order to guarantee that f is defined with
18th-century strictness. It follows, in particular, that the first derivative of
f entails derivatives of all orders and that the values of f in any neigh-
borhood determine its values everywhere. This “rigidity” in the notion of
complex function is enough of a constraint to enable nontrivial properties
to be proved, but at the same time it leaves enough flexibility—one might
say “fluidity”—to cover important general situations.

Exercises

Euler’s derivation of eix = cos x + i sin x is easy to explain using the power
series

ey = 1 +
y

1!
+
y2

2!
+
y3

3!
+ · · ·

and

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

found in Section 9.5.

16.1.1 Assuming that the series for ey is also valid for y = ix, show that

eix =

(
1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
+ i

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
.

16.1.2 Assuming it is valid to differentiate the sine series term by term, show that

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ,

and hence that eix = cos x + i sin x.

Another consequence of eix = cos x + i sin x is that i = cos π2 + i sin π2 = eiπ/2,
which allows us to evaluate the outlandish number ii.

16.1.3 Show that ii has a real value (Euler (1746)). What is it?

16.1.4 Using the fact that e2inπ = 1 for any integer n, give a formula for all values
of ii (Euler (1746)).
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16.2 Conformal Mapping

Another important general situation clarified by complex functions is the
problem of conformal mapping. Mapping a sphere (the earth’s surface)
onto a plane is a practical problem that has attracted the attention of math-
ematicians since ancient times. Before the 18th century, the most no-
table mathematical contributions to mapping were stereographic projection
(Section 15.2), due to Ptolemy around 150 ce, and the Mercator projection
used by G. Mercator in 1569 (this Mercator was Gerard, not the Nicholas
who discovered the series for log(1 + x)). Both these projections were
conformal, that is, angle-preserving, or what 18th-century mathematicians
preferred to call “similar in the small.” This means that the image f (R) of
any region R tends toward an exact scale map of R as the size of R tends
to 0. Since “similarity in the large” is clearly impossible—for example, a
great circle cannot be mapped to a closed curve that divides the plane into
two equal parts—conformality is the best one can do to preserve the ap-
pearance of regions on the sphere. Preservation of angles was intentional
in the Mercator projection, whose purpose was to assist navigation, and
in the case of stereographic projection conformality was first noticed by
Harriot around 1590 (see Lohne (1979)).

Advances in the theory of conformal mapping were made by Lambert
(1772), Euler (1777) (sphere onto plane), and Lagrange (1779) (general
surface of revolution onto plane). All these authors used complex numbers,
but Lagrange’s presentation is the clearest and most general. Using the
method of d’Alembert (1752), he combined a pair of differential equations
in two real variables into a single equation in one complex variable and
arrived at the result that any two conformal maps of a surface of revolution
onto the (x, y)-plane are related via a complex function f (x + iy) mapping
the plane onto itself. These results were crowned by the result of Gauss
(1822) generalizing Lagrange’s theorem to conformal maps of an arbitrary
surface onto the plane.

Conversely, a complex function f (z) defines a map of the z plane onto
itself, and it is easy to see that this map is conformal. In fact, this is a
consequence of the differentiability of f . To say that the limit

lim
δz→0

f (z0 + δz) − f (z0)
δz

exists is to say that the mapping of the disk {z : |z − z0| < |δz|} around z0 to
the region around f (z0) tends to a scale mapping as |δz| tends to 0. If the
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derivative is expressed in polar form as

f ′(z0) = reiα,

then r is the scale factor of this limit mapping and α is the angle of rotation.
Riemann (1851) seems to have been the first to take the conformal mapping
property as a basis for the theory of complex functions. His deepest result
in this direction was the Riemann mapping theorem, which states that any
region of the plane bounded by a simple closed curve can be mapped onto
the unit disk conformally, and hence by a complex function. The proof of
this theorem in Riemann (1851) depends on properties of potential func-
tions, which Riemann justified partly by appeal to physical intuition—the
so-called Dirichlet’s principle. Such reasoning went against the growing
tendency toward rigor in 19th-century analysis, and stricter proofs were
given by Schwarz (1870) and Neumann (1870). However, Riemann’s faith
in the physical roots of complex function theory was eventually justified
when Hilbert (1900b) put Dirichlet’s principle on a sound basis.

Exercises

The claim that differentiability of f (z) implies that f is a conformal mapping
should be qualified by the condition f ′(z) � 0, because if the scale factor tends to
0 then f cannot be said to be a scale mapping. At points where f ′(z) = 0 one may
find that angles are altered. Here is an example.

16.2.1 Show that f (z) = z2 defines a conformal mapping except at z = 0, where
it doubles angles.

This is no surprise if we view z �→ z2 as a two-sheeted covering of the plane
C (compare with Section 15.4).

16.2.2 Show that the map z �→ z2 is two-to-one except at z = 0, and relate the
angle doubling at z = 0 to the branch point of the covering.

16.2.3 Similarly describe the behavior of the map z �→ z3 at z = 0.

16.3 Cauchy’s Theorem

We have seen that interesting complex functions arise from integration.
For example, the elliptic functions come from inversion of elliptic integrals
(Section 12.3). However, it is not at first clear what the integral

∫ z

z0
f (t) dt

means when z0, z are complex numbers. It is natural, and not technically
difficult, to define

∫ z

z0
f (t) dt as

∫
C f (t) dt, the integral of f along a curve
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C from z0 to z; the problem is that
∫
C f (t) dt appears to depend on C and

hence may not be anything like a function of z, as one would wish.
The first to recognize and resolve this problem seems to have been

Gauss. In a letter to Bessel, Gauss (1811) raised the problem and claimed
its resolution as follows:

Now how is one to think of
∫
Φ(z) dz for z = a + ib? Ev-

idently, if one wishes to start from clear concepts, one must
assume that z changes by infinitely small increments (each of
the form α + iβ) from that value for which the integral is to
be 0 to c = a + ib, and then sum all the φ(z) dz. . . . But now
. . . continuous transition from one value of z to another a + ib
takes place along a curve and hence is possible in infinitely
many ways. I now conjecture that the integral

∫ c

0 φ(z) dz will
always have the same value after two different transitions if
φ(z) never becomes infinite within the region enclosed by the
two curves representing the transitions.

Translation of Gauss (1811) in Birkhoff (1973), p. 31

In the same letter, Gauss also observed that if φ(z) does become infinite
in the region, then in general

∫ c

0 φ(z) dz will take different values when
integrated along different curves. He saw in particular that the infinitely
many values of log c corresponded to the different ways a path from 1 to c
could wind around z = 0, the point where φ(z) = 1/z becomes infinite.

The theorem that
∫ z

z0
f (t) dt is independent of the path throughout a re-

gion where f is finite (and differentiable, which went without saying for
Gauss) is now known as Cauchy’s theorem, since Cauchy was the first to
offer a proof and to develop the consequences of the theorem. An equiv-
alent and more convenient statement is that

∫
C f (t) dt = 0 for any closed

curve C in a region where f is differentiable. Cauchy presented a proof to
the Paris Academy in 1814 but first published it later (Cauchy (1825)).
In Cauchy (1846) he presented a more transparent proof, based on the
Cauchy–Riemann equations and the theorem of Green (1828) and Ostro-
gradsky (1828), which relates a line integral to a surface integral. The latter
theorem, usually known as Green’s theorem, is a generalization of the fun-
damental theorem of calculus to real functions f (x, y) of two variables and
can be stated as follows: if C is a simple closed curve bounding a region R
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and f is suitably smooth, then
∫
C

f dx =
∫∫
R
∂ f
∂y

dx dy,
∫
C

f dy = −
∫∫
R
∂ f
∂x

dx dy,

where
∫∫
R denotes the surface integral over R and

∫
C denotes the line in-

tegral around C in the counterclockwise sense. (The difference in sign in
the two formulas reflects the different sense of C when x and y are inter-
changed.)

Cauchy’s theorem follows from Green’s theorem by an easy calcula-
tion. If

f (t) = u(t) + iv(t)

is the decomposition of f into real and imaginary parts, and if we write

dt = dx + i dy,

then
∫
C

f (t) dt =
∫
C

(u + iv)(dx + i dy)

=

∫
C

(u dx − v dy) + i
∫
C

(v dx + u dy)

=

∫∫
R

(
∂u
∂y
+
∂v

∂x

)
dx dy + i

∫∫
R

(
∂v

∂y
− ∂u
∂x

)
dx dy

= 0,

since
∂u
∂y
+
∂v

∂x
= 0 and

∂v

∂y
− ∂u
∂x
= 0

by the Cauchy–Riemann equations. This proof requires f to have a contin-
uous first derivative in order to be able to apply Green’s theorem. The re-
striction of continuity of f ′(t) in the proof was removed by Goursat (1900).
As it happens, if f ′ exists, it will have not only continuity but also deriva-
tives of all orders. This follows from one of the remarkable consequences
Cauchy (1837) drew from the assumption

∫
C f (t) dt = 0, namely, that f

has a power-series expansion. By Goursat (1900), then, differentiability
of a complex function is enough to guarantee a power-series expansion.
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A generalization of this result to f that become infinite at isolated points
was made by Laurent (1843) ( f then has an expansion including negative
powers, called the Laurent expansion) and to “many-valued” f with branch
points by Puiseux (1850) ( f then has an expansion in fractional powers, the
Newton–Puiseux expansion).

Exercises

The Cauchy–Riemann equations follow easily from the existence of f ′(z), that
is, from the condition that

lim
δz→0

f (z + δz) − f (z)
δz

have the same value, regardless of the path along which δz→ 0.

16.3.1 Suppose f (z) = u(x, y) + iv(x, y) and δz = δx + iδy. By letting δz → 0
along the x-axis (δy = 0) and along the y-axis (δx = 0), and equating the
resulting values of f ′(z), show that

∂u
∂x
=
∂v

∂y
,
∂u
∂y
= − ∂v
∂x
.

These equations give a convenient test for a function u(x, y) + iv(x, y) to be a
differentiable function of z = x + iy.

16.3.2 Check that u(x, y) = x2−y2 and v(x, y) = 2xy satisfy the Cauchy–Riemann
equations.

16.3.3 Express x2 − y2 + 2ixy as a function of z = x + iy.

16.4 Double Periodicity of Elliptic Functions

The view of complex integration provided by Cauchy’s theorem is one step
toward understanding elliptic integrals such as

∫ z

0 dt/
√

t(t − α)(t − β). The
other important step is the idea of a Riemann surface (Section 15.4), which
enables us to visualize the possible paths of integration from 0 to z. The
“function” 1/

√
t(t − α)(t − β) is of course two-valued and, by an argument

like that in Section 15.4, is represented by a two-sheeted covering of the
t sphere, with branch points at 0, α, β, ∞. Thus the paths of integration,
correctly viewed, are curves on this surface, which is topologically a torus
(again, as in Section 15.4).

Now a torus contains certain closed curves that do not bound a piece of
the surface, such as the curves C1 and C2 shown in Figure 16.1. There is
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no region R bounded by C1 or C2; hence Green’s theorem does not apply,
and we in fact obtain nonzero values

ω1 =

∫
C1

dt√
t(t − α)(t − β) ,

ω2 =

∫
C2

dt√
t(t − α)(t − β) .

Consequently the integral

Φ−1(z) =
∫ z

0

dt√
t(t − α)(t − β)

will be ambiguous: for each value Φ−1(z) = w obtained for a certain path C
from 0 to z we also obtain the values w+mω1+nω2 by adding to C a detour
that winds m times around C1 and n times around C2. (For topological
reasons, this is essentially the most general path of integration.)

C2 C1

Figure 16.1: Nonbounding curves on the torus

It follows that the inverse relation Φ(w) = z, the elliptic function corre-
sponding to the integral, satisfies

Φ(w) = Φ(w + mω1 + nω2)

for any integers m, n. That is, Φ is doubly periodic, with periods ω1, ω2.
This intuitive explanation of double periodicity is due to Riemann (1851),
who later (Riemann (1858a)) developed the theory of elliptic functions
from this standpoint.
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Remarkable series expansions of elliptic functions, which exhibit the
double periodicity analytically, were discovered by Eisenstein (1847). The
precedents for Eisenstein’s series, as Eisenstein himself pointed out, were
partial fraction expansions of circular functions discovered by Euler, for
example

π cot πx =
∞∑

n=−∞

1
x + n

(Euler (1748a), p. 191). It is obvious (at least formally, though one has to be
a little careful about the meaning of this summation to ensure convergence)
that the sum is unchanged when x is replaced by x + 1; hence the period 1
of π cot πx is exhibited directly by its series expansion. Eisenstein showed
that doubly periodic functions could be obtained by analogous expressions,
such as ∞∑

m,n=−∞

1
(z + mω1 + nω2)2

,

which again (with suitable interpretation to ensure convergence) are obvi-
ously unchanged when z is replaced by z+ω1 or z+ω2. Hence we obtain a
function with periods ω1, ω2. The function above is in fact identical (up to
a constant) with the Weierstrass ℘-function, mentioned in Section 12.5 as
the inverse to the integral

∫
dt/
√

4t3 − g2t − g3. Weierstrass (1863), p. 121,
found the relations between g2, g3 and the periods ω1, ω2:

g2 = 60
∑ 1

(mω1 + nω2)4
,

g3 = 140
∑ 1

(mω1 + nω2)6
,

where the sums are over all pairs (m, n) � (0, 0). Elegant modern accounts
of the Eisenstein and Weierstrass theories may be found in Weil (1976) and
Robert (1973).

Exercises

The precise definition of the Weierstrass ℘-function is

℘(z) =
1
z2
+

∞∑
m,n�0,0

(
1

(z + mω1 + nω2)2
− 1

(mω1 + nω2)2

)
.

This series has better convergence than the Eisenstein series given above, but its
double periodicity is not quite so obvious. We can establish double periodicity by
differentiating and integrating as follows (which is valid because of the conver-
gence properties of the Weierstrass series).
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16.4.1 By differentiating term by term, show that

℘′(z) = −2
∞∑

m,n=−∞

1
(z + mω1 + nω2)3

,

and conclude that ℘′(z + ω1) = ℘′(z) and ℘′(z + ω2) = ℘′(z).

16.4.2 By integrating the equations just obtained, show that

℘(z + ω1) − ℘(z) = c and ℘(z + ω2) − ℘(z) = d,

for some constants c and d.

16.4.3 Deduce from Exercise 16.4.2 that

℘
(
ω1

2

)
− ℘
(
−ω1

2

)
= c and ℘

(
ω2

2

)
− ℘
(
−ω2

2

)
= d.

16.4.4 But ℘(z) = ℘(−z) (why?); hence conclude that ℘ is doubly periodic.

16.5 Elliptic Curves

We have seen that nonsingular cubic curves of the form

y2 = ax3 + bx2 + cx + d (1)

are important not only among the cubic curves themselves (see Newton’s
classification, Sections 7.4 and 8.4), but also in number theory (Section
11.6) and the theory of elliptic functions (Section 12.2). One of the great
achievements of 19th-century mathematics was the synthesis of a unified
view of all these manifestations of cubic curves. The view was glimpsed by
Jacobi (1834), and it came more clearly into focus with the development
of complex analysis between Riemann (1851) and Poincaré (1901). The
theory of elliptic curves, as the unified view has come to be known, contin-
ues to inspire researchers today, since it seems to encompass some of the
most fascinating problems of number theory. We now know, for example,
how to derive Fermat’s last theorem from properties of elliptic curves (see
Section 11.3).

Jacobi saw, at least implicitly, that the curve (1) could be parameterized
as

x = f (z), y = f ′(z), (2)

where f and its derivative f ′ are elliptic functions. Knowing that f and
f ′ are doubly periodic, with the same periods ω1, ω2, say, he would have
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seen that this gave a map of the z plane C onto the curve (1) for which the
preimage of a given point on (1) is a set of points in C of the form

z + Λ = {z + mω1 + nω2 : m, n ∈ Z},
where

Λ = {mω1 + nω2 : m, n ∈ Z}.
Λ is called the lattice of periods of f . The numbers z+mω1 + nω2 in z+Λ
are also called “equivalent with respect to Λ.” One such equivalence class
is shown by asterisks in Figure 16.2.

0 ω1

2ω1

ω2

2ω2

*
*

*
*

*
*

Figure 16.2: Lattice-equivalent points

The parameterization (2) means that there is a one-to-one correspon-
dence between the points ( f (z), f ′(z)) of the curve and the equivalence
classes z + Λ. Today we express this relation by saying that the curve
is isomorphic to the space C/Λ of these equivalence classes. Jacobi might
have seen, though it was probably not of interest to him, that C/Λ is a torus.
One sees this by taking one parallelogram in C, which includes a represen-
tative of each equivalence class, and identifying the equivalent points on
its boundary (that is, pasting opposite sides together, as in Figure 16.3). Of
course, the torus form of (1) eventually came to light through the Riemann
surface construction given in Section 15.4.

→ →

Figure 16.3: Construction of a torus by pasting
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An elegant way of demonstrating both the double periodicity of ellip-
tic functions and the parameterization of cubic curves was given by Weier-
strass (1863). Beginning with the function

∞∑
m,n=−∞

1

(z + mω1 + nω2)2
,

which, as mentioned in Section 16.4, makes the double periodicity evident,
Weierstrass defined the function

℘(z) =
1

z2
+

∞∑
m,n�0,0

(
1

(z + mω1 + nω2)2
− 1

(mω1 + nω2)2

)
,

which has better convergence properties and is also doubly periodic. He
then showed by simple computations with series that

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3,

where g2, g3 are the constants depending on ω1, ω2, which were defined in
Section 16.4. It follows that the point (℘(z), ℘′(z)) lies on the curve

y2 = 4x3 − g2x − g3, (3)

and a little further checking shows that (3) is in fact isomorphic to C/Λ,
whereΛ is the lattice of periods of ℘. The parameterization of all curves (1)
by elliptic functions follows by making a linear transformation.

The reason for saying that the curve and C/Λ are “isomorphic” (which
comes from the Greek for “same form”) is not only because they both have
the form of a torus. They also have the same algebraic structure, which
comes to light when we consider their natural “addition” operation.

Once the curve (1) is parameterized as

x = f (z), y = f ′(z),

one sees a natural “addition” of points on the curve induced by adding
their parameter values. Because of the double periodicity of f and f ′, this
“addition” is simply ordinary addition in C, modulo Λ. In particular, it is
immediate that “addition of points” has some properties of ordinary addi-
tion, such as commutativity and associativity. However, as mentioned in
Section 11.6, addition of parameter values z is also reflected in the geom-
etry of the curve. The most concise statement of the relationship, due to
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Clebsch (1864), is that if z1, z2, z3 are parameter values of three collinear
points, then

z1 + z2 + z3 = 0 mod (ω1, ω2)

(or z1 + z2 + z3 ∈ Λ). This means that “addition of points” also has an
elementary geometric interpretation, for which, incidentally, the algebraic
properties are far less obvious.

On the other hand, the straight-line interpretation of “addition” gives
the simplest explanation of the addition theorems for elliptic functions. As
we saw in Section 11.6, the value of f (z3) is easy to compute as a rational
function of f (z1), f ′(z1), f (z2), f ′(z2) when z1, z2, z3 are the parameter
values of collinear points. Originally, of course, the formula was obtained
by Euler, with great difficulty, by manipulating the integral inverse to f
(see Section 12.5).

Another reason to accept C/Λ as the “right” view of the curve is that
it gives an answer to the seemingly unrelated question of classification
by projective equivalence. Recall from Section 8.4 that Newton had re-
duced cubics to the cusp type, the double-point type, and three nonsingular
types using real projective transformations. All cubics with a cusp are, in
fact, equivalent to y2 = x3, and all with a double point are equivalent to
y2 = x2(x + 1), while the distinction between the nonsingular types disap-
pears over the complex numbers, where, as we now know, all are equivalent
to tori C/Λ. The problem that remains is to decide projective equivalence
among the nonsingular cubics. Salmon (1851) showed that this was deter-
mined by a certain complex number τ, which can be computed from the
equation of the curve. He defined τ geometrically, so that its projective
invariance was obvious, with no thought of elliptic functions. But τ turned
out to be nothing but ω1/ω2, which means that two nonsingular cubics are
projectively equivalent if and only if their period lattices Λ have the same
shape.

Exercises

Strictly speaking, the ratio τ = ω1/ω2 determines only the shape of the par-
allelogram with vertices 0, ω1, ω2, and ω1 + ω2.

16.5.1 Explain how both the angle between adjacent sides of this parallelogram,
and the ratio between their lengths, may be extracted from τ = ω1/ω2.

The lattice of periods

Λ = {mω1 + nω2 : m, n ∈ Z}
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can be viewed as the set of vertices in a tiling of the plane by copies of this par-
allelogram, as in Figure 16.2. However, infinitely many differently shaped par-
allelograms give the same Λ. Thus the number τ alone should not be taken to
characterize the shape of Λ.

16.5.2 Show that Λ may also be tiled by copies of a parallelogram with shape
given by τ + 1.

16.5.3 More generally, show that Λmay be generated by any two of its elements,
ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 provided ad − bc = ±1. Hint: Write
down a product of matrices transforming the column vector of (ω1, ω2) to
(ω′1, ω

′
2) and back to (ω1, ω2), and take its determinant.

16.5.4 Deduce from Exercise 16.5.3 that the lattice Λ = {mω1 + nω2 : m, n ∈ Z}
has shape characterized by the whole family of complex numbers

aτ + b
cτ + d

where τ =
ω1

ω2
and a, b, c, d are integers with ad − bc = ±1.

There are functions of the complex variable τ that depend only on the lattice
Λ, and hence take the same value for each number (aτ+b)/(cτ+d) characterizing
the lattice shape.

16.5.5 Consider g2 and g3 from Section 16.4, which are obviously functions
g2(Λ) and g3(Λ) of the lattice Λ. Show that g3

2/g
2
3 and g3

2/(g
3
2 − 27g2

3) are
both functions of τ.

The latter function is none other than the famous modular function mentioned
in Section 6.7 in connection with the solution of the quintic equation. For more
information on its amazing properties, see McKean and Moll (1997).

16.6 Uniformization

The characteristic of nonsingular cubics that allows their parameterization
by elliptic functions is their topological form. The two periods correspond
to the two essentially different circuits around the torus (Figure 16.1).

A representation of the x and y values on a curve by simultaneous func-
tions of a single parameter z is sometimes called a uniform representation,
and so the problem of parameterizing all algebraic curves in this way came
to be known as the uniformization problem. Once the elliptic case was un-
derstood, it became clear that a solution of the uniformization problem for
arbitrary algebraic curves would depend on a better understanding of sur-
faces: their topology, the periodicities associated with their closed curves,
and the way these periodicities could be reflected in C. These problems
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were first attacked by Poincaré and Klein in the 1880s, and their work led
to the eventual positive solution of the uniformization problem by Poincaré
(1907) and Koebe (1907).

Even more important than the solution of this single problem, however,
was the amazing convergence of ideas in the preliminary work of Poincaré
and Klein. They discovered that multiple periodicities are reflected in C
by groups of transformations, and that the transformations in question are
of the simple type z �→ (az + b)/(cz + d), called linear fractional. Linear
fractional transformations generalize the linear transformations z �→ z+ω1,
z �→ z+ω2 naturally associated with the periods of elliptic functions. How-
ever, while the transformations z �→ z + ω1, z �→ z + ω2 are algebraically
and geometrically transparent—they commute, and they generate the gen-
eral transformations z �→ z+mω1+nω2, which are simply translations of the
plane—the more general linear fractional transformations are not as easily
understood. Linear fractional transformations do not normally commute,
and their mastery requires a simultaneous grasp of algebraic, geometric,
and topological aspects.

The simultaneous view proved to be enormously fruitful in the devel-
opment of group theory and topology, as we shall see in Chapters 19 and
22. Geometry was also given a new lease of life when Poincaré (1882) dis-
covered that linear fractional transformations give a natural interpretation
of non-Euclidean geometry, a field that until then had been a curiosity on
the fringes of mathematics. In the next two chapters we look at the origins
of non-Euclidean geometry and see how the subject was transformed by
Poincaré’s discovery.

Exercises

The first example, beyond the elliptic functions, of periodicity under linear
fractional transformations is seen in the modular function derived in the previ-
ous exercise set. It turns out that the periodicity of the modular function can be
generated by two transformations: z �→ z + 1 and z �→ −1/z.

16.6.1 Check that z �→ z + 1 and z �→ −1/z are among the transformations

z �→ az + b
cz + d

, where a, b, c, d are integers with ad − bc = ±1.

16.6.2 Show that the transformations z �→ z + 1 and z �→ −1/z do not commute.

16.6.3 Show that both z �→ z + 1 and z �→ −1/z map the half-plane {Im z > 0}
onto itself, and that z �→ −1/z exchanges the inside and outside of the unit
circle.



16.7 Biographical Notes: Lagrange and Cauchy 331

16.7 Biographical Notes: Lagrange and Cauchy

Joseph Louis Lagrange (Figure 16.4) was born in Turin in 1736 and died
in Paris in 1813. He was the oldest of 11 children of Giuseppe Lagrangia,
treasurer of the Office of Public Works in Turin, and Teresa Grosso, the
daughter of a physician, and a member of the wealthy Conti family. De-
spite this background, Lagrange’s family was not well off, since his father
had made some unwise financial speculations. Lagrange eventually came
to appreciate the loss of his chance to become a wealthy idler, saying, “If I
had inherited a fortune I should probably not have cast my lot with mathe-
matics.”

Figure 16.4: Joseph Louis Lagrange

His prowess in mathematics developed with amazing speed after he
first encountered calculus in 1753, at the age of 17. By 1754 he was writing
to Euler about his discoveries, and in 1755 he was made professor at the
Royal Artillery School in Turin. As early as 1756 he was offered a superior
position in Prussia, but he was too shy, or too reluctant to leave home, to
accept it. As his reputation grew, he also won the support of d’Alembert.
When Euler left Berlin in 1766, d’Alembert arranged for Lagrange to take
Euler’s place. In 1767, perhaps missing the company of his family in Turin,
Lagrange married his cousin Vittoria Conti. In a letter to d’Alembert in
1769 he said he had chosen a wife “who is one of my good cousins and
who even lived for a long time with my family, is a very good housewife
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and has no pretensions at all,” adding that they had no children and did not
want any.

Notwithstanding this lackluster beginning, and the ill health of both
Lagrange and his wife, the marriage strengthened over the years. Lagrange
nursed Vittoria as her health worsened, and he was heartbroken when she
died in 1783. He became deeply depressed about his work and the future
of mathematics itself, writing to d’Alembert, “I cannot say that I shall still
be doing mathematics 10 years from now. It also seems to me that the mine
is already too deep, and that unless new veins are discovered it will have
to be abandoned.” Not long before this, Lagrange had completed one of
his greatest works, the Mécanique analytique, but when a copy of the book
reached him from the printer he left it unopened on his desk.

Frederick II died in 1786, and Lagrange’s position in Berlin became
less secure. After receiving several offers from Italy and France, he ac-
cepted a position at the Paris Academy in 1787. The change of scene did
not appreciably revive his general spirits or enthusiasm for mathematics.
Though always welcome at social and scientific gatherings, he was always
politely detached, sympathetic but uninvolved. At least it can be said of
his detachment that it enabled him to survive the 1789 revolution, which
took the lives of his more committed friends Condorcet and Lavoisier. The
revolution did in fact stir some activity in Lagrange. In 1790 he became
a member of the commission on weights and measures, which introduced
the metric system now used universally in science. An interesting glimpse
of mathematics during the revolution, in the form of a “panel discussion”
between Lagrange, Laplace, and members of a student audience, may be
found in Dedron and Itard (1973), pp. 302–310.

In 1792 Lagrange married Renée-Françoise-Adelaı̈de Le Monnier, the
teenaged daughter of an astronomer colleague. His interest in life and
mathematics revived, and even in his seventies he made some brilliant con-
tributions to celestial mechanics, which he incorporated in a second edition
of the Mécanique analytique. When he died in 1813 he was buried in the
Pantheon in Paris.

Lagrange is known for an uncompromisingly formal approach to anal-
ysis and mechanics. He viewed all functions as power series and attempted
to reduce all mechanics to the analysis of such functions, without use of ge-
ometry. He was proud of the fact that the Mécanique analytique contained
no diagrams. His fear that mathematics would have to be abandoned “if
new veins were not discovered” was of course unfounded, but understand-
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able as an admission of the limitations of his own approach. The great
advances of 19th-century analysis were due, more than anything else, to
a revival of geometry. In particular, Lagrange’s own view of functions as
power series became intelligible only in the domain of complex functions,
when it emerged from the geometric theory of complex integration discov-
ered by Gauss and Cauchy.

Augustin-Louis Cauchy (Figure 16.5) was born in Paris in 1789, only
weeks after the storming of the Bastille, but he was anything but a child of
the revolution. His father, Louis-François, was a lawyer and government
official who fled to Paris with his wife, Marie-Madeleine Desestre, during
the Terror. Augustin-Louis was the first of their six children. Throughout
his life Cauchy was to hold extreme antirevolutionary and royalist views.
The family settled in the village of Arcueil, and Cauchy received his early
education from his father. He also had the benefit of contact with famous
scientists who came to visit Laplace, who was a neighbor. Lagrange is said
to have predicted that Cauchy would become a scientific genius but advised
his father not to show him a mathematics book before he was 17.

Figure 16.5: Augustin-Louis Cauchy

When Napoleon took power at the end of the 18th century, Cauchy’s
father returned to government service, and the family moved back to Paris.
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Cauchy concentrated on classics in secondary school, which he completed
in 1804, but then gravitated toward a scientific career. He entered the École
Polytechnique in 1805, transferred to the École des Ponts in 1807, and be-
gan working as an engineer around 1809. In 1810 he went to Cherbourg to
help in the construction of Napoleon’s naval base, carrying with him, so it
was said, Laplace’s Mécanique céleste and Lagrange’s Traité des fonctions
analytiques.

His first important mathematical work was the solution of a problem
posed to him by Lagrange: to show that any convex polyhedron is rigid.
(More precisely, to show that the dihedral angles of a convex polyhedron
are uniquely determined by its faces.) An accessible proof of his result,
which deserves to be better known, is in Lyusternik (1966). Cauchy’s the-
orem partially settled a conjecture of Euler that any closed surface is rigid,
and was in fact the best positive result obtainable, since Connelly (1977)
has found a nonconvex polyhedron that is not rigid. Cauchy’s second major
discovery was his proof, in 1812, of Fermat’s conjecture that every integer
is the sum of at most n n-agonal numbers (see Section 3.2).

The Cauchy integral theorem, submitted to the French Academy in
1814, carried him into the mathematical mainstream. He also managed
to catch the political tide, which was turning royalist again, and became a
member of the Academy on the expulsion of some republican members in
1816. At the same time he became a professor at the École Polytechnique,
where the 1820s saw the publication of his classic analysis texts and also
one of his most important creations, the theory of elasticity. He also gained
additional chairs at the Sorbonne and the Collège de France. He and Aloı̈se
de Bure were married in 1818, and they had two daughters.

The mild revolution of 1830, which replaced the Bourbon King Charles
X with the Orléans King Louis-Phillipe, was a catastrophe in Cauchy’s
view. From principles that were curious, though certainly firmly held,
Cauchy refused to take the oath of allegiance to the new king. This meant
he had to resign his chairs, but Cauchy went further than this—he left his
family and followed the old king into exile. He did not return to Paris until
1838, and it was another 10 years before he regained one of his former
chairs. Ironically, he had the revolution to thank for this, because it abol-
ished the oath of allegiance. He returned to the Sorbonne and kept up a
steady flow of mathematical papers until his death in 1857.
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Differential Geometry

Preview

As mentioned in Chapter 13, calculus made it possible to study nonalge-
braic curves: the “mechanical” curves, or transcendental curves as we now
call them. Calculus computes not only their basic features, such as tangents
and area, but also more sophisticated properties such as curvature. Curva-
ture turns out to be a fundamental concept of geometry, not only for curves,
but also for higher-dimensional objects.

The concept of curvature is particularly interesting for surfaces, be-
cause it can be defined intrinsically. The intrinsic curvature, or Gaussian
curvature as it is known, is unaltered by bending the surface, so it can be
defined without reference to the surrounding space.

This opens the possibility of studying the intrinsic surface geometry.
On any smooth surface one can define the distance between any two points
(sufficiently close together), and hence “lines” (curves of shortest length),
angles, areas, and so on.

The question then arises, to what extent does the intrinsic geometry of
a curved surface resemble the classical geometry of the plane? For surfaces
of constant curvature, the difference is reflected in two of Euclid’s axioms:
the axiom that straight lines are infinite, and the parallel axiom.

On surfaces of constant positive curvature, such as the sphere, all lines
are finite and there are no parallels. On surfaces of zero curvature there
may also be finite straight lines; but if all straight lines are infinite the par-
allel axiom holds. The most interesting case is constant negative curvature,
because it leads to a realization of non-Euclidean geometry, as we will see
in Chapter 18.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 335
DOI 10.1007/978-1-4419-6053-5 17, c© Springer Science+Business Media, LLC 2010
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17.1 Transcendental Curves

We saw in Chapter 9 that the development of calculus in the 17th century
was greatly stimulated by problems in the geometry of curves. Differenti-
ation grew out of methods for the construction of tangents, and integration
grew out of attempts to find areas and arc lengths. Not only did calculus un-
lock the secrets of the classical curves and of the algebraic curves defined
by Descartes; it also extended the concept of curve itself. Once it became
possible to handle slopes, lengths, and areas with precision, it also became
possible to use these quantities to define new, nonalgebraic curves. These
were the curves called “mechanical” by Descartes (Sections 7.3 and 13.5)
and “transcendental” by Leibniz. In contrast to algebraic curves, which
could be studied in some depth by purely algebraic methods, transcenden-
tal curves were inseparable from the methods of calculus. Hence it is not
surprising that a new set of geometric ideas, the ideas of “infinitesimal” or
differential geometry, first emerged from the investigation of transcenden-
tal curves.

A more surprising by-product of the investigation of transcendental
curves was the first solution of the ancient problem of arc length. The
problem was first posed for an algebraic curve, the circle, by the Greeks
and in this case it is equivalent to an area problem (“squaring the circle”),
since both area and arc length of the circle depend on the evaluation of π.
As we now know, π is a transcendental number (Section 2.3), so the arc
length problem for the circle has no solution by the elementary means al-
lowed by the Greeks. The first curve whose arc length could be found by
elementary means was discovered by Harriot around 1590. It is the curve
defined by the polar equation

r = ekθ

known as the logarithmic or equiangular spiral.
Harriot did not have the exponential function and knew the curve only

by its equiangular property, which is that the tangent makes a constant an-
gle φ (depending on k) with the radius vector. The spiral turned up in his
researches on navigation and map projections (Section 16.2) as the projec-
tion of a rhumb line on the sphere (Figure 17.1). A rhumb line is a curve
that meets the meridians at a constant angle; in practical terms, it represents
the course of a ship sailing in a fixed compass direction.

Not having the tools of calculus, Harriot had to rely on ingenious geom-
etry and a simple limit argument. His construction is illustrated in Figure
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Figure 17.1: A rhumb line and its projection

17.2, from Lohne (1979) p. 273. The spiral of angle 55◦ is approximated
by a polygon with sides s1, s2, s3, . . ., which yield triangles T1, T2, T3, . . .

when connected to the origin p. The triangles T1, T2, T3, . . . can be re-
assembled to form triangle ABT , whose area therefore equals that of the
spiral (when the areas of overlapping turns are added together). Also

BT + T A = s1 + s2 + s3 + · · · = length of the spiral.

When the approximation is made with shorter sides s′1, s
′
2, s
′
3, . . ., but other-

wise in the same way, the same triangle ABT results: the isosceles triangle
with base a and base angles 55◦. Hence we have also found length and area
of the smooth curve.

Harriot’s work was not published, and the arc length of the equiangular
spiral was rediscovered by Torricelli (1645). Gradually the problem of arc
length became understood more systematically as a problem of integration,
though usually a rather intractable one. The first solution for an algebraic
curve was for the “semicubical parabola” y2 = x3, by Neil and Heuraet
in 1657. Soon after this Wren solved the problem for the cycloid, and his
solution was given by Wallis (1659). A remarkable feature of Wren’s result
is that the length of one arch of the cycloid is a rational multiple (namely,
4) of the diameter of the generating circle.
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Figure 17.2: Constructing the area of a spiral

As mentioned in Section 13.5, other extraordinary properties of the
cycloid are related to mechanics, and one of these will be reinterpreted
geometrically in the next section. One transcendental curve that we did not
discuss in connection with mechanics is the tractrix of Newton (1676b).
Newton defined this curve by the property that the length of its tangent
from point of contact to the x-axis is constant (Figure 17.3). It follows that
the curve satisfies

dy
ds
=
y

a
,

where s denotes arc length. By using ds =
√

dx2 + dy2, this differential
equation can be solved to give

x = a log
a +

√
a2 − y2
y

−
√

a2 − y2,

the equation for the curve given, in more geometric language, by Huygens
(1693b). Huygens pointed out that the curve could be interpreted as the
path of a stone pulled by a string of length a (hence the name “tractrix”).
Thus the tractrix, too, has some mechanical significance. In fact it can be
constructed from the famous mechanical curve, the catenary, by a method
we shall see in the next section. However, its most important role was in
the generation of the pseudosphere, a surface discussed in Section 17.4.
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a
a

Figure 17.3: The tractrix

Exercises

The arc length of y2 = x3 is today a fairly routine exercise with the arc length

integral
∫ √

1 +

(
dy
dx

)2

dx.

17.1.1 Show that the arc length of y = x3/2 between O and x = a is

8
27

⎛⎜⎜⎜⎜⎜⎝
(
1 +

9a
4

)3/2

− 1

⎞⎟⎟⎟⎟⎟⎠ .

Likewise, it is easy for us to derive properties of the logarithmic spiral from
its polar equation and knowledge of the exponential function.

17.1.2 Show that the logarithmic spiral is self-similar. That is, magnifying r = ekθ

by a factor m to r = mekθ gives a curve that is congruent to the original (in
fact, it results from a rotation of the original).

Jakob Bernoulli was so impressed by this property of the logarithmic spi-
ral that he arranged to have the spiral engraved on his tombstone, with a motto:
Eadem mutata resurgo (“Though changed, I arise again the same”). (See Jakob
Bernoulli (1692) p. 213.)

17.1.3 Deduce the equiangular property of the logarithmic spiral from its self-
similarity.

The equation of the tractrix given above can be derived as follows.

17.1.4 Explain why the constant tangent property implies dy
ds =

y
a , then multiply

both sides of this equation by ds
dx =

√
1 + ( dy

dx )2, and deduce that

dx
dy
= ±

√
a2 − y2

y
.

17.1.5 Check by differentiation that x = a log
a+
√

a2−y2

y
− √

a2 − y2 satisfies the
differential equation found in Exercise 17.1.4, and also show that x has the
appropriate value when y = a.
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17.2 Curvature of Plane Curves

One of the most important ideas in differential geometry is that of cur-
vature. The development of this idea from curves to surfaces and then
to higher-dimensional spaces has had many important consequences for
mathematics and physics, among them clarification of both the mathemat-
ical and physical meaning of “space,” “space-time,” and “gravitation.” In
this section we shall look at the beginnings of the theory of curvature in
the 17th-century theory of curves. As discussed here, this theory concerns
plane curves only; space curves involve an additional consideration of tor-
sion (twisting), which will not concern us.

Just as the direction of a curve C at point P is determined by its straight-
line approximation, that is, tangent, at P, the curvature of C at P is deter-
mined by an approximating circle. Newton (1665c) was the first to single
out the circle that defines the curvature: the circle through P whose center
R is the limiting position of the intersection of the normal through P and
the normal through a nearby point Q on the curve (Figure 17.4). R is called
the center of curvature, RP = ρ the radius of curvature, and 1/ρ = κ the
curvature. It follows that the circle of radius r has constant curvature 1/r.
The only other curve of constant curvature is the straight line, which has
curvature 0. This is a consequence of the formula for curvature discovered
by Newton (1671):

ρ =
[1 + (dy/dx)2]3/2

d2y/dx2
.

P

Q

R

ρ

Figure 17.4: Normals through nearby points on a curve
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There is an interesting relationship between a curve C and the locus C′
of the center of curvature of C. C is the so-called involute of C′, which, in-
tuitively speaking, is the path of the end of a piece of string as it is unwound
from C′ (Figure 17.5). It is intuitively clear that Q, the end of the string,
is instantaneously moving in a circle with center at P, the point where the
string is tangential to C′.

C′

x

y

O

S

P

R

Q
C

Figure 17.5: Construction of the involute

The geometric property of the cycloid that Huygens (1673) used to de-
sign the cycloidal pendulum (Section 13.5) can now be seen as simply this:
the involute of a cycloid is another cycloid. Two other stunning results on
involutes were obtained by the Bernoulli brothers. Jakob Bernoulli (1692)
found that the involute of the logarithmic spiral is another logarithmic spi-
ral, and Johann Bernoulli (1691) found that the tractrix is the involute of
the catenary.
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Another useful and intuitive definition of curvature, which turns out
to be equivalent to the preceding one, was given by Kaestner (1761). He
defined curvature as the rate at which the tangent turns, that is, dθ/ds =
limΔx→0(Δθ/Δs), where Δθ is the angle between the tangents at points sep-
arated by an arc of the curve of length Δs. It follows from this definition
that

∫
C κ ds = 2π for a simple closed curve C, since the tangent makes

one complete turn on a circuit around C. We shall see in Section 17.6 that
this result has a very interesting generalization for curves on nonplanar
surfaces.

Exercises

Despite the complexity of the Newton curvature formula, it is easy enough to
solve for y when the curvature κ is zero.

17.2.1 Use the formula to show that κ = 0 implies that y is a linear function of x.

17.2.2 Show that dθ/ds = 1/r for the circle of radius r, and deduce that dθ/ds = κ
for any curve.

The description of the tractrix as the involute of the catenary is convenient for
studying the pseudosphere. We therefore work out some steps in this approach
in the following exercises. The curve C′ in Figure 17.5 is now assumed to be the
catenary y = cosh x, which meets the y-axis at the point S where y = 1.

17.2.3 Using the arc-length integral on the catenary y = cosh x between S = (0, 1)
and P = (σ, coshσ), show that

arc length PS = sinhσ = PQ.

17.2.4 Also find the equation of the tangent at P, and use it to show that R =
(σ − cothσ, 0). Then use the value of PQ to show that

QR =
1

sinhσ
=

1
PQ
.

17.2.5 Finally, use the length of PQ again to show that Q = (σ − tanhσ, sechσ),
and show that the parametric equations of the tractrix C,

x = σ − tanhσ, y = sechσ,

imply the cartesian equation of the tractrix (with a = 1),

x = log
1 +

√
1 − y2

y
−

√
1 − y2.
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17.3 Curvature of Surfaces

The first approach to defining curvature at a point P of a surface S in three-
dimensional space was to express it in terms of the curvature of the plane
curves, by considering sections of S by planes through the normal at P.
Of course, different planes normal to the surface at P may cut the surface
in quite different curves, with different curvatures, as the example of the
cylinder shows (Figure 17.6).

Figure 17.6: Sections of the cylinder

However, among these curves there will be one of maximum curvature
and one of minimum curvature (which may be negative, since we give a
sign to curvature according to the side on which the center of curvature
lies). Euler (1760) showed that these two curvatures κ1 and κ2, called the
principal curvatures, occur in perpendicular sections and that together they
determine the curvature κ in a section at angle α to one of the principal
sections by

κ = κ1 cos2 α + κ2 sin2 α.

This is as far as one can go as long as the curvature of surfaces is subor-
dinated to the curvature of plane curves. A deeper idea occurred to Gauss
in the course of his work in geodesy (surveying and mapmaking): curvature
of a surface may be detectable intrinsically, that is, by measurements that
take place entirely on the surface. The curvature of the earth, for example,
was known on the basis of measurements made by explorers and surveyors,
not (in the time of Gauss) by viewing it from space. Gauss (1827) made the
extraordinary discovery that the quantity κ1κ2 can be defined intrinsically
and hence can serve as an intrinsic measure of curvature. He was so proud
of this result that he called it the theorema egregium (excellent theorem).
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It follows in particular that κ1κ2, which is called the Gaussian curvature, is
unaffected by bending (without creasing or stretching).

The plane, for example, has κ1 = κ2 = 0 and thus zero Gaussian cur-
vature. Hence so has any surface obtained by bending a plane, such as a
cylinder. We can verify the theorema egregium in this case, because one of
the principal curvatures of a cylinder is obviously zero.

Surfaces S 1, S 2 obtained from each other by bending are said to be
isometric. More precisely, S 1 and S 2 are isometric if there is a one-to-one
correspondence between points P1 of S 1 and points P2 of S 2 such that

distance between P1 and P′1 in S 1 = distance between P2 and P′2 in S 2,

where the distances are measured within the respective surfaces. A more
precise statement of the theorema egregium then is: if S 1, S 2 are isometric,
then S 1, S 2 have the same Gaussian curvature at corresponding points. The
converse statement is not true: there are surfaces S 1, S 2 that are not iso-
metric even though there is a one-to-one (and continuous) correspondence
between them for which Gaussian curvature is the same at corresponding
points. An example is given in Strubecker (1964, Vol. 3, p. 121), involving
surfaces of nonconstant Gaussian curvature.

For surfaces of constant Gaussian curvature there is better agreement
between isometry and curvature, as we shall see in the next section. From
now on, unless otherwise qualified, “curvature” will mean Gaussian curva-
ture.

17.4 Surfaces of Constant Curvature

The simplest surface of constant positive curvature is the sphere of radius
r, which has curvature 1/r2 at all points. Other surfaces of curvature 1/r2

may be obtained by bending portions of the sphere; however, all such sur-
faces have either edges or points where they are not smooth, as was proved
by Hilbert (1901). The plane, as we have observed, has zero curvature, and
so have all surfaces obtained by bending the plane or portions of it.

It remains to investigate whether there are surfaces of constant negative
curvature. In ordinary space, such a surface has principal curvatures of
opposite sign at each point, giving it the appearance of a saddle (Figure
17.7). A number of surfaces of constant negative curvature were given by
Minding (1839). The most famous of them is the pseudosphere, the surface
of revolution obtained by rotating a tractrix about the x-axis (Figure 17.8).
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This surface was investigated as early as 1693 by Huygens, who found its
surface area, which is finite, and the volume and center of mass of the solid
it encloses, which are also finite (Huygens (1693a)).

Figure 17.7: A saddle

a
a

Figure 17.8: The tractrix and the pseudosphere

The pseudosphere is in some ways the negative-curvature counterpart
of the cylinder, and hence one may wonder whether there is a surface of
constant negative curvature that is more like a plane. Hilbert (1901) proved
that there is no smooth unbounded surface of constant negative curvature
in ordinary space, so this rules out planelike surfaces and also accounts
for the “edge” on the pseudosphere. One can, however, obtain a “plane”
of negative curvature by introducing a nonstandard notion of length into
the Euclidean plane. This discovery of Beltrami (1868a) is discussed in
the next chapter, along with other implications of negative curvature for
non-Euclidean geometry.
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These geometric implications can also be glimpsed if we return to the
question whether surfaces S 1, S 2 of equal curvature are isometric. Even
with constant curvature this is still not true, since a plane is not isometric to
a cylinder. What is true, though, is that any sufficiently small portion of the
plane can be mapped isometrically into any part of the cylinder. Minding
(1839) showed that the analogous result is true for any two surfaces S 1,
S 2 of the same constant curvature. Taking S 1 = S 2, this result can be
interpreted as saying that rigid motion is possible within S 1; a body within
S 1 can be moved, without any shrinking or stretching, to any part of S 1

large enough to contain it. The latter restriction is necessary, for example,
for the pseudosphere since it becomes arbitrarily narrow as x→ ∞.

The possibility of rigid motion was fundamental to Euclid’s geometry
of the plane, and with the discovery of curved surfaces that support rigid
motion, Euclid’s geometry could be seen as a special case—the zero cur-
vature case—of something broader. The broader notion of geometry on a
surface begins to take shape once one has an appropriate notion of “straight
line.” This is developed in the next section.

Exercises

The construction of the tractrix as the involute of the catenary in Section 17.2
gives a remarkable insight into the two principal curvatures of the pseudosphere,
enabling us to see why the pseudosphere has constant negative curvature.

17.4.1 Interpreting PQ in Figure 17.5 as the radius of curvature of the tractrix,
and hence as the curvature of a section of the pseudosphere, suggest an
interpretation of QR as a radius of curvature.

17.4.2 Assuming that PQ and QR are in fact principal radii of curvature, deduce
from Exercise 17.2.4 that

Gaussian curvature of the pseudosphere at any point = −1.

17.5 Geodesics

A “straight line,” or geodesic as it is called, can be defined equivalently
by a shortest-distance property or a zero-curvature property. The shortest-
distance definition was historically first, even though it is mathematically
deeper and subject to the inconvenience that a geodesic segment is not nec-
essarily the shortest path between two points. On a sphere, for example,
there are two geodesic segments between two nearby points P1, P2: the
short portion and the long portion of the great circle through P1, P2. We
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can cover both by saying that a geodesic gives the shortest distance be-
tween any two of its points that are sufficiently close together. In talking
about shortest distance, even between nearby points Pi, P j, one still has
the calculus of variations problem of finding which curve from Pi to P j has
minimum length. Nevertheless, this is how geodesics were first defined, by
Jakob and Johann Bernoulli; and Euler (1728a) found a differential equa-
tion for geodesics from this approach.

A more elementary approach is to define the geodesic curvature κg at
P of a curve C on a surface S as the ordinary curvature of the orthogo-
nal projection of C in the tangent plane to S at P. As one might expect,
geodesic curvature can also be defined intrinsically, and κg was introduced
in this way by Gauss (1825). A geodesic is then a curve of zero geodesic
curvature. This is the definition of Bonnet (1848).

The latter definition immediately shows that great circles on the sphere
are geodesics, since their projections onto tangent planes are straight lines.
Other examples are the horizontal lines, vertical circles, and helices on the
cylinder (Figure 17.9). These all come from straight lines on the plane that
is rolled up to form the cylinder. Geodesics on the pseudosphere, and other
surfaces of negative curvature, are not all so simple to describe. However,
the next chapter shows that they become simple when one maps the surface
of constant negative curvature suitably onto a plane.

Figure 17.9: Geodesics on the cylinder

Exercises

17.5.1 Are the circles on the pseudosphere, in planes perpendicular to its axis,
geodesics? Give a qualitative argument to support your answer.

It may be easier to answer this question if one first considers the cone, a
surface also obtained by bending the plane. To avoid worrying about the apex,
where the cone is not smooth, we omit this point.



348 17 Differential Geometry

17.5.2 Show that the circles on the cone, in planes perpendicular to its axis, are
not geodesics.

17.5.3 Show that there are nonsmooth geodesics on the cone, that is, curves of
geodesic curvature zero except at certain points where they have no tangent.

17.6 The Gauss–Bonnet Theorem

In Section 17.2 we observed that∫
C
κ ds = 2π

for a simple closed curve C in the plane. This result has a profound gen-
eralization to curved surfaces known as the Gauss–Bonnet theorem. On a
curved surface, κ must be replaced by the geodesic curvature κg, and the
theorem states that ∫

C
κg ds = 2π −

∫∫
R
κ1κ2 dA,

where A denotes area and R is the region enclosed by C (Bonnet (1848)).
Gauss himself published only a special case, or rather the limit of a special
case, in which C is a geodesic triangle. In this case, of course, κg = 0 along
the sides of C, and κg becomes infinite at the corners. By rounding off the
corners by small arcs ds, one sees (Figure 17.10) that

∫
C∗
κg ds � α′ + β′ + γ′,

where α′, β′, γ′ are the external angles of the triangle and C∗ is the rounded
approximation to the triangle C.

Then by letting the size of the round-offs tend to zero one gets
∫
C∗
κg ds = α′ + β′ + γ′ = 3π − (α + β + γ),

where α, β, γ are the internal angles of the triangle. Introducing the quantity

(α + β + γ) − π,
called the angular excess of the triangle (because an ordinary triangle has
angle sum π), we have

∫
C
κg ds = 2π − angular excess,
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α′

β′
γ′

Figure 17.10: Rounding off a geodesic triangle

and the result of Gauss (1827) was that

angular excess =
∫∫
R
κ1κ2 dA.

We see that the integral of the Gaussian curvature has a more ele-
mentary geometric meaning than the curvature κ1κ2. It appears, in fact,
that Gauss thought about angular excess first, then the curvature integral,
and only last about the curvature itself. The decomposition into princi-
pal curvatures probably came later, when he reworked his geometric ideas
into analytic form, reversing the order of discovery in the process. Dom-
browski (1979) made a plausible reconstruction of the original approach,
using clues from the unpublished work of Gauss.

The role of angular excess can be seen more plainly in the case of
constant curvature κ1κ2 = c. In this case

angular excess = c × area of R,

so the angular excess gives a measure of area, a result Gauss claimed, in a
letter (1846a), to have known in 1794. In fact, the special case of this result
for the sphere was known to Thomas Harriot in 1603 (see Lohne (1979)).
Harriot’s elegant proof goes as follows (Figure 17.11).

Prolonging the sides of triangle ABC partitions the sphere into four
pairs of congruent, diametrically opposite triangles (Figure 17.11a). We
denote the area of ABC and its diametric opposite A′B′C′ by Δαβγ. The
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A

A′B

B′

C

C′

α

β

γ

Δαβγ

(a)

α

Δαβγ

Δα

(b)

Figure 17.11: Area of a spherical triangle
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other three pairs represent areas Δα,Δβ,Δγ, which complement Δαβγ in
“slices” of the sphere of angles α, β, γ, respectively (Figure 17.11b).

Since the area of a slice is 2r2 times the angle, where r is the radius of
the sphere, we have

Δαβγ + Δα = 2r2α,

Δαβγ + Δβ = 2r2β,

Δαβγ + Δγ = 2r2γ,

whence, by addition,

3Δαβγ + (Δα + Δβ + Δγ) = 2r2(α + β + γ). (1)

On the other hand,

2(Δαβγ + Δα + Δβ + Δγ) = area of sphere = 4πr2,

and substituting this in (1) gives

Δαβγ = r2(α + β + γ − π)
as required, since 1/r2 = curvature of the sphere.

Gauss was interested in the counterpart of this result for negative cur-
vature, in which case the angle sum of a triangle is less than π and one has
angular defect rather than angular excess. His investigations in this case led
him not only to Gaussian curvature but also to non-Euclidean geometry.

Exercises

It is surprising at first that area on the sphere should be measured by angles
rather than lengths. However, there are general reasons (apart from the Gauss–
Bonnet theorem) why area should be measured by angular excess, and this idea
fails only where angular excess is zero—that is, in the Euclidean plane.

17.7.1 Consider a triangle Δ split into two triangles Δ1 and Δ2 by a line through
a vertex. Show that

excess(Δ) = excess(Δ1) + excess(Δ2).

17.7.2 Deduce from Exercise 17.7.1 that if any polygon Π is split into triangles
Δi, then

excess(Π) = excess(Δ1) + excess(Δ2) + · · · .
Thus the angular excess function has the same additive property as an area

function. It can be shown that any additive function, provided it is continuous, is
a constant multiple of area (see Bonola (1912), p. 46).
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17.7 Biographical Notes: Harriot and Gauss

The discoveries of Thomas Harriot described in this chapter and the last
seem to entitle him to a secure place in the history of mathematics, per-
haps alongside others who made a few penetrating contributions, such as
Desargues and Pascal. Unfortunately, Harriot’s place is not yet clear. It
was clouded by exaggerated claims made by 17th- and 18th-century ad-
mirers, and until recently the disorder and inaccessibility of his papers have
made any claims difficult to verify. (About 140 pages, out of approximately
4000 pages that Harriot left behind, have been translated and annotated by
Stedall (2003). These do not include any of his work on geometry.) In ad-
dition, Harriot was a very secretive man, and little is known about his life.
He lived in the world of Sir Walter Raleigh, Christopher Marlowe, and
Guy Fawkes—a lurid and fascinating world, but a very dangerous one—
and probably believed that secrecy was necessary for his survival. As a
result, our present understanding of Harriot, as the biography by Shirley
(1983) explains, is based on a meager set of facts about him and a good
deal of extrapolation from knowledge of his less discreet contemporaries.

All that we know of Harriot’s early life comes from a record of his entry
into Oxford University in December 1577, stating that his age was then
17 and his father “plebeian.” The only other information about his family
comes from his will of 1621, which mentions a sister and a cousin. It seems
probable that he never had children and never married. At Oxford, Harriot
gained the standard bachelor’s degree in classics, but he must have picked
up some Euclid and astronomy, which were offered to master’s candidates.
He would also have heard Richard Hakluyt, author of the famous Voyages,
who was then just beginning to lecture on the geography of the New World
opened up by 16th-century navigators.

It was probably Hakluyt who inspired Harriot to travel to London in
the early 1580s and seek out Sir Walter Raleigh. Raleigh was then about
30 and the most powerful member of Queen Elizabeth’s inner circle, with
grand dreams of wealth through exploration. Harriot must have impressed
Raleigh with his grasp of the mathematical problems of navigation, for
around 1583 he joined Raleigh’s household as an instructor, with consid-
erable freedom to conduct his own research. Harriot held classes in navi-
gation as part of Raleigh’s preparations for the voyage to Virginia in 1585,
led by Sir Richard Grenville, which was the first attempt at British settle-
ment in the New World. Although the attempt was unsuccessful, it was the
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biggest adventure of Harriot’s life. He studied Indian languages and cus-
toms and wrote a book on the settlement entitled A Brief and True Report
of the New Found Land of Virginia (1588), the only one of Harriot’s works
published in his lifetime.

With Raleigh as patron, Harriot was financially secure, and he re-
mained so for the rest of his life. However, he was also at the mercy of
Raleigh’s political fortunes. By 1592, the 40-year-old Raleigh was find-
ing his role as the favorite of the nearly 60-year-old queen increasingly
irksome, and he secretly married one of the queen’s servants, Elizabeth
Throckmorton. He may have married her as early as 1588, but at any rate
the secret was out when Lady Raleigh gave birth to a son in 1592, and
Raleigh was imprisoned in the Tower of London. Harriot did not suffer
for his direct association with Raleigh, but through him he was linked with
Christopher Marlowe, at the latter’s sensational trial for atheism in 1593.

Marlowe, the dramatist, had a secret life in espionage and other un-
savory activities, and any number of accusations could have been made
against him, though which ones were true it is now impossible to say. Un-
fortunately for Harriot, the second of Marlowe’s offenses against religion
was said to be that “He affirmeth that Moyses was but a Jugler, and that
one Heriots being Sir W. Raleighs man can do more than he.” As it hap-
pened, the proceedings were terminated by the murder of Marlowe in a
tavern brawl, and Harriot was not called to testify, but he was left publicly
under suspicion.

Harriot did not desert Raleigh, but he was prudent enough to seek an-
other patron, and he found one in Henry Percy, the Ninth Earl of Northum-
berland. Henry, known as the “Wizard Earl,” was a friend of Raleigh and,
like him, interested in science and philosophy. In 1593 he gave Harriot
a grant, later to become an annual pension of £80. This sum was twice
the salary of the best-paid teachers of the time and it enabled Harriot to
maintain a house and servants on the earl’s property on the Thames near
London. The house, known as Sion House, remained Harriot’s home and
laboratory for the rest of his life.

But once again Harriot was unlucky in his choice of friends. The
earl’s cousin, Thomas Percy, was the man who rented the cellars under
the Houses of Parliament in the famous plot to blow up King James I with
gunpowder on November 5, 1605. Harriot was dragged into the investi-
gation and imprisoned for a short time on suspicion that he had secretly
cast a horoscope of the king. James I was terrified of black magic and in-
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discriminately viewed all mathematicians as astrologers and magicians. In
the end, though, no evidence against Harriot was found, and it was the earl
who suffered more, being imprisoned in the Tower from 1605 to 1621.

Meanwhile, Raleigh had fared even worse. After several spells in the
Tower, he was released in 1616 to lead an expedition in search of the myth-
ical city of gold, El Dorado. When the expedition returned in a shambles,
Raleigh was rearrested and executed on an old treason charge from 1603.
One of the few personal documents preserved by Harriot is his summary of
the speech Raleigh made at the scene of his execution in 1618 (see Shirley
(1983), p. 447).

A month after Raleigh’s death, a bright comet appeared in the skies,
and Harriot’s observations of it were his last major scientific endeavor.
He had been suffering for some years from a painful cancer of the nose
and finally succumbed to it on a visit to London in 1621. He was buried
at St. Christopher’s Church in Threadneedle Street, later destroyed in the
Great Fire of 1666. The site is now part of the Bank of England, where a
replica of Harriot’s original monument was installed on July 2, 1971, the
three hundred and fiftieth anniversary of his death.

Figure 17.12: Thomas Harriot
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Figure 17.12 is a portrait from Trinity College, Oxford. The latin in-
scription in the top left corner says that the portrait was made in 1602,
when the sitter was aged 3 2. This does not square with the record of Har-
riot’s entry to Oxford (which would make him 42 in 1602), but the portrait
is nevertheless believed to be of him.

Carl Friedrich Gauss was born in Brunswick (Braunschweig) in 1777
and died in Göttingen in 1855. He was the only child of Gebhard Gauss
and Dorothea Benze, though his father had another son from a previous
marriage. Gebhard earned his living mainly from manual labor, but he
also did a little accounting, and Gauss is said to have corrected an error
in his father’s arithmetic at the age of three. (It should be borne in mind
here that stories about Gauss’s youth were told by Gauss himself in old
age, and in a few cases there is evidence that he was prone to exaggerate
his own precocity.) Gauss was not close to his father and believed that
his genius was inherited from his mother. He started school in 1784 and
his teacher, Büttner, soon recognized his ability and obtained advanced
books for him. Büttner’s assistant, Martin Bartels (1769–1836), also gave
Gauss special attention. Bartels was himself a beginning mathematician
who later became professor at the University of Kazan and the teacher of
Lobachevsky (see next chapter).

Gauss entered secondary school in 1788, and in 1791 he won an annual
grant from the Duke of Brunswick, something like a government scholar-
ship. He was also selected to enter the Collegium Carolinum, a new scien-
tific academy for outstanding secondary students. In his years there, 1792–
1795, Gauss studied the works of Newton, Euler, and Lagrange and began
investigations of his own, mainly numerical experiments on such things
as the arithmetic–geometric mean. In 1795 he left Brunswick to study
at Göttingen in the adjoining state of Hannover, which was then ruled by
George III of England. The duke would have preferred Gauss to remain
in Brunswick, and the local university of Helmstedt, but continued his fi-
nancial support nevertheless. Gauss actually chose Göttingen because of
its better library and later spoke very disparagingly of its mathematics pro-
fessor, Kaestner. It is true that Gauss’s student achievements, which began
with his construction of the regular 17-gon (Section 2.3) and culminated
in his proof of the fundamental theorem of algebra (Section 14.7), dwarfed
those of his teachers. Still, one wonders whether Kaestner’s definition of
curvature (Section 17.2) might not have been useful to Gauss when he took
up differential geometry later.
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Figure 17.13: Carl Friedrich Gauss

Gauss returned to Brunswick in 1798 and lived there until 1807. Figure
17.13 is a portrait of him from this period, which was the happiest and
most productive of his life. Gauss published his great work on number
theory, the Disquisitiones arithmeticae, in 1801, made a spectacular entry
into astronomy in the same year by predicting the position of the asteroid
Ceres, and married Johanna Osthoff in 1805. Writing to his friend Farkas
Bolyai in 1804, Gauss was uncharacteristically warm and open when it
came to Johanna:

The beautiful face of a madonna, a mirror of peace of mind and
health, tender, somewhat fanciful eyes, a blameless figure—
this is one thing; a bright mind and an educated language—
this is another; but the quiet, serene, modest and chaste soul of
an angel who can do no harm to any creature—that is the best.

Translation from Kaufmann-Bühler (1981), p. 49

If only Johanna had lived longer, Gauss might have become a very
different man. But in 1809 she died, shortly after giving birth to their third
child. Gauss was devastated by the blow and never quite recovered his
equilibrium.

Less than a year after Johanna’s death, he married Minna Waldeck, the
daughter of a Göttingen professor. Unlike Johanna, who was a tanner’s
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daughter, Minna had social status and pretensions that caused Gauss un-
easiness and embarrassment. Soon after their engagement, for example, he
had to tell Minna not to write to his mother, since his mother could not read.
Minna also suffered from poor health, and after the couple had had three
children between 1811 to 1816 she became virtually a permanent invalid.
Gauss found this burden difficult to bear, and he compounded his problems
by unsympathetic treatment of his children. The family drama came to a
head in 1830, when their eldest son, Eugen, emigrated to America after a
row with his father. The following year Minna died of tuberculosis.

During this unhappy period Gauss was less productive mathematically,
but this was not due to family troubles so much as his choice of career.
He had become director of the Göttingen observatory in 1807, and in 1817
substituted geodesy for some of his astronomical duties, doing arduous
field work every summer from 1818 to 1825 for the geodetic survey of
Hannover. Gauss appears to have seldom regretted this choice of career—
he disliked teaching and thought that other mathematicians had little to
teach him—but it cannot be said that his contributions to astronomy and
geodesy were as great as his contributions to mathematics. Indeed, the
best things to come out of his geodetic work were his theory on conformal
mapping and complex functions (Section 16.2) and his intrinsic notion of
curvature (Section 17.3).

In the 1830s Gauss experienced something of a rebirth with the arrival
of the young physicist Wilhelm Weber in Göttingen. The two collaborated
enthusiastically in the investigation of magnetism, with Gauss making con-
tributions to both the theory and practice (the electric telegraph). However,
their partnership was broken in 1837 when Weber was fired for his coura-
geous refusal to swear an oath of allegiance to the new king of Hannover.

Among the few bright spots of Gauss’s later years were his students
Eisenstein and Dedekind, as well as Riemann’s lecture on the foundations
of geometry in 1854. After spending most of his life aloof from other
mathematicians, Gauss must have been comforted to find at last that there
were students capable of understanding his ideas and carrying them further.
We can only wonder what might have been if he had made this discovery
earlier.
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Non-Euclidean Geometry

Preview

Surprisingly, the geometry of curved surfaces throws light on the geometry
of the plane. More than 2000 years after Euclid formulated axioms for
plane geometry, differential geometry showed that the parallel axiom does
not follow from the other axioms of Euclid.

It had long been hoped that the parallel axiom followed from the oth-
ers, but no proof had ever been found. In particular, no contradiction had
been derived from the contrary hypothesis, P2, that there is more than one
parallel to a given line through a given point. In the 1820s, Bolyai and
Lobachevsky proposed that the consequences of P2 be accepted as a new
kind of geometry—non-Euclidean geometry.

To prove that no contradiction follows from P2, however, one needs to
find a model for P2 and the other axioms of Euclid. One seeks a mathemat-
ical structure, containing objects called “points” and “lines,” that satisfies
Euclid’s axioms with P2 in place of the parallel axiom.

Such a structure was first found by Beltrami (1868a), in the form of
a surface of constant negative curvature with geodesics as its “lines.” By
various mappings of this surface, Beltrami found other models, including
a projective model in which “lines” are line segments in the unit disk, and
conformal models in which “angles” are ordinary angles.

Finally, Poincaré (1882) showed that Beltrami’s conformal models arise
naturally in complex analysis. Papers had already been published with pic-
tures of patterns of non-Euclidean “lines,” most notably Schwarz (1872).
Thus, non-Euclidean geometry was actually a part of existing mathematics,
but a part whose geometric nature had not previously been understood.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 359
DOI 10.1007/978-1-4419-6053-5 18, c© Springer Science+Business Media, LLC 2010
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18.1 The Parallel Axiom

Until the 19th century, Euclid’s geometry enjoyed absolute authority, both
as an axiomatic system and as a description of physical space. Euclid’s
proofs were regarded as models of logical rigor, and his axioms were ac-
cepted as correct statements about physical space. Even today, Euclidean
geometry is the simplest type of geometry, and it furnishes the simplest
description of physical space for everyday purposes. Beyond the everyday
world, however, lies a vast universe that can be understood only with the
help of an expanded geometry. The expansion of geometric concepts ini-
tially grew from dissatisfaction with one of Euclid’s axioms, the parallel
axiom.

For our purposes, the most convenient statement of the parallel axiom
is as follows:

Axiom P1. For each straight line L and point P outside L there is exactly
one line through P that does not meet L.

There are many other equivalent statements of Axiom P1, some obvi-
ously fairly close to it, for example, Euclid’s own:

That if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.

Heath (1925), p. 202

Other statements of Axiom P1 are less obviously equivalent to it. For
example,

(i) The angle sum of a triangle = π (Euclid).

(ii) The locus of points equidistant from a straight line is a straight line.
(al-Haytham, around 1000 ce).

(iii) Similar triangles of different sizes exist (Wallis (1663); see Fauvel
and Gray (1988), p. 510).

Thus a denial of the parallel axiom entails denial of (i), (ii), and (iii). A
denial of (iii) means in particular that scale models would be impossible,
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since three points in the original object and the three corresponding points
of a scale model would define similar triangles of different sizes.

Such unlikely consequences convinced many people that the parallel
axiom was a logically necessary property of straight lines, already implied
by the other axioms of Euclid, and so efforts were made to prove it outright.

The most tenacious attempt, entitled Euclides ab omni naevo vindica-
tus (Euclid cleared of every flaw), was made by Saccheri (1733). Sac-
cheri’s plan of attack began by subdividing the denial of the parallel axiom
into two alternatives:

Axiom P0. There is no line through P that does not meet L.

Axiom P2. There are at least two lines through P that do not meet L.

The next step was to destroy each alternative by deducing a contradiction
from it. He succeeded in deducing a contradiction from Axiom P0, using
other axioms of Euclid, such as the axiom that a straight line can be pro-
longed indefinitely. (Such additional assumptions are certainly necessary,
since great circles on the sphere have some properties of straight lines, ex-
cept that they are finite in length.)

Saccheri was less successful with Axiom P2. The consequences he de-
rived from it, hoping to obtain a contradiction, were as follows. Among the
lines M through P that do not meet L are two extremes, M+ or M−, called
parallels or asymptotic lines (Figure 18.1); any of these lines M strictly
between M+ and M− has a common perpendicular with L and, moreover,
the position of this perpendicular tends to infinity as M tends to M+ or M−.
Although curious, these consequences of Axiom P2 were not contradictory
and Saccheri, sensing that the contradiction was slipping away from him,
tried to overtake it by proceeding to infinity.

L

P

M+
M−

M

Figure 18.1: Asymptotic lines
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He claimed that the asymptotic line M+ would meet L at infinity and
have a common perpendicular with it there. This was perhaps plausible,
given similar arguments in projective geometry, though Euclid certainly
would not have accepted it. But it still was not a contradiction. Saccheri
merely claimed that such a conclusion was “repugnant to the nature of the
straight line” (Saccheri (1733), p. 173), perhaps visualizing an intersection
like Figure 18.2. But why should asymptotic lines not be tangential at
infinity? History was to show that this was an appropriate resolution of
Saccheri’s “contradiction” (see Section 18.5). Thus Saccheri’s results were
not, as he thought, steps toward a proof of the parallel axiom; they were the
first theorems of a non-Euclidean geometry in which Axiom P2 replaces
the parallel axiom.

M+

L

∞

Figure 18.2: Hypothetical intersection at infinity

Exercises

The connection between the parallel axiom and the angle sum of a triangle is
very direct and elegant.

18.1.1 Deduce, from Euclid’s version of the parallel axiom, that a line falling on
two parallel lines makes the interior angles sum to π.

18.1.2 Use Exercise 18.1.1 and the construction in Figure 18.3 (in which CD is
parallel to AB) to show that α + β + γ = π.

18.1.3 Deduce from Exercise 18.1.2 that the angle sum of any quadrilateral is 2π
and, in particular, that squares exist.

Thus theorems mentioning squares, such as the Pythagorean theorem, can
hold only when Euclid’s parallel axiom is assumed.

A

B

C

D

α

β

γ ? ?

Figure 18.3: The angle sum of a triangle
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18.2 Spherical Geometry

In rejecting P0 because of its incompatibility with infinite lines, Saccheri
avoided having to consider the most natural geometry in which P0 holds,
that of the sphere with great circles as “lines.” Spherical geometry had been
cultivated since ancient times to meet the needs of astronomers and nav-
igators, and formulas for the side lengths and areas of spherical triangles
were well known. But the sphere was considered part of Euclid’s spatial
geometry, so the axiomatic significance of spherical geometry was at first
ignored. What did happen, though, was that the first explorations of Axiom
P2 were guided by the analogy of the sphere.

Lambert (1766) made the striking discovery that Axiom P2 implies that
the area of a triangle with angles α, β, γ is proportional to π − (α + β + γ),
its angular defect. In other words,

area = −R2(α + β + γ − π)

for some positive constant R2. Having rediscovered Harriot’s theorem that

area = R2(α + β + γ − π)

for a triangle on the sphere of radius R, Lambert mused that one “could
almost conclude that the new geometry would be true on a sphere of imag-
inary radius.” What a sphere of radius iR might be was never explained,
but the idea of using complex numbers to generate the formulas of a hypo-
thetical geometry proved fruitful.

It was found that formulas derived from Axiom P2 could also be ob-
tained by replacing R by iR in corresponding formulas of spherical geom-
etry. For example, Gauss (1831) deduced from Axiom P2 that the circum-
ference of a circle of radius r is 2πR sinh r/R. The same result follows by
replacing R by iR in 2πR sin r/R, which is the circumference of a circle of
radius r on the sphere (where, of course, r is measured on the spherical
surface; see Exercise 18.2.1).

Klein (1871) called the geometry of Axiom P2 hyperbolic. One reason
for this is that its formulas involve hyperbolic functions, whereas those of
spherical geometry involve circular functions. Lambert (1766) introduced
the hyperbolic functions and noted their analogy with the circular func-
tions, but he did not follow through with a complete translation of spher-
ical formulas into hyperbolic formulas. This was first done by Taurinus
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(1826), one of a small circle who corresponded with Gauss on geometric
questions.

This gave hyperbolic geometry a second leg to stand on, but there was
still nothing solid under its feet. Neither Gauss nor Taurinus seemed con-
fident of finding a convincing interpretation of hyperbolic geometry, even
though Gauss (1827) came remarkably close with the “Gauss–Bonnet” the-
orem. As mentioned in Section 17.6, this theorem shows that surfaces of
constant negative curvature give a geometry in which angular defect is pro-
portional to area, and Gauss knew that the pseudosphere is such a surface.
Gauss’s student Minding (1840) even showed that the hyperbolic formulas
for triangles hold on the pseudosphere, but no one at that time commented
on the likely importance of this result for hyperbolic geometry. Perhaps
it was clear that the pseudosphere cannot serve as a “plane,” because it is
infinite in only one direction. Only in 1868, when Beltrami extended the
pseudosphere to a true hyperbolic plane—a surface locally like the pseu-
dosphere but infinite in all directions—was hyperbolic geometry finally
placed on a firm foundation.

Exercises

18.2.1 Prove that the circumference of the circle C of radius r on the sphere of
radius R (Figure 18.4) is 2πR sin(r/R).

C
R

r

Figure 18.4: Radius and circumference on the sphere

18.2.2 Show that both 2πR sin(r/R) and 2πR sinh(r/R) tend to 2πr as R→ ∞.
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These results show how even non-Euclidean geometry is “Euclidean in the
small”—its formulas tend to the Euclidean formulas as size tends to zero. The
same is true of the angle-sum formula for a triangle.

18.2.3 Deduce from Harriot’s area formula that the angle sum of a spherical tri-
angle tends to π as its size tends to zero.

18.3 Geometry of Bolyai and Lobachevsky

The most important contributors to hyperbolic geometry between Gauss
and Beltrami were Lobachevsky and Bolyai, who published independent
discoveries of the subject: Lobachevsky (1829) and János Bolyai (1832b).
Because of their courage in advocating an unconventional geometry, Bolyai
and Lobachevsky have been justly admired. Nevertheless, the immediate
impact of their work was slight. Many of their results were already known
to Gauss and his circle and could have been picked up from existing pub-
lications and personal contacts. Lambert (1766) and Taurinus (1826) were
in print, and Bolyai’s father, F. Bolyai, was a lifelong friend of Gauss, as
was Lobachevsky’s teacher Bartels. In any case their work, though more
systematic and convincing than previous attempts, attracted very little at-
tention at first. We have seen how the possibility of using differential ge-
ometry to justify hyperbolic geometry was overlooked until 1868. Up to
that time, there seemed no reason to take hyperbolic geometry seriously.

In retrospect, of course, the theorems of Bolyai and Lobachevsky can
be seen to unify the fragmentary results of their predecessors very nicely.
They cover the basic relations between sides and angles of triangles (hy-
perbolic trigonometry), the measure of polygonal areas by angular defect,
and formulas for circumference and area of circles. Lobachevsky (1836)
broke new ground by finding volumes of polyhedra, which turn out to be

far from elementary, involving the function
∫ θ

0 log 2| sin t| dt.
Both Bolyai and Lobachevsky considered a three-dimensional space

satisfying Axiom P2 and made extensive use of a surface peculiar to this
space, the horosphere. A horosphere is a “sphere with center at infinity,”
and it is not a hyperbolic plane. Wachter, a student of Gauss, observed
in a letter of 1816 (published in Stäckel (1901)) that the geometry of the
horosphere is in fact Euclidean. This astonishing result was rediscovered
by Bolyai and Lobachevsky, and they anticipated that it would make Eu-
clidean geometry subordinate to hyperbolic. We shall see in Section 18.5
how this view was vindicated in the work of Beltrami.
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18.4 Beltrami’s Projective Model

Interest in hyperbolic geometry was rekindled in the 1860s when unpub-
lished work of Gauss, who had died in 1855, came to light. Learning
that Gauss had taken hyperbolic geometry seriously, mathematicians be-
came more receptive to non-Euclidean ideas. The works of Bolyai and
Lobachevsky were rescued from obscurity and, approaching them from
the viewpoint of differential geometry, Beltrami (1868a) was able to give
them the concrete explanation that had eluded all his predecessors.

Beltrami was interested in the geometry of surfaces and he had found
the surfaces that could be mapped onto the plane in such a way that their
geodesics go to straight lines (Beltrami (1865)). They turned out to be just
the surfaces of constant curvature. In the case of positive curvature, the
sphere, such a mapping is central projection onto a tangent plane (Figure
18.5), though of course this maps only half the sphere onto the whole plane.

The mappings of surfaces of constant negative curvature, on the other
hand, take the whole surface onto only part of the plane. Figure 18.6, from
Klein (1928), shows some of these mappings (the middle one being of the
pseudosphere).

Figure 18.5: Central projection

Each negatively curved surface S is mapped onto a portion of the unit
disk. Beltrami (1868a) realized that the disk can then be viewed as a nat-
ural extension of S to an “infinite plane,” thus bypassing the problem of
constructing “planelike” surfaces of constant negative curvature in ordi-
nary space. Instead one takes the disk as the “plane,” line segments within
it as “lines,” and “distance” between two points of the disk as the distance
between their preimage points on the surface S . The function d(P,Q), giv-
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Figure 18.6: Geodesic-preserving mappings

ing “distance” between points P, Q of the disk in this way, turns out to be
meaningful for all points inside the unit circle, so the notion of “distance”
extends to the whole open disk. As Q approaches the unit circle, d(P,Q)
tends to infinity, so the “plane,” and hence the “lines” in it, are indeed
infinite with respect to this nonstandard “distance.”

It follows that all the axioms of Euclid, except the parallel axiom, are
satisfied with the new interpretation of “plane,” “line,” and “distance.” In-
stead of the parallel axiom, one has of course Axiom P2, since there is
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more than one “line” through a point P outside a given “line” L (Figure
18.7).

L

P

Figure 18.7: Failure of the parallel axiom

Beltrami also observed that the rigid motions of the “plane,” since they
preserve straight lines, are necessarily projective transformations. They are
precisely those projective transformations of the plane that map the unit
circle onto itself. Consequently, this model of the hyperbolic plane is often
called the projective model. Cayley (1859) had already observed that these
projective transformations could be used to define a “distance” d(P,Q) in
the unit disk—by saying d(P,Q) = d(P′,Q′) if a transformation preserving
the unit circle sends P to P′ and Q to Q′—but he had not realized that the
geometry obtained was that of Bolyai and Lobachevsky.

The pseudosphere is not entirely superseded by the projective model,
since it remains the source of “real” distances and angles, whereas those in
the projective model are necessarily distorted. One of the distinctive curves
of the hyperbolic plane, the horocycle, or circle with center at infinity, is
shown particularly clearly on the pseudosphere. If one imagines, following
Beltrami (1868a), the pseudosphere wrapped by infinitely many turns of an
infinitely thin covering, then the edge of this covering (along the rim of the
pseudosphere) is a horocycle. The middle picture of Figure 18.6 shows the
image of one turn of the covering, drawn solidly, and horocycles resulting
from continued unwrapping are shown as dashed lines.
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Exercises

Klein’s three pictures illustrate the three types of rigid motion of the hyper-
bolic plane.

1. Rotation, in which one point of the plane is fixed and all other points move
in hyperbolic circles about it. (A hyperbolic circle is the locus of a point
moving at constant “distance” from a fixed point.)

2. Limit rotation, in which a point at infinity is fixed and all points of the plane
move in horocycles centered on the fixed point at infinity.

3. Translation, in which a “line” moves along itself and the other points of the
plane move along its equidistant curves. (An equidistant curve is the locus
of a point moving at constant “distance” from a “line.”)

18.4.1 Pick out hyperbolic circles and equidistant curves in the top and bottom
pictures in Figure 18.6.

18.4.2 If the center of rotation in the top picture were not at the center of the disk,
do you think the hyperbolic circles would be Euclidean circles?

18.4.3 Observe that equidistant curves at nonzero “distance” from the invariant
“line” are not “lines.” Does the translation move a point on an equidistant
curve farther than a point on the invariant line?

18.4.4 Give an example of three points in the hyperbolic plane, not in a “line,”
that do not lie on a hyperbolic circle. (If this problem proves difficult, try it
again after reading the next section.)

18.5 Beltrami’s Conformal Models

The projective model of the hyperbolic plane distorts angles as well as
lengths. One can see this with the asymptotic geodesics on the pseudo-
sphere, which clearly tend to tangency at infinity yet are mapped onto lines
meeting at a nonzero angle at the boundary of the unit disk (Figure 18.6).
Beltrami (1868b) found that models with true angles—the so-called con-
formal models—could be obtained by sacrificing straightness of “lines.”
His basic conformal model is not, in fact, part of the plane but part of
a hemisphere. It is erected over the projective model and its “lines” are
vertical sections of the hemisphere (hence semicircles) over the “lines” of
the projective model (Figure 18.8). The “distance” between points on the
hemisphere is equal to the “distance” between the points beneath them in
the projective model. Later we shall see that “distance” on the hemisphere
also has a simple direct definition.
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Figure 18.8: The hemisphere and the projective model

Two planar conformal models are obtained from the hemisphere model
by stereographic projection, which, as we know from Section 16.2, pre-
serves angles and sends circles to circles. The first of these is a disk (Fig-
ure 18.9) that, by change of scale, can again be taken as the unit disk. The
second (Figure 18.10) is a half-plane, which we take to be the upper half-
plane, y > 0. Since the “lines” in the hemisphere model are circular and
orthogonal to the equator, “lines” in the planar conformal models are again
circular, orthogonal to the boundary of the disk and half-plane, respec-
tively, or straight lines in exceptional cases. To avoid continual mention
of these exceptional cases—namely, line segments through the disk center
and lines x = constant in the half-plane—we consider lines to be circles of
infinite radius.

Figure 18.9: The conformal disk model
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y

Figure 18.10: The conformal half-plane model

One of the beauties of the conformal models is that other important
curves—hyperbolic “circles,” horocycles, and equidistant curves—are also
real circles. Each curve equidistant from a given “line” L is a circle through
the endpoints of L on the boundary. Horocycles are circles tangential to
the boundary and also, in the half-plane model, the lines y = constant.
A circle that does not meet the boundary is a hyperbolic “circle,” but its
“center,” at equal “distance” from all its points, is not at the Euclidean
center. Figure 18.11 shows some of these curves. Note also that asymptotic
“lines” are tangential at “infinity” (the boundary) and that the boundary
is their common perpendicular, thus resolving the situation that Saccheri
(Section 18.1) thought to be contradictory.

“Distance” is particularly easy to express in the half-plane model. The
“distance” ds between infinitesimally close points (x, y) and (x+dx, y+dy)
is

ds =

√
dx2 + dy2

y
,

that is, the Euclidean distance divided by y. Thus “distance” → ∞ as a
point approaches the boundary y = 0 of the half-plane, as expected. Keep-
ing x constant, we find by integration that “distance” along a vertical line
increases exponentially with respect to Euclidean distance as y decreases.
For example, the “distances” between the successive points at which x = 0
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“lines”

equidistant curves

“circle”
horocycles

Figure 18.11: Some curves in the half-plane model

and y = 1, 1
2 ,

1
4 , . . ., are equal. The formula for ds was first obtained by

Liouville (1850) by directly mapping the pseudosphere into the half-plane,
making simplifying changes of variable. However, Liouville did not realize
that the half-plane with his “distance” formula was a model of hyperbolic
geometry. The “distance” formula for the conformal disk had also been
obtained before Beltrami, by Riemann (1854b), but again without noticing
the hyperbolic geometry.

Beltrami (1868b) not only obtained these models, in a unified way, but
he also extended the idea to n dimensions. For example, he gave a model
of the three-dimensional space considered by Bolyai and Lobachevsky as
the upper half, z > 0, of ordinary (x, y, z)-space, with “distance”

ds =

√
dx2 + dy2 + dz2

z
.

“Lines” are then semicircles orthogonal to z = 0 and “planes” are hemi-
spheres orthogonal to z = 0. Restricting the “distance” function to such
a hemisphere turns out to give Beltrami’s hemisphere model. Thus the
hemisphere model can be viewed as a hyperbolic plane lying in hyperbolic
3-space. The horospheres of the half-space model are spheres tangential to
z = 0, together with the planes z = constant. Beltrami (1868b) pointed out
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that on z = constant we have

ds =

√
dx2 + dy2 + dz2

constant
,

that is, “distance” is proportional to Euclidean distance. Thus he had an
immediate proof of Wachter’s wonderful theorem that the geometry of the
horosphere is Euclidean.

Exercises

The mapping of the pseudosphere into the half-plane may be carried out as
follows, using the parametric equations for the tractrix found in Exercise 17.5.2:

x = σ − tanhσ, y = sechσ.

First we replace the parameter σ by the arc length τ along the tractrix.

18.5.1 Show that τ =
∫ σ

0

√
1 +
(

dy
dx

)2
dx = log coshσ, and hence y = e−τ.

Now take τ and the angle X of rotation as the coordinates on the pseudosphere
obtained by rotating the tractrix about the x-axis.

18.5.2 Show that the length subtended by angle dX on a circular cross section of
the pseudosphere is

y dX = e−τdX,

and hence the distance between nearby points (X, τ) and (X + dX, τ + dτ)
on the pseudosphere is given by

ds2 = e−2τdX2 + dτ2.

18.5.3 Finally, introduce the variable Y = eτ and conclude that ds =
√

dX2+dY2

Y .

Thus the pseudosphere is mapped into the (X, Y)-plane with preservation of
distance, provided distance in the (X, Y) plane is defined by

ds =

√
dX2 + dY2

Y
.

It follows, from what was said above, that geodesics on the pseudosphere corre-
spond to semicircles with centers on the X-axis. This throws some light on the
problem raised in Section 17.5—describing geodesics on the pseudosphere.

18.5.4 Explain why the region of the (X, Y)-plane corresponding to the pseudo-
sphere is bounded by X = 0 and X = 2π and it lies above some Y =
constant > 0.

18.5.5 By considering a semicircle crossing the region described in Exercise
18.5.4, show that there is no smooth closed geodesic on the pseudosphere.
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18.6 The Complex Interpretations

One of the characteristics of the Euclidean plane is the existence of regular
tessellations: tilings of the plane by regular polygons. There are three
such tilings, based on the square, equilateral triangle, and regular hexagon
(Figure 18.12). Associated with each tiling is a group of rigid motions
of the plane that maps the tiling pattern onto itself. For example, the unit
square pattern is mapped onto itself by unit translations parallel to the x and
y axes and by the rotation of π/2 about the origin, and these three motions
generate all motions of the tessellation onto itself. If we write z = x + iy,
then these generating motions are given by the transformations

z �→ z + 1, z �→ z + i, z �→ zi.

Figure 18.12: Tessellations of the Euclidean plane

The triangle and hexagon tessellations have a similar group of motions,
generated by

z �→ z + 1, z �→ z + τ, z �→ zτ,

where τ = eiπ/3 is the third vertex of the equilateral triangle whose other
vertices are at 0, 1 (Figure 18.13). More generally, any motion of the Eu-
clidean plane can be composed from translations z �→ z + a and rotations
z �→ zeiθ.

The sphere also admits a finite number of regular tessellations, obtained
by central projections of the regular polyhedra (Section 2.2). Figure 18.14
shows the spherical tessellation corresponding to the icosahedron. (Each
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0 1

τ

Figure 18.13: Relation between the triangle and hexagon tessellations

face has been further subdivided into six congruent triangles.) The motions
that map such a tessellation onto itself can also be expressed as complex
transformations by interpreting the sphere as C∪{∞} via stereographic pro-
jection (Section 16.2). Gauss (1819) found that any motion of the sphere
can be expressed by a transformation of the form

z �→ az + b

−bz + a
,

where a, b ∈ C and an overbar denotes the complex conjugate.
The conformal models of the hyperbolic plane can be regarded as parts

of C: the unit disk {z : |z| < 1} and the half-plane {z : Im(z) > 0}. Their
rigid motions, being conformal transformations, are complex functions,
and Poincaré (1882) made the beautiful discovery that they are of the form

z �→ az + b

bz + a

(for the disk) and

z �→ αz + β
γz + δ

,

where α, β, γ, δ ∈ R (for the half-plane). Infinitely many regular tessel-
lations are possible, since the angles of a regular n-gon can be made ar-
bitrarily small by increasing its area. For example, there are tessellations
by equilateral triangles in which n triangles meet at each vertex, for each
n ≥ 7, and similar variety is possible for other polygons (see exercises).
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Figure 18.14: Icosahedral tessellation of the sphere

Some of these tessellations were known before Poincaré (1882) gave
the complex interpretation of hyperbolic geometry, and even before any
model of hyperbolic geometry was known at all. Figure 18.15 shows a
tessellation by equilateral triangles of angle π/4 found in unpublished, and
unfortunately undated, work of Gauss (Werke, vol. VIII, p. 104).

Others arise from the so-called hypergeometric differential equation
and were rediscovered in this context by Riemann (1858b) and Schwarz
(1872) (the first published example, Figure 18.16).

With his explanation of these tessellations in terms of hyperbolic ge-
ometry, Poincaré (1882) showed for the first time that hyperbolic geometry
was part of preexisting mathematics, whose geometric nature had not pre-
viously been understood.

In a subsequent paper, Poincaré (1883) explained the geometric nature
of linear fractional transformations,

z �→ az + b
cz + d

,

special cases of which, as we have seen, express the rigid motions of
the two-dimensional Euclidean, spherical, and hyperbolic geometries. He
showed that each linear fractional transformation of the plane C is induced
by hyperbolic motion of the three-dimensional half-space with boundary
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Figure 18.15: The Gauss tessellation

Figure 18.16: The Schwarz tessellation

plane C; thus Poincaré’s theorem embraces those of Wachter and Beltrami
on the representation of two-dimensional Euclidean, spherical, and hyper-
bolic geometry within three-dimensional hyperbolic geometry.
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Exercises

18.6.1 Show that a triangle in the hyperbolic plane can have any angle sum < π.

18.6.2 Deduce that there are equilateral triangles with angle 2π/n for each n ≥ 7.

18.6.3 Also deduce that triangles with angle zero exist, in a certain sense, and
that their area is finite.

18.6.4 Find corresponding results for regular n-gons.

18.7 Biographical Notes: Bolyai and Lobachevsky

János Bolyai was born in 1802 in Kolozvár, then in the Transylvanian part
of Hungary (and now Cluj, Romania) and died in Marosvásárhely in Hun-
gary (now Tárgu-Mureş, Romania) in 1860. His father, Farkas (also known
by his German name, Wolfgang), was professor of mathematics, physics,
and chemistry, and his mother, Susanna von Árkos, was the daughter of a
surgeon. János received his early education from his father and also studied
at the Evangelic-Reformed College, where his father taught, from 1815 to
1818. Farkas and Gauss had been fellow students at Göttingen, and Farkas
hoped that János would follow him there, but instead the younger Bolyai
opted for a military career. He studied at the Vienna engineering academy
from 1818 to 1822 and then entered the army.

In the army, János became known as an invincible duelist, but he suf-
fered from bouts of fever and was eventually pensioned off in 1833. He
returned to Marosvásárhely to live with his father, but the two did not get
along, and in 1834 he moved to a small family estate. He set up house
with his mistress, Rosalie von Orbán; they had three children. This could
have been the start of a mathematical career, in the style of Descartes, as a
leisured country gentleman. But, sad to say, Bolyai’s mathematical career
was already over in 1833, and it was not until after his death that the world
knew he had accomplished anything.

János had inherited a passion for the foundations of geometry from his
father, so much so that in 1820 Farkas tried almost desperately to steer him
away from the problem of parallels: “You should not tempt the parallels
in this way, I know this way until its end—I also have measured this bot-
tomless night, I have lost in it every light, every joy of my life” (Stäckel
(1913), pp. 76–77). Of course János ignored this warning, but eventually
he found the way out that Farkas had missed. After unsuccessful attempts
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to prove the Euclidean parallel axiom, he discarded it and proceeded to de-
rive consequences of Axiom P2. By 1823 his results seemed so complete
and elegant they somehow had to be real, and he wrote triumphantly to his
father, “From nothing I have created another entirely new world.”

Farkas was unwilling to accept the new geometry, but in June 1831 he
agreed to send his son’s results to Gauss, who did not answer for over six
months (admittedly, this was the time of his wife’s death). When Gauss
did answer it was in the most self-serving way imaginable:

Now something about the work of your son. You will probably
be shocked for a moment when I begin by saying that I cannot
praise it, but I cannot do anything else, since to praise it would
be to praise myself. The whole content of the paper, the path
that your son has taken, and the results to which he has been
led, agree almost everywhere with my own meditations, which
have occupied me in part already for 30–35 years.

Gauss (1832b)

Later in the letter, Gauss offered Bolyai the same backhanded thanks that
he had offered to Abel (see Section 12.6) for “saving him the trouble” of
writing up the results himself, and he raised the question of the volume of
the tetrahedron as a problem for further research.

As we now know, Gauss did have many of the results of non-Euclidean
geometry by this time, including the answer to the volume problem he had
raised to test his young rival (see Gauss (1832a)). Nevertheless, Gauss was
almost certainly wrong to imply that his understanding of non-Euclidean
geometry went back 35 years. As late as 1804, when Farkas Bolyai wrote
to him about the problem of parallels, Gauss could offer no help except
the hope that the problem would be settled one day (see Kaufmann-Bühler
(1981), p. 100).

János Bolyai was disillusioned and embittered by Gauss’s reply but
did not give up immediately. He published his work as an appendix to his
father’s book the Tentamen (F. Bolyai (1832a)). However, when there was
no response from other mathematicians he became discouraged and never
published again. He was also troubled by the possibility that there might,
after all, be contradictions in his geometry. As we know, this possibility
was not ruled out until 1868, and by then Gauss, Bolyai, and Lobachevsky
were all dead.
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Nikolai Ivanovich Lobachevsky (Figure 18.17) was born in Novgorod
in 1792 and died in Kazan in 1856. He was the son of Ivan Maksimovich
Lobachevsky and Praskovia Aleksandrovna. His father died when Nikolai
was five years old, and his mother moved with her three sons to Kazan. By
persistent efforts, she was able to secure scholarships for their education,
and in 1807 Nikolai entered Kazan University, which had been founded
just two years earlier. He was supervised by Martin Bartels, the former
teacher of Gauss, but a link to Gauss’s geometric ideas seems less likely
than in the case of Bolyai, since Bartels had little contact with Gauss after
his school days.

Figure 18.17: Nikolai Ivanovich Lobachevsky

Lobachevsky stayed at Kazan for the rest of his life, becoming profes-
sor in 1814 and making many contributions to the growth of the university.
He married the wealthy Lady Varvara Alekseeva Moisieva in 1832 and was
raised to the nobility in 1837, in recognition of his services to education.
The couple had seven children.

Lobachevsky’s investigation of parallels began in 1816, when he lec-
tured on geometry, and he at first thought he could prove the Euclidean
axiom. Gradually he became aware of the way in which parallels regu-
late other geometric properties, such as areas, and in 1832 he wrote Ge-
ometriya, which separated theorems not requiring an assumption about



18.7 Biographical Notes: Bolyai and Lobachevsky 381

parallels from those that did. He still believed in the Euclidean axiom,
however, so Bolyai was ahead of him at this stage. Lobachevsky’s pub-
lications in non-Euclidean geometry began in 1829, but at first they at-
tracted no attention, since they were in Russian and Kazan University was
little known. He did gain a wider audience with an article in French in
Crelle’s journal in 1837, but Gauss seems to have been the only one to
recognize its importance. Gauss was in fact so impressed that he collected
Lobachevsky’s obscure Kazan publications and taught himself Russian in
order to read them. He also arranged for Lobachevsky to be elected to the
Royal Academy of Sciences in Göttingen, and sent him a letter of con-
gratulations (see Dunnington (2004), p. 187), but again he did not let his
views become widely known. It is only through a letter, Gauss (1846b),
published after his death that his opinion became public. As usual, Gauss’s
first thought was to guard his own priority, and his memory of when he
discovered non-Euclidean geometry seems to have improved with age:

Lobachevsky calls it imaginary geometry. You know that I
have had the same conviction for 54 years (since 1792), with
a certain later extension which I do not want to go into here.
There was nothing materially new for me in Lobachevsky’s
paper, but he explains his theory in a way which is different
from mine, and does this in a masterful way, in a truly geo-
metric spirit.

Kaufmann-Bühler (1981), p. 150

At any rate, Lobachevsky was less easily discouraged than Bolyai.
Despite the silence of foreign mathematicians, opposition from mathe-
maticians in Russia, and the handicap of blindness in his later years, he
continued to refine and expand his theory. The final version of his work,
Pangéométrie, was published in 1855–1856, the last year of his life.





19

Group Theory

Preview

The next three chapters are concerned with the emergence of “modern,” or
abstract, algebra from the old algebra of equations. In the present chapter
we look at group theory.

Group theory today is often described as the theory of symmetry, and
indeed groups have been inherent in symmetric objects since ancient times.
However, extracting algebra from a symmetric object is a highly abstract
exercise, and groups first appeared in situations where some algebra was
already present.

One of the first nontrivial examples was the group of integers mod p,
for prime p, used by Euler (1758) to prove Fermat’s little theorem. Of
course, Euler had no idea that he was using a group. But he did use one of
the characteristic group properties, namely, the existence of inverses.

Likewise, Lagrange (1771) was not aware of the group concept when
he studied permutations of the roots of equations. But he was using the
group S n of permutations of n things, and some of its subgroups.

It was Galois (1831a) who first truly grasped the group concept, and he
used it brilliantly to explain what makes an equation solvable by radicals.
In particular, he was able to explain why the general quintic equation is
not solvable by radicals. These discoveries changed the face of algebra,
though few mathematicians realized it at first.

In the second half of the 19th century the group concept spread from
algebra to geometry, following the observation of Klein (1872) that each
geometry is characterized by a group of transformations. This very fruitful
idea is explored further in Chapter 23.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 383
DOI 10.1007/978-1-4419-6053-5 19, c© Springer Science+Business Media, LLC 2010
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19.1 The Group Concept

The notion of group is one of the most important unifying ideas in math-
ematics. It draws together a wide range of mathematical structures for
which a notion of combination, or “product,” exists. Such products include
the ordinary arithmetical product of numbers, but a more typical example
is the product, or composition, of functions. If f and g are functions, then
fg is the function whose value for argument x is f (g(x)). (Thus fg means
“apply g, then f .” We have to pay attention to order because in general
g f � fg.)

A group G is defined formally to be a set with an operation, usually
called product and denoted by juxtaposition, a specific element called the
identity and written 1, and, for each g ∈ G, an element called the inverse of
g and written g−1, with the following properties:

(i) g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G (associative property)

(ii) g1 = 1g = g for all g ∈ G (identity property)

(iii) gg−1 = g−1g = 1 for all g ∈ G (inverse property)

These axioms evolved over more than a century of work with particular
groups, during which their essential features emerged only gradually. We
look at some of the groups that played an important role in this process in
the other sections of this chapter. In practice, properties (i) and (ii) are usu-
ally evident, and it is more important to ensure that the product operation
is in fact defined for all elements of G. Many mathematical concepts have
been created in response to the desire, at first unconscious, for products to
exist.

For example, we saw in Section 8.2 that a perspective view of a per-
spective view is not, in general, a perspective view. Thus if we take the
“product” fg of perspective transformations f and g to be the result of
performing g then f , then fg does not always belong to the set of perspec-
tive transformations. The set of projective transformations is the smallest
extension of the set of perspective transformations to a set on which the
product is always defined, namely, the set of finite products of perspective
transformations.

In other instances, concepts have arisen from the desire to have in-
verses. Negative numbers, for example, can be viewed as extending the
set {0, 1, 2, 3, . . .} of natural numbers to the set Z of integers, in which each
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element has an inverse under the + operation. (In cases like this one, where
the group operation is naturally written as +, the identity element is written
0 and the inverse of g is written −g.) Another example is the extension of
the line R to the real projective line RP1 = R∪{∞}, which ensures that each
linear fractional function has an inverse. Likewise, extending the plane by
points at infinity ensures that each projective transformation has an inverse,
because it enables points that are projected to infinity to be projected back
again.

Inverses sometimes appear unintentionally, as it were, in finite situ-
ations where repeated application of the group operation eventually pro-
duces the identity element. The simplest example is the cyclic group Zn,
which consists of the numbers 0, 1, 2, . . . , n−1 under “addition modulo n.”
Here the identity element is 0, and n − 1 is the inverse of 1 because their
sum equals 0, modulo n. Similarly, n − 2 is the inverse of 2, n − 3 is the
inverse of 3, and so on.

Perhaps the earliest nontrivial use of an inverse occurs with the op-
eration of “multiplication modulo p,” which Euler (1758) (and possibly
Fermat before him) used to give an essentially group-theoretic proof of
Fermat’s little theorem. Recall from Section 5.1 that integers m and n are
called congruent modulo p if they differ by an integer multiple of p, and
from Section 5.2 that b is an inverse of a with respect to multiplication
mod p if ab is congruent to 1 modulo p, that is, if ab + kp = 1 for some
integer k. If p is prime and a is not a multiple of p, then such a b exists by
application of the Euclidean algorithm to the relatively prime numbers a,
p (Sections 3.3 and 5.2). Euler did not define a group in his proof, but it is
easy for us to do so (and to rephrase his proof accordingly; see exercises).
The group elements are the numbers 0,1,2, . . . , p − 1, and the product of a
and b is defined to be ab mod p, where

ab mod p =

the number among 0, 1, 2, . . . , p − 1 that is congruent to ab, mod p.

Group properties (i) and (ii) follow from ordinary arithmetic; (iii), as we
have seen, follows from the Euclidean algorithm.

The preceding examples illustrate the influence of geometry and num-
ber theory on the group concept. An even more decisive influence was the
theory of equations, which we look at briefly in Section 19.3. But first we
need to understand a little about subgroups—the groups within a group—
and when a subgroup may be said to “divide” a group. A more detailed
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account of the development of the group concept may be found in Wussing
(1984).

Exercises

A good introduction to inverses under multiplication mod p may be had with
p = 5. There is no need to use the Euclidean algorithm to find these inverses—just
multiply by numbers < 5 until a product congruent to 1 (mod 5) is obtained.

19.1.1 Find the inverses of 2, 3, and 4 under multiplication mod 5.

Now here is the proof of Fermat’s little theorem using inverses mod p. Start with
the nonzero numbers, mod p,

1, 2, . . . , (p − 1),

and multiply them all by a nonzero a (mod p).

19.1.2 Notice that if we multiply again by the inverse of a (mod p) we get back
the numbers

1, 2, . . . , (p − 1).

Why does this show that the numbers

a · 1 mod p, a · 2 mod p, . . . , a(p − 1) mod p

are distinct and nonzero?

19.1.3 Deduce from Exercise 19.1.2 that if a is nonzero (mod p), then

{a · 1 mod p, a · 2 mod p, . . . , a(p − 1) mod p}

is the same set as
{1, 2, . . . , (p − 1)}.

19.1.4 Deduce from Exercise 19.1.3 that

ap−1 · 1 · 2 · · · · · (p − 1) mod p = 1 · 2 · · · · · · (p − 1) mod p.

19.1.5 Finally, deduce that

ap−1 mod p = 1 mod p,

that is,
ap−1 ≡ 1 (mod p)

(Fermat’s little theorem).
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19.2 Subgroups and Quotients

The group concept was implicit in mathematics for a long time—arguably
from the introduction of negative numbers—before it became explicit. The
first substantial theorem of the subject, now known as Lagrange’s theorem,
also predates the formalization of the group concept, but to state it we will
take advantage of current terminology.

A subset H of a group G is called a subgroup of G if H is also a group
(under the same operation that makes G a group). For example, the set Z of
integers is a subgroup of the group R of real numbers, under the addition
operation. Lagrange’s theorem concerns the number of members of a group
H, which we call the order of H and denote by |H|. It states that:

If H is a subgroup of a finite group G, then |H| divides |G|.
Lagrange (1771) proved a special case of this theorem. Jordan (1870)

proved the general case and generously named it after Lagrange. The proof
depends on the notion of the cosets of H. For each g in G we have the left
coset

gH = {gh1, gh2, . . . , ghk}, where H = {h1, h2, . . . , hk}.

In words, gH is the set that results from multiplying each member of H on
the left by g. (There are right cosets Hg defined similarly, but we do not
need them for this proof.) The key properties of cosets are:

1. Each coset gH has |H| members, because we can recover the mem-
bers of H by multiplying each member of gH on the left by g−1.

2. Any two different cosets g1H and g2H are disjoint. This is because,
if g1H and g2H have a common member g, we have

g = g1h1 = g2h2 for some h1, h2 in H.

But then

g1 = g2h2h−1
1 (multiplying on the right by h−1

1 ),

whence
g1H = g2(h2h−1

1 H) = g2H,

since h2h−1
1 is a member of H, and multiplying H by any one of its

members gives back H.
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It follows from these two properties that G can be split into disjoint sets
gH, each of size |H|, so |H| divides |G|. �

Under certain conditions, it makes sense to multiply cosets by the rule

g1H · g2H = g1g2H.

For this rule to make sense, we must get the same answer g′1g
′
2H = g1g2H

whenever g′1H = g1H and g′2H = g2H. This happens when gH = Hg for
each g in G because, under this condition,

g′1g
′
2H = g′1Hg′2 because g′2H = Hg′2,
= g1Hg′2 because g1H = g′1H,

= g1g
′
2H because g′2H = Hg′2,

= g1g2H because g′2H = g2H. �

We call H a normal subgroup of G if it satisfies the condition gH = Hg
for each g in G, and in this case the cosets form a group called G/H, the
quotient of G by H. The group properties are inherited from G, as is easy
to check (see exercises).

If G has the property that gg′ = g′g for all g, g′ in G (in which case we
call G abelian, for reasons that will be explained in the next section), then
obviously gH = Hg for any subgroup H. This means that any subgroup
H of an abelian group G is normal, and we can form the quotient group
G/H. The concept of normal subgroup is therefore interesting only when
G is not an abelian group. In this case, the first step towards understanding
the structure of G is to look for normal subgroups.

All this was first understood and made explicit by Galois, whose work
we introduce in the next section.

Exercises

The group properties of G/H follow from the definition of the product of
cosets, g1H · g2H = g1g2H.

19.2.1 Show that

g1H(g2H · g3H) = (g1H · g2H) · g3H if and only if g1(g2g3) = (g1g2)g3;

hence associativity in G/H follows from associativity in G.

19.2.2 Show that H = 1H is the identity element of G/H.

19.2.3 What is the inverse of gH in G/H? Explain your answer.
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The smallest nonabelian group is a group of six elements that may be viewed as
the “symmetries” of the equilateral triangle. If we fix a position of the triangle,
then there are six motions of it (including the “motion” that does not change it at
all) leading to a position where it looks the same as it did before. These motions
can be identified by where they send the vertices A, B, and C (Figure 19.1).

B

A

C A

C

B C

B

A

C

A

B B

C

A A

B

C

Figure 19.1: The symmetries of the equilateral triangle

The six motions form a group (called S 3 for reasons that will be given in the
next section) under the operation of combining motions. We combine motions by
viewing each motion as a function f (P) of points P in the triangle, so “do f , then
g” means to form the function g f (P), as mentioned in Section 19.1.

19.2.4 Why are there only six motions leading to positions that look the same?
Why is this group not abelian?

19.2.5 A subgroup H of S 3 consists of three rotations, through 0◦, 120◦, and 240◦,
represented by the pictures in the top row.

19.2.6 The bottom row of the picture represents a coset gH for some g in S 3.
Describe the motion g, and verify that Hg is the same set as gH.

19.2.7 Show that any subgroup H with only two cosets in a group G is a normal
subgroup.

19.3 Permutations and Theory of Equations

We saw in Section 11.1 that, as early as 1321, Levi ben Gershon found
that there are n! permutations of n things. These permutations are invert-
ible functions that form a group S n (called the symmetric group) under
composition, though their behavior under composition was not considered
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until the 18th century. It was when the idea of permutation was applied to
the roots of polynomial equations, by Vandermonde (1771) and Lagrange
(1771), that the first truly group-theoretic properties of permutations were
discovered. At the same time, Vandermonde and Lagrange discovered the
key to understanding the solution of equations by radicals.

They began with the observation that if an equation

xn + a1xn−1 + · · · + an−1x + an = 0 (1)

has roots x1, x2, . . . , xn, then

xn + a1xn−1 + · · · + an−1x + an = (x − x1)(x − x2) · · · (x − xn), (2)

and by multiplying out the right-hand side and comparing coefficients one
finds that the ai are certain functions of x1, x2, . . . , xn. For example,

an = (−1)nx1x2 · · · xn,

a1 = −(x1 + x2 + · · · + xn).

These functions are symmetric, that is, unaltered by any permutation of
x1, x2, . . . , xn, since the right-hand side of (2) is unaltered by such permu-
tations. Consequently, any rational function of a1, a2, . . . , an is symmetric
as a function of x1, x2, . . . , xn. Now the object of solution by radicals is to
apply rational operations and radicals to a1, a2, . . . , an so as to obtain the
roots, that is, the completely asymmetric functions xi.

Radicals must therefore reduce symmetry in some way, and one can
see that they do in the quadratic case. The roots of

x2 + a1x + a2 = (x − x1)(x − x2) = 0

are

x1, x2 =
−a1 ±

√
a2

1 − 4a2

2
=

(x1 + x2) ±
√

x2
1 − 2x1x2 + x2

2

2
,

and we notice that the symmetric functions x1 + x2 and x2
1 − 2x1x2 + x2

2
yield the two asymmetric functions x1, x2 when the two-valued radical √
is introduced. In general, introduction of radicals p√ multiplies the number
of values of the function by p and divides symmetry by p, in the sense that
the group of permutations leaving the function unaltered is reduced to 1/p
of its previous size.
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Vandermonde and Lagrange found that they could explain the previous
solutions of cubic and quartic equations in terms of such symmetry reduc-
tion in the corresponding permutation groups, S 3 and S 4. They also found
some properties of subgroups. For example, Lagrange found a special case
of the result now known as “Lagrange’s theorem”: the order of a subgroup
divides the order of the group. However, they were unable to obtain suffi-
cient understanding of the relation between radicals and subgroups of S n

to settle the equations of degree ≥ 5. Ruffini (1799) and Abel (1826) made
enough progress with S 5 to be able to prove the unsolvability of the quintic,
but none of these authors had a firm enough grip on the relation between
radicals and permutations to handle arbitrary equations. They were not, in
fact, conscious of the group concept, and it is only with hindsight that we
can interpret their results in group-theoretic terms.

The concept, and indeed the word “group,” is due to Galois (1831b).
Along with it, Galois introduced the concept of normal subgroup, which fi-
nally unlocks the secret of solvability by radicals. Galois showed that each
equation E has a group GE consisting of the permutations of the roots that
leave rational functions of the coefficients unaltered, and that the reduction
of symmetry caused by introduction of a radical corresponds to formation
of a normal subgroup. More precisely, if E is an equation solvable by
radicals then there is a chain of subgroups

GE = H1 ⊇ H2 ⊇ · · · ⊇ Hk = {1}

such that each Hi+1 is a normal subgroup of Hi and Hi/Hi+1 is cyclic.
(Moreover, if Hi/Hi+1 is cyclic of order n then the step from Hi to Hi+1

corresponds to introduction of an nth root.) Such a group GE is now called
solvable.

Examples of solvable groups are S 3 and S 4, as one would expect from
the known solvability of the corresponding equations. Also, it is easy to see
that all finite abelian groups are solvable, so each equation with an abelian
group is solvable by radicals—a result due to Abel (1829). This is why we
call such groups “abelian.” If E is the general equation of degree n, then
GE = S n and the theorem of Ruffini and Abel is recovered by showing that
S n is not solvable for n ≥ 5 (see, for example, Dickson (1903)).

This brief sketch of Galois’s ideas covers only a part of his theory. An-
other part is his theory of fields, which is needed to clarify the notion of
rational function. The group theory and the field theory make up what is
currently known as “Galois theory” (see, for example, Edwards (1984)).



392 19 Group Theory

What one might consider to be the summit of Galois’s theory, rising above
the confines of algebra, is currently neglected. This is the solution of equa-
tions by elliptic and related functions, for which one must consult earlier
books such as Jordan (1870) and Klein (1884). The greatest triumph of this
theory was the solution of the general quintic equation by elliptic modular
functions in Hermite (1858), following a hint in Galois (1831a) (see also
Sections 6.6 and 19.8).

Exercises

The simplest type of permutation is a transposition, which swaps two things
and leaves the others fixed.

19.3.1 Show that any permutation is a product of transpositions, that is, any ar-
rangement of n things may be achieved by repeated swaps.

The group S n of all permutations of n things has an important subgroup An,
consisting of the permutations that are even in the following sense.

An even permutation f of {1, 2, . . . , n} is one with an even number of inver-
sions, that is, pairs (i, j) for which i < j and f (i) > f ( j) (Cramer (1750), p. 658).
This can be visualized by placing the numbers 1, 2, . . . , n in two rows, one above
the other, and drawing a line from k in the top row to f (k) in the bottom row.
Figure 19.2 illustrates the permutation f (1) = 2, f (2) = 3, f (3) = 1 in this way.

1 2 3

1 2 3

Figure 19.2: A permutation diagram

19.3.2 Explain why a permutation is even if and only if its diagram has an even
number of crossings.

19.3.3 Show that the product of even permutations is even, and hence that the
even permutations of {1, 2, . . . , n} form a group An. (It is called the alter-
nating group.)

19.3.4 Show that evenness does not depend on how the numbers 1, 2, . . . , n are
assigned to the n things. (Hint: if the numbers are permuted by g, show
that the permutation f is replaced by the permutation g−1 fg.)

19.3.5 If g is an odd permutation, that is, g ∈ S n − An, show that the set gAn =

{g f : f ∈ An} is all the odd permutations in S n; hence An contains exactly
half the members of S n.
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It follows from Exercise 19.3.5, and Exercise 19.2.7, that An is a normal sub-
group of S n; hence we can always form the cyclic quotient S n/An = Z2. Thus
the real problem in solving the general equation of degree n is to “solve” An by
finding normal subgroups inside it.

The group S 3 turns out to be solvable because its normal subgroup A3 is al-
ready cyclic. This can be seen by studying the permutations in A3, but more easily
by interpreting S 3 geometrically.

19.3.6 Interpret the symmetry group of the equilateral triangle, discussed in the
previous exercise set, as the group S 3 of all permutations of three things.

19.3.7 Show that, under this interpretation, the cyclic subgroup of rotations is A3.

The “interpretation” we speak of here is an example of what is technically
called an isomorphism between the triangle symmetry group and S 3. An isomor-
phism is a one-to-one correspondence between the two groups that preserves the
group operation, thus establishing that the groups have the “same form.” (We used
this expression in the same sense in Section 16.5.) In calling the rotation subgroup
“cyclic” we also imply an isomorphism, namely, the one that pairs the rotations
through 0◦, 120◦, 240◦ with the members 0, 1, 2 of Z3 respectively.

19.3.8 Show that there is an isomorphism between the symmetry group of the
regular tetrahedron and S 4. To which symmetries do the members of A4

correspond?

19.4 Permutation Groups

Galois understood “group” to mean a group of permutations of a finite set,
so his definition stated only that the product of two permutations in the
group must again be a member of the group. Associativity, identity, and
inverses were consequences of his assumptions, and indeed too obvious to
be considered important from his point of view. Galois’s work was pub-
lished only in 1846, and by that time the theory of finite permutation groups
had been taken up and systematized by Cauchy (1844). Cauchy likewise
required only closure under product in his definition of group, but he rec-
ognized the importance of identity and inverses by introducing the notation
of 1 for the identity and f −1 for the inverse of f .

Cayley (1854) was the first to consider the possibility of more abstract
group elements, and with it the need to postulate associativity. (Inciden-
tally, a group operation for which associativity is not obvious is that defined
by the chord construction on a cubic curve: see Sections 11.6 and 16.5.)
He took group elements to be simply “symbols,” with a “product” of A and
B written A · B and subject to the law A · (B ·C) = (A · B) ·C, and a unique
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element 1 subject to the laws A · 1 = 1 · A = A. He still assumed that each
group was finite, however. This meant that the existence of inverses did not
have to be postulated, only the validity of cancellation.

The existence of inverses in a finite group G, as defined by Cayley,
follows from an argument used by Cauchy (1815) and developed more
fully in Cauchy (1844). If A ∈ G, then the powers A2, A3, . . . all belong to
G and hence they eventually include a recurrence of the same element:

Am = An where m < n.

Then, assuming that it is valid to cancel Am from both sides, An−m is the
identity element 1 and An−m−1 is the inverse of A.

The need to postulate inverses first arises with infinite groups, where
this argument no longer holds. Geometry was historically the most im-
portant source of infinite groups, as we shall see in Section 19.6. It was
in extending Cayley’s abstract group theory to cover the symmetry groups
of infinite tessellations that Dyck (1883) made first mention of inverses
in the definition of group. We shall return to Dyck’s concept of group in
Section 19.7.

A theorem of Cayley (1878) shows that abstraction of the group con-
cept is, in a sense, empty, because every group is essentially the same as a
group of permutations. Cayley proved the theorem for finite groups only,
where it is more valuable, but the proof easily extends to arbitrary groups
(see exercises).

Exercises

The proof of Cayley’s theorem goes as follows. Given any group G, associate
any g in G with the function ×g that sends each h ∈ G to hg.

19.4.1 Show that function ×g is a permutation of G, by showing that its effect can
be undone by the function ×g−1.

19.4.2 Show that different group elements g1, g2 give different functions ×g1,
×g2, and hence that there is a one-to-one correspondence between the ele-
ments g in G and the permutations ×g of G.

19.4.3 Show that the permutation of G obtained by applying ×g1, then ×g2, is the
permutation obtained by applying ×g1g2.

Thus the group of permutations ×g is isomorphic to the group G, in the sense
described in the previous exercise set. This is the precise way of saying that G is
“essentially the same” as a group of permutations.
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19.5 Polyhedral Groups

A beautiful illustration of Cayley’s theorem that every group is a permuta-
tion group is provided by the regular polyhedra, whose rotation groups turn
out to be important subgroups of S 4 and S 5. If we imagine a polyhedron
P occupying a region R in space, the rotations of P can be viewed as the
different ways of fitting P into R.

We begin with the rotations of the tetrahedron T : T has four vertices,
V1,V2,V3,V4, so each rotation of T is determined by a permutation of the
four things V1,V2,V3,V4. There are 4×3 = 12 rotations, because V1 can be
put at any of the four vertices of R, after which three choices remain for the
remaining triangle of vertices V2,V3,V4. One can check, using the fact that
a permutation that leaves one element fixed and rotates the other three is
even, that all the symmetries of T are even permutations of V1,V2,V3,V4.
But the subgroup A4 of all even permutations in S 4 has 1

2×4! = 12 elements
by the exercises in Section 19.3, so the rotation group of T is precisely A4.

The full permutation group S 4 can be realized by the rotations of the
cube. The four elements of the cube that are permuted are the long diago-
nals AA′, BB′,CC′,DD′ (Figure 19.3).

A B

CD

A′B′

C′ D′

Figure 19.3: The cube and its diagonals

One has to check, first, that each permutation of the diagonals is actu-
ally realizable. While doing this, it will become apparent that the position
of the diagonals (bearing in mind that endpoints could be swapped) really
determines the position of the cube (Exercise 19.5.1). S 4 is also the rota-
tion group of the octahedron, because of the dual relationship between cube
and octahedron seen in Figure 19.4. Each rotation of the cube is clearly a
rotation of its dual octahedron, and conversely.
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Figure 19.4: Dual polyhedra

Likewise, the dual relationship between dodecahedron and icosahedron
(Figure 19.4) shows that they have the same rotation group. This group
turns out to be A5, the subgroup of even permutations in S 5. The five
elements of the dodecahedron whose even permutations determine these
rotations are tetrahedra formed from sets of four vertices (see Figure 19.5).

Figure 19.5: The tetrahedra in a dodecahedron

For more information on the polyhedral groups, see Klein (1884). This
book relates the theory of equations to the rotations of the regular poly-
hedra and functions of a complex variable. The complex variable makes
its appearance when the regular polyhedra are replaced by regular tessella-
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tions of the sphere C∪{∞}, and their rotations by linear fractional transfor-
mations, as in Section 18.6. Klein (1876) showed that, with trivial excep-
tions, all finite groups of linear fractional transformations come from the
rotations of the regular polyhedra in this way.

The regular polyhedra were also the source of another approach to
groups: presentation by generators and relations. Hamilton (1856) showed
that the icosahedral group can be generated by three elements ι, χ, λ subject
to the relations

ι2 = χ3 = λ5 = 1, λ = ιχ. (1)

This means that any element of the icosahedral group is a product (possibly
with repetitions) of ι, χ, λ and that any relation between ι, χ, λ follows from
the relations (1). Dyck (1882) gave similar presentations of the cube and
tetrahedron groups, and for the groups of certain finite tessellations, as part
of the first general discussion of generators and relations. We return to this
in Section 19.7.

Exercises

19.5.1 Show that each permutation of the diagonals of a cube is realizable, for
example by showing that each transposition is realizable.

19.5.2 Show that a permutation of the diagonals uniquely determines the position
of the cube.

Now consider the following rotations of the cube:

ι = 180◦ rotation about a line through the midpoints of opposite edges,

χ = 120◦ rotation about a diagonal.

These obviously satisfy ι2 = χ3 = 1.

19.5.3 Show that ιχ = λ, where

λ = 90◦ rotation about a line through the centers of opposite faces,

where the lines are, for example, those shown in Figure 19.6 (these lines
are fixed in space, not in the cube).

19.5.4 Deduce from Exercise 19.5.3 that ι2 = χ3 = (ιχ)4 = 1 for the cube.

19.5.5 Show that the analogous ι, χ for the tetrahedron satisfy

ι2 = χ3 = (ιχ)3 = 1,

and the analogous ι, χ for the dodecahedron satisfy

ι2 = χ3 = (ιχ)5 = 1.
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χ

ι
λ

Figure 19.6: Rotations of the cube

19.6 Groups and Geometries

As the regular polyhedra show, geometric symmetry is fundamentally a
group-theoretic notion. More generally, many notions of “equivalence”
in geometry can be explained as properties that are preserved by certain
groups of transformations. However, some revision of classical notions
was necessary before geometry could benefit from group-theoretic ideas.

The oldest notion of geometric equivalence is that of congruence. The
Greeks understood figures F1 and F2 to be congruent if there is a rigid
motion of F1 that carries it into F2. But this concept of motion had meaning
only for the individual figure. The “product” of motions of different figures
was meaningless, so one did not have a group of motions.

The step that paved the way for group theory in geometry was the ex-
tension of the idea of motion to the whole plane by Möbius (1827). This
gave meaning to the product of motions. In fact, Möbius considered all
continuous transformations of the plane that preserve straightness of lines,
and he picked out several subclasses of these transformations: those that
preserve length (congruences), shape (similarities), and parallelism (affini-
ties). He showed that the most general continuous transformations pre-
serving straightness are just the projective transformations, so in one stroke
Möbius defined the notions of congruence, similarity, affinity, and projec-
tive equivalence as properties invariant under certain classes of transforma-
tions. That the classes in question are groups was obvious as soon as one
recognized the concept of group. It is an indication of the slowness with
which the group concept was recognized that the restatement of Möbius’s
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ideas in terms of groups occurred only with Klein (1872).
Klein’s formulation became known as the Erlanger Programm because

he announced it at the University of Erlangen. His idea is to associate
each geometry with a group of transformations that preserve its charac-
teristic properties. Thus, characteristic properties show up as invariants
of the group. For example, the group of plane Euclidean geometry is the
group of Euclidean rigid motions—transformations of R2 that preserve the
Euclidean distance

√
(x2 − x1)2 + (y2 − y1)2 between points (x1, y1) and

(x2, y2). Euclidean distance is therefore an invariant, by the very defini-
tion of the group.

A more interesting example is the group of the real projective line RP1,
studied in Section 8.6. In this case we start with the group, the group
of linear fractional transformations, and discover its invariant, the cross-
ratio, which is not at all obvious visually. Plane projective geometry is
similarly associated with the group of projective transformations of RP2,
and its fundamental invariant is likewise the cross-ratio.

Plane hyperbolic geometry, in view of the projective model, can be
defined by the group of projective transformations that map the unit circle
onto itself. An important influence on the Erlanger Programm was indeed
Cayley (1859), where this group was first shown to determine a geometry,
and the subsequent realization of Klein (1871) that the elements of this
group are the rigid motions of hyperbolic geometry. Not surprisingly, its
fundamental invariant is the hyperbolic distance, and this turns out to be a
function of the cross-ratio.

When geometry is reformulated in terms of groups, certain geomet-
ric questions become natural questions about groups. A regular tessella-
tion, for example, corresponds to a subgroup of the full group of motions,
consisting of those motions that map the tessellation onto itself. In the
case of hyperbolic geometry, where the problem of classifying tessella-
tions is formidable, the interplay between geometric and group-theoretic
ideas proved to be very fruitful. In the work of Poincaré (1882, 1883)
and Klein (1882b), group theory is the catalyst for a new synthesis of ge-
ometric, topological, and combinatorial ideas, which are described in Sec-
tions 19.7 and 22.7.

Exercises

If we view geometric objects (points, lines, curves, and so on) as subsets X of
a space S , then relations such as congruence arise from groups of transformations
of S in the following way. There is a group G of maps g : S → S , and each
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geometric object X has a G-orbit {g(X) : g ∈ G}, consisting of the objects onto
which X is mapped by elements of G.

For example, if Δ is a triangle in the plane R2, and G consists of all transfor-
mations of R2 that preserve length, then {g(Δ) : g ∈ G} consists of all triangles
congruent to Δ. This example shows that members of the same G-orbit are “equiv-
alent” in a sense that depends on G. In fact, we always get an equivalence relation
from a group in this way. Here is another example.

19.6.1 If G = {similarities of R2}, what is {g(Δ) : g ∈ G} for a triangle Δ?

For any group G of transformations, we define a relation X �G Y (“X is G-
equivalent to Y”) between subsets X, Y of S by

X �G Y ⇐⇒ X is in the G-orbit of Y.

Then the group properties of G imply the following properties of the relation �G.

19.6.2 Show that the relation �G has the properties

X �G X (reflexive)

X �G Y =⇒ Y �G X (symmetric)

X �G Y and Y �G Z =⇒ X �G Z (transitive)

19.6.3 At which points does your solution of Exercise 19.5.2 involve the exis-
tence of an identity, existence of inverses, and existence of products in G?

The properties in Exercise 19.6.2 show that �G is an equivalence relation,
according to the definition in the exercises for Section 2.1. It was also noted
there that the reflexive and transitive properties actually imply symmetry, provided
that transitivity is stated in the manner of Euclid’s Common Notion 1: “Things
equivalent to the same thing are equivalent to each other.”

19.6.4 Prove Common Notion 1 for �G:

X �G Y and Z �G Y =⇒ X �G Z.

You will see that this proof involves inverses, which previously were needed
only to prove symmetry. This confirms that Euclid’s Common Notion 1 is in some
sense a combination of both transitivity and symmetry.

Returning to a particular group and its invariants, here is an example of the
way in which an invariant can throw light on its group.

19.6.5 Given three points A, B,C on RP1, show that there is a unique fourth point
x such that the cross-ratio

(C − A)(x − B)
(C − B)(x − A)

has a given value y.

19.6.6 Deduce from Exercise 19.6.5 that each linear fractional transformation of
RP

1 is determined by its values on any three points A, B,C.
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19.7 Combinatorial Group Theory

As mentioned in Section 19.5, the groups of the regular polyhedra were
the first to be defined in terms of generators and relations. With finite
groups such as these, however, one is concerned mainly with the simplicity
and elegance of a presentation; the question of existence does not arise.
For any finite group G one can trivially obtain a finite set of generators
(namely, all the elements g1, . . . , gn of G) and defining relations (namely,
all equations gig j = gk holding among the generators). Of course the same
argument gives an infinite set of generators and defining relations for an
infinite group, but this is also not interesting. The real problem is to find
finite sets of generators and defining relations for infinite groups where
possible.

This problem was first solved for the symmetry groups of certain reg-
ular tessellations, and such examples were the basis of the first systematic
study of generators and relations, by Klein’s student Dyck. Dyck’s papers
(1882, 1883) laid the foundations of this approach to group theory, now
called combinatorial. For more technical information, as well as detailed
history of the development of combinatorial group theory, see Chandler
and Magnus (1982).

Figure 19.7 illustrates how generators and relations arise naturally from
tessellations. This tessellation is based on the regular tessellation of the
Euclidean plane by unit squares, but each square has been subdivided into
black and white triangles to eliminate symmetries by rotation and reflec-
tion. The symmetries that remain are generated by

1. horizontal translation of length 1

2. vertical translation of length 1

These generators are subject to the obvious relation

ab = ba,

which implies that any element of the group can be written in the form
ambn. If g = am1 bn1 and h = am2 bn2 , then g = h only if m1 = m2 and
n1 = n2, that is, only if g = h is a consequence of the relation ab = ba.
Thus all relations g = h in the group follow from ab = ba, which means
that the latter relation is a defining relation of the group.

The obviousness of the defining relation in this case blinds us to a fact
that becomes more evident with tessellations of the hyperbolic plane: the
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Figure 19.7: A tessellation of the plane

generators and relations can be read off the tessellation. Group elements
correspond to cells in the tessellation, squares in the present example. If
we fix the square corresponding to the identity element 1, then the square
to which square 1 is sent by the group element g may be called square g.
The generators a±1, b±1 are the elements that send square 1 to adjacent
squares. They generate the group because square 1 can be sent to any other
square by a series of moves from square to adjacent square. Relations
correspond to equal sequences of moves or, what amounts to the same
thing, to sequences of moves that return square 1 to its starting position.
These sequences can all be derived from a circuit around a vertex (Figure
19.8), that is, the sequence aba−1b−1. Thus all relations are derived from
aba−1b−1 = 1, or, equivalently, ab = ba.

Generalizing these ideas, Poincaré (1882) showed that the symmetry
groups of all regular tessellations, whether of the sphere, Euclidean plane,
or hyperbolic plane, can be represented by finitely many generators and
relations. Generators correspond to moves of the basic cell to adjacent
cells, and hence to the sides of the basic cell; defining relations correspond
to its vertices. These results are also important for topology, as we shall
see in Chapter 22.

The notion of group abstracted from such examples was expressed in
a somewhat technical way, involving normal subgroups, by Dyck (1882).
The following, simpler, approach was worked out by Dehn and used by
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a

b

a−1

b−1

Figure 19.8: Circuit around a vertex

Dehn’s student Magnus (1930). A group G is defined by a set {a1, a2, . . .}
of generators and a set {W1 = W ′1,W2 = W ′2, . . .} of defining relations.
Each generator ai is called a letter; ai has an inverse a−1

i , and arbitrary
finite sequences (“products”) of letters and inverse letters are called words.

Words W , W ′ are called equivalent if W = W ′ is a consequence of the
defining relations, that is, if W may be converted to W ′ by a sequence of
replacements of subwords Wi by W ′i (or vice versa) and cancellation (or
insertion) of subwords aia−1

i , a−1
i ai. The elements of G are the equivalence

classes
[W] = {W ′ : W ′ is equivalent to W},

and the product of elements [U], [V] is defined by

[U][V] = [UV],

where UV denotes the result of concatenating the words U, V . It has to be
checked that this product is well defined, but once this is done, the group
properties (i), (ii), and (iii) of Section 19.1 follow easily.

Exercises

Here is how one verifies that the classes [W] have the group properties.

19.7.1 If U is equivalent to U ′, show that UV is equivalent to U ′V . Conclude,
using this and a similar result for V ′, that the product [U][V] is independent
of the choice of representatives for [U], [V].

19.7.2 [U] ([V][W]) = ([U][V]) [W] is trivial. Why?
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19.7.3 Show that 1 = equivalence class of the empty word.

19.7.4 Show that [W]−1 = [W−1], where W−1 is the result of writing W backward
and changing the sign of each exponent.

The smallest nonabelian group S 3 is also the smallest group with interesting
defining relations. We take S 3 to be the group of symmetries of the equilateral
triangle, as in the exercises to Section 19.2.

19.7.5 Show that S 3 is generated by a 120◦ rotation r about its center, and a 180◦
rotation s about the vertical axis of symmetry. Also show that r and s
satisfy the relations

r3 = s2 = 1, r2s = sr.

19.7.6 Deduce from Exercise 19.7.5 that each element of S 3 can be written in the
form

rmsn, where m = 0, 1, 2 and n = 0, 1.

19.7.7 Conclude from Exercise 19.7.6 that r3 = s2 = 1 and r2s = sr are defining
relations for S 3.

19.7.8 By a similar argument, show the group of symmetries of a regular n-gon
has defining relations rn = s2 = 1, rn−1 s = sr.

19.8 Finite Simple Groups

A group is called simple if it has no normal subgroups other than itself
and the group {1} whose only member is the identity element. The reason
for the name is that a simple group cannot be “simplified” by forming the
quotient G/H by a normal subgroup H. In this sense of simplicity, simple
groups are like prime numbers, which cannot be “simplified” by dividing
them by smaller integers. We do not claim that simple groups or prime
numbers are not complicated!

The most obvious examples of finite simple groups are in fact the prime
numbers, or more precisely the cyclic groups Zp for prime numbers p. Zp is
simple because it has no subgroups whatever except itself and {1} (thanks
to Lagrange’s theorem that the size of a subgroup divides the size of the
group). In fact, these are the only abelian simple groups, and we will
ignore them from now on. The interesting simple groups are those that are
not abelian, and the first examples were discovered by Galois in his study
of polynomial equations.

The smallest nonabelian simple group is A5, the group of the 60 even
permutations of five things. The simplicity of A5 is the obstruction to the
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solution of the quintic equation by radicals. As we saw in Section 19.3, the
group of the quintic equation is S 5, the group of all 120 permutations of
five things. Solving the quintic equation by radicals is equivalent to finding
a chain of subgroups

S 5 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ {1}
such that the quotient of each group by the next is cyclic. We can make a
first step,

S 5 ⊇ A5,

but we can go no further because S 5 has no other nontrivial normal sub-
group and A5 is simple.

The proof that A5 is simple (see exercises below) can be extended to
show that An is simple for all n ≥ 5, so Galois actually discovered a whole
infinite family of simple groups. He also found three remarkable simple
groups in the study of modular equations, which arise in the theory of el-
liptic functions. The starting point of these investigations was the Fagnano
(1718) formula for doubling the arc length of the lemniscate (Section 12.4):

2
∫ x

0

dt√
1 − t4

=

∫ y
0

dt√
1 − t4

, where y =
2x
√

1 − x4

1 + x4
.

This gives the polynomial equation between x and y, of degree 2 in y:

y2(1 + x4)2 = 4x(1 − x4).

In the early 19th century, Fagnano’s discovery was generalized to other el-
liptic integrals and to n-tupling instead of doubling, by Legendre, Gauss,
Abel, and Jacobi. Galois left only some cryptic remarks about multiplica-
tion by 5, 7, and 11 (implying that they yield equations of degree 5, 7, and
11) in a letter that he wrote just before his death.

It turns out that the modular equation of degree 5 is equivalent to the
general quintic equation, which is why Hermite (1858) was able to solve
the general quintic equation by elliptic modular functions. However, the
modular equations of degree 7 and 11 have groups of size 336 and 1320
respectively, so they are not symmetric groups S n. The nature of these new
groups was revealed by Jordan (1870). They can be viewed as (what we
would now call) transformation groups of finite projective lines.

What is a finite projective line? It is like the real projective line RP1 =

R ∪ {∞} discussed in Section 8.6, except that R is replaced by a finite
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field. Finite fields were discovered by Galois, and we met some of them
in Section 19.1 when we discussed addition and multiplication mod p.
Since the latter operations have the same behavior as ordinary addition
and multiplication—in particular, each nonzero number has an inverse—
we can operate on the set Fp = {0, 1, 2, . . . , p − 1} as we normally do,
to solve equations and so on. Moroever, linear fractional functions make
sense on Fp ∪ {∞}, if we agree as usual that

1/0 = ∞ and 1/∞ = 0.

So we can view Fp ∪ {∞} as a finite projective line, and its linear frac-
tional functions as “projections.” Moreover, the cross-ratio makes sense on
Fp ∪ {∞}, and it is invariant under linear fractional functions by the same
argument as in Section 8.6.

For this reason, the group of functions

x �→ ax + b
cx + d

, where a, b, c, d ∈ Fp and ad − bc � 0,

is called the projective general linear group, PGL(2, p). (The reason for
the 2 is that the coefficients a, b, c, d behave like the 2 × 2 matrix

( a b
c d
)
—

see Section 23.1.) It turns out that PGL(2, 5), PGL(2, 7), and PGL(2, 11)
are the groups of the modular equations of degree 5, 7, and 11 respec-
tively. Moreover, each of these groups PGL(2, p) contains a simple sub-
group, called PSL(2, p), which is half of its size. This was shown by Jordan
(1870).

We will not prove that PSL(2, p) is simple here, nor that PSL(2, 5) is
the same as A5, but we can confirm that PSL(2, 5) has 60 elements by
interpreting its elements as transformations of the projective line

F5 ∪ {∞} = {0, 1, 2, 3, 4,∞}.
The key observation is that any linear fractional function f (x) = ax+b

cx+d on a
projective line is determined by its values on three points, say f (0), f (1),
f (∞). This is because any fourth point x has a certain cross-ratio with 0,
1, ∞, and f (x) has the same cross-ratio with f (0), f (1), f (∞), which de-
termines f (x) uniquely. Also, f (0), f (1), f (∞) can be any triple of distinct
values among 0, 1, 2, 3, 4,∞ because we can solve the equations

a0 + b
c0 + d

= f (0),
a1 + b
c1 + d

= f (1),
a∞ + b
c∞ + d

= f (∞)
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for a, b, c, d. Thus, the number of elements in PGL(2, 5) is the number of
3-element sequences of distinct elements among 0,1,2,3,4,∞, namely

6 · 5 · 4 = 120.

Now, the reason that PGL(2, 5) is not a simple group is that it has an
“obvious” normal subgroup when we view linear fractional functions as
permutations of the set {0, 1, 2, 3, 4,∞}. For example, the function f (x) =
x + 1 is the function

0

0

1

1

2

2

3

3

4

4

∞

∞
—which is an even permutation. On the other hand, the function g(x) = 2x
is the function

0

0

1

1

2

2

3

3

4

4

∞

∞
—which is an odd permutation. Therefore, the subgroup of even permuta-
tions, which is PSL(2, 5), is not the whole of PGL(2, 5). In fact it is half
the size of PGL(2, 5), so it has 60 elements. It also turns out to be a normal
subgroup, simple, and isomorphic to A5.

We can similarly see that PGL(2, 7) has 8 · 7 · 6 = 336 elements, half
of which are even permutations. The subgroup PSL(2, 7) of even permu-
tations therefore has 168 elements, and it turns out to be a simple normal
subgroup. The third group considered by Galois, PSL(2, 11), likewise turns
out to be simple, with 660 elements. It so happens that PSL(2, 7) is the
smallest nonabelian simple group, other than PSL(2, 5) = A5. PSL(2, 7)
makes several other spectacular appearances in geometry, which may seen
in the article Gray (1982).

These examples give only the tiniest glimpse of the world of simple
groups. Nevertheless, they hint at one of its most fascinating features—
there are meaningful finite analogues of infinite structures such as the real
projective line. We reveal more about this world in Chapter 23.

Exercises

A5 is simple for quite elementary reasons, which can be understood with only
slight knowledge of permutations. This includes the nature of even permutations,
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explored in the exercises to Section 19.3, and the decomposition of permutations
into cycles, which we explore here.

We say that (a1, a2, . . . , ak) is a k-cycle of a permutation f of {1, 2, . . . , n} if

f (a1) = a2, f (a2) = a3, . . . , f (ak) = a1

for distinct numbers a1, a2, . . . , ak. Each number in {1, 2, . . . , n} belongs to some
k-cycle of f , so f is a product of disjoint cycles. For example, if f is

1

1

2

2

3

3

4

4

5

5

then f = (1, 2)(3, 4, 5). It follows from the Exercises in Section 19.3 that the only
even k-cycles among the even permutations of {1, 2, 3, 4, 5} are the 3-cycles and
the 5-cycles.

19.8.1 Omitting 1-cycles from the cycle decomposition, show that the only pos-
sible types of cycle decomposition for (nonidentity) members of A5 are
(a, b, c), (a, b)(c, d), and (a, b, c, d, e).

19.8.2 Recalling that g · f means “ f , then g,” check that

(i) (1, 2, 3, 4, 5) · (2, 1, 4, 3, 5) = (1, 5, 3).

(ii) (1, 2)(3, 4) · (1, 2)(4, 5) = (3, 4, 5).

The preceding exercises show that a subgroup H of A5 with “enough” elements
of type (a, b)(c, d) of (a, b, c, d, e) also contains a 3-cycle. We now study what
happens when H is normal and not equal to {1}, and show that such an H contains
“enough” elements to ensure that 3-cycles are present.

Recall from Section 19.2 that a normal subgroup H of A5 satisfies gH = Hg
for each g in A5. It follows that gHg−1 = H, that is, if h is in H, so is ghg−1 for
any g in A5.

19.8.3 Show that if H contains a 5-cycle (a, b, c, d, e) then it also contains the
5-cycle (g(a), g(b), g(c), g(d), g(e)) for each g in A5.

19.8.4 Show that if H contains a product of 2-cycles (a, b)(c, d) then it also con-
tains the product of 2-cycles (g(a), g(b))(g(c), g(d)) for each g in A5.

19.8.5 Deduce from Exercises 19.8.3 and 19.8.4, and calculations like those in
Exercise 19.8.2, that H contains a 3-cycle.

19.8.6 Deduce from the preceding exercises that H contains all 3-cycles.

To prove that A5 is simple, it now remains to prove that the normal subgroup
H � {1} in fact contains all members of A5.

19.8.7 By using 3-cycles to produce other elements of A5, show that H = A5.
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19.9 Biographical Notes: Galois

Evariste Galois (Figure 19.9) was born in the town of Bourg-la-Reine, near
Paris, in 1811, and died, from wounds received in a duel, in Paris in 1832.
The tragedy and mystery of his short life make him the most romantic
figure in mathematics, and several biographers have been tempted to cast
Galois in the role of misunderstood genius and victim of the Establishment.
However, it has been amply documented by Rothman (1982) that Galois
does not easily fit this role. Though the known facts of his life should
satisfy anyone’s appetite for drama, his tragedy is of the more classical
kind, whose seeds lie in the character of the victim himself.

Figure 19.9: Evariste Galois at the age of 15

Galois was the second of three children of Nicholas-Gabriel Galois,
the director of a boarding school and later mayor of Bourg-la-Reine, and
Adelaı̈de-Marie Demante, who came from a family of jurists. Both par-
ents were well educated, and Galois seems to have had a happy, if uncon-
ventional, childhood. Up to the age of 12, he was educated entirely by
his mother, a severe classicist who instilled in him a knowledge of Latin
and Greek and a respect for Stoic morality. His father was far less of a
stoic, but unconventional in a different way, being a republican at a time
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when France was returning to the monarchy. In October 1823 Evariste en-
tered the Lycée of Louis-le-Grand, a well-known school whose pupils had
included Robespierre and Victor Hugo and would later include the math-
ematician Charles Hermite, who found the transcendental solution to the
quintic equation. There does not seem to have been any mathematics in
Galois’s family background, and he did not begin studying it at school un-
til February 1827. To make the progress he did, he must have devoured
mathematics at a greater rate than anyone in history, except perhaps New-
ton in 1665–1666, so it is no wonder that for the first time his school reports
noted unsatisfactory progress in other subjects. Comments about his char-
acter being “singular” and “closed” but “original” also began to be made.
At this stage Galois was studying Legendre’s Geometry and Lagrange’s
works on the theory of equations and analytic functions. He believed he
was ready to enter the École Polytechnique but, due to his lack of prepara-
tion in the standard syllabus, failed the entrance examination.

In 1828 he had the good fortune to study mathematics under a teacher
who recognized his genius, Louis-Paul-Emile Richard. This led to Ga-
lois’s first publication, a paper on continued fractions that appeared in the
Annales of Gergonne in March 1829. Thanks to Richard, many pieces of
Galois’s early work still exist and have been published in Bourgne and Azra
(1962). They include class papers saved by Richard and later preserved for
posterity by Hermite. One fragment from 1828 shows that Galois, like
Abel, initially believed he could solve the quintic equation.

One might think that publication in a respected journal was reasonable
encouragement for a 17-year-old mathematician, but it was not enough for
Galois. He nursed a grudge against the examiners of the École Polytech-
nique for failing him, and he was supported by Richard, who declared that
he should be admitted without examination. Needless to say, this did not
happen, but worse disappointments were to follow.

Galois had already begun working on his theory of equations and sub-
mitted his first paper on the subject to the Paris Academy in May 1829.
Cauchy was referee and even seemed to be favorably impressed (see Roth-
man (1982), p. 89), but months went by and the paper failed to appear.
Then, in July 1829, Galois’s father committed suicide. The cause was
trivial, even childish—a spiteful attack on him by the priest of Bourg-la-
Reine—but it unleashed political passions with which Galois senior could
not cope. Nor could Evariste cope with the loss of his father. His distrust
of the political and educational establishment deepened into paranoia, and
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the sacrifice of his own life must suddenly have seemed a real possibility.
It was almost the last straw when, a few days after his father’s death, he
failed the entrance examination for the École Polytechnique a second time.

Despite these crushing blows, Galois persevered with examinations
and succeeded in entering the less prestigious École Normale in November
1829. In early 1830 he got his theory of equations into print (though not
through the Academy) with the publication of three papers. The more de-
cisive event of 1830, however, was the July revolution against the Bourbon
monarchy. It gave Galois the ideal focus for his rage over the death of his
father and his own humiliations, and he emerged as a republican firebrand.
He made friends with the republican leaders Blanqui and Raspail and began
political agitation at the École Normale—until he was expelled in Decem-
ber 1830 for an article he wrote against its director. In the same month, the
Bourbons fled France and, as mentioned in Section 16.7, Cauchy fled with
them.

Immediately after leaving the École Normale, Galois joined the Ar-
tillery of the National Guard, a republican stronghold, to concentrate on
revolutionary activity. At a republican banquet on May 9, 1831, he pro-
posed a toast with a dagger in his hand, implying a threat against the life of
the new king, Louis-Philippe. Galois was arrested the following day and
held until June 15 in Sainte-Pélagie prison. He was then tried for threaten-
ing the life of the king, but he was acquitted almost immediately, evidently
on the grounds that he was young and foolish. The acquittal was an act of
considerable leniency, for Galois gave full vent to his opinions during the
trial. He admitted that he still intended to kill the king “if he betrays” and
added his view that the king “will soon turn traitor if he has not done so
already.”

Galois was arrested a second time on Bastille Day 1831, for illegal
possession of weapons and for wearing the uniform of the Artillery Guard
(which had been disbanded at the end of 1830). He was held in Sainte-
Pélagie prison until October and then sentenced to a further six months.
Galois became very despondent and once, thinking of his father, attempted
suicide. Thus he was not in a receptive mood when he finally heard from
the Academy—that they were returning his manuscript—even though he
was invited to submit a more complete account of his theory. Galois did
in fact begin to revise his work, but he poured most of his energy into
the preface, a scorching condemnation of the scientific establishment and
Academicians in particular “who already have the death of Abel on their
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consciences.” The last six weeks of his imprisonment were spent in a nurs-
ing home. Some prisoners were transferred there as a measure against
cholera, which was then epidemic in Paris. In these relatively pleasant
surroundings, Galois resumed his research and managed to write a few
philosophical essays.

He was released on April 29, 1832. Frustratingly little is known about
the next, final, month of his life. He wrote to his friend Chevalier on
May 25, expressing his complete disenchantment with life and hinting
that a broken love affair was the reason. It appears that the woman was
Stéphanie Dumotel, daughter of the resident physician at the nursing home.
Two letters from her to Galois exist, though they are defaced (presumably
by Galois himself) so as to be only partly readable. One, dated May 14,
says “Please let us break up this affair.” The other mentions sorrows some-
one else had caused her, in such a way that Galois might have felt obliged
to come to her defense. Whether this was the cause of the fatal duel we do
not know. It is also possible that Galois felt that the duel had been hanging
over his head for a long time. When he first went to prison in 1831, one
of his comrades was Raspail, who, in a letter from prison on July 25 that
year, quoted Galois as follows: “And I tell you, I will die in a duel over
some low class coquette. Why? Because she will invite me to avenge her
honour which another has compromised” (Raspail (1839), p. 89). In letters
he wrote to friends on the night before the duel, Galois again spoke of an
“infamous coquette.”

He also wrote, “Forgive those who kill me for they are of good faith.”
His opponent was in fact a fellow republican, Pescheux d’Herbinville. Au-
thors who like conspiracy theories have since conjectured that d’Herbinville
was really a police agent, but no evidence exists for this. His revolutionary
credentials were as good as those of Galois. The police agent theory seems
rather to reflect 20th-century bafflement over dueling, something we no
longer understand or sympathize with (though we still applaud successful
duelists, such as Bolyai and Weierstrass). There may be no rational expla-
nation for the duel, but no doubt the suicide of his father and Galois’s own
self-destructive tendencies were among the conditions that made it possi-
ble. Galois was convinced he was going to die over something small and
contemptible, and the tragedy is that he let it happen.

The tragedy for mathematics was the incompleteness of Galois’s work
at the time of his death. The night before the duel, he wrote a long letter
to Chevalier outlining his discoveries and hoping “some men will find it
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profitable to sort out this mess.” Chevalier and Alfred Galois (Evariste’s
younger brother) later copied the mathematical papers and sent them to
Gauss and Jacobi, but there was no response. The first to study them
conscientiously was Liouville, who became convinced of their importance
in 1843 and arranged to have them published. They finally appeared in
1846, and by the 1850s the algebraic part of the theory began to creep
into textbooks. But, as mentioned in Section 19.3, there was more. Galois
also talked of connections between algebraic equations and transcendental
functions and made a cryptic reference to a “theory of ambiguity.” The
latter probably concerned the many-valuedness of algebraic functions, and
we may be fairly sure that whatever Galois did was later superseded by
Riemann. As for the transcendental functions, we also know that Hermite
(1858) successfully completed one of Galois’s investigations into solving
the quintic equation by means of elliptic modular functions, and that Jordan
(1870) exposed the group theory governing the behavior of such functions.
However, these results only scratch the surface, and it is still possible that
a bigger “Galois theory” remains to be discovered.
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Hypercomplex Numbers

Preview

This chapter is the story of a generalization with an unexpected outcome.
In trying to generalize the concept of real number to n dimensions, we find
only four dimensions where the idea works: n = 1, 2, 4, 8. “Numberlike”
behavior in Rn, far from being common, is a rare and interesting exception.

Our idea of “numberlike” behavior is motivated by the cases n = 1, 2
that we already know: the real numbers R and the complex numbers C. The
number systems R and C have both algebraic and geometric properties in
common.

The common algebraic property is that of being a field, and it is cap-
tured by nine laws governing addition and multiplication, such as ab = ba
and a(bc) = (ab)c (commutative and associative laws for multiplication).
The common geometric property is the existence of an absolute value, |u|,
which measures the distance of u from O and is multiplicative: |uv| = |u||v|.

In the 1830s and 1840s, Hamilton and Graves searched long and hard
for “numberlike” behavior in Rn, but they came up short. Beyond R and
C, only two hypercomplex number systems even come close: for n = 4 the
quaternion algebra H, which has all the required properties except commu-
tative multiplication, and for n = 8 the octonion algebra O, which has all
the required properties except commutative and associative multiplication.

Despite lacking some of the field properties, H and O can serve as co-
ordinates for projective planes. In this setting, the missing field properties
have a remarkable geometric meaning. Failure of the commutative law
corresponds to failure of the Pappus theorem, and failure of the associative
law corresponds to failure of the Desargues theorem.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 415
DOI 10.1007/978-1-4419-6053-5 20, c© Springer Science+Business Media, LLC 2010
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20.1 Complex Numbers in Hindsight

We saw in Chapter 14 how a need for complex numbers was first recog-
nized in the 16th century, with the solution of cubic equations. Mathe-
maticians were forced to include

√−1 among the numbers, in order to
reconcile obvious real solutions of cubic equations with solutions given by
the Cardano formula. As time went by, complex numbers were also found
to be indispensable in geometry and analysis, as we saw in Chapters 15
and 16. With hindsight, one realizes that there is nothing “impossible” or
“imaginary” about complex numbers. They are just as real as the so-called
“real” numbers, because two dimensions are just as real as one. And they
have just as much right to be called “numbers,” because they have the same
arithmetic behavior as the real numbers.

But if complex numbers are so real—and not merely a lucky side effect
of the Cardano formula—they should have been observed independently,
and earlier, in the history of mathematics. There is a comparable situation
in the history of astronomy that may help to make this point. The planet
Neptune was discovered through the calculations of Adams and Leverrier
in 1846, as we know from Section 13.4. But of course, Neptune had al-
ways been there, so it could have been observed earlier, before its special
importance was understood. This actually happened! A check of Galileo’s
records by Kowal and Drake (1980) showed that he had observed Neptune
in 1612, without realizing that it was a planet. (He even observed its appar-
ent movement with respect to the fixed stars, but presumably put this down
to experimental error.)

There was an analogous “observation” of complex numbers, without
recognizing all their properties, by Diophantus. He gave no thought to
i =
√−1, which we tend to regard as the starting point of complex num-

bers today, but he did something else that is equally crucial—he operated
on pairs of ordinary numbers. This happens in his work on sums of two
squares, and it is significant because similar observations on sums of four
and eight squares foreshadowed the discovery of the four-dimensional and
eight-dimensional “numbers” that are the main subject of this chapter. Be-
cause these “numbers” have higher dimension than the complex numbers,
they are called hypercomplex. We shall see how much they deserve to be
called “numbers,” but first it will be helpful to set the scene by recounting
the discovery made by Diophantus.
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20.2 The Arithmetic of Pairs

In Book III, Problem 19 of his Arithmetica, Diophantus remarks that

65 is naturally divided into two squares in two ways, namely
into 72 + 42 and 82 + 12, which is due to the fact that 65 is the
product of 13 and 5, each of which is the sum of two squares.

Apparently, he knows that the product of sums of two squares is itself the
sum of two squares, because of the identity

(a2
1 + b2

1)(a2
2 + b2

2) = (a1a2 ∓ b1b2)2 + (b1a2 ± a1b2)2.

As usual, Diophantus merely illustrates the general result, in this case tak-
ing a1 = 3, b1 = 2, a2 = 2, and b2 = 1. But later mathematicians realized
what he was driving at: the general identity was observed by al-Khazin
around 950 ce, commenting on this very problem in Diophantus, and it
was proved in Fibonacci’s Book of Squares in 1225.

Although Diophantus talks in terms of products of sums of squares
a2 + b2, he is really operating on pairs (a, b), because he regards a2 + b2

as the square on the hypotenuse of the right-angled triangle with the pair
of sides a, b. Taking the upper signs in his identity, he is describing a
rule for taking two triangles, (a1, b1) and (a2, b2), and producing a third
triangle, (a1a2 −b1b2, b1a2+a1b2), whose hypotenuse is the product of the
hypotenuses of the two triangles given initially.

Now if we interpret (a, b) as a + ib instead of a triangle, Diophantus’s
rule is nothing but the rule for multiplying complex numbers, because

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(b1a2 + a1b2).

His hypotenuse
√

a2 + b2 is what we call the absolute value |a+ib| of a+ib,
and his identity (with the upper signs) is the multiplicative property of the
absolute value:

|a1 + ib1||a2 + ib2| = |(a1 + ib1)(a2 + ib2)|.
Thus in some sense Diophantus “observed” the rule for multiplying com-
plex numbers, and also the multiplicative property it implies for the ab-
solute value. Admittedly, there is no addition rule, which takes the pairs
(a1, b1), (a2, b2) and produces the pair (a1 +a2, b1+b2), so Diophantus had
no real arithmetic of pairs—but this could wait.
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The concept of complex number had to emerge in algebra, and take
charge of geometry and analysis, before mathematicians felt compelled
to ask, what is a complex number? The definitive answer was given by
Hamilton (1835): a complex number is an ordered pair (a, b) of real num-
bers, and these pairs are added and multiplied according to the rules

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1) × (a2, b2) = (a1a2 − b1b2, b1a2 + a1b2).

The reason for replacing a+ ib by the pair of real numbers (a, b), of course,
is to remove the controversial object i =

√−1. Once this is done, it is
easy to find the rules for adding and multiplying (a1, b1) and (a2, b2). Just
rewrite the rules for adding and multiplying a1+ ib1 and a2+ ib2 in terms of
pairs. This seems like a sly trick—using i2 = −1 to find the multiplication
rule, then removing the i—until we remember that Diophantus found the
multiplication rule without any help from

√−1.
Hamilton realized that multiplying pairs of real numbers was an im-

portant question in its own right. In fact, he was interested in the bigger
question of multiplying triples, quadruples, and so on. There is an obvious
way to add triples for example, the vector addition

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2),

which generalizes to n-tuples for any n. But what would it mean to multiply
triples? The multiplication rule for pairs does not generalize in any obvious
way. Hamilton was tormented by this problem for years, and for a long
time his arithmetic of pairs was the only progress he had to report. As we
shall see, it played an important role in clarifying what arithmetic is in one
and two dimensions, and what it should be in higher dimensions.

Exercises

In case there is any doubt that multiplication of complex numbers could be ob-
served before the numbers themselves were recognized, here is another sighting,
by Viète in his Genesis triangulorum from around 1590.

Viète independently discovered the rule of Diophantus that takes two triangles
and produces a third, but Viète used it for an entirely different purpose. Instead of
multiplying hypotenuses, he wanted to add angles.

20.2.1 Suppose the right-angled triangle with sides a1, b1 has angle θ1 opposite
the side b1, and the right-angled triangle with sides a2, b2 has angle θ2
opposite the side b2. Write down tan θ1, tan θ2, and tan(θ1 + θ2).
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20.2.2 Deduce from Question 20.2.1 that the right-angled triangle with sides
a1a2 − b1b2, b1a2 + a1b2 has angle θ1 + θ2. (Opposite which side?)

20.2.3 Interpret the results of Diophantus and Viète in terms of the polar form
r(cos θ + i sin θ) of the complex number a + ib.

It has even been speculated that multiplication of complex numbers, at least “mul-
tiplication of pairs,” lies behind the mysterious collection of Pythagorean triples
in Plimpton 322 (Section 1.2).

To explore this speculation more fully one needs to have the complete triples
(a, b, c) from Exercise 1.2.1. It turns out that every side pair (a, b) is of the form
(a1a2−b1b2, b1a2+a1b2) for some smaller integer pairs (a1, b1) and (a2, b2). That
is, a + ib = (a1 + ib1)(a2 + ib2). Even more amazing, with the exception of the
multiple (45, 60, 75) of (3, 4, 5), every a + ib is a perfect square, up to a factor of
±i. Here are some for which this is not hard to verify.

20.2.4 For (a, c) = (119, 169) show that b = 120 and that 119 + 120i is a perfect
square. Hint: Observe that 169 = 132 = hypotenuse2.

20.2.5 Show that a similar result holds for (a, c) = (161, 289).

20.3 Properties of + and ×
During the 1830s, Hamilton and his colleagues Peacock, De Morgan, and
John Graves pursued the idea of extending the concept of number. The ex-
isting concept of number was already the result of a series of extensions—
from natural and rational numbers to real and complex numbers—and Pea-
cock observed that some principle of permanence was involved. It was
tacitly agreed that certain properties of addition and multiplication should
continue to hold with each extension of the number concept.

The “permanent” properties were not completely clear at the time, but
most of them crystallized in the definition of a field given by Dedekind
(1871). This concept had an independent origin, also around 1830, in the
work of Galois on the theory of equations. So for convenience we start
with the definition of a field and then explain its role in Hamilton’s search
for an arithmetic of n-tuples.

A field is a set of objects on which operations + and × are defined, with
certain properties or “laws.” To state these properties concisely, we also
use the − operation. Notice that − is interpreted as the operator that turns
a natural number a into its negative, or additive inverse, −a. The negative
of a negative is defined so that − − a = a always, and the difference a − b
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is defined to be a + (−b). Then the properties of + and − are as follows:

a + (b + c) = (a + b) + c (associative law)

a + b = b + a (commutative law)

a + (−a) = 0 (additive inverse property)

a + 0 = a (property of 0)

There is a similar set of properties describing the behavior of ×:

a × (b × c) = (a × b) × c (associative law)

a × b = b × a (commutative law)

a × 1 = a (property of 1)

a × 0 = 0 (property of 0)

and a rule for the interaction of + and ×:

a × (b + c) = a × b + a × c (distributive law)

The properties so far define what is called a commutative ring with unit,
a typical example of which is the set Z of integers.

The defining properties of a field are those above, together with exis-
tence of the multiplicative inverse a−1, which is defined for each a � 0 and
satisfies

a × a−1 = 1 (multiplicative inverse property)

Typical examples of fields are the number systems Q of rationals, R of
reals, and C of complex numbers.

In trying to see beyond these systems, Hamilton was guided by one
more property they all have in common: the existence of a multiplicative
absolute value, a real-valued function | | with the properties

a � 0⇒ |a| > 0, |ab| = |a||b|.
As we have seen in Section 20.2, the multiplicative absolute value for com-
plex numbers was essentially discovered by Diophantus, long before the
discovery of complex numbers themselves. Hamilton was unaware of this,
because he had not studied number theory, and he was blissfully unaware
of what number theory had to say about a multiplicative absolute value for
triples. The subsequent history of hypercomplex numbers might have been
very different had he known what he was up against.



20.4 Arithmetic of Triples and Quadruples 421

20.4 Arithmetic of Triples and Quadruples

Diophantus’s Arithmetica contains many results about sums of two squares.
This is natural, because of the long history of Pythagorean triples, and be-
cause of Diophantus’s own contribution to the subject in showing that sums
of two squares could be “multiplied.” There are also some results on sums
of four squares, which led Bachet de Méziriac (1621) to the conjecture that
every positive integer is the sum of four squares, and the eventual proof
of this conjecture by Lagrange (1770). However, Diophantus has nothing
much to say about sums of three squares, and it was probably obvious to
him that sums of three squares could not be multiplied.

For example, 3 = 12 + 12 + 12 and 5 = 02 + 12 + 22 are both sums of
three squares, but their product, 15, is not. It follows that there can be no
identity of the form

(a2
1 + b2

1 + c2
1)(a2

2 + b2
2 + c2

2) = A2 + B2 +C2,

where A, B, and C are combinations of the am, bm, and cm with integer
coefficients. This means in turn that there cannot be a product of triples

(a1, b1, c1)(a2, b2, c2) = (A, B,C)

with multiplicative absolute value, at least if A, B, and C are such combi-
nations of the am, bm, and cm.

In one of the most extraordinary oversights in the history of mathemat-
ics, Hamilton failed to notice this or any other evidence, and persisted to
search for a product of triples for at least 13 years (from 1830 to 1843). For
most of this time, he was hoping to achieve all the field properties listed
above, together with a multiplicative absolute value.

Following the example of the complex numbers, he wrote the triple
(a, b, c) as a+ ib+ jc, thus reducing the problem of multiplication to deter-
mining the products i2, j2, and i j. He wanted i2 = j2 = −1, so it remained
only to find real coefficients α, β, γ such that i j = α + iβ + jγ. But nothing
worked. In particular, it seemed impossible to reconcile the distributive
law with the commutative law for multiplication. In 1843, he briefly con-
sidered making i j = 0 (which would violate the multiplicative absolute
value), but then

made what appeared to me a less harsh supposition, namely
the supposition . . . that

i j = − ji : or that i j = +k, ji = −k,
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the value of the product k being still left undetermined . . . .
This led me to conceive that perhaps instead of seeking to
confine ourselves to triplets, such as a + ib + jc or (a, b, c),
we ought to regard these as only imperfect forms of quater-
nions, such as a+ ib+ jc+ kd or (a, b, c, d), the symbol k being
some new sort of unit operator.

Hamilton (1853), pp. 143–144

Thus Hamilton abandoned commutative multiplication, but everything
else fell into place. This is how he described it later, in a letter to his son:

But on the 16th day of the month [namely, October 1843]
which happened to be a Monday and a council day of the
Royal Irish Academy—I was walking along to preside, and
your mother was walking with me, along the Royal Canal
. . . and although she talked with me now and then, yet an un-
dercurrent of thought was going on in my mind, which gave at
last a result . . . An electric current seemed to close, and a spark
flashed forth, the herald (as I foresaw immediately) of many
long years to come of definitely directed thought and work . . .

I pulled out on the spot a pocket-book, which still exists, and
made an entry there and then. Nor could I resist the impulse—
unphilosophical as it may have been—to cut with a knife on a
stone of Brougham Bridge the fundamental formula with the
symbols i, j, k:

i2 = j2 = k2 = i jk = −1,

which contains the solution of the Problem, but of course, as
an inscription it has long since mouldered away.

Hamilton (1865)

The pocket-book contains not only the values of i j, ji, jk, k j, ki, ik,
which follow from the fundamental formula, but also the four components
of the general product of quaternions:

(a + ib + jc + kd)(α + iβ + jγ + kδ) = (aα − bβ − cγ − dδ)

+i (aβ + bα + cδ − dγ)

+ j (aγ − bδ + cα + dβ)

+k (aδ + bγ − cβ + dα).
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As in all his previous attempts, Hamilton’s starting point was the mul-
tiplicative property of the absolute value, or as he put it: “the modulus of a
product is equal to the product of the moduli of the factors.” This general-
izes the multiplicative property of the absolute value for complex numbers,
and shows that the product of two nonzero quaternions is nonzero.

The square of the absolute value of the quaternion α + βi + γ j + δk is
α2 + β2 + γ2 + δ2, so the quaternion product gives the following identity,
showing that the product of sums of four squares is a sum of four squares:

(a2 + b2 + c2 + d2)(α2 + β2 + γ2 + δ2) = (aα − bβ − cγ − dδ)2

+ (aβ + bα + cδ − dγ)2

+ (aγ − bδ + cα + dβ)2

+ (aδ + bγ − cβ + dα)2.

If Hamilton had studied number theory he would have known this, because
the identity was discovered by Euler (1748c), and used by Euler and La-
grange to prove that every natural number is the sum of four squares.

Hamilton thought at first that his four-square identity was original, but
in the months following the discovery of quaternions he and his friend
John Graves caught up with the news on three and four squares. It dawned
on Graves that they should never have expected a three-square identity,
because 3 = 12 + 12 + 12 and 21 = 12 + 22 + 42 are sums of three squares,
but their product 63 is not. He then consulted the literature and

On Friday last I looked into Lagrange’s [he meant Legendre]
Théorie des Nombres and found for the first time that I had
lately been on the track of former mathematicians. For ex-
ample, the mode by which I satisfied myself that a general
theorem

(x2
1 + x2

2 + x2
3)(y21 + y

2
2 + y

2
3) = z2

1 + z2
2 + z2

3

was impossible was the very mode mentioned by Legendre,
who gives the very example that occurred to me, viz., 3×21 =
63, it being impossible to compound 63 of three squares.

I then learned that the theorem

(x2
1 + x2

2 + x2
3 + x2

4)(y21 + y
2
2 + y

2
3 + y

2
4) = z2

1 + z2
2 + z2

3 + z2
4

was Euler’s.

Graves (1844) letter to Hamilton
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It is tempting to think that Hamilton could have discovered quaternions
much more easily had he known there was an identity for sums of four
squares, and none for sums of three squares. But the course of mathemat-
ical discovery is seldom so smooth. Perhaps the hopeless struggle with
triples was good for him, because he did not want it to be in vain—he may
not have been willing to abandon commutative multiplication otherwise.

Exercises

It can be checked that 15 is not a sum of three (integer) squares by trying all
possible sums of the squares 0, 1, 4, 9 that are less than 15. However, a much more
general result is possible. As Exercises 3.2.1 and 3.2.2 show, no natural number
of the form 8n + 7 is a sum of three squares.

With an infinite supply of such numbers on tap, it becomes easy to understand
how both Legendre and Graves stumbled on the example 3 × 21 = 63.

20.4.1 Find the smallest number of the form 8n + 7 (hence not a sum of three
squares) that is the product of sums of three nonzero squares.

We can also improve the result of Exercise 3.2.2 to one about sums of rational
squares (which would have been more interesting to Diophantus).

20.4.2 Show that if there are rationals x, y, and z such that x2 + y2 + z2 = 7, then
7s2 is a sum of three integer squares, for some integer s. Show that the
latter is impossible.

20.4.3 Generalize the argument of Question 20.4.2 to show that 8n + 7 is not the
sum of three rational squares, for any integer n.

It is interesting that Diophantus actually remarked (in his Book VI, Problem 14)
that 15 is not a sum of two rational squares. Question 20.4.3 shows that 15 is not
even the sum of three rational squares—a result Diophantus may also have known,
since the most obvious proofs of the two results are similar. (To prove that 15 is
not a sum of two rational squares it suffices to use remainders on division by 4.
Try it!)

20.5 Quaternions, Geometry, and Physics

Hamilton may have seen, at the instant of discovery, that quaternions would
be worth his attention for the rest of his life, but even his best friends were
skeptical at first. On 26 October 1843, John Graves wrote to him:

You must have been in a very bold mood to start the happy
idea that i j might be different from ji . . . Have you any
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inkling of the existence in nature of processes, or operations,
or phenomena, or conceptions analogous to the circuit

i j = − ji = k

jk = −k j = i

ki = −ik = j?

And after receiving a letter from Hamilton hinting at applications to
physics, and announcing that quaternions could certainly be used to de-
rive theorems of spherical trigonometry, Graves replied:

There is still something in the system that gravels me. I have
not yet any clear views as to the extent to which we are at
liberty arbitrarily to create imaginaries, and to endow them
with supernatural properties . . . But supposing that your
symbols have their physical antitypes, which might have led
to your quaternions, what right have you to such luck, getting
at your system by such an inventive mode as yours?

(For more of these letters, see the biography of Hamilton by Graves’s
brother Robert: Graves (1975), vol. 3, p. 443.)

Of course, Graves’s question about luck was tongue-in-cheek, but it is
still a good question. Many mathematicians and physicists have marveled
at the capacity of pure mathematics to become applied, for number theory
and algebra to become geometry and physics. In the case of quaternions,
more surprises were in store.

Not only was it true that quaternions had implications for spherical
trigonometry, their geometric aspect had already been discovered twice
before! The first discovery was the unpublished work of Gauss (1819) on
rotations of the sphere, which Hamilton could not have known about; the
second was a publication by Rodrigues (1840) that (typically) escaped his
attention.

The result of Gauss is easiest to explain, because we have already men-
tioned it in Section 18.6: every rotation of the sphere can be expressed by
a complex function of the form

f (z) =
az + b

−bz + a
.
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Any such function can be represented by the matrix of its coefficients,
(

a b
−b a

)
,

and it is easily checked that the matrix of f1 f2 is the product of the matrices
for f1 and f2. Thus rotations of the sphere can be studied via products of
matrices of the above type, involving pairs of complex numbers a, b. Such
a matrix can also be written in terms of four real parameters α, β, γ, δ if
we set

a = α + iβ, b = γ + iδ.

And we can then write the resulting matrix as a linear combination of four
special matrices with coefficients α, β, γ, δ:
(

a b
−b a

)
=

(
α + iβ γ + iδ
−γ + iδ α − iβ

)

= α

(
1 0
0 1

)
+ β

(
i 0
0 −i

)
+ γ

(
0 1
−1 0

)
+ δ

(
0 i
i 0

)

= α1 + βi + γj + δk.

The four special matrices 1, i, j, k play the role of 1, i, j, k in the quater-
nions, because

i2 = j2 = k2 = ijk = −1.

In fact, the same matrices were discovered by Cayley (1858), who pro-
posed them as a new realization of the quaternions. Today, they are often
known as Pauli matrices, particularly in physics. They were rediscovered
in quantum theory, where the rotations of the sphere are also important.

Exercises

The Cayley matrices

1 =
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)

make it easy to prove the basic properties of quaternions.

20.5.1 Show that i2 = j2 = k2 = ijk = −1, and also that ij = k, etc.

It follows that the arbitrary quaternion α + βi + γ j + δk is represented by the
complex matrix

α1 + βi + γj + δk =
(
α + iβ γ + iδ
−γ + iδ α − iβ

)
.
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A nice feature of this representation is that the square of the absolute value of
a quaternion is simply the determinant of the corresponding matrix. Since the
square of the absolute value turns up so often, it is also given a name: the norm.

20.5.2 Show that

det

(
α + iβ γ + iδ
−γ + iδ α − iβ

)
= α2 + β2 + γ2 + δ2.

The multiplicative property of the norm then follows from the multiplicative
property of determinants: det AB = det A det B for any 2×2 matrices A and B. The
other algebraic properties of quaternions also follow from properties of matrices
that are familiar today: addition is associative and commutative; multiplication is
associative but not commutative; the distributive law holds, and every matrix with
nonzero determinant has a multiplicative inverse.

The quaternions have a conjugation operation analogous to conjugation in C.
The conjugate of q = α + βi + γ j + δk is defined to be q = α − βi − γ j − δk.

20.5.3 Show that qq = α2 + β2 + γ2 + δ2 (the norm |q|2 of q), and hence express
the multiplicative inverse of q in terms of q and |q|.

The quaternion product is related to two well-known product operations on
the space of 3-dimensional vectors: the scalar product u · v and the vector product
u × v. If we write 3-dimensional vectors as

u = u1i + u2j + u3k, v = v1i + v2j + v3k,

then the scalar and vector products are defined by

u · v = u1v1 + u2v2 + u3v3

and

u × v =
∣∣∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣
= (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v2)k.

20.5.4 Show that if u and v are quaternions with zero real part (“pure imaginary
quaternions”), then

uv = −u · v + u × v.
20.5.5 Deduce from Exercise 20.5.4 that u2 = −1 for any unit pure imaginary

quaternion, and that uv is pure imaginary if and only if u is perpendicular
to v.
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20.6 Octonions

Hamilton and his friend John Graves had long discussed the problem of
defining multiplication for triples and other n-tuples of real numbers. The
discovery of quaternions evidently catalyzed Graves’s own thinking about
n-tuples, because by December 1843 he was able to tell Hamilton of an
interesting discovery of his own: a system of octuples with a multiplica-
tive absolute value, which he called the octaves. Hamilton congratulated
Graves on his discovery, but pointed out that octaves were not quite as
nice as quaternions, because their multiplication was not only noncommu-
tative, but also nonassociative. He agreed to arrange for publication of
Graves’s discovery, but failed to follow up, with the result that the octaves
were rediscovered by Cayley (1845b) before Graves’s priority was gener-
ally known. As a consequence, they have often been called Cayley numbers
or Cayley–Graves numbers. Today they are generally called the octonions,
and the set of them is called O.

Octonions are octuples of real numbers with the usual vector addition
and scalar multiplication. The standard basis vectors (1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0), . . ., (0, 0, 0, 0, 0, 0, 0, 1) are called 1, i, j, k, l, m, n, o,
respectively, so any octonion can be written in the form

α + βi + γj + δk + εl + ζm + ηn + θo.

They satisfy the distributive axiom, so the value of any octonion product is
determined by the products of the “imaginary units” i, j, k, l, m, n, o. The
square of each imaginary unit is −1, and Figure 20.1 gives a description of
all products of distinct basis vectors. The product of any two basis vectors

n

i

o
j

m

kl

Figure 20.1: Products of octonion basis vectors
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is the third vector in the “line” containing them, with a plus or minus sign
determined by the arrow and the position of the two vectors in the product.
The “lines” include the circle through i, j, and k, and in fact all the “lines”
are supposed to be like this—you should imagine adding a third segment
to each of them, joining the endpoints.

A much simpler description of octonion multiplication was given by
Dickson (1914), p. 15. Dickson’s description is a generalization of Hamil-
ton’s definition of multiplication of pairs, and in fact it shows that the same
construction produces C from R, H from C, and O from H. Each sys-
tem consists of ordered pairs (a, b) from the previous system, and pairs are
multiplied by the rule

(a1, b1) × (a2, b2) = (a1a2 − b2b1, b2a1 + b1a2),

where ¯ denotes the conjugation operation, which changes the sign of all
the imaginary units. (Thus conjugation has no effect on a real number.) In
particular, octonions can be viewed as pairs (a, b) of quaternions a and b.
In this case it is important to observe the precise order of products in the
definition, because the quaternion product is generally not commutative.

The octonion p = α + βi + γj + δk + εl + ζm + ηn + θo has the square
of its absolute value equal to pp = α2 + β2 + γ2 + δ2 + ε2 + ζ2 + η2 + θ2, so
the multiplicative property of absolute value gives an identity expressing
the product of two sums of eight squares as a sum of eight squares. Af-
ter discovering this, Graves searched the literature for such identities, and
uncovered Euler’s four-square identity from 1748 (though actually a later
appearance of it), and also his own identity in a paper of Degen (1822).
Thus the octonions, like the complex numbers and quaternions, gave the
first intimation of their existence in the theory of sums of squares.

Exercises

The Dickson formula

(a1, b1) × (a2, b2) = (a1a2 − b2b1, b2a1 + b1a2)

can be taken as the definition of multiplication for the octonions, but first we
should check that the formula gives the correct definition of multiplication for
quaternions. This can be done using Cayley’s representation of the quaternions by
2×2 matrices of complex numbers (Exercises 20.5.1 and 20.5.2). Each quaternion
α + βi + γ j + δk is represented by the complex matrix

(
α + iβ γ + iδ
−γ + iδ α − iβ

)
,
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which we may call M(α+iβ, γ+iδ), because it is determined by the pair of complex
numbers α + iβ, γ + iδ. Then if we write this pair more simply as

a = α + iβ,

b = γ + iδ,

it suffices to prove that the product according to Dickson,

(a1, b1) × (a2, b2) = (a1a2 − b2b1, b2a1 + b1a2),

corresponds to the product according to Cayley’s matrices. That is, we have to
show that

M(a1, b1)M(a2, b2) = M(a1a2 − b2b1, b2a1 + b1a2).

20.6.1 Show that

M(a, b) =

(
a b
−b a

)
.

Hence compute M(a1, b1)M(a2, b2) for any complex numbers a1, b1, a2, b2,
and show that it equals M(a1a2 − b2b1, b2a1 + b1a2).

Figure 20.1 for the products of the octonion units is due to Freudenthal (1951),
and it shows that ij = k as we would expect, because these i, j, k behave the same
as the quaternion units. Since the “line” i → j → k is closed by an arrow from k
to i, it also shows that kj = i, and likewise (using the invisible arrow from m to o)
that jm = o and mo = j.

20.6.2 Check that the same products result from Dickson’s multiplication formula
when i, j, k, l, m, n, o are defined in terms of the quaternion units i, j, k by

l = (0, 1),
i = (i, 0), m = (0, i),
j = (j, 0), n = (0, j),
k = (k, 0), o = (0, k).

20.7 Why C, H, and O Are Special

The pre-established harmony between the two-square, four-square, and
eight-square identities and the norms on C, H, and O suggest that C, H,
and O are not just random curiosities, but actually very special structures.
In fact, they are unique. If we define a hypercomplex number system to con-
sist of n-tuples of real numbers (n ≥ 2) with vector addition, a distributive
multiplication and a multiplicative absolute value, then
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• C is the only hypercomplex number system for which the multiplica-
tion is commutative and associative. This was proved by Weierstrass
(1884).

• H is the only other hypercomplex number system for which the mul-
tiplication is associative. This was proved by Frobenius (1878).

• O is the only other hypercomplex number system. This was proved
by Hurwitz (1898). (In the process, Hurwitz proved that there are no
n-square identities except for n = 1, 2, 4, 8.)

Since that time, it has been found that C, H, and O have relationships
with many other “exceptional” structures in mathematics. One of the most
remarkable is their relationship with projective geometry, via the theorems
of Pappus and Desargues.

The theorem of Pappus is a theorem of classical geometry that belongs
to projective geometry, seemingly by accident. As mentioned in the exer-
cises to Section 8.8, it states that if the vertices of a hexagon ABCDEF lie
alternately on two straight lines, then the intersections of opposite sides of
the hexagon lie on a line (Figure 20.2).

A

B

C

D

E

F

Figure 20.2: Pappus’s theorem

This theorem is meaningful in projective geometry, because it involves
only points and lines and whether they meet or not, yet its proof involves
the concept of distance. Desargues’s theorem in the plane is like this too,
as mentioned in Section 8.3; it is a projective theorem without a projective
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proof, and this is even more puzzling because Desargues’s theorem in space
does have a projective proof.

An amazing explanation of these phenomena was uncovered by the
work of von Staudt (1847) and Hilbert (1899). In 1847 von Staudt gave
geometric constructions of + and ×, allowing each projective plane to be
“coordinatized” by hypercomplex numbers. Then in 1899 Hilbert made
the wonderful discovery that the geometry of a projective plane is tied to
the algebra of the corresponding hypercomplex number system:

• Pappus’s theorem holds⇔ the system is commutative.

• Desargues’s theorem holds⇔ the system is associative.

Conversely, any hypercomplex number system K yields a projective
plane KP2, by construction of homogeneous coordinates essentially as in
Section 8.5. Then by Hilbert’s theorem,

• RP2 and CP2 satisfy Pappus,

• HP2 satisfies Desargues but not Pappus, and

• OP2 satisfies neither.

The results of Hilbert explain why the theorems of Pappus and Desar-
gues do not have projective proofs. It is because these theorems do not
hold for all projective planes, only for those with enough algebraic struc-
ture. This is a remarkable contribution of algebra to geometry, but it also
gives insight in the opposite direction. It can seriously be said that Pap-
pus’s theorem “explains” why R and C have commutative multiplication,
because it is simpler (takes fewer axioms) to describe a projective plane
satisfying Pappus’s theorem than to describe a field. This is possibly the
most remarkable aspect of Hilbert’s work on the foundations of geometry.
It shows that the long historical trend of turning geometry into algebra—
which began with Fermat and Descartes—may conceivably be coming to
an end.

Exercises

Freudenthal’s diagram of octonion units (Figure 20.1) itself has the structure
of a projective plane, which is why we used the name “lines” for the collinear (or
cocircular) triples of points in it.

20.7.1 Check that the seven “points” (octonion units) and seven “lines” of Freuden-
thal’s diagram have the following properties.
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• Through any two “points” there is exactly one “line.”

• Any two “lines” have exactly one “point” in common.

Such a structure is called a finite projective plane, and this one is often called
the Fano plane after its discoverer. The diagram makes it easy to show that O is
not associative.

20.7.2 Find a triple of octonion units a, b, c such that a(bc) � (ab)c.

The weakening of multiplicative structure as we construct hypercomplex
number systems of higher dimension (losing commutativity with H and associa-
tivity with O) is a hint that we can’t go on constructing hypercomplex systems
indefinitely. In fact, the 16-dimensional system of pairs of octonions, with the
Dickson multiplication rule, does not have a multiplicative absolute value. This is
because it includes “zero divisors”—nonzero elements whose product is the zero
element (0, 0).

20.7.3 Show that the nonzero pairs (i, n), (k, l) of octonion units have Dickson
product (0, 0). Also, find another pair (a, b) of octonion units such that
(i, n)(a, b) = (0, 0).

20.7.4 Show that in any system with a multiplicative absolute value | |, x � 0 and
y � 0 imply xy � 0. (Hence the system of pairs of octonions does not have
a multiplicative absolute value.)

20.8 Biographical Notes: Hamilton

The world of mathematics is one of logic and order, so mathematicians tend
to look for order in their personal lives. Usually they find it (it is hard to do
mathematics otherwise!), even though the human world is not very orderly.
But sometimes they don’t, and the result can be both a mathematical and
human tragedy. One such case was Galois; another was Hamilton.

William Rowan Hamilton (Figure 20.3) was born in Dublin at mid-
night, between August 3 and 4, in 1805. His father, Archibald, a lawyer,
and his mother, Sarah, cared for him until he was three years old, but then
they got into financial difficulties, and young William was sent to live with
Archibald’s brother James and his wife, Sydney. Uncle James Hamilton
was an Anglican curate and schoolmaster in Trim, about 40 miles from
Dublin, a devoted father figure and educator, but with highly eccentric
methods of instruction. Here is how he taught William to spell at age three:
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James printed on cards every word he has yet spelled; he be-
gan with every monosyllable in which A is the principal let-
ter, and so on alphabetically, never beginning a new set till he
could spell them off book and on book; every spelling book
and dictionary was searched . . . so that he is now completely
grounded in words that most children are very deficient in, and
indeed many grown people . . . he is going through them now
for the last time, and James is now preparing words of two
syllables.

Letter from Sydney to Sarah Hamilton, 17 October 1808, in
Graves (1975), vol. 1, p. 31

At this time, William was also taught addition, subtraction, and multi-
plication of numbers up to 10, but mathematics did not play a big part in
his childhood. Uncle James was primarily a classicist with an interest in
Asian languages, and William was the ideal pupil. He began learning He-
brew at three, followed by Latin and Greek by age five, Italian and French
at eight, and Arabic, Sanskrit, and Persian by age ten. Only then do we
hear of mathematics again, when William reports in a letter to his sister
Grace that “I have done near half the first book of Euclid with uncle”—a
pretty ordinary accomplishment by the standards of the time.

Hamilton reached a turning point in his intellectual life at age 13. He
seems to have decided that he knew enough languages, because he stopped
picking up new ones and wrote a small book on Syriac grammar for the
benefit of other learners. At the same time, he met another boy who could
beat him in an intellectual contest, the American calculating prodigy Zerah
Colburn. Hamilton was consistently outclassed by Colburn’s feats, such
as calculating the number of minutes in 1811 years, and factorizing num-
bers in the billions. But far from being discouraged by the experience, he
wanted to know more. When Colburn retired from the mental arithmetic
game and returned two years later as an actor, Hamilton asked him about
his computational methods, and found he was able to simplify them. This
was probably his first mathematical research.

In 1823 Hamilton entered Trinity College, Dublin, beginning an aca-
demic career of extraordinary distinction in both science and classics. Over
the next three years he laid the foundations of his brilliant mathematical life
but also, alas, for his miserable personal life. Hamilton was a romantic—he
loved Romeo and Juliet and the poetry of Wordsworth—and on 17 August
1824 he met the lady of his dreams, Catherine Disney.
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Figure 20.3: Sir William Rowan Hamilton

Her family were friends of his uncle James, and some of her brothers in
fact became friends of Hamilton at Trinity College. Hamilton fell in love
with Catherine at first sight, and she apparently reciprocated his feeling;
but the boy who knew all the words, in all the languages, did not manage
to convey his love to her. Perhaps he thought it improper to express such
feelings before he had any prospect of marriage, or before he was sure how
she felt; but at any rate his hesitation was fatal. In February 1825 Catherine
became engaged to an older and wealthier suitor, encouraged by her family,
and on 25 May they were married. Hamilton despaired almost to the point
of suicide, and never really recovered. Only his mathematical spirit was
not crushed.

On this occasion he rebounded with his first important mathematical
paper, Theory of Systems of Rays, presented to the Royal Irish Academy in
1827. This paper led to his appointment as Professor of Astronomy and Di-
rector of Dunsink Observatory, an amazing achievement for a 22-year-old.
His fame grew, and over the next few years he became friends with several
men who were to influence his intellectual life: the poets Wordsworth and
Coleridge, the mathematicians John and Charles Graves, and their brother
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Robert, who eventually wrote Hamilton’s biography.

The scene was also set for his next disaster of the heart. Among Hamil-
ton’s students at the observatory in 1830 was a young aristocrat and astron-
omy enthusiast named Lord Adare. From time to time he invited Hamil-
ton to his family home, Adare Manor in County Limerick. There in 1831
Hamilton met the second love of his life, Ellen de Vere, a beautiful and in-
telligent 18-year-old whose appreciation of romantic poetry surpassed even
his own.

They seemed perfect for each other, and this time he had money, po-
sition, and the support of her family. How could he fail? Only by giving
up at the first sign of difficulty! Ellen dropped a casual remark that “she
could not live happily anywhere but at Curragh” (her home). Hamilton
took this as a polite but firm rebuff—and that was the end of the courtship.
He retired to nurse his broken heart again, writing an excruciating sonnet
entitled To E. de V. On her saying that she could not live happily anywhere
but at Curragh. In due course Ellen married another, and of course left
Curragh.

Hamilton returned to mathematics to ease the pain, and in 1832 lifted
his theory of optics to a new level. A supplement to his Theory of Sys-
tems of Rays in 1832 presented a sensational and unprecedented discov-
ery: a new physical phenomenon predicted by pure mathematics. This
was the previously unobserved conical refraction, in which a single ray
of light entering a slab of suitable crystalline material diverges as a hol-
low cone. Hamilton’s prediction was verified experimentally by Humphrey
Lloyd at Trinity College, and was the first of many such predictions. Two
of the best-known ones are the prediction of electromagnetic waves from
Maxwell’s equations of 1864, and the bending of light predicted by Ein-
stein’s general theory of relativity in 1915. As in the latter cases, Hamil-
ton’s success was no fluke. It was based on a deep and powerful math-
ematical theory that generalizes to other situations, and is now known as
Hamiltonian dynamics.

Having regained some self-confidence, Hamilton in 1832 found what
he called a “dim perspective of possible marriage” in Helen Bayly, who
lived near him and was two years his senior. Dim it was, but this time
he steeled himself to resist all opposition. Despite Helen’s fragile health
(which she warned him about herself) and the total opposition of his family,
they were married on 9 April 1833. They spent their honeymoon at the
cottage of Helen’s widowed mother, where Hamilton continued working
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on his mathematical papers.
When they returned to his home at Dunsink observatory, Hamilton’s

sisters, who had previously kept house for him, had moved out. His do-
mestic life descended into chaos, as Helen was frequently ill or absent
entirely, and Hamilton came to depend on alcohol for consolation. Despite
this, his mathematical work continued unabated. He was knighted in 1835,
elected president of the Royal Irish Academy in 1837, and (as we know)
discovered quaternions in 1843.

It is probably true that Hamilton spent too much time on quaternions.
He did little else until his death in 1865, and few mathematicians shared his
enthusiasm. Nevertheless, quaternions changed the course of mathematics,
though not in the way Hamilton intended. In the 1880s, Josiah Willard
Gibbs and Oliver Heaviside created what we now know as vector analysis,
essentially by separating the real (“scalar”) part of a quaternion from its
imaginary (“vector”) part. Hamilton’s followers were outraged to see the
simple and elegant quaternions torn limb from limb, but the idea caught on
in physics and engineering, where it still holds sway today.

There are at least three biographies of Hamilton, all worth reading.
Graves’s three volumes (Graves (1975)) are still valuable, if only for the
large amount of correspondence they contain. Hankins (1980) is entertain-
ing and authoritative, with good coverage of the mathematics. O’Donnell
(1983) throws more light on Hamilton’s psychology and is refreshingly
skeptical about his childhood precocity with languages. For more on the
remarkable metamorphosis of quaternions into vector analysis, see Crowe
(1967).
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Algebraic Number Theory

Preview

Another concept of abstract algebra that emerged from the old algebra of
equations was that of ring, which arose from attempts to find integer solu-
tions of equations. The first steps towards the ring concept were taken by
Euler (1770b), who discovered equations whose integer solutions are most
easily found with the help of irrational or imaginary numbers.

Gauss realized that these auxiliary numbers work because they behave
like integers. In particular, they admit a concept of “prime” for which
unique prime factorization holds.

In the 1840s and 1850s the idea of “algebraic integers” was pushed
further by various mathematicians, and it reached maturity when Dedekind
(1871) defined the concept of algebraic integer in a number field of finite
degree. By this time, considerable experience with number fields had been
acquired, and Kummer had noticed that such fields do not always admit
unique prime factorization.

Kummer found a way around this difficulty by introducing new objects
that he called ideal numbers (in analogy with “ideal” objects in geometry,
such as points at infinity). Dedekind replaced Kummer’s undefined “ideal
numbers” by concrete sets of numbers that he called ideals. He was then
able to restore unique prime factorization by proving that it holds for ideals.

Ring theory as we know it today is largely the result of building a gen-
eral setting for Dedekind’s theory of ideals. It owes its existence to Emmy
Noether, who used to say that “it’s already in Dedekind.”

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 439
DOI 10.1007/978-1-4419-6053-5 21, c© Springer Science+Business Media, LLC 2010



440 21 Algebraic Number Theory

21.1 Algebraic Numbers

The integers are the simplest objects in mathematics but, as history shows,
their secrets are deeply hidden. A vast range of mathematical disciplines—
such as geometry, algebra, and analysis—has been called upon to clarify
the apparently simple concept of integer. In particular, a broader concept of
integer itself seems to be useful. We have seen in Section 5.4, for example,
how integer solutions of the Pell equation x2 − Ny2 = 1 can be produced
with the help of irrational numbers of the form a + b

√
N, and in Section

10.6 how the number (1 +
√

5)/2 helps explain the mysterious sequence
of Fibonacci numbers. These are examples of the way algebraic numbers
help elucidate the behavior of integers.

In the 19th century, a powerful theory of algebraic numbers was de-
veloped, with the aim of throwing more light on ordinary number theory.
It was very successful in this respect, but it also developed a life of its
own, and in the 20th century its concepts were appropriated by the abstract
theories of rings, fields, and vector spaces. Later in the chapter we sketch
how this happened, but our main goal is to explain algebraic number theory
itself, the inspiration for this whole development.

First we should state the definition: an algebraic number is one that
satisfies an equation of the form

anxn + an−1 xn−1 + · · · + a1x + a0 = 0, where a0, a1, . . . , an ∈ Z.
The symbol Z for integers comes from the German word “Zahlen,” mean-
ing “numbers.” We sometimes call these integers the “ordinary,” or ra-
tional, integers, to avoid confusion with the algebraic integers defined in
Section 21.3.

The algebraic numbers obviously include
√

2 (a solution of x2−2 = 0),
3√
2 (a solution of x3 − 2 = 0), and less obviously

√
2 +
√

3 (see Exercise
21.1.1). The first mathematicians to use algebraic numbers systematically
in number theory were Lagrange and Euler around 1770. A spectacular
example was given by Euler (1770b), when he used the algebraic number√−2 to prove the following claim of Fermat: x = 5 and y = 3 is the only
positive integer solution of y3 = x2 + 2. (The equation in fact goes back to
Diophantus, who mentioned its integer solution in his Book VI, Problem
17.)

Euler’s argument is incomplete but essentially correct, and we com-
plete it later by closer study of the set Z[

√−2] of numbers a + b
√−2,

where a, b ∈ Z. It goes as follows.
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Suppose x and y are integers such that y3 = x2 + 2. Then

y3 = (x +
√−2)(x − √−2).

Assuming that numbers of the form a + b
√−2 “behave like” ordinary in-

tegers, we can conclude that x +
√−2 and x − √−2 are cubes (since their

product is the cube y3). That is, there are a, b ∈ Z such that

x +
√−2 = (a + b

√−2)3

= a3 + 3a2b
√−2 + 3ab2(−2) + b3(−2

√−2)

= a3 − 6ab2 + (3a2b − 2b3)
√−2.

Equating real and imaginary parts, we get

x = a3 − 6ab2,

1 = 3a2b − 2b3 = b(3a2 − 2b2) for some a, b ∈ Z.

Now the only integer products equal to 1 are 1 × 1 and (−1) × (−1); hence
b = ±1, and therefore a = ±1, from the second equation. Then the only
positive solution for x occurs with a = −1, b = ±1, in which case x = 5
and hence y = 3. �

This wonderful flight of fancy, that the numbers a + b
√−2 “behave

like” ordinary integers, can actually be justified. It depends on the theory
of divisibility in Z[

√−2], which turns out to be similar to divisibility in Z,
already studied in Section 3.3.

Exercises

21.1.1 Show that the number
√

2 +
√

3 satisfies the equation x4 − 10x2 + 1 = 0.

Before starting to investigate divisibility in Z[
√−2], it will be useful to renew

our acquaintance with Z, particularly with regard to the behavior of squares, cubes,
and their divisors.

21.1.2 Use unique prime factorization to show that a positive integer n is a square
if and only if each prime in the prime factorization of n occurs to an even
power.

21.1.3 If l and m are positive integers with no common prime divisor, and lm is a
square, use Exercise 21.1.2 to show that l and m are both squares.

21.1.4 Show similarly that if l and m are integers with no common prime divisor,
and if lm is a cube, then l and m are both cubes.
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Thus to prove such results about the numbers x +
√−2 and x − √−2 we

need to know, first, that they have no common prime divisor. In the next section
we introduce the concept of norm, which reduces such divisibility questions to
questions about divisibility in the ordinary integers.

21.2 Gaussian Integers

Beyond Z itself, the simplest set to “behave like” integers is Z[i], the set of
numbers of the form a + bi, where a, b ∈ Z. These are called the Gaussian
integers, because Gauss (1832c) was the first to study them and prove their
basic properties. Z[i] is like Z in being closed under the operations +, −,
and ×, but also in having primes and unique prime factorization.

An ordinary prime may be defined as an integer of size >1 that is not
the product of integers of smaller size. A Gaussian prime may be defined
in the same way, provided we make a sensible definition of “size.” The
ordinary absolute value |a + bi| = √a2 + b2 is a suitable measure, so we
say that a Gaussian integer α is a Gaussian prime if |α| > 1 but α is not the
product of Gaussian integers of smaller absolute value.

An equivalent definition of Gaussian primes is in terms of the square
of the absolute value, the norm of α, N(α). Namely, α is a Gaussian prime
if N(α) > 1 and α is not the product of Gaussian integers of smaller norm.

The norm has the advantage that N(a + ib) = a2 + b2 is an ordinary
positive integer, so we can exploit the known properties of integers. For ex-
ample, we can see immediately why every Gaussian integer has a Gauss-
ian prime factorization. Namely, if α is not itself a Gaussian prime, then
α = βγ, where N(β),N(γ) < N(α). If β, γ are Gaussian primes, then
we have a Gaussian prime factorization of α; if not, at least one of them
factorizes into Gaussian integers of smaller norm, and so on. This pro-
cess must terminate, because norms are ordinary nonnegative integers and
hence they cannot decrease in size indefinitely. At termination, we have a
Gaussian prime factorization of α.

The uniqueness of this prime factorization is a deeper result, for which
it is convenient to revert to the absolute value measure of size and interpret
|a+ ib| as the distance of a+ ib from O. This gives a surprisingly geometric
proof that Gaussian integers have “division with remainder.”

Division property of Z[i]. For any α and β � 0 in Z[i], there are μ and ρ
in Z[i] such that

α = μβ + ρ with |ρ| < |β|.
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Proof. The multiples μβ for μ ∈ Z[i] are sums of terms ±β and ±iβ. It fol-
lows, since the lines from O to β and iβ are perpendicular, that the numbers
μβ lie at the corners of a lattice of squares of side |β|, as in Figure 21.1.

O

β
iβ

Figure 21.1: Multiples of β in Z[i]

Now α lies in one of these squares, and if we let

ρ = α − nearest corner μβ,

it follows that the perpendiculars from α to the nearest sides are of length
≤ |β|/2 (draw a picture). Therefore, since two sides of a triangle have total
length greater than the third, we have

|ρ| < |β|
2
+
|β|
2
= |β|,

as required. �

The division property of Z[i] has the following consequences, parallel
to those for natural numbers described in Section 3.3.

1. There is a Euclidean algorithm for Z[i], which takes any α, β ∈ Z[i]
and repeatedly divides the larger of the pair by the smaller, keeping
the smaller number and the remainder. It ends by finding gcd(α, β),
a common divisor of α, β that is greatest in norm.
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2. There are μ, ν ∈ Z[i] such that gcd(α, β) = μα + νβ.

3. If � is a Gaussian prime that divides αβ, then � divides α or β.

4. The Gaussian prime factorization of a Gaussian integer is unique,
up to the order of factors and factors of norm 1 (that is, factors ±1,
±i).

Exercises

We know from Section 20.2 that the absolute value is multiplicative, and
hence so is the norm: N(αβ) = N(α)N(β). Indeed, this is just a restatement of
Diophantus’s identity. It follows that if α divides γ (that is, if γ = αβ for some β),
then N(α) divides N(γ) [because N(γ) = N(α)N(β)].

Thus we have a criterion for divisibility in the Gaussian integers based on
divisibility in the ordinary integers. Among other things, this enables us to show
that certain Gaussian integers are Gaussian primes.

21.2.1 By considering N(4 + i), show that 4 + i is a Gaussian prime.

21.2.2 Show that an ordinary prime of the form a2 + b2 is not a Gaussian prime,
and find its Gaussian prime factorization.

Now we modify the above argument for the division property of Z[i] to show
that Z[

√−2] also has it. That is, if α and β � 0 are in Z[
√−2], then there are μ

and ρ in Z[
√−2] such that

α = μβ + ρ with |ρ| < |β|.
21.2.3 Show that the multiples μβ of any β ∈ Z[

√−2] lie at the corners of a grid
of rectangles, each of which has sides of length |β| and

√
2|β|.

21.2.4 Deduce from Exercise 21.2.3 and the Pythagorean theorem that any α lies
at distance < |β| from the nearest multiple μβ of β � 0, and hence that
Z[
√−2] has the division property.

As in Z[i], the division property leads to a Euclidean algorithm for gcd, and
eventually to unique prime factorization in Z[

√−2]. This enables us to fill in the
gaps of Euler’s argument in the previous section, as soon as we have checked that
gcd(x +

√−2, x − √−2) = 1 when y3 = x2 + 2.

21.2.5 Show that if x and y are ordinary integers with y3 = x2 + 2, then x is odd.

Finally, we invoke the norm in Z[
√−2],

N(a + b
√−2) = |a + b

√−2|2 = a2 + 2b2.

21.2.6 Show that N(x +
√−2) is odd, whereas N(2

√−2) = 23, and hence that

1 = gcd(x +
√−2, 2

√−2) = gcd(x +
√−2, x − √−2).
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Unique prime factorization in Z[
√−2] gives an easy proof of one of the results of

Fermat proved in Section 11.4. This was pointed out to me by Lin Tan.

21.2.7 Suppose that t2 = u2 + 2s2, for ordinary integers s, t, u. By considering the
prime factorization of both sides in Z[

√−2], show that t is also of the form
p2 + 2q2, for ordinary integers p, q.

21.3 Algebraic Integers

The Gaussian integers are an excellent example of algebraic numbers that
“behave like” integers, but it is not yet clear what the general concept of
“integer” should be. After a period of exploration by Dirichlet, Kummer,
Eisenstein, Hermite, and Kronecker in the 1840s and 1850s, the following
definition was proposed by Dedekind (1871): an algebraic integer is a root
of an equation of the form

xn + an−1xn−1 + · · · + a1x + a0 = 0, where a0, a1, . . . , an−1 ∈ Z. (*)

Thus the definition of algebraic integer results from the definition of alge-
braic number (Section 21.1) by restricting the polynomials to those with
leading coefficient 1, or monic polynomials as they are often called.

One reason that this definition suggested itself was a result proved by
Eisenstein (1850) that the numbers satisfying such equations are closed
under +, −, and ×. It follows, since algebraic numbers inherit the properties
of +, −, and × from C, that algebraic integers form a commutative ring with
unit, as defined in Section 20.3.

Another reason for the restriction to monic polynomials is that the ra-
tional algebraic integers are precisely the ordinary integers. This property
of monic polynomials was pointed out by Gauss (1801), Article 11, and it
is quite easy to prove. We suppose that the equation (*) has a rational solu-
tion that is not an ordinary integer. Then we may assume that the solution
is of the form x = r/pq, where p, q, r are ordinary integers and p is a prime
not dividing r. Substituting this value for x in (*), and multiplying through
by (pq)n, we get

rn = −an−1rn−1(pq) − · · · − a1r(pq)n−1 − a0(pq)n.

However, this is impossible, because p divides the right-hand side but not
the left.

In practice, it is difficult to work in the ring of all algebraic integers, and
we prefer to work in smaller rings such as Z[i] or Z[

√−2]. The exercises



446 21 Algebraic Number Theory

in the previous section show that Z[
√−2] is the perfect setting for Euler’s

proof that y3 = x2 + 2 has only one positive solution in Z.
The advantage of rings such as Z[i] or Z[

√−2] is that they have the
concept of norm, which allows us to define the concept of prime and to
show that each element of the ring has a prime factorization. However, the
uniqueness of prime factorization is not guaranteed, and in a sense we were
lucky to find it in Z[i] and Z[

√−2].
A more typical ring of algebraic integers is

Z[
√−5] = {a + b

√−5 : a, b ∈ Z}.
In this ring |a + b

√−5| = √a2 + 5b2, and hence the norm is

N(a + b
√−5) = a2 + 5b2.

As before, we define a prime to be a number of norm >1 that is not the
product of numbers of smaller norm, and it follows as in Z[i] that every
member of Z[

√−5] factorizes into primes of Z[
√−5].

It is likewise true that if β divides α in Z[
√−5], then N(β) divides N(α)

in Z. Hence α is a prime of Z[
√−5] if N(α) is not divisible by any smaller

norm � 1, that is, by any smaller integer of the form a2+5b2 � 1. Examples
of primes in Z[

√−5] are

2, because N(2) = 4,

3, because N(3) = 9,

1 +
√−5, because N(1 +

√−5) = 6,

1 − √−5, because N(1 − √−5) = 6.

Hence it follows that 6 has two different prime factorizations in Z[
√−5]:

6 = 2 · 3 = (1 +
√−5)(1 − √−5).

In the 1840s Kummer noticed examples of the failure of unique prime
factorization, and he realized that it is a serious problem. He wrote:

It is greatly to be lamented that this virtue of the real num-
bers [that is, of the ordinary integers] to be decomposable
into prime factors, always the same ones for a given num-
ber, does not also belong to the complex numbers [that is,
the algebraic integers]; were this the case, the whole theory,
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which is still laboring under such difficulties, could easily be
brought to a conclusion. For this reason, the complex num-
bers we have been considering seem imperfect, and one may
well ask whether one ought not to look for another kind which
would preserve the analogy with the real numbers with respect
to such a fundamental property.

Translation by Weil (1975) from Kummer (1844)

Kummer found “another kind of number” that preserved the property
of unique prime factorization, and he called them ideal numbers. Today
we know them under the name of ideals.

Exercises

Although ordinary fractions, such as 1/2, are not algebraic integers, some
“algebraic fractions” are.

21.3.1 Show that the golden ratio (1 +
√

5)/2 is an algebraic integer.

21.3.2 Find the three algebraic integers that satisfy the equation x3 − 1 = 0.

Eisenstein’s theorem that the algebraic integers are closed under +, −, and ×
was given a new proof by Dedekind (1871) using linear algebra.

21.3.3 Suppose that α and β are algebraic integers satisfying the equations

αa + pa−1α
a−1 + · · · + p1α + p0 = 0,

βb + qb−1β
b−1 + · · · + q1β + q0 = 0.

Deduce from these that any power αa′ may be written as a linear combina-
tion of 1, α, α2, . . . , αa−1 with ordinary integer coefficients, and any power
βb′ as a linear combination of 1, β, β2, . . . , βb−1 with ordinary integer coef-
ficients.

21.3.4 Now let ω1, ω2, . . . , ωn denote the n = ab products of the form αa′βb′ ,
where a′ < a and b′ < b. Show that, if ω denotes any one of α + β, α − β,
or αβ, then we have n equations with ordinary integer coefficients k(i)

j :

ωω1 = k′1ω1 + k′2ω2 + · · · + k′nωn,

ωω2 = k′′1ω1 + k′′2ω2 + · · · + k′′nωn,

...

ωωn = k(n)
1 ω1 + k(n)

2 ω2 + · · · + k(n)
n ωn.
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21.3.5 Explain why the equations in Exercise 21.3.4 have a nonzero solution for
ω1, ω2, . . . , ωn, and hence that

∣∣∣∣∣∣∣∣∣∣∣

k′1 − ω k′2 . . . k′n
k′′1 k′′2 − ω . . . k′′n
. . . . . . . . . . . .

k(n)
1 k(n)

2 . . . k(n)
n − ω

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Also explain why this is a monic equation, with ordinary integer coeffi-
cients, for ω = α + β, α − β, or αβ.

21.4 Ideals

Kummer did not explicitly define his “ideal numbers.” Rather, he observed
that prime algebraic integers sometimes behave as if they were nontrivial
products, and from their behavior he inferred the behavior of their “ideal
factors.” Dedekind (1871) showed that “ideal factors” could be realized by
sets of actual numbers, and he called these sets ideals. In his (1877) work
he used the numbers in Z[

√−5] to illustrate his method, showing that 2 and
3 behave as if they were products of primes—2 = α2 and 3 = β1β2—and
then showing how α, β1, and β2 may be realized as ideals.

Here we shall take a slightly different route to the same goal: using
ideals first to rewrite the theory of divisibility and gcd in Z and Z[i], then
using them to introduce the gcd in Z[

√−5]. The ideals realizing α, β1, and
β2 turn out to be gcds of algebraic integers.

Ideals in Z

In Z we have the commonplace facts that

2 divides 6, 3 divides 6, gcd(2, 3) = 1.

These facts can be rewritten in terms of the sets

(2) = {multiples of 2}, (3) = {multiples of 3}, (6) = {multiples of 6},
which are examples of ideals. The equivalents of the first two facts are

(2) contains (6), (3) contains (6),

which may be summed up by the slogan to divide is to contain. To express
the third fact we consider another ideal, the sum of (2) and (3):

(2) + (3) = {a + b : a ∈ (2), b ∈ (3)}.
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It is clear that gcd(2, 3) divides any member of the set (2) + (3), and in fact
it is not hard to show that

(2) + (3) = {multiples of 1} = (1) = (gcd(2, 3)).

In general, we call a subset I of a ring R an ideal if

• a ∈ I and b ∈ I =⇒ a + b ∈ I,

• a ∈ I and m ∈ R =⇒ am ∈ I.

Then, for any a ∈ Z, the set (a) = {multiples of a} is obviously an ideal,
called the principal ideal generated by a. It is not hard to prove (see the
subsection below and the exercises) that

• every ideal in Z is (a) for some a,

• a divides b⇐⇒ (a) contains (b),

• (a) + (b) = (gcd(a, b)).

Since ideals in Z correspond to numbers in Z, the language of ideals tells us
nothing we do not already know. However, the concept of ideal generalizes
to other rings where it might conceivably give us new insight.

Ideals in Z[i]

We know from Section 21.2 that Z[i] has many similarities to Z, because
they both have the division property. These similarities extend to properties
of ideals in Z[i], and the division property explains why. In particular, it
explains why every ideal in Z[i] is of the form (β) = {multiples of β}.

Suppose that I is an ideal of Z[i], and consider a nonzero element β ∈ I
of minimal norm. Then I contains the set (β) of multiples of β, since an
ideal contains all multiples of any element. Also, I cannot contain any
α � (β) by the division property: if such an α exists, there is a multiple μβ
with 0 < |α − μβ| < |β|. But −μβ ∈ I and hence α − μβ ∈ I also, which
contradicts the choice of β as a nonzero element of I of minimal norm.

Thus any ideal of Z[i] consists of all the multiples of some β ∈ Z[i],
which, as we saw in Figure 21.1, is a set with the same shape as Z[i]. The
same is true for principal ideals in any Z[

√−n]: they all have the same
(rectangular) shape. In fact, the set (β) of multiples of β consists of sums
of the elements β and β

√−n, which define a rectangle of the same shape as
the rectangle defined by the generating elements 1 and

√−n of Z[
√−n].
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Ideals in Z[
√−5]

The ring Z[
√−5] contains an ideal that is not the same shape as Z[

√−5]
itself. We expect this, since unique prime factorization fails in Z[

√−5],
and so the division property fails too; however, it is satisfying to make this
failure visible.

One such ideal is the sum I of the principal ideals (2) and (1 +
√−5),

(2) + (1 +
√−5) = {2m + (1 +

√−5)n : m, n ∈ Z},
part of which is shown in Figure 21.2.

0 1

√−5

Figure 21.2: The nonprincipal ideal (2) + (1 +
√−5) in Z[

√−5]

It is clear from the figure that I (consisting of the black dots) is not rect-
angular in shape like Z[

√−5] (consisting of the black and white dots)—the
black neighbors of any black dot do not include any two in perpendicular
directions.
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Thus the members of I are not the multiples of any one β ∈ Z[
√−5].

They are, if you like, the multiples of an “ideal number”—a number that is
outside Z[

√−5].

Exercises

Implicit in the discussion above is the following definition of the sum of ide-
als: if A and B are ideals, then

A + B = {a + b : a ∈ A, b ∈ B}.
It should also be checked that A + B thus defined is itself an ideal.

21.4.1 Check that A + B has the two defining properties of an ideal.

In Z, we know that gcd(a, b) = ma + nb for some m and n. This makes it easy
to describe the sum of principal ideals (a) + (b) in terms of the gcd.

21.4.2 Show that (a) + (b) = (gcd(a, b)) in Z.

We take up this idea in the next section to find the gcd of any ideals. For the
moment, we continue to explore nonprincipal ideals in Z[

√−5], arising as sums
of principal ideals.

21.4.3 Show that the vectors from O to 2 and 1 +
√−5 define a parallelogram of

the same shape as the vectors from O to 3 and 1 − √−5. Hint: Consider
quotients of complex numbers and what they say about the ratio of side
lengths, and the angle between the sides. (The same idea occurs in the
exercises for Section 16.5.)

21.4.4 Deduce from Exercise 21.4.3 that the ideal (3) + (1 − √−5) has the same
shape as the ideal (2) + (1 +

√−5).

21.4.5 Show also that the ideal (3) + (1 − √−5) has the same shape as the ideal
(3) + (1 +

√−5).

Thus we have found so far only two different shapes of ideals in Z[
√−5]: the

shape of Z[
√−5] itself, which is the shape of all principal ideals, and the shape of

the nonprincipal ideal (2) + (1 +
√−5).

It can be shown that any ideal in Z[
√−5] has one of these two shapes, which

represent what Dedekind called the ideal classes of Z[
√−5]. This term goes back

to the older theory of quadratic forms, where forms ax2 + bxy + cy2 with the
same discriminant b2−4ac were divided into a number of equivalence classes, the
number of which was called the class number. Lagrange (1773a) showed that any
form with discriminant −20 is equivalent to either x2+5y2 (the norm of x+y

√−5)
or 2x2+2xy+3y2. These two forms correspond to the two ideal classes of Z[

√−5].
For more on classes of quadratic forms, see Section 21.6.
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21.5 Ideal Factorization

In Z we saw that “to divide is to contain,” because

a divides b ⇐⇒ (a) contains (b).

In Z[
√−5], we can then say that the nonprincipal ideal (2) + (1 +

√−5)
behaves like a common divisor of 2 and 1 +

√−5, because

(2) + (1 +
√−5) contains (2), (2) + (1 +

√−5) contains (1 +
√−5).

Indeed, we can expect that (2) + (1 +
√−5) is the greatest common divisor

of 2 and 1 +
√−5) in Z[

√−5], since in Z it is always true that (a) + (b) =
(gcd(a, b)).

Not only that, we can expect that (2) + (1 +
√−5) is prime. In Z we

notice that p is prime if and only the ideal (p) is maximal; that is, the only
ideal properly containing (p) is Z itself. This is because any a � (p) is
relatively prime to p; hence ma + np = 1 for some m and n, so 1 is in any
ideal containing both a and p.

To prove that (2) + (1 +
√−5) is maximal is even easier. We suppose

that a = m + n
√−5 � (2) + (1 +

√−5), which means that m is even. But
then a − 1 ∈ (2) + (1 +

√−5); hence 1 is in any ideal containing both a and
(2) + (1 +

√−5). Such an ideal is therefore Z[
√−5] itself.

To sum up: if ideals in Z[
√−5] have divisibility properties like those

in Z, then (2) + (1 +
√−5) is the gcd of 2 and 1 +

√−5, and it is prime.
Dedekind (1871) defined the product of ideals so that divisibility behaves
as expected.

Definition. If A and B are ideals, then

AB = {a1b1 + a2b2 + · · · + akbk : a1, a2, . . . , ak ∈ A, b1, b2, . . . , bk ∈ B}.
It is easily checked that AB is an ideal and (with greater difficulty)

that the containment concept of divisibility agrees with the usual concept:
B divides A if there is an ideal C such that A = BC. However, what is
really delightful is that the product of ideals explains the nonunique prime
factorization of 6 in Z[

√−5],

6 = 2 · 3 = (1 +
√−5)(1 − √−5),

by resolving both sides into the same product of prime ideals. In fact, we
have
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• (2) is the square of the prime ideal (2) + (1 +
√−5),

• (3) is the product of ideals (3) + (1 +
√−5) and (3) + (1 − √−5),

which are prime,

• (1 +
√−5) is the product of (2) + (1 +

√−5) and (3) + (1 +
√−5),

• (1 − √−5) is the product of (2) + (1 +
√−5) and (3) + (1 − √−5).

As an example, we prove the first of these claims.

The ideal factorization of 2: (2) = [(2) + (1 +
√−5)]2.

It follows from the definition of product of ideals that

4 = 2 × 2 ∈ [(2) + (1 +
√−5)]2,

2 + 2
√−5 = 2 × (1 +

√−5) ∈ [(2) + (1 +
√−5)]2,

−4 + 2
√−5 = (1 +

√−5)2 ∈ [(2) + (1 +
√−5)]2.

Adding the elements 4, 2 + 2
√−5, and −4 + 2

√−5 of [(2) + (1 +
√−5)]2,

we find that 2 ∈ [(2) + (1 +
√−5)]2. It follows that all multiples of 2 are in

[(2) + (1 +
√−5)]2, that is, [(2) + (1 +

√−5)]2 contains (2).
Conversely, any element of [(2) + (1 +

√−5)]2 is a sum of products
of terms 2m and (1 +

√−5)n. Any product involving 2m is a multiple of
2, and so is any product involving (1 +

√−5)2 = −4 + 2
√−5. Thus any

element of [(2) + (1 +
√−5)]2 is a multiple of 2; hence [(2) + (1 +

√−5)]2

is contained in (2), as required. �

Exercises

The other ideal factorizations claimed above, and proofs that the factors are
maximal ideals, go along the same lines as the examples just worked out.

21.5.1 Show in turn that 9, 6, and hence 3 belong to the product of ideals

[(3) + (1 +
√−5)][(3) + (1 − √−5)],

so [(3) + (1 +
√−5)][(3) + (1 − √−5)] contains the ideal (3).

21.5.2 Show that an element of (3) + (1 +
√−5) times one of (3) + (1 − √−5) is

a multiple of 3, so that (3) contains [(3) + (1 +
√−5)][(3) + (1 − √−5)].

21.5.3 Consider an ideal A containing (3) + (1 +
√−5) and an element a outside

(3) + (1 +
√−5). Show that A contains either 1 or 2, and in the latter case

A also contains 1.

21.5.4 Deduce from Exercise 21.5.3 that (3) + (1 +
√−5) is a maximal ideal in

Z[
√−5], and show that (3) + (1 − √−5) is maximal similarly.
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21.6 Sums of Squares Revisited

Algebraic number theory has a very long pedigree, which can plausibly
be traced back to the Babylonian discovery of Pythagorean triples around
1800 bce. It is still mysterious how the Babylonians were able to generate
triples, seemingly at will, but a method of generation can be clearly rec-
ognized in the work of Diophantus. It lies in the Diophantus two-square
identity from Section 20.2:

(a2
1 + b2

1)(a2
2 + b2

2) = (a1a2 − b1b2)2 + (a1b2 + b1a2)2.

This identity allows us to “compose” two Pythagorean triples, (a1, b1, c1)
and (a2, b2, c2), to obtain a third triple, (a1a2 − b1b2, a1b2 + b1a2, c1c2).

But with Diophantus the focus shifts from the triples (a, b, c) to the
pairs (a, b), and particularly to the sums a2 + b2. As Diophantus said (Sec-
tion 20.2), 65 is the sum of two squares because 65 = 5 × 13, and because
5 and 13 are also sums of two squares. To understand which numbers are
sums of two squares, we evidently need to look at their factors, and hence
the problem boils down to knowing which primes are sums of two squares.
Apparently Fermat was the first to see that this was the ultimate question
about sums of two squares. At any rate, Fermat (1640b) was the first to
answer it: an odd prime p is the sum of two squares if and only if p is of
the form 4n + 1.

Fermat, in his usual manner, stated this theorem without proof. The
first published proof was given by Euler (1749), and a series of increasingly
elegant proofs was given by illustrious mathematicians, usually when they
had new methods to show off: for example, Lagrange (1773b) (theory of
quadratic forms), Gauss (1832c) (Gaussian integers), and Dedekind (1877)
(ideal theory).

Lagrange’s theory of quadratic forms was in fact a precursor of alge-
braic number theory, stimulated by a trio of theorems stated by Fermat,
and by a problem that Fermat was unable to solve. The three theorems are
about odd primes p of the forms x2 + y2 (the one inspired by Diophantus),
x2 + 2y2, and x2 + 3y2, and they may be stated as follows.

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4) (Fermat (1640b))

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8) (Fermat (1654))

p = x2 + 3y2 ⇐⇒ p ≡ 1 (mod 3) (Fermat (1654))
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The problem Fermat was unable to solve was to characterize odd primes of
the form x2+5y2. Here there was a puzzling new phenomenon: primes not
of the form x2+5y2, such as 3 and 7, whose product is of the form x2+5y2.

Lagrange (1773b) was able to prove Fermat’s three theorems, and to
explain the anomalous behavior of x2+5y2, by his theory of equivalence of
quadratic forms. If we are interested in the numbers represented by a form
ax2+bxy+cy2, then we also need to survey the forms a′x′2+b′x′y′+c′y′2

obtainable from ax2 + bxy + cy2 by a change of variables

x′ = px + qy, y′ = rx + sy, where p, q, r, s ∈ Z and ps − qr = ±1,

because such a change of variables (x, y) 
→ (x′y′) is a one-to-one map of
Z×Z, and so the new form represents exactly the same numbers as the old.

Lagrange called such forms equivalent and observed that they have the
same discriminant: b2 − 4ac = b′2 − 4a′c′. Moreover, he found that

all forms with discriminant −4 are equivalent to x2 + y2,

all forms with discriminant −8 are equivalent to x2 + 2y2,

all forms with discriminant −12 are equivalent to x2 + 3y2,

but there are two inequivalent forms with discriminant −20: namely, the
forms x2+5y2 and 2x2+2xy+3y2. By exposing the “invisible companion”
2x2 + 2xy + 3y2 of x2 + 5y2, Lagrange explained the behavior of numbers
of the form x2 + 5y2. They cannot be understood in isolation, but only as a
class that interacts with numbers of the form 2x2 + 2xy + 3y2. In fact, the
primes of the form x2 + 5y2 are those ≡ 1 or 9 (mod 20), while the primes
of the form 2x2 + 2xy + 3y2 are those ≡ 3 or 7 (mod 20). And products of
the latter primes are ≡ 1 or 9 (mod 20) and of the form x2 + 5y2.

It appears that Gauss was aware that the theory of quadratic forms
could be replaced, at least up to a point, by a theory of “quadratic inte-
gers.” His theory of Z[i] is indeed a replacement for Lagrange’s theory of
the quadratic form x2 + y2. But Gauss was also aware that in some cases
the corresponding quadratic integers failed to have unique prime factoriza-
tion (which is perhaps why he was the first to recognize the importance of
unique prime factorization elsewhere). He was unable to see a way around
this obstacle, so Kummer’s creation of ideal numbers can be regarded as
the solution to a problem that had baffled even the great Gauss.

We do not know how far Kummer developed the theory of ideal num-
bers in rings of quadratic integers such as Z[

√−5], because he was actually
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interested in algebraic integers of higher degree, the so-called cyclotomic
integers. As their name suggests, these arise from circle division (Sections
2.3 and 14.5), where the solutions 1, ζn, ζ2

n , . . . , ζ
n−1
n of the equation

xn − 1 = 0

represent n equally spaced points on the unit circle. The numbers

a0 + a1ζ1 + a2ζ
2
n + · · · + an−1ζ

n−1
n , where a0, a1, . . . , an−1 ∈ Z,

form a ring Z[ζn] of cyclotomic integers.
In Kummer’s time it was thought that Z[ζn] was the key to Fermat’s last

theorem, because if a, b, c ∈ Z are such that an+bn = cn, then the nth power
an +bn factorizes into n linear factors in Z[ζn]. In fact, this was the basis of
a mistaken “proof ” by Lamé (1847). However, Kummer noticed that such
arguments break down, precisely because unique prime factorization fails
in Z[ζn]. Kummer showed that this happens for n ≥ 23, and he created
the theory of ideal numbers in an attempt to repair the damage. In this
respect, ideal numbers were only partially successful (not that it matters,
now that we have Wiles’s proof of Fermat’s last theorem), but they proved
their worth elsewhere. Dedekind’s revision of Kummer’s idea gave us the
concept of ideal, which is indispensable in algebra today.

For a treatment of primes of the form x2 + 5y2 using ideals, see Artin
(1991) or Stillwell (2003), and for more on the history of x2 + ny2, see the
introduction to Dedekind (1877), and Cox (1989). The latter pursues an-
other remarkable thread in number theory—the modular function. As men-
tioned in the exercises to Section 16.5, the modular function is a function
of lattice shapes, which is why it can reflect ideals of imaginary quadratic
integers. For more, see Cox’s book, or McKean and Moll (1997).

Exercises

There is an “easy direction” of Fermat’s theorems about x2 + y2, x2 + 2y2, and
x2+3y2 that can be proved with the help of congruences. This direction shows that
primes are not representable in the given forms if they have the wrong remainders
on division by 4, 8, and 3, respectively. (Compare with Exercises 1.5.2 and 3.2.1.)

21.6.1 Show that

1. An odd prime x2 + y2 � 3 (mod 4).

2. An odd prime x2 + 2y2 � 5 or 7 (mod 8).

3. An odd prime x2 + 3y2 � 2 (mod 3).
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The “hard direction” of Fermat’s theorems, finding the x2 and y2 to represent
primes with the right remainders, involves more than we can cover completely
here. However, for x2 + y2 and x2 + 2y2 it involves unique prime factorization in
Z[i] and Z[

√−2], both of which were discussed earlier in this chapter.
For x2 + 3y2, the proof involves not so much Z[

√−3] as the larger ring

Z

⎡⎢⎢⎢⎢⎣1 +
√−3
2

⎤⎥⎥⎥⎥⎦ =
⎧⎪⎪⎨⎪⎪⎩m +

1 +
√−3
2

n : m, n ∈ Z
⎫⎪⎪⎬⎪⎪⎭ .

21.6.2 Show that (1 +
√−3)/2 is an algebraic integer and that Z[(1 +

√−3)/2]
contains Z[

√−3].

21.6.3 Show that 2, 1 +
√−3, and 1 − √−3 are primes of Z[

√−3], and deduce
that 4 has two distinct prime factorizations in Z[

√−3].

21.6.4 By a geometric argument like those used for Z[i] and Z[
√−2], show that

Z[(1 +
√−3)/2] has unique prime factorization.

21.7 Rings and Fields

Kronecker is famous for saying “God made the natural numbers, the rest
is the work of man.” (This is reported, for example, in his obituary by
Weber (1892).) Algebraic number theory was very much what he had in
mind, because Kronecker, like Dedekind, saw number theory as the source
of the most interesting problems, and the inspiration for all mathematical
concepts. We can at least agree that number theory was the inspiration for
two of the most important algebraic concepts: rings and fields.

Perhaps the first step toward abstract algebra was the introduction of
negative numbers, creating the ring Z of integers from the natural numbers.
This seems to have been a very difficult step, because mathematicians for
many centuries (say, from the time of Diophantus to Descartes) lived in
a halfway house where negative numbers were only partially accepted—
sometimes being admitted in intermediate calculations, but not allowed as
answers. Likewise, it was a long time before the “ratios” of the Greeks
became the field Q of rational numbers.

Thus the first level of abstraction, the creation of inverses for addition
and multiplication, took place unconsciously over thousands of years. The
next level, identifying axioms for rings and fields, took place in the 19th
century, mainly under the influence of algebraic number theory. The ring
axioms are essentially the result of writing down the properties of + and ×
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that algebraic integers share with the ordinary integers, and the field axioms
are the properties that algebraic numbers share with rational numbers.

The concept of field was implicit in the work of Abel and Galois in
the theory of equations, but it became explicit when Dedekind introduced
number fields of finite degree as the setting for algebraic number theory. He
saw that the ring of all algebraic integers is not a convenient ring, because it
has no “primes.” This is because

√
α is an algebraic integer if α is, so there

is always a nontrivial factorization α =
√
α
√
α in the ring of all algebraic

integers. On the other hand, the algebraic integers in a field generated from
a single algebraic number α of degree n,

Q(α) = {a0 + a1α + · · · + an−1α
n−1 : a0, a1, . . . , an−1 ∈ Q},

have better behavior. The algebraic integers β in Q(α) have a norm N(β)
that is an ordinary integer, and this guarantees the existence of primes, as
we have seen in special cases like Z[i] and Z[

√−2], which are the algebraic
integers in the fields Q(i) and Q(

√−2) of degree 2.
By drawing attention to the field Q(α) of degree n, Dedekind also

brought to light some vector space structure: the basis 1, α, α2, . . . , αn−1

of Q[α], the linear independence of these basis elements over Q, and the
dimension (equal to the degree) of Q[α] over Q. Despite the long history
of linear algebra, dating back 2000 years in China at least, again it was the
greater generality afforded by algebraic number theory that finally brought
its fundamental concepts to light.

The next level of abstraction was reached in the 20th century and it
was (in a new twist to Kronecker’s words) the work of a woman, Emmy
Noether. In the 1920s she developed concepts for discussing common
properties of different algebraic structures, such as groups and rings. One
of the things groups and rings have in common is homomorphisms, or
structure-preserving maps. A map ϕ : G → G′ is a homomorphism of
groups if ϕ(gh) = ϕ(g)ϕ(h) for any g, h ∈ G. Similarly, a map ϕ : R → R′
is a homomorphism of rings if ϕ(r + s) = ϕ(r) + ϕ(s) and ϕ(rs) = ϕ(r)ϕ(s)
for any r, s ∈ R. From this higher vantage point, normal subgroups (Sec-
tion 19.2) and ideals can be seen as instances of the same concept. Each is
the kernel of a homomorphism ϕ: the set of elements mapped by ϕ to the
identity element (1 for a group, 0 for a ring).

Exercises

It is not clear that Q(α) (as defined above) is a field for any algebraic number
α. The hardest part is to prove that the quotient of any two of its elements is also
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an element. Some inkling of the difficulty may be grasped by working out the
special case of Q(i).

21.7.1 Show that, if a1, b1, a2, b2 ∈ Q, then a1+ib1
a2+ib2

is of the form a + ib, where
a, b ∈ Q.

It is also not obvious that the kernel of a group homomorphism is a normal
subgroup, partly because the definition of normal subgroup in Section 19.2 is not
the most convenient for this purpose. It is easier to prove that the kernel of a ring
homomorphism is an ideal, using the definition of an ideal given in Section 21.4.

21.7.2 Suppose that R is a ring and ϕ maps R into another ring in such a way that
ϕ(r + s) = ϕ(r) + ϕ(s) and ϕ(rs) = ϕ(s)ϕ(s) for any r, s ∈ R. Show that the
set

{r : ϕ(r) = 0}
has the two defining properties of an ideal.

The equivalence of kernels and ideals may be illustrated in Z by the ideal (3) of
multiples of 3.

21.7.3 Find a homomorphism of Z whose kernel is (3).

21.8 Biographical Notes: Dedekind, Hilbert, and
Noether

Richard Dedekind (Figure 21.3) was born in 1831 in Brunswick, the home
town of Gauss, into an academic family. His father, Julius, was professor
of law at the Collegium Carolinum, and his mother, Caroline Emperius,
was the daughter of another professor there. Richard was the youngest
of four children in a close-knit family. They remained in Brunswick for
most of their lives, and Richard lived with his sister Julie (both of them
being unmarried) until 1914. Sounds dull, but this seemingly eventless life
was the background to revolutionary activity in mathematics, in its way as
provocative as the work of Galois.

Dedekind became interested in mathematics in high school, after com-
ing to the conclusion that chemistry and physics were not sufficiently log-
ical. He attended the Collegium Carolinum, the scientific academy that
Gauss also attended, before entering Göttingen University in 1850. There
he became friends with Riemann and made rapid academic progress, com-
pleting a thesis under Gauss’s supervision in 1852. After the death of
Gauss in 1855, Dirichlet was appointed to Gauss’s chair, and he became
the third major influence on Dedekind’s career. After a brief period at the
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Figure 21.3: Richard Dedekind

Polytechnikum in Zurich (now known as the ETH), a position that he won
in competition with Riemann, Dedekind returned to the Polytechnikum in
Brunswick, where he remained for the rest of his life. It was not a presti-
gious position, but the home comforts enabled him to concentrate on math-
ematics.

Dedekind was the last student of Gauss, and Gauss’s number theory
was the inspiration for much of Dedekind’s work, as it was for many of the
great German mathematicians of the 19th century. When Dedekind started,
the new generation of Eisenstein, Dirichlet, and Kronecker was beginning
to understand Gauss’s ideas, and making further progress. Dirichlet in
particular made Gauss more approachable with his elegant and readable
Vorlesungen über Zahlentheorie (Lectures on Number Theory, Dirichlet
(1863)), which simplified much of Gauss’s difficult theory of quadratic
forms and added stunning new results and proofs of his own. The climax of
Dirichlet’s lectures is a class number formula, giving a uniform description
of the number of inequivalent quadratic forms with given discriminant. The
lectures were edited by Dedekind and first published in 1863, four years
after Dirichlet’s death. Dedekind took this project very seriously and made
it virtually his life’s work, bringing out further editions in 1871, 1879,
and 1894, each time adding supplementary material, until the supplements
amounted to more than Dirichlet’s book itself. The theory of ideals made
its first appearance in the 1871 edition, and was expanded and deepened in
1879 and 1894, eventually including a lot of Galois theory as well.
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However, Dedekind was disappointed in the low enthusiasm for ideals
shown by other mathematicians, and in 1877 he attempted a more popular
approach. Dedekind (1877) is nearly perfect for the modern reader—clear,
concise, and well motivated—but apparently it was still too abstract for his
contemporaries. The theory of ideals did not really catch on until it was
given a new exposition by Hilbert (1897), as we shall see below.

In the meantime, Dedekind had made several other great contributions
to mathematics that were slowly taking root:

• the theory of real numbers as “Dedekind cuts,”

• the theory of Riemann surfaces as algebraic function fields,

• the characterization of natural numbers as an “inductive set.”

What these contributions had in common, and what made them hard for
Dedekind’s contemporaries to grasp, was the idea of treating infinite sets as
mathematical objects. Dedekind actually started doing this in 1857, when
he treated congruence modulo n as the arithmetic of congruence classes

0 mod n = {0,±n,±2n, . . .},
1 mod n = {1, 1 ± n, 1 ± 2n, . . .},

...

n − 1 mod n = {n − 1, n − 1 ± n, n − 1 ± 2n, . . .},

which are added and multiplied according to the rules

(i mod n) + ( j mod n) = (i + j) mod n,

(i mod n)( j mod n) = (i · j) mod n.

(We mentioned multiplication mod n in Section 19.1, but without mention
of congruence classes.)

The idea of adding or multiplying sets by adding or multiplying repre-
sentatives transfers directly to Dedekind cuts and, with some modification,
to ideals and Riemann surfaces. Dedekind hoped that this cornucopia of
applications would convince his colleagues of the value of the idea that
“mathematical objects are sets,” but it was a hard idea to sell. At first he
was joined only by Cantor, who took up the theory of infinite sets as en-
thusiastically as Dedekind took up the applications (see Chapter 24).
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Dedekind had to wait decades before his ideas entered the mainstream
(and in some cases after they had been rediscovered by others—for ex-
ample, his theory of natural numbers became the “Peano axioms”), but
fortunately he lived long enough. He died in 1916 at the age of 84.

David Hilbert (Figure 21.4) was born in 1862 in Königsberg and died
in Göttingen in 1943. His father, Otto, was a judge, and David may have
inherited his mathematical ability from his mother, about whom we know
little except that her maiden name was Erdtmann. Königsberg was in the
remote eastern part of Prussia (it is now Kaliningrad, a small, disconnected
piece of Russia), but with a strong mathematical tradition dating back to
Jacobi. When Hilbert attended university there in the 1880s he became
friends with Hermann Minkowski, a former child mathematical prodigy
two years his junior, and Adolf Hurwitz, who was three years older and a
professor in Königsberg from 1884. The three used to discuss mathematics
on long walks, and Hilbert seems to have picked up his basic mathemati-
cal education in this way. In later life he made “mathematical walks” an
important part of the education of his own students.

Figure 21.4: David Hilbert
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Hilbert’s first research interest was in the theory of invariants, an al-
gebraic topic then held in high esteem. An elementary example of an in-
variant is the discriminant b2 − 4ac of a quadratic form, which Lagrange
(1773b) noticed is invariant when the form is transformed into an equiva-
lent form (Section 21.6). By Hilbert’s time, invariant theory had become
a jungle, with success depending mainly on the ability to hack through
formidable calculations. The “king of invariant theory,” Paul Gordan of Er-
langen, was notorious for papers consisting almost entirely of equations—
in fact, the story goes that he had assistants fill in any words that were nec-
essary. In 1888 Hilbert swept all this away by solving the main problem
of invariant theory, in a simple and purely conceptual manner: the Hilbert
basis theorem showed the existence of the invariants above the quadratic
level, without needing to calculate them!

Gordan was at first incredulous and exclaimed, “This is not mathemat-
ics, it is theology!” but eventually Hilbert’s idea was developed further, to
calculate the invariants, and Gordan had to concede that it was mathemat-
ics after all. Hilbert, for his part, moved on to conquer other worlds. In
fact, this became his modus operandi for most of his career: investigate a
topic thoroughly for a few years, turn it upside down, then do something
completely different.

Hilbert’s triumph in invariant theory secured his position in Königsberg,
and in 1892 he married Käthe Jerosch, a very capable woman who acted as
secretary and research assistant for many of his works. In particular, she
compiled the bibliography for his massive Zahlbericht (“Number Report”)
of 1897, the work in which algebraic number theory came of age. Hilbert
was commissioned by the German Union of Mathematicians in 1893 to
write a report on algebraic number theory, and the report became a 300-
page book (Hilbert (1897)), looking back to quadratic forms and Fermat’s
last theorem, and forward to class field theory, a major topic of the 20th
century.

The mathematical public, which had not been ready when Dedekind
presented algebraic number theory a few years earlier, now saw the point,
and Klein invited Hilbert to assume a chair in mathematics at Göttingen,
which he held from 1895 until the end of his life.

After the Zahlbericht, Hilbert turned to the foundations of geometry,
which we have touched on in Sections 1.6, 2.1, 19.6, and 20.7. Again
he scored several triumphs—finally filling the gaps in Euclid, discovering
the algebraic meaning of the Pappus and Desargues theorems—but also
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leaving some unfinished business. Hilbert realized that modeling Euclid’s
geometry by real-number coordinates is not exactly a proof that geometry
is consistent; one still needs to prove that the theory of real numbers is
consistent. Hilbert found this far from obvious and made it second on his
list of mathematical problems presented in Paris in 1900. Then he dropped
the subject in favor of mathematical physics.

However, no one found a consistency proof for the theory of real num-
bers, and by the 1920s Hilbert felt compelled to return to the subject.
Hilbert’s program, as it became known, called first for a formal language
of mathematics, in which the concept of proof itself was mathematically
definable, by precise rules for manipulating formulas. This phase of the
program was in fact feasible, and was essentially carried out by Whitehead
and Russell in their Principia Mathematica of 1910. The hard part, how-
ever, was proving that the rules of proof could not lead to a contradiction.
This is where Hilbert’s program stalled, and in 1931 Gödel showed that it
could never be completed. His famous incompleteness theorems (Chapter
24) showed that such a consistency proof does not exist, and that enlarging
the formal language by new axioms only puts the consistency proof further
out of reach.

To his credit, Hilbert was among the first to publicize Gödel’s work.
The first complete proofs of Gödel’s theorems are in the book of Hilbert
and Bernays (1938). But it was Hilbert’s misfortune to end his career, not
only with the failure of one of his mathematical dreams, but also with his
mathematical community in ruins. The eclipse of Göttingen began in 1933,
when the Nazis came to power in Germany and began dismissing Jewish
professors. In a few years, most of Germany’s mathematical talent had
fled, leaving the elderly and frail Hilbert in Göttingen virtually alone. He
died on 14 February 1943.

One of the Jewish mathematicians forced to leave Göttingen in 1933
was Emmy Noether (Figure 21.5), who was in many ways a natural suc-
cessor of Dedekind and Hilbert. Emmy Noether was born in 1882 in Er-
langen and died in 1935 in Bryn Mawr, Pennsylvania. She was the oldest
of four children of the mathematician Max Noether and of Ida Kaufmann.
As a child she loved music, dance, and languages and planned to become
a language teacher, qualifying as a teacher of English and French in 1900.

At this time in Germany, women were permitted to study at universities
only unofficially, and very few did so, since the permission of the lecturer
was also required. However, a few teachers were permitted to attend for
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Figure 21.5: Emmy Noether

purposes of “further education,” and in 1900 Emmy Noether became one
of them, studying mathematics at the University of Erlangen. Here she
met the “king of invariants,” Paul Gordan, and wrote a thesis under his su-
pervision in 1907. It was on invariant theory, naturally, and Emmy later
described it as “crap,” but it was not a complete waste of time. Physicists
today admire one of her early results, on the invariants of mechanical sys-
tems.

In 1910 Gordan retired and there was a reshuffle of positions, leading to
the appointment of Ernst Fischer in 1911. Fischer is not well known today,
but it seems that Noether’s algebraic talent suddenly blossomed through
working with him. She dropped the computational approach of Gordan
and rapidly mastered the conceptual approach of Dedekind and Hilbert,
so much so that Hilbert invited her to Göttingen in 1915. Getting a posi-
tion was another matter—Hilbert is said to have ridiculed Göttingen’s ex-
clusion of women professors by saying “this is a university, not a bathing
establishment”—but she was eventually granted an unofficial chair in 1922.



466 21 Algebraic Number Theory

In the 1920s Noether was at the height of her powers, and she found
students worthy of her ability. Among them were Emil Artin, who solved
two of Hilbert’s problems, and B. L. van der Waerden, who brought the
ideas of Noether to the world in his Moderne Algebra of 1930. Noether
herself modestly used to claim that “es steht schon bei Dedekind” (“it’s al-
ready in Dedekind”) and encouraged her students to see for themselves by
reading all of Dedekind’s supplements. Thus, despite the highly abstract
nature of Noether’s algebra, her students were made aware of its direct
descent from the number theory of Gauss and Dirichlet. In van der Waer-
den’s Algebra this connection was unfortunately broken, and many in the
next generation of students grew up unaware of it. In recent years there has
been a welcome reversal of this trend; in particular, the Algebra of Emil
Artin’s son Michael uses number theory to illustrate the theory of ideals
(Artin (1991)).



22

Topology

Preview

In Chapter 15 we saw how Riemann found the topological concept of genus
to be important in the study of algebraic curves. In the present chapter we
will see how topology became a major field of mathematics, with its own
methods and problems.

Naturally, topology interacts with geometry, and it is common for topo-
logical ideas to be noticed first in geometry. An important example is the
Euler characteristic, which was originally observed as a characteristic of
polyhedra, then later seen to be meaningful for arbitrary closed surfaces.
Today, we tend to think that topology comes first, and that it controls what
can happen in geometry. For example, the Gauss–Bonnet theorem seems to
show that the Euler characteristic controls the value of the total curvature
of a surface.

Topology also interacts with algebra. In this chapter we focus on the
fundamental group, a group that describes the ways in which flexible loops
can lie in a geometric object. On a sphere, all loops can be shrunk to a
point, so the fundamental group is trivial. On the torus, however, there are
many closed loops. But they are all combinations of two particular loops,
a and b, such that ab = ba.

In 1904, Poincaré famously conjectured that a closed three-dimensional
space with trivial fundamental group is topologically the same as the three-
dimensional sphere. This Poincaré conjecture was proved only in 2003,
with the help of methods from differential geometry. Thus the interaction
between geometry and topology continues.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 467
DOI 10.1007/978-1-4419-6053-5 22, c© Springer Science+Business Media, LLC 2010
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22.1 Geometry and Topology

Topology is concerned with those properties that remain invariant under
continuous transformations. In the context of Klein’s Erlanger Programm
(where it receives a brief mention under its old name of analysis situs) it
is the “geometry” of groups of continuous invertible transformations, or
homeomorphisms. The “spaces” to which transformations are applied, and
indeed the meaning of “continuous,” remain somewhat open. When these
terms are interpreted in the most general way, as subject only to certain
axioms (which we shall not bother to state here), one has general topol-
ogy. The theorems of general topology, important in fields ranging from
set theory to analysis, are not very geometric in flavor. Geometric topology,
which concerns us in this chapter, is obtained when the transformations are
ordinary continuous functions on Rn or on certain subsets of Rn. Exam-
ples are the “topological equivalences” between surfaces we spoke about
in Section 15.4.

Geometric topology is more recognizably “geometric” than general
topology, though the “geometry” is necessarily of a discrete and combi-
natorial kind. Ordinary geometric quantities—such as length, angle, and
curvature—admit continuous variation and hence cannot be invariant under
continuous transformations. The kind of quantities that are topologically
invariant are such things as the number of “pieces” of a figure or the num-
ber of “holes” in it. It turns out, though, that the combinatorial structures
of topology can often be reflected by combinatorial structures in ordinary
geometry, such as polyhedra and tessellations. In the case of surface topol-
ogy, this geometric modeling of topological structure is so complete that
topology becomes essentially a part of ordinary geometry. “Ordinary” here
means geometry with notions of length, angle, and curvature, not neces-
sarily Euclidean geometry. In fact, the natural geometric models of most
surfaces are hyperbolic.

It remains to be seen whether topology as a whole will ever be subordi-
nate to ordinary geometry. This seems to be the case in three dimensions,
where a “geometrization conjecture” has recently been proved (see Section
22.8). It appears that here, too, hyperbolic geometry is the most important
geometry (see Thurston (1997) or Weeks (1985)). In four or more dimen-
sions it would be rash to speculate, though geometric methods have been
important in recent breakthroughs (for example Donaldson (1983)). In this
chapter we make a virtue of a necessity by confining our discussion mainly
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to the topology of surfaces. This is the only area that is sufficiently under-
standable and relevant when set against the background of the rest of this
book. Fortunately, this area is also rich enough to illustrate some important
topological ideas, while still being mathematically tractable and visual.

We begin the discussion of surface topology at its historical starting
point, the theory of polyhedra.

22.2 Polyhedron Formulas of Descartes and Euler

The first topological property of polyhedra seems to have been discovered
by Descartes around 1630. Descartes’s short paper on the subject is lost,
but its contents are known from a copy made by Leibniz in 1676, discov-
ered among Leibniz’s papers in 1860 and published in Prouhet (1860). A
detailed study of this paper, including a translation and facsimile of the
Leibniz manuscript, has been published by Federico (1982).

The same property was rediscovered by Euler (1752), and it is now
known as the Euler characteristic. If a polyhedron has V vertices, E edges,
and F faces, then its Euler characteristic is V − E + F. Euler showed that
this quantity has certain invariance by showing

V − E + F = 2

for all convex polyhedra, a result now known as the Euler polyhedron for-
mula. Descartes already had the same result implicitly in the pair of for-
mulas

P = 2F + 2V − 4, P = 2E,

where P is the number of what Descartes called “plane angles”: corners
of faces determined by pairs of adjacent edges. The relation P = 2E then
follows from the observation that each edge participates in two corners. It
should be stressed that Descartes’s “plane angle” has nothing to do with an-
gle measure, and hence is just as topological a concept as Euler’s “edges.”
Thus Descartes’s result belongs to topology just as much as Euler’s does,
even though it fails to isolate the concept of Euler characteristic quite as
well. Some rather hairsplitting distinctions have been made between Eu-
ler and Descartes in an effort to show that Euler invented topology and
Descartes did not (see Federico (1982) for a review of different opinions).

Actually, neither of these mathematicians understood the polyhedron
formula in a fully topological way. They both used nontopological con-
cepts, such as angle measure, in their proofs, and they did not realize that
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“vertices,” “edges,” and “faces” are meaningful on any surface: edges need
not be straight and faces need not be flat. Other early proofs of the Euler
polyhedron formula also rely on angle measure and other ordinary geo-
metric quantities. For example, that of Legendre (1794) assumes that the
polyhedron can be projected onto the sphere, then uses the Harriot relation
between angular excess and area for spherical polygons (Exercises 22.2.1
and 22.2.2).

Probably the first to understand V − E + F purely topologically was
Poincaré (1895). In fact, Poincaré generalized the Euler characteristic to
n-dimensional figures, but in the case of polyhedra his essential observation
was this: a vertex divides an edge into two edges, and an edge divides a
face into two faces. It follows that any subdivision of edges or faces of a
polyhedron leaves V − E + F unchanged: if a new vertex is introduced on
an edge, V and E both increase by 1; if a new edge is introduced across a
face, E and F both increase by 1. The reverse processes of amalgamation,
where they make sense, likewise leave V − E + F unchanged.

The constancy of V − E + F over, say, the class of convex polyhedra
then follows if it can be shown that any polyhedron P1 in the class can be
converted to any other, P2, by subdivisions and amalgamations. A plau-
sible argument for this, due to Riemann (1851), is to view P1 and P2 as
subdivisions of the same surface, say a sphere. Assuming that the edges
of P1 and P2 meet only finitely often, superimposing P1 on P2 gives a
common subdivision P3 whose V − E + F value is therefore the same as
that of P1 and P2. Hence the V − E + F values of P1 and P2 are equal.
The assumption of only finitely many intersections is hard to justify, how-
ever. A different approach, which also yields the value of V − E + F for
nonspherical surfaces, is explained in the next section.

An engaging recent account of the Euler characteristic and its history
is Richeson (2008).

Exercises

Here is the proof of the Euler polyhedron formula by Legendre (1794).

22.2.1 Consider the projection of a convex polyhedron onto a sphere, whose faces
are therefore spherical polygons. Use the fact that

area of a spherical n-gon = angle sum − (n − 2)π

to conclude that

total area = 4π =
(∑

all angles
)
− π
(∑

all n
)
+ 2πF.
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22.2.2 Show also that
∑

all n = 2E,
∑

all angles = 2πV,

whence
V − E + F = 2.

The invariance of the Euler characteristic gives a simple topological proof that
there are only five regular polyhedra. In fact, it shows that only five polyhedra are
topologically regular in the following sense: for some m, n > 2 their “faces” are
topological m-gons on a topological sphere, n of which meet at each vertex. We
show as follows that V − E + F = 2 allows only the pairs

(m, n) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3),

corresponding to the known regular polyhedra (Section 2.2).

22.2.3 Given that there are F faces, deduce that E = mF/2 and V = mF/n.

22.2.4 Apply the formula V − E + F = 2 to conclude that 4n/(2m+ 2n−mn) is a
positive integer.

22.2.5 Show that 2m+ 2n−mn > 0, that is, 2 m
n + 2 > m, only for the above pairs

(m, n).

22.2.6 Also check that 2m + 2n − mn divides 4n for these pairs.

22.3 The Classification of Surfaces

Between the 1850s and the 1880s, several different lines of research led
to the demand for a topological classification of surfaces. One line, de-
scending from Euler, was the classification of polyhedra. Another was the
Riemann surface representation of algebraic curves, coming from Riemann
(1851, 1857). Related to this was the problem of classifying symmetry
groups of tessellations, considered by Poincaré (1882) and Klein (1882b)
(see Section 22.6). Finally, there was the problem of classifying smooth
closed surfaces in ordinary space (Möbius (1863)). These different lines of
research converged when it was realized that in each case the surface could
be subdivided into faces by edges (not necessarily straight, of course) so
that it became a generalized polyhedron. The generalized polyhedra are
what were traditionally called closed surfaces, now described by topolo-
gists as compact and without boundary.

The subdivision argument for the invariance of the Euler characteristic
V − E + F applies to any such polyhedron, not just those homeomorphic
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to the sphere and not just those with straight edges and flat faces. Var-
ious mathematicians, such as Riemann (1851) and Jordan (1866), came
to the conclusion that any closed surface is determined, up to homeomor-
phism, by its Euler characteristic. It also seemed that the different possible
Euler characteristics were realized by the “normal form” surfaces seen in
Figure 22.1, which were discovered by Möbius (1863). It is certainly plau-
sible that these forms are distinct, topologically, because of their different
numbers of “holes.” The main part of the proof is to show that any closed
surface is homeomorphic to one of them.

The assumptions of Riemann (that the surface is a Riemann surface)
and Möbius (that the surface is smoothly embedded in R3) were a little
too special to yield a purely topological proof, and in addition they con-
tained a hidden assumption of orientability (“two-sidedness”). A rigorous
proof, from an axiomatic definition of generalized polyhedron, was given
by Dehn and Heegaard (1907). The closed orientable surfaces indeed turn
out to be those pictured in Figure 22.1, but in addition there are nonori-
entable surfaces, which are not homeomorphic to orientable surfaces.

. . .

Figure 22.1: Closed orientable surfaces

A nonorientable surface may be defined as one that contains a Möbius
band, a nonclosed surface discovered independently by Möbius and Listing
in 1858 (Figure 22.2).

Figure 22.2: The Möbius band

Closed nonorientable surfaces cannot occur as Riemann surfaces, nor
can they lie in R3 without crossing themselves; nevertheless, they include
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some important surfaces, such as the projective plane (Exercise 8.5.3). The
nonorientable surfaces are also determined, up to homeomorphism, by the
Euler characteristic.

The Möbius forms of closed orientable surfaces were given standard
polyhedral structures by Klein (1882b). These are “minimal” subdivisions
with just one face and, except for the sphere, with just one vertex. When the
Klein subdivision of a surface is cut along its edges, one obtains a funda-
mental polygon, from which the surface may be reconstructed by identify-
ing like-labeled edges (see Figure 22.3, and also Figures 22.11 and 22.13).

Figure 22.3: Constructing a surface by edge pasting

It is often more convenient to work with the polygon rather than the sur-
face or its polyhedral structure. For example, since Brahana (1921), most
proofs of the classification theorem have used polygons rather than polyhe-
dra, “cutting and pasting” them (instead of subdividing and amalgamating)
until Klein’s fundamental polygons are obtained. The fundamental poly-
gon gives a very easy calculation of the Euler characteristic χ and shows it
to be related to the genus g (number of “holes”) by

χ = 2 − 2g

(Exercise 22.3.1). Of course, the genus determines the surface more simply
than the Euler characteristic, but we shall see that the Euler characteristic
is a better reflection of geometric properties.

Exercises

22.3.1 Show that the standard polyhedron for a surface of genus g ≥ 1 has V = 1,
E = 2g, F = 1, whence χ = 2 − 2g.
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The standard polygon for the genus g surface has a boundary path of the form
a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g , where successive letters denote successive

edges and those with exponents −1 have oppositely directed arrows. Edges with
the same letter are pasted together, with arrows matching.

22.3.2 Each sequence aibia−1
i b−1

i is called a handle. Justify this term by drawing
the surface that results from pasting together the matching edges of the
polygon bounded by aibia−1

i b−1
i c. The result should be a “handle-shaped”

surface with boundary curve c.

Another fundamental polygon is the “2n-gon with opposite edges pasted to-
gether,” that is, the polygon with boundary of the form a1a2 · · · ana−1

1 a−1
2 · · · a−1

n .

22.3.3 Show that for both n = 2 and n = 3 the surface obtained from the polygon
a1a2 · · ·ana−1

1 a−1
2 · · · a−1

n is a torus.

22.3.4 Show that if n is even, the vertices of the polygon a1a2 · · · ana−1
1 a−1

2 · · ·a−1
n

become a single vertex after pasting, and if n is odd they become two.
Hence find the Euler characteristic of the surface for any n.

22.4 Descartes and Gauss–Bonnet

The first theorem in the Descartes manuscript is a remarkable statement
about the total “curvature” of a convex polyhedron, not at first appearing
to have any topological content. It is a spatial analogue of the obvious
theorem that the sum of the external angles of a convex polygon is 2π. The
latter theorem can be seen intuitively by considering the total turn of a line
that is transported around the polygon (Figure 22.4).

αε

δ

γ
β

Figure 22.4: Total turn around a polygon
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Figure 22.5 shows a different proof, which generalizes to polyhedra.

β

α

ε

δ

γ

Figure 22.5: Adding the sectors bounded by normals

At each vertex, construct a sector of a unit circle, bounded by normals
to the two edges at that vertex. Clearly, the angle of the sector equals the
external angle at that vertex. Also, adjacent sides of adjacent sectors are
perpendicular to the same edge, hence parallel, so the sectors can be fitted
together to form a complete disk, of total angle (circumference) 2π.

To generalize this to polyhedra, define the exterior solid angle at each
vertex P to be the (area of the) sector of a unit ball bounded by planes
normal to the edges at P (Figure 22.6).

P

Figure 22.6: The exterior solid angle

As before, adjacent sides of adjacent sectors are parallel; hence the
sectors can be fitted together to form a complete ball, of total solid angle
(area) 4π. Descartes stated only that the total exterior solid angle is 4π,
without even defining exterior solid angle. The foregoing proof is based on
the reconstruction by Pólya (1954a).
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The theorem about polygons has an analogue for simple closed smooth
curves C, namely,

∫
C κ ds = 2π (Section 17.2). This leads us to wonder

whether the Descartes theorem has an analogue for smooth closed convex
surfaces S, say,

∫∫
S κ1κ2 dA = 4π, where κ1κ2 is the Gaussian curvature.

This is so, and in fact there is a proof like the polyhedron proof using yet
another characterization of Gaussian curvature due to Gauss (1827).

If we take a small geodesic polygon P on the surface S, then the “total
curvature” of the portion P can be represented by an “exterior solid angle”
A bounded by parallels to the normals to S along the sides of P (Figure
22.7). Gauss showed that the measure ofA—the area it cuts out of the unit
sphere—is

∫∫
P κ1κ2 dA. But it is also clear, by the parallelism of adjacent

sides of adjacent exterior solid angles A, that the A’s corresponding to a
partition of S by geodesic polygons P fit together to form a complete ball.
Hence

∫∫
S κ1κ2 dA = 4π.

P

A

Figure 22.7: The solid angle of total curvature

This is a “global” form of the Gauss–Bonnet theorem. When the Des-
cartes theorem was first published in 1860, the Gauss–Bonnet theorem was
already known, and the analogy between the two was noted by Bertrand
(1860). Bertrand, however, made the qualification that “the beautiful con-
ception of Gauss could not in any manner be considered as a corollary
to that of Descartes.” This may be true in a narrow sense; nevertheless,
the Descartes and Gauss–Bonnet theorems can be viewed as limiting cases
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of each other. Gauss–Bonnet ⇒ Descartes by concentrating the curvature
of a surface at vertices until it becomes a polyhedron, while Descartes ⇒
Gauss–Bonnet by increasing the number of vertices of a polyhedron until
it becomes a smooth surface. It is interesting, though probably accidental,
that Descartes actually uses the word “curvatura” to describe the exterior
solid angle.

22.5 Euler Characteristic and Curvature

There is another, more “intrinsic,” proof of Descartes’s theorem that reveals
the fact that total exterior solid angle is really 2π × Euler characteristic.
In fact, knowledge of the total exterior angle yields a proof of the Euler
characteristic polyhedron formula. This seems to have been the way in
which Descartes discovered his version of the formula.

The key step is to show that the exterior solid angle at a vertex P is
expressible intrinsically as 2π − (α1 + α2 + · · · + αn), where α1, α2, . . . , αn

are the face angles that meet at P. These are not the angles α′1, α
′
2, . . . , α

′
n

between the planes that bound the exterior solid angle, but it turns out
(Exercise 22.5.1) that

αi + α
′
i = π

for each i, whence the measure of the exterior solid angle, which comes
from α′i + α

′
2 + · · · + α′n by Harriot’s theorem (Section 17.6), also comes

from α1 + α2 + · · · + αn.
Knowing now that the exterior solid angle at P equals 2π − ∑ face

angles at P, we get

total exterior solid angle = 2πV −
∑

all face angles,

where V is the total number of vertices. By grouping the face angles ac-
cording to the types of faces, we also find (Exercise 22.5.2) that

∑
all face angles = π(2E − 2F),

whence

total exterior solid angle = 2π(V − E + F)

= 2π × Euler characteristic.

In the case of convex polyhedra, where we already know that total exterior
solid angle = 4π, this gives Euler characteristic = 2. More importantly, the
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derivation is valid for polyhedra of arbitrary Euler characteristic, showing
that the total exterior solid angle is really the same as the Euler character-
istic, up to a constant multiple.

There is a similar intrinsic proof of the Gauss–Bonnet theorem, again
valid for arbitrary Euler characteristic, which shows that

total curvature =
∫∫
S
κ1κ2 dA = 2π × Euler characteristic

(Exercise 22.5.3). Legendre’s (1794) proof of the Euler polyhedron for-
mula is the special case of the argument for constant curvature.

Thus the Euler characteristic regulates the total curvature of a surface.
In particular, if the curvature is constant, it must have the same sign as the
Euler characteristic. This in turn has implications for the geometry of the
surface. As we saw in Section 17.4, surfaces of constant positive curvature
have spherical geometry, those of zero curvature have Euclidean geometry,
and those of negative curvature have hyperbolic geometry. In the next sec-
tion we shall see that there is a natural way to impose constant curvature on
surfaces of arbitrary Euler characteristic. It will then follow that the natural
geometry of a surface is spherical, Euclidean, or hyperbolic according as
its Euler characteristic is positive, zero, or negative. Moreover, if the abso-
lute value of the curvature is taken to be 1, then the Gauss–Bonnet theorem
gives

area = |2π × Euler characteristic|.
This makes surface topology completely subordinate to geometry, at least
for orientable surfaces, because it says that the topology of a surface is
completely determined by the sign of its curvature and its area.

These results were implicit in the work of Poincaré and Klein in the
1880s. Perhaps Klein was the first to see clearly how the geometry of a
surface determines its topology (see, for example, Klein (1928), p. 264).

Exercises

Figure 22.8 shows the region around a vertex P of a polyhedron and the exte-
rior solid angle of P centered at O and bounded by the planes OAB, OBC, OCA
perpendicular to the edges through P.

22.5.1 Show that there are right angles where indicated, and hence that

α + α′ = π, β + β′ = π, γ + γ′ = π.
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A

B

C
O

α
βγ

P

β′

α′

γ′

Figure 22.8: The vertex region of a polyhedron

Now to relate face angles to E and F, it helps to write

F = F3 + F4 + F5 + · · · ,
where F3 = number of 3-gon faces, F4 = number of 4-gon faces, and so on.

22.5.2 Show that

E =
1
2

(3F3 + 4F4 + 5F5 + · · · ),
and deduce that in an ordinary polyhedron (that is, one with flat faces),∑

all face angles = π(2E − 2F),

using the fact the angle sum of an n-gon is (n − 2)π.

22.5.3 Prove the global form of the Gauss–Bonnet theorem,∫∫
S
κ1κ2 dA = 2π × Euler characteristic,

by partitioning the closed surface S into geodesic polygons and applying
the ordinary form of the Gauss–Bonnet theorem (Section 17.6).

22.6 Surfaces and Planes

In Section 16.5 we noticed that an elliptic function defines a mapping of a
plane onto a torus. Such mappings are also interesting in the topological
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context, where they are called universal coverings. In general, a mapping
ϕ : S̃ → S of a surface S̃ onto a surface S is called a covering if it is a
homeomorphism locally, that is, when restricted to sufficiently small pieces
of S̃ . The mapping of the plane onto the torus in Section 16.5 is a covering
because it is a homeomorphism when restricted to any region smaller than
a period parallelogram.

Another interesting example of a covering we have already met is the
mapping of the sphere onto the projective plane given by Klein (1874)
(Section 8.5). This map sends each pair of antipodal points of the sphere
to the same point of the projective plane, and hence is a homeomorphism
when restricted to any part of the sphere smaller than a hemisphere.

One more example is Beltrami’s (1868a) covering of the pseudosphere
by a horocyclic sector (Section 18.4). Topologically, this covering is the
same as the covering of a half-cylinder by a half-plane (Figure 22.9). All
these coverings are universal in the sense that the covering surface S̃ (sphere
or plane) can be covered only by S̃ itself.

Figure 22.9: Covering a cylinder

An example of a nonuniversal covering is the covering of the torus
by the cylinder, intuitively like an infinite snake swallowing its own tail
(Figure 22.10). This is nonuniversal because the cylinder can in turn be
covered by the plane, just as the half-cylinder is covered by the half-plane
in Figure 22.9. In fact, by composing the coverings plane → cylinder →
torus, we recover our first example, the plane→ torus covering.

Since the sphere can be covered only by itself, the first interesting ex-
amples of coverings are those of orientable surfaces of genus ≥ 1 (that is,
Euler characteristic ≤ 0). All of these surfaces can be covered by planes.
Moreover, each nonorientable surface can be doubly covered by an ori-
entable surface in the same way that the projective plane is covered by the
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Figure 22.10: Covering a torus

sphere, so the main thing we need to understand is the universal covering
of orientable surfaces of genus ≥ 1 by planes.

The basic idea is due to Schwarz, and it became generally known
through a letter from Klein (1882a) to Poincaré. To construct the universal
covering of a surface S one takes infinitely many copies of a fundamental
polygon F for S and arranges them in the plane so that adjacent copies of
F meet in the same way that F meets itself on S . For example, the torus T
in Figure 22.11 has the square fundamental polygon F shown, which meets
itself along �a and �b in S (where the arrows indicate that edges must agree
in direction as well as label).

a
b

−→ a a

b

b

S = T F

Figure 22.11: The torus and its fundamental polygon

If instead we take infinitely many separate copies of F and join adjacent
copies �a to �a and �b to �b, then we obtain a plane T̃ , tessellated as in Figure
22.12. The universal covering T̃ → T is then defined by mapping each
copy of F in T̃ in the natural way onto the F in T .
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a

a

a

b b b

a

a

a

a

a

a

a

a

a

b b b

b b b

b b b

T̃

Figure 22.12: Tessellation of the torus cover

The tessellation of Figure 22.12 can of course be realized by squares
in the Euclidean plane. We can therefore impose a Euclidean geometry on
the torus by defining the distance between (sufficiently close) points on the
torus to be the Euclidean distance between appropriate preimage points in
the plane. In particular, the “straight lines” (geodesics) on the torus are the
images of straight lines in the Euclidean plane. The torus geometry is not
quite the geometry of the plane, of course, since there are closed geodesics,
such as the images of the line segments a and b. However, it is Euclidean
when restricted to sufficiently small regions. For example, the angle sum
of each triangle on the torus is π.

For surfaces of genus >1—that is, of negative Euler characteristic—the
Gauss–Bonnet theorem predicts negative curvature, and hence the natural
covering plane should be hyperbolic. This can also be seen directly from
the combinatorial nature of the tessellation on the universal cover. For
example, the fundamental polygon F of the surface S of genus 2 is an
octagon (Figure 22.13).

In the universal covering, eight of these octagons have to meet at each
vertex, since the eight corners of the single F meet on S . Such a tessellation
is impossible, by regular octagons, in the Euclidean plane, but it exists in
the hyperbolic plane, as Figure 22.14 shows.

In fact, this tessellation is obtained by amalgamating triangles in the
Gauss tessellation (Figure 18.15). The tessellations for general genus >1
can similarly be realized geometrically in the hyperbolic plane, and they
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b2

b1

a1

a2

−→ a2

b1

a1

b1

a1

b2

a2

b2

Figure 22.13: Genus-2 surface and its fundamental polygon

Figure 22.14: Tessellation of the genus-2 covering

were among the hyperbolic tessellations considered by Poincaré (1882)
and Klein (1882b). The distance function, hence the curvature and local
geometry, can be transported from the covering plane to the surface as we
did above for the torus.
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Exercises

When surfaces of genus >1 are realized as surfaces of constant negative cur-
vature, their genus can be read off from their area.

22.6.1 Show that the fundamental polygon for an orientable surface of genus p is
a 4p-gon with angle sum 2π.

22.6.2 Deduce that its Euler characteristic is proportional to its angular defect and
hence to its area.

22.6.3 Conclude, using Exercise 22.3.1, that the area determines the genus.

22.7 The Fundamental Group

Another way to explore the meaning of the universal cover S̃ is to use it
to plot paths on the surface S . As a point P moves on S , each preimage
P̃ of P moves analogously on S̃ . The only difference is that as P crosses
an edge of the fundamental polygon on S , P̃ crosses from one fundamental
polygon to another on S̃ . Thus P̃ will not necessarily return to its starting
point, even when P does. In fact, we can see that the displacement of P̃
in some way measures the extent to which P winds around the surface S .
Figure 22.15 shows an example. As P winds once around the torus, more
or less in the direction of �a, P̃ wanders from one end to the other of a
segment �a on S̃ .

a
b

O

P

a a

b

b

P̃

Õ(1)

Õ(2)

Figure 22.15: Plotting on the covering surface

We say that closed paths p, p′ with initial point O on S “wind in the
same way,” or are homotopic, if p can be deformed into p′ with O fixed
and without leaving the surface. Now if the path p of P is deformed into
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p′, with O fixed, then the path p̃ of P̃ is deformed into a p̃′ with the same
initial and final points, Õ(1) and Õ(2), as p̃. Hence each homotopy class
corresponds simply to a displacement of the universal cover S̃ that moves
Õ(1) to Õ(2). The different preimages P̃ will of course start at different
preimages Õ(1) of O, but a single displacement of S̃ moves them all to
their final positions Õ(2). Moreover, the displacement moves the whole
tessellation of S̃ onto itself: it is a rigid motion of the tessellation.

Thus from the topological notion of homotopic closed paths we arrive
once again at ordinary geometry. We also arrive at a group called the fun-
damental group of S . Geometrically, it is the group of motions of S̃ that
map the tessellation onto itself (which includes mapping each edge to a
like-labeled edge). Topologically, it is the group of homotopy classes of
closed paths, with a common initial point O, on S . The product of homo-
topy classes is defined by successive traversal of representative paths.

The fundamental group was first defined by Poincaré (1895). Poincaré
defined it for much more general figures, whose universal covers are not so
apparent, so he did not generally view the fundamental group as a covering
motion group. However, Poincaré had already studied groups of motions
of tessellations (1882). Reconsidering these earlier results topologically in
(1904), he arrived at the interpretation just given. This paper was very in-
fluential on the later work of Dehn (1912) and Nielsen (1927) and has been
indirectly responsible for a recent surge of interest in hyperbolic geometry.

The more general notion of fundamental group in Poincaré (1895) has
also been influential outside topology. It turns out, for example, that for
any “reasonably described” figure F it is possible to compute generators
and defining relations for the fundamental group of F . The defining re-
lations of a fundamental group can be quite arbitrary (in fact, completely
arbitrary, as was shown by Dehn (1910) and Seifert and Threlfall (1934),
p. 180). So the question arises: can the properties of a group be determined
from its defining relations? One would like to know, for example, when
two different sets of relations define the same group. The latter question
was raised by Tietze (1908) in the first paper to follow up Poincaré’s work.
Tietze made the remarkable conjecture—which could not even be precisely
formulated at the time—that the problem is unsolvable. The isomorphism
problem for groups, as it came to be known, was indeed shown to be un-
solvable by Adyan (1957), in the sense that no algorithm can settle the
question for all finite sets of defining relations. Adyan’s result was based
on the theory of algorithms, which will be outlined in Chapter 24.
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By combining Adyan’s result with some of Tietze (1908) and the result
of Seifert and Threlfall mentioned above, Markov (1958) was able to show
the unsolvability of the homeomorphism problem. This is the problem of
deciding, given “reasonably described” figures F1 and F2, whether F1 is
homeomorphic to F2. (A complete proof of the unsolvability of the isomor-
phism problem and homeomorphism problem may be found in Stillwell
(1993), and its history may be found in Stillwell (1982).) Thus Poincaré’s
construction of the fundamental group led in the end to a quite unexpected
conclusion: the basic problem of topology is unsolvable.

Exercises

In the following exercises it will be helpful to view the fundamental group as
the group of motions of the universal covering plane, diagrammed in the previous
section. The diagram shows that any sequence of motions equal to the identity
corresponds to a closed path of edges in the diagram.

22.7.1 Explain why the fundamental group of the torus is generated by elements
a with defining relation

aba−1b−1 = 1.

22.7.2 Similarly, explain why the fundamental group of the surface of genus 2 is
generated by elements a1, b1, a2, b2 with defining relation

a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 = 1.

27.7.3 Show that the former group is commutative but the latter is not.

22.8 The Poincaré Conjecture

The homotopy concept, and the associated fundamental group, was just
one of Poincaré’s contributions to topology. Another was the homology
concept, which algebraically captures the relationship between topological
objects and their boundaries. We can give a glimpse of this relationship in
the case of curves on surfaces. Figure 22.16 shows three examples.

Figure 22.16: Bounding and nonbounding curves
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On the left we have a sphere with the equator drawn on it. The equator
bounds (that is, is the boundary of) both the upper and the lower hemi-
sphere, each of which is topologically a disk. On the right we have a torus
and a curve on it that does not bound—there is no part of the torus of which
this curve is the boundary, as we already observed in Section 16.4.

In the middle we have a surface of genus 2 and a curve on it that also
bounds—it bounds both the left half of the surface and the right half. How-
ever, this curve does not bound a topological disk so, unlike the equator
on the sphere, it cannot be shrunk to a point. Thus the middle example
shows that the concept of bounding is coarser than the concept of being
homotopic to a point. Still, the concept is refined enough to distinguish the
sphere, which we now call S2, from all other closed surfaces: S2 is the only
closed surface on which every simple closed curve is bounding.

There is a 3-dimensional analogue of S2 called the 3-sphere S3, which
may be defined as the set of points in R4 at unit distance from the ori-
gin. S3 can also be defined, more topologically, as the result of adding a
point at infinity to R3, just as we obtained S2 from the plane by adding a
point at infinity in Section 15.2. S3 and R3 are the simplest examples of
3-dimensional manifolds (or 3-manifolds for short), which are spaces in
which each point has a neighborhood homeomorphic to the interior of a
solid ball. R3 is an “open” 3-manifold, while S3 is “closed,” and one won-
ders whether S3 can be distinguished from the other closed 3-manifolds in
the same way that S2 can be distinguished from the other closed surfaces.

In 1900, Poincaré conjectured that S3 is the only closed 3-manifold in
which every closed curve is bounding. He was wrong, because in Poincaré
(1904) he discovered a remarkable counterexample. It is now known as a
homology sphere because it has the “same homology” as S3 without being
homeomorphic to S3. In Poincaré’s homology sphere every simple closed
curve bounds a surface but not always a topological disk. So Poincaré
amended his 1900 conjecture as follows: if every simple closed curve in
a closed connected 3-manifold bounds a disk, then M is homeomorphic
to S3. This became known as the Poincaré conjecture—one of the most
famous mathematical problems of the 20th century.

The condition that every simple closed curve bounds a disk is called
simple-connectedness of M. Equivalent statements of this property are:

• Every closed curve in M contracts to a point.

• The fundamental group of M equals {1}.
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The existence of homology spheres shows that three dimensions are
more complicated than two, but just how much more complicated they
are was not immediately clear. Further results on 3-manifolds came with
glacial slowness, and they often revealed new complications. Dehn (1910)
found infinitely many homology spheres, Alexander (1919) found two non-
homeomorphic 3-manifolds with the same fundamental group (but not the
group {1}), and Whitehead (1935) found an open 3-manifold that is con-
tractible but not homeomorphic to R3.

In the 1950s and 1960s there was at last some good news, with a series
of positive results showing that 3-manifolds are “well behaved” in certain
respects. The news did not include a proof of the Poincaré conjecture, how-
ever. Instead, progress on the conjecture came in higher dimensions, with
a proof by Smale (1961) of the analogous conjecture for Sn for n ≥ 5. The
analogue states that any closed connected manifold is homeomorphic to a
sphere if all the topological spheres in it are contractible. Unfortunately,
while three dimensions are harder than two, five are easier than three in
some respects (topologists say they have “more wiggle room”). So Smale’s
proof did not throw much light on the classical Poincaré conjecture, or on
the analogous conjecture for S4 either.

The analogue of the Poincaré conjecture for 4-manifolds was finally
proved by Freedman (1982). Freedman’s proof was a tour de force that
simultaneously solved several longstanding problems about 4-manifolds.
That his approach worked at all was a surprise to many of his colleagues,
and finding a similar approach to the classical Poincaré conjecture seemed
out of the question.

Indeed, an entirely new approach to the Poincaré conjecture had al-
ready been taking shape in the hands of William Thurston in the late 1970s.
Thurston, like Poincaré and Dehn, was interested in geometric realizations
of manifolds, exemplified by the surfaces of constant curvature that real-
ize all the topological forms of closed surfaces. He conjectured that all
3-manifolds may be realized in a similar, though more complicated, way.
Instead of the three 2-dimensional geometries of constant curvature, one
has eight “homogeneous” 3-dimensional geometries. And instead of a sin-
gle geometry for each 3-manifold M one has a “decomposition” of M into
finitely many pieces, each carrying one of the eight geometries. Thurston’s
geometrization conjecture states that each closed connected 3-manifold is
homeomorphic to one with such a decomposition. The Poincaré conjecture
follows from a special case of the geometrization conjecture for manifolds
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of positive curvature. For more details on the evolution of the Poincaré
conjecture up to this point, see Milnor (2003).

Thurston was able to prove many cases of his geometrization conjec-
ture, but geometrization seemed to run out of steam in the early 1980s. This
was not entirely disappointing to some topologists, who still hoped for a
proof of the Poincaré conjecture by purely topological methods. However,
more geometry was to come, not less, and differential geometry at that. It
was not enough to consider manifolds with “homogeneous” geometry; one
had to consider manifolds with arbitrary smooth geometry, and to let the
geometry “flow” towards homogeneity.

The idea of “flowing towards homogeneity” was initiated by Hamil-
ton (1982), and was brought to a triumphant conclusion by Grigory Perel-
man in 2003, with a proof of Thurston’s geometrization conjecture. Perel-
man had to overcome enormous difficulties, too technical to describe here,
but Hamilton’s idea and its difficulties can be illustrated with manifolds of
lower dimension—curves and surfaces.

A closed 1-dimensional manifold may be realized as a smooth closed
curve in the plane, such as that shown in Figure 22.17.

Figure 22.17: Curvature flow of a curve

Assuming that the curve is sufficiently smooth, it has a curvature at
each point. We represent the curvature by a directed line, with length pro-
portional to the curvature and direction towards the center of curvature.
Now suppose we let the curve “flow” so that each point moves in the direc-
tion of the curvature arrow, with speed proportional to the arrow’s length.
The general tendency is for the curve to shrink to a point, but in the process
its shape may tend to a limit. It is very plausible, and can be proved, that
the shape of the curve tends towards a circle. Thus (not surprisingly) every
closed 1-manifold has a geometric realization as a circle.
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Now consider a similar process for smooth closed surfaces inR3. There
are some problems. We have to decide which concept of curvature to use,
because Gaussian curvature is not the only option. And even if we choose
the concept of curvature well, we may not get the outcome we want. Some
surfaces homeomorphic to the sphere, such as the one in Figure 22.18, may
not flow towards the shape of the standard, constant-curvature, sphere.

Figure 22.18: A topological sphere that does not flow well

This is because the high curvature of the thin neck causes it to shrink
fast in comparison with the low-curvature ends, resulting in a shape whose
neck becomes ever-thinner in comparison with the ends. The way out of
this situation is drastic but effective. We perform surgery, by cutting the
neck and smoothly sealing the cuts, as shown in Figure 22.19. Then, if

Figure 22.19: The result of surgery

we let the two pieces continue their curvature flow, the shape of each piece
tends to that of a standard sphere. With a delicate analysis of the behavior
of curvature flow, and the help of surgery, it becomes possible to prove the
“2-dimensional Poincaré conjecture”: every simply connected closed sur-
face is homeomorphic to S2. Of course, we can already prove this, more
easily, from the topological classification of surfaces. What is important is
that the curvature flow idea also works for 3-manifolds, where a classifica-
tion theorem is not yet available.
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The appropriate flow for 3-manifolds is called the Ricci curvature flow,
introduced by Hamilton (1982). Hamilton was able to show that the Ricci
curvature flow works in many cases, but he was stymied by the more com-
plex bad behavior (analogous to the formation of thin necks) that can occur
with 3-manifolds. The difficulties were brilliantly overcome by Perelman
in 2003. Perelman published his proof only in outline, in three papers
posted on the Internet in 2002 and 2003, but experts later found that these
papers contained all the ideas necessary to construct a complete proof. See,
for example, Morgan and Tian (2007).

Perelman himself, apparently sure that he would be vindicated, pub-
lished nothing further and seems to have gone into seclusion. In 2006 he
was awarded the most prestigious prize in mathematics, the Fields Medal,
but declined to accept it. The whole story behind these events remains to
be told, but the fascinating New Yorker piece of Nasar and Gruber (2006)
contains most of what we know so far.

Exercises

In the following exercises we study the relation between curves in a manifold
that bound a disk (namely those contractible to a point and hence equal to 1 in the
fundamental group), and those that bound more general surfaces. We use letters
a, b, . . . to denote closed curves with a fixed initial point, and also the correspond-
ing elements of the fundamental group.

22.8.1 Use Exercise 22.3.2 to show that, for any elements a and b of the funda-
mental group, there is an element c, equal to aba−1b−1 in the fundamental
group, that bounds a surface (a “handle”). (Hint: Deform the handle so that
its boundary c lies arbitrarily close to the curves a and b.)

22.8.2 Deduce from Exercise 22.8.1 that the elements of the fundamental group
that bound surfaces are those that become equal to 1 when the fundamental
group is “abelianized,” that is, when generators are allowed to commute.

The fundamental group of the Poincaré homology sphere is generated by ele-
ments a and b, with defining relations

(ab)2 = a3 = b5.

This group is called the binary icosahedral group. One can now show that this
group is nontrivial, but that all elements become equal to 1 when a and b are
allowed to commute.

22.8.3 Show that the result of adding the relation (ab)2 = 1 to the relations of
the binary icosahedral group is the icosahedral (or dodecahedral) group of
Exercise 19.5.5.
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22.8.4 Deduce from Exercise 22.8.3 that the binary icosahedral group has at least
60 elements. (Harder: Show that it in fact has 120 elements.)

22.8.5 Show, on the other hand, that adding the relation ab = ba to the binary
icosahedral group gives the group {1}.

22.9 Biographical Notes: Poincaré

Henri Poincaré (Figure 22.20) was born in Nancy in 1854 and died in Paris
in 1912. His father, Léon, was a physician and professor of medicine at the
University of Nancy, and Henri grew up in a comfortable academic envi-
ronment. He and his younger sister, Aline, were at first educated by their
mother, and Poincaré later traced his mathematical ability to his maternal
grandmother. At the age of five he suffered an attack of diphtheria, which
weakened his health and excluded him from the more boisterous childhood
games. He made up for this by organizing charades and playlets, and he
later became a keen dancer. Many photographs of Poincaré and his family
may be seen in the centenary volume (1955), which forms the second half
of vol. 11 of Poincaré’s Œuvres.

Figure 22.20: Henri Poincaré
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Being excluded from most games, Poincaré had ample time to read
and study, and when he began attending school, aged eight, he made rapid
progress. His ability first showed in French composition, but by the end
of his school career his awesome mathematical talent was also clear. He
won first prize in a nationwide mathematics competition and topped the en-
trance exam to the École Polytechnique in 1873. This, incidentally, was de-
spite the Franco-Prussian War (1870–1871), during which Poincaré’s home
province of Lorraine bore the brunt of the German invasion. At this time,
Poincaré accompanied his father on ambulance rounds, becoming an ardent
French patriot as a result. However, he never held German mathematicians
responsible for the brutalities of their compatriots. He learned German
during the war in order to read the news, and he later put the knowledge to
good use in communicating with his German colleagues Fuchs and Klein.

At the École Polytechnique, Poincaré continued to do well, though
clumsiness in drawing and experimental work cost him first place. (His
marks in drawing, though mediocre, were never zero, despite oft-told tales
to that effect. Poincaré’s results may be seen in the centenary volume
(1955).) Curiously, he planned to become an engineer at this stage and
studied at the École des Mines from 1875 to 1879, at the same time writing
a doctoral thesis in mathematics. He worked briefly as a mining engineer
before becoming an instructor in mathematics at the University of Caen
in 1879. It was at Caen that Poincaré made his first important discov-
ery: the occurrence of non-Euclidean geometry in the theory of complex
functions. He had been thinking about periodicity with respect to linear
fractional transformations, after encountering functions with this property
in the work of Lazarus Fuchs. The functions in question arose from dif-
ferential equations, and Poincaré had been struggling to understand them
analytically when he was struck by an unexpected geometric inspiration:

Just at this time I left Caen, where I was then living, to go
on a geological excursion under the auspices of the school of
mines. The changes of travel made me forget my mathemati-
cal work. Having reached Coutances, we entered an omnibus
to go some place or other. At the moment when I put my foot
on the step the idea came to me, without anything in my for-
mer thoughts seeming to have paved the way for it, that the
transformations I had used to define the Fuchsian functions
were identical with those of Non-Euclidean geometry.

Poincaré (1918); translation by Halsted, 1929, p. 387
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The discovery of the underlying geometry (and topology, which soon fol-
lowed) put Fuchsian functions in a completely new light, rather like the
illumination of elliptic functions by Riemann’s discovery that they belong
to the torus. For the next few years Poincaré worked feverishly to develop
these ideas, in friendly competition with Klein. There were some reser-
vations about his style—undisciplined and lacking in rigor, though very
readable—but his brilliance was not contested. He was appointed to a chair
at the University of Paris in 1881 and remained there, winning ever higher
honors, until the end of his life. In 1881 he was married to Louise Poulain;
they had a son and three daughters.

Poincaré’s work on Fuchsian functions led him to topology, as we have
seen in Sections 22.6 and 22.7. So did another of his great inventions,
the qualitative theory of differential equations. He used this theory, which
deals with such questions as the long-term stability of a mechanical sys-
tem, in his Les méthodes nouvelles de la mécanique céleste (1892, 1893,
1899), probably the greatest advance in celestial mechanics since Newton.
Poincaré’s topological ideas not only breathed new life into complex anal-
ysis and mechanics; they amounted to the creation of a major new field, al-
gebraic topology. In papers between 1892 and 1904, Poincaré built up an
arsenal of techniques and concepts that were to keep topologists going for
the next 30 years. It was not until Hurewicz discovered higher-dimensional
analogues of the fundamental group in 1933 that a significant new weapon
was added to Poincaré’s arsenal.

Poincaré was perhaps the last mathematician to have a general grasp of
all branches of mathematics. Like Euler, he wrote fluently and copiously
on all parts of mathematics, and in fact he surpassed Euler in his popular
writing. He wrote many volumes on science and its philosophy, which
were best-sellers in the early part of the 20th century. Poincaré would
perhaps have been as prolific as Euler if ill health had not overtaken him
in his fifties. In 1911 he took the unusual step of publishing an unfinished
paper, on periodic solutions of the three-body problem, believing he might
not live to complete the proof. “Poincaré’s last theorem” was indeed still
open when he died in 1912, but the proof was completed in 1913 by the
American mathematician G. D. Birkhoff.
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Simple Groups

Preview

We saw in Chapter 19 that the group concept came to light when Galois
used it to explain why some equations are solvable and some are not. Solv-
ing an equation corresponds to “simplifying” a group by forming quotients,
so knowing which equations are not solvable depends on knowing which
groups cannot be “simplified.” These are the so-called simple groups.

The groups associated with polynomial equations are finite, so one
would like to classify the finite simple groups. Galois found one infinite
family of such groups—the alternating groups An for n ≥ 5—and three
other provocative examples that we now view as the symmetry groups of
finite projective lines.

However, classification of the finite simple groups was much harder
than could have been foreseen in the 19th century. It turned out to be eas-
ier (though still very hard) to classify continuous simple groups. This was
done by Lie, Killing, and Cartan in the 1880s and 1890s. Each contin-
uous simple group is the symmetry group of a space with hypercomplex
coordinates, either from R,C,H, or O.

While this classification was in progress, it was noticed that a single
continuous simple group can yield infinitely many finite simple groups,
obtained by replacing the hypercomplex number system by a finite field.
These “finite groups of Lie type” were completely worked out by 1960.
Together with the alternating groups and the cyclic groups of prime order,
they account for all but finitely many of the finite simple groups.

But identifying all the exceptions—the 26 sporadic simple groups—
turned out to be the hardest problem of all . . .

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 495
DOI 10.1007/978-1-4419-6053-5 23, c© Springer Science+Business Media, LLC 2010
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23.1 Finite Simple Groups and Finite Fields

In Section 19.8 we introduced finite simple groups with the examples of
A5, PSL(2, 5), PSL(2, 7), and PSL(2, 11) discovered by Galois. Our brief
account may perhaps have given the impression that Galois and Jordan
between them grasped the connections between simple groups, finite fields,
and finite geometries. This is hardly possible. These ideas took more than
100 years to unfold, and even the concept of a projective geometry over a
finite field did not come fully to light until 1906. In this section we fill in
the conceptual parts of the story, up to the discovery of finite geometries,
in order to give a better idea of their scope and depth. They center on
the concept of a linear group, which came to maturity in the book Linear
Groups, with an Exposition of the Galois Field Theory of Dickson (1901a).

Today, it is easy for us to define a linear group as a group of matrices
with entries in a field. Matrices were introduced by Cayley (1855), but
they were not commonly used as group elements until the 20th century,
perhaps because groups were originally permutation groups, and for a long
time this was considered the proper way to represent them. An intermedi-
ate stage, typified by Dickson (1901a), was to allow group elements to be
linear transformations, defined by linear equations.

The concept of finite field goes back to Galois, as we have seen, and
indeed Galois discovered more than the finite fields Fp mentioned in Sec-
tion 19.8 and used by Jordan (1870) to define linear groups. Along with the
field Fp whose elements are 0, 1, 2, . . . , p − 1 under addition and multipli-
cation mod p, there is field Fpn , for each natural number n, whose elements
are polynomials of degree n−1 with coefficients in Fp. For example, the el-
ements of the field F4 are 0, 1, x and x+1 under the obvious mod 2 addition
and multiplication, with the additional rule that x2 + x + 1 = 0.

It follows that there are fields with 4, 8, and 9 elements, because 4 = 22,
8 = 23, and 9 = 32. Transformations of the projective lines over these fields
give us a new simple group, not noticed by Jordan, and two old ones:

• PSL(2, 4) = PGL(2, 4) has 5 · 4 · 3 = 60 elements, and it happens to
be isomorphic to A5.

• PSL(2, 9) has 10 · 9 · 8/2 = 360 elements, and it happens to be
isomorphic to A6.

• PSL(2, 8) = PGL(2, 8) has 9 · 8 · 7 = 504 elements, and it is a new
simple group, discovered by Cole (1893).
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Cole’s construction of a simple group from a field with a nonprime
number of elements sparked the investigation of Moore (1893), showing
that every finite field is isomorphic to one of the Galois fields Fpn , and that
all the groups PSL(2, pn) are simple when p > 3 and n > 1. In fact, all
the groups PSL(2, pn) are simple when pn > 3, and indeed PSL(m, q) is
simple for all m, q ≥ 2 except (m, q) = (2, 2) and (2, 3). This was proved
by Dickson (1901a), using a definition of PSL(m, q) as a certain group of
linear transformations in m variables. Today, we define PSL(m, q) as the
group of m × m matrices, with entries in Fq, and determinant 1, quotiented
by the subgroup consisting of the identity matrix and its negative.

At this point in history, linear groups were better understood than the
spaces they “transform.” Geometry caught up in 1905 when Veblen de-
fined the m-dimensional projective space over the field Fq (see Veblen and
Bussey (1906)). And projective geometry was not the only kind of geom-
etry that could be “finitized” by replacing the underlying number line by
a finite field. Groups like the “rotation group of Rn” were also found to
have finite counterparts, which typically were simple groups. It seemed
then, that further progress in the investigation of finite simple groups de-
pended on a better understanding of continuous groups, such as groups of
rotations. We take up this viewpoint in Section 23.3. It turns out to be
amazingly fruitful, but it does not account for all finite simple groups.

Even before continuous groups were seen to yield many finite groups,
five mysterious finite simple groups emerged from nowhere in the 1860s.
They are now known as the Mathieu groups, after their discoverer Émile
Mathieu. They do not arise as finite-field analogues of continuous groups.
100 years were to elapse before their exceptional nature was realized.

Exercises

We investigate F4 by naming its elements 0, 1, x, x + 1 and finding their ad-
dition and multiplication tables. These enable us to determine the basic linear
fractional functions y �→ y + l, y �→ ky for k � 0, and y �→ 1/y on the projective
line F4 ∪ {∞}.
23.1.1 Check that the elements of F4 have the following addition and multiplica-

tion tables (omitting the obvious results for multiplication by zero):

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 1 x x + 1
1 1 x x + 1
x x x + 1 1

x + 1 x + 1 1 x
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23.1.2 With the help of these tables, or otherwise, show that the functions y �→
y+1, y �→ ky for k � 0, and y �→ 1/y on F4∪{∞} are all even permutations.

23.1.3 Deduce from Exercise 23.1.2 that PGL(2, 4) = PSL(2, 4) has 5 · 4 · 3 = 60
elements. Why does this imply that it is isomorphic to A5?

In the following exercises it may be helpful to look again at Section 19.8 for
the geometric meaning of PGL(2, 7) and PGL(2, 11).

23.1.4 Find odd permutations in PGL(2, 7) and PGL(2, 11).

23.1.5 Deduce that the subgroup of even permutations in PGL(2, 7) has 168 el-
ements and that the subgroup of even permutations in PGL(2, 11) has 660
elements.

23.1.6 Show that no symmetric groups have size 336 or 1320.

23.2 The Mathieu Groups

Back in the middle of the 19th century, when all groups were viewed as
permutation groups, a burning question was how “transitive” a group G
may be. If the elements of G permute a certain set S , then G is called 1-
transitive if any member of S may be sent to any other member of S by a
permutation in G, 2-transitive if any ordered pair of members of S may be
sent to any other ordered pair of members of S by a member of G, and so
on.

The symmetric group S n, whose members are all the permutations of
{1, 2, . . . , n}, is k-transitive for each k ≤ n. This is clear, because any k-
tuple (a1, a2, . . . , ak) of numbers ≤ n may be sent to any other such k-tuple,
(b1, b2, . . . , bk), by a permutation σ of {1, 2, . . . , n} such that

σ(a1) = b1, σ(a2) = b2, . . . , σ(ak) = bk

The alternating group An is also k-transitive, for odd numbers k ≤ n, as
may be easily proved (exercise).

But except for these obvious examples, highly transitive groups are
hard to find. The best result in this direction was discovered by Mathieu
(1861, 1873), who found four permutation groups that are 4- or 5-transitive,
and a related group that is 3-transitive. Remarkably, the Mathieu groups
are also simple, which earns them their place in this chapter. They were
the first simple groups to be discovered outside the infinite families of al-
ternating and projective groups.
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The five Mathieu groups are called M11,M12,M22,M23, and M24—the
subscript denoting the number of objects being permuted. The transitivity
and order (number of elements) of each is given in the following table.

Group Transitivity Order
M11 4 11 · 10 · 9 · 8
M12 5 12 · 11 · 10 · 9 · 8
M22 3 22 · 21 · 20 · 16 · 3
M23 4 23 · 22 · 21 · 20 · 16 · 3
M24 5 24 · 23 · 22 · 21 · 20 · 16 · 3

We now know that the Mathieu groups M11,M12,M23 and M24 are the
only 4- and 5-transitive finite groups, other than S n and An. This became
known for certain only after all the finite simple groups had been found,
in the 1980s. However, the existence of these extreme objects implies the
existence of extreme objects in other parts of mathematics, some of which
were observed independently. Perhaps the most spectacular was a mani-
festation of M23 and M24 known as the Golay code.

Coding theory developed in the 1940s, in response to mathematical
problems of “communication in the presence of noise.” Most communica-
tion suffers from errors due to noise, so the question arises, what is the best
way to encode messages so that errors can be detected and corrected?

Typically, a message is broken into “characters,” which are sequences
of 0s and 1s (binary sequences) of a certain fixed length k. The sequences
chosen to be characters make up the code. It is crucial that not all sequences
of length k belong to the code, so that a (not too large) number of erroneous
digits will produce a k-digit sequence not in the code, thus revealing that
an error has occurred. Moreover, if any two characters in the code differ in,
say, d or more digits then we can correct a k-digit sequence σ with fewer
than d/2 errors by replacing it by the (unique) sequence τ in the code that
differs for σ in fewer than d/2 digits.

Obviously, one can detect and correct errors by sending each character
twice, or three times, but this greatly increases the length of the message.
The goal of coding theory is to attain the maximum amount of error correc-
tion with the minimum increase in the length of the message. That is, for a
given d, and a given number of characters, one wants k as small as possible.
For example, for d = 3 it is known that k = 7 is the minimum length one
can use to get 16 characters, and this is achieved by the following code:
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0000000 0100101 1000110 1100011
0001111 0101010 1001001 1101100
0010011 0110110 1010101 1110000
0011101 0111001 1011010 1111111

This code is due to Hamming (1950), and it is known as the Hamming
(7, 4) code. An even more remarkable code is the amazing (23, 12) code
of Golay (1949). The Golay code consists of 212 = 4096 binary sequences
of length 23, any two of which differ in at least seven digits (so that three
erroneous digits can be corrected).

If we view 0 and 1 as elements of the field F2, then the Golay code is a
highly symmetric set of 4096 points in the 23-dimensional space F23

2 . The
symmetries of the code can be realized by a group of linear transformations
of the space F23

2 , and this symmetry group turns out to none other than
M23. The group M24 turns up nearby, as the symmetry group of a related
subset of F24

2 , the so-called extended Golay code consisting of 4096 binary
sequences of length 24, any two of which differ in at least seven digits.
These discoveries are due to Paige (1957) and Assmus and Mattson (1966).

The connection with coding theory led to renewed interest in the Math-
ieu groups, culminating in the discovery of new finite simple groups in the
1960s, as we will see. But first it was necessary to attain a better un-
derstanding of the “old” simple groups, and their relation to the so-called
“continuous” groups.

Exercises

Transitivity is an important feature in projective geometry, where any three
points may be projected to any three points on a projective line, as Figure 23.1
suggests. It follows that the group of linear fractional transformations of RP1 is
3-transitive.

P

Figure 23.1: Projecting three points to three points

23.2.1 Verify this result algebraically, and explain why the argument is valid for
the finite projective groups PGL(2, q).
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23.2.2 Deduce from Exercise 23.2.1 that the subgroup PSL(2, q) of even permu-
tations in PGL(2, q) is 3-transitive.

The first two Mathieu groups are called sharply transitive, because of the
following property.

23.2.3 Show that M11 has the smallest possible size for a 4-transitive group that
permutes 11 objects, and that M12 has the smallest possible size for a 5-
transitive group that permutes 12 objects.

The Hamming (7, 4) code and the Golay (23, 12) code are known as perfect
codes, for the following reasons. The “one-error-correcting” property of the Ham-
ming code means that each element of the 7-dimensional space F7

2 not in the code
differs from a unique code member in one or more digits. What makes the Ham-
ming code perfect is that, in fact, each element of F7

2 not in the code differs from a
unique code member in exactly one digit. To put this another way: if we define the
1-neighborhood of a code member τ to consist of those σ in F7

2 that differ from τ
in at most one digit, then the 16 1-neighborhoods of code members fill the space
F

7
2 without overlapping.

23.2.4 Show that the 1-neighborhood of any member of the Hamming code has
eight elements, and deduce that the Hamming code is perfect.

We similarly define the 3-neighborhood of a member τ of the Golay (23, 12)
code to consist of those σ in F23

2 that differ from τ in at most three digits.

23.2.5 Show that the 3-neighborhood of any member of the Golay (23, 12) code
has 211 elements, and deduce that the Golay (23, 12) code is perfect.

23.3 Continuous Groups

The theory of continuous groups was created by the Norwegian mathemati-
cian Sophus Lie in the 1870s. Initially, his goal was to develop a theory of
differential equations like the Galois theory of polynomial equations. He
saw that each differential equation has a group, analogous to the Galois
group but “continuous” rather than finite, and that “simple” groups present
an obstacle to solvability. Thus his attention quickly shifted to the problem
of classifying continuous groups and (particularly) identifying the simple
groups among them.

The definition of a “continuous group”—or what we now call a Lie
group—is somewhat subtle, as is the definition of “simple” for these groups.
Here we are content merely to give a few examples, and to prove simplicity
of one of them. For a more thorough, but still elementary, account see
Stillwell (2008).
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The most easily understood example of a continuous group is the num-
ber line R, under the operation of addition. This group is “continuous” in
the sense that the group operation x, y �→ x + y, and also the group inverse
operation x �→ −x, is a continuous function. A related example is the unit
circle

S
1 = {z : |z| = 1}

in the plane of complex numbers, under the (obviously continuous) oper-
ation of multiplication of complex numbers. S1 is also called SO(2), the
first in a family called the special orthogonal, or rotation, groups. We can
interpret a member z of SO(2) as a rotation of the plane, because

z = cos θ + i sin θ, for some θ,

and multiplying each complex number by z rotates the plane C about O
through angle θ. Thus the group operation in SO(2) can also be viewed as
addition of angles, which is another way to see that SO(2) is continuous.

Both R and SO(2) are abelian groups, so they are not very interesting.
The first really interesting continuous group is SO(3), the rotation group

of the three-dimensional space R3. If we take a rotation r of R3 to be given
by an axis A through O and a turn of angle θ about A, then it is not even
obvious that the space rotations form a group. Given a rotation r with axis
A and angle θ, and a rotation s with axis B and angle ϕ, can we be sure
that the combination sr even has a well-defined axis C and angle χ? The
answer (yes) was apparently first found by Euler (1776), but we can now
find this answer much more easily. The trick is to view each rotation as a
product of two reflections, as shown in Figure 23.2.

The left picture in the figure shows a pair of lines in the plane, L and
M, meeting at O at angle θ/2. If a point X is reflected in L (to X′), then
inM (to X′′), the angle between X and X′′ is clearly θ . More generally,
it is clear that a rotation about any point Y through angle θ can be realized
by successive reflections in any two lines through Y meeting at angle θ/2
(measured in the appropriate sense). The same is true for rotation of a
sphere, and hence of R3, about any axis. To rotate through angle θ about
the axis YY ′ (right picture) it suffices to reflect in any two great circles
through Y and Y ′ that meet at angle θ/2. Equivalently, one reflects the
sphere in any two planes that meet along the line YY ′ at angle θ/2.

Now suppose that we want to find the result of performing rotation r
of the sphere, with axis through P and angle θ, then rotation s with axis
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O
θ/2 L

M

θ

X

X′

X′′
Y

Y ′

θ/2
L

M

Figure 23.2: Rotation via a pair of reflections

through Q and angle ϕ. Making use of our freedom to choose the great cir-
cles of reflection, we realize r by the pair of reflections in the great circles
L and M through P that are angle θ/2 apart, where M passes through P
and Q (Figure 23.3).

P

θ/2

L

Q

ϕ/2

M

R

N

Figure 23.3: Finding the product of rotations

Then we realize s by the pair of reflections inM andN through Q that
are angle ϕ/2 apart. It follows, since successive reflections inM cancel,
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that

sr = reflection in L then reflection inM then

reflection inM then reflection in N
= reflection in L then reflection in N
= rotation about axis RR′ through angle χ,

where R is the third vertex, and χ/2 is the third angle, in the spherical
triangle formed by the great circles L,M, and N .

Thus the product of rotations is a rotation. As always, this “product”
operation is associative, because it is the product of functions. It is also
clear that the inverse of a rotation is a rotation (same axis, negative of the
angle), so the rotations form a group under the product operation. Finally,
it is intuitively clear that the product and inverse depend continuously on
the position of the axis and the angle of rotation. So this group SO(3) is
continuous. In the next section we will see that continuity is crucial in
proving that SO(3) is a simple group.

Exercises

Another important Lie group, closely related to SO(3), is the group of unit
quaternions

q = a + bi + cj + dk, where a2 + b2 + c2 + d2 = 1,

under the operation of quaternion multiplication.

23.3.1 Use the properties of quaternion norm and inverse, from the exercises to
Section 20.5, to show that the unit quaternions form a continuous group.

As a geometric object, the group of unit quaternions is known as the 3-sphere
S

3, because it consists of the points at unit distance from O in R4. As a group, it is
known as SU(2), where SU stands for “special unitary” and the 2 is there because
each quaternion may be viewed as a 2 × 2 complex matrix, as we saw in Section
20.5. There we saw a rather roundabout connection between quaternions and
rotations of the sphere. Here is a more direct one, discovered by Cayley (1845a).

A unit quaternion q effects a rotation of the 3-dimensional space Ri+Rj+Rk
of pure imaginary quaternions

p = bi + cj + dk

by sending each such p to q−1 pq. This fact can be verified as follows.

23.3.2 Show that each unit quaternion may be written uniquely in the form q =
cos θ + u sin θ, for some angle θ and some pure imaginary quaternion u of
unit length.
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23.3.3 Show that, in the notation of Exercise 23.3.2, q−1 = cos θ−u sin θ. Deduce
that q−1aq = a for any real a, and q−1uq = u.

23.3.4 Using the multiplicative norm property |q1q2| = |q1||q2| from the exercises
in Section 20.5, and the fact that |r − s| is the distance between any two
quaternions r and s, show that multiplication by any unit quaternion q pre-
serves distance.

It follows that p �→ q−1 pq maps the 3-dimensional space Ri + Rj + Rk onto
itself and fixes the line of real multiples of u. This map is in fact a rotation of
Ri + Rj + Rk with axis u. We can verify this fact, and at the same time find
the angle of rotation, by observing what the map p �→ q−1 pq does to a pair of
perpendicular unit vectors v, w in Ri + Rj + Rk that are also perpendicular to u.

23.3.5 Explain, using Exercise 20.5.4, why we can assume that uv = w, vw = u,
wu = v, uv = −vu, vw = −wv, and wu = −uw.

23.3.6 Verify that q−1vq = v cos 2θ−w sin 2θ and q−1wq = v sin 2θ+w cos 2θ, and
deduce that p �→ q−1 pq is a rotation through angle 2θ.

Thus the rotation with axis u and angle ϕ may be effected by the map p �→
q−1 pq, where q = cos ϕ2 + u sin ϕ2 . Also, to follow it by the rotation about axis u′

with angle ϕ′ we follow the map by p �→ q′−1 pq′, where q′ = cos ϕ
′

2 + u′ sin ϕ
′

2 .
The result is the map p �→ (qq′)−1 p(qq′), so the product of rotations corresponds
to the product of quaternions.

It seems that SU(2) is pretty much the same group as SO(3). But not quite.
Two unit quaternions correspond to each space rotation. If q effects some rotation,
so does −q, because (−q)−1 p(−q) = q−1 pq. Thus each element of SO(3) actually
corresponds to an antipodal point pair ±q on the 3-sphere of unit quaternions.
Sound familiar? If you recall from Section 8.5 that the “points” of the projective
plane RP2 are antipodal point pairs on the ordinary sphere, then it will be clear
that antipodal point pairs ±q on the 3-sphere should be “points” of the projective
space RP3. Thus SO(3), as a geometric object, is none other than RP3.

23.4 Simplicity of SO(3)

To prove that SO(3) is simple we consider a normal subgroup H � {1}, and
aim to show that H = SO(3). Since H is normal, gH = Hg, and hence
gHg−1 = H, for each g in SO(3). In other words, ghg−1 is in H for each
g in SO(3) and each h in H. This enables us to build many elements of
H from one nontrivial element h, and in fact we can build all elements of
SO(3). We build them in three steps, starting with a specific h with axisA
and nonzero angle θ:
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Step 1. H includes the rotation through angle θ about any axis B.

To see why, let g be a rotation that moves axis A to axis B. Then
ghg−1 is the rotation through angle θ about axis B because

• g−1 moves axis B to the position of axisA.

• h rotates R3 about axisA through angle θ.

• g moves the axis at position A back to its original position B.

Step 2. H includes rotations through all angles in an interval between
some α and β, α < β.

As we know from the previous section, the product of a rotation
r about axis PP′ through angle θ and a rotation s about axis QQ′
through angle θ is a rotation about axis RR′ through angle χ, where
R and χ/2 are as shown in Figure 23.4.

R

χ/2

P

θ/2

Q
θ/2

Figure 23.4: Angle of the product rotation

Now suppose that P is fixed and that Q is allowed to vary continu-
ously along a fixed great circle through P. When Q is near P, so is
R; hence the triangle PQR is almost Euclidean and its angle sum is
close to π. It follows that χ/2 is close to π − θ. As P moves farther
away, the spherical triangle PQR becomes larger, hence so does its
angle sum by Section 17.6, so χ/2 becomes larger. Since χ/2 varies
continuously with the position of Q, it necessarily takes all values in
an interval between some α and β, where α < β.
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Step 3. H includes rotations through any angle.

Since α < β, the interval between α and β includes a subinterval of
the form [2mπ/n, 2(m + 1)π/n], for some integers m and n. Thus it
follows from Step 2 and Step 1 that H includes all rotations, about
some fixed axis B, with angles between 2mπ/n and 2(m + 1)π/n. Of
course, H also includes all products of its members, and hence all
their nth powers—which multiply angles by n. But if we multiply
the angles between 2mπ/n and 2(m + 1)π/n by n we get all angles,
as required.

Applying Step 1 again, we get rotations with all angles and all axes, so H
includes all elements of SO(3), as claimed. �

Lie observed the simplicity of many Lie groups, including SO(3), but
his concepts of “group” and “simplicity” were somewhat different from
ours. In his view, a “group” included “infinitesimal elements,” and he used
these to determine simplicity. Today, we call the “infinitesimal elements”
of a Lie group its tangent vectors at the identity, and we build from them
a separate algebraic structure called the Lie algebra of the Lie group. A
Lie algebra has a “product” operation, called the Lie bracket, that is quite
different from a group operation; for example, the Lie bracket is not asso-
ciative.

Nevertheless, it is a good idea to look at Lie algebras. There is a natural
concept of simplicity for Lie algebras, such that a simple Lie group has a
simple Lie algebra, and testing simplicity is somewhat easier for algebras
than for groups. The downside, if there is one, is that a simple Lie algebra
may not come from a simple Lie group. For example, the group SU(2)
from the previous exercise set has the same Lie algebra as SO(3), so the
Lie algebra of SU(2) is simple. However, the group SU(2) is not simple; it
has a normal subgroup with the elements 1 and −1. The problem is that the
Lie algebra cannot “detect” group elements that are far from the identity
element, so it can miss a normal subgroup whose nonidentity members are
all far away (which is the case for SU(2)). This is not necessarily a bad
thing, and in fact many authors define a Lie group to be simple if its Lie
algebra is simple.

Exercises

For an easily visualized Lie group, such as the circle SO(2) = {z : |z| = 1}, the
tangent space at the identity is also easily visualized, in this case as the vertical line
through 1. To get at the tangent space for a higher-dimensional Lie group, such as
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SO(3) or SU(2), we need to view tangent vectors from “inside” the group. We do
so by taking a tangent vector to be the velocity vector of a moving point as it passes
through the identity element 1. In the case of SO(2), we can see that the velocity
interpretation gives the same result as the geometric tangent interpretation—any
point moving around the circle has velocity in the tangential direction.

For groups such as SU(2), the velocity interpretation allows us to calculate
velocity vectors by differentiation. Here is how. We suppose that q(t) gives the
position of a point in SU(2) as a (differentiable) function of t, with q(0) = 1 for
convenience. Thus the velocity of the moving point as it passes through 1 is q′(0).

23.4.1 Explain why the condition for q(t) to lie in SU(2) is q(t)q(t) = 1.

23.4.2 By differentiating the equation q(t)q(t) = 1, then setting t = 0, deduce that
each tangent vector q′(0) satisfies

q′(0) + q′(0) = 0,

which implies that q′(0) is a pure imaginary quaternion (why?).

Conversely, we can show that each pure imaginary quaternion is a tangent
vector to SU(2).

23.4.3 By choosing p so that q(t) = cos θt + p sin θt is a path in SU(2), show that
each pure imaginary quaternion is a tangent vector to SU(2) at the identity.

Thus the tangent space of SU(2) at the identity is the space Ri + Rj + Rk of
pure imaginary quaternions. So far, we have a nice parallel with SO(2), whose
tangent space at the identity is a vertical line, that is, a line in the imaginary direc-
tion. However, the vectors in a line have very little algebraic potential—they can
only be added and multiplied by real numbers. The vectors in the tangent space
to SU(2), on the other hand, also have an interesting Lie bracket operation that
reflects the conjugation operation u, v �→ uvu−1 in the group SU(2).

To see how conjugation in SU(2) plays out in the tangent space, we consider
two paths, u(s) and v(t), through 1 in SU(2), with u(0) = v(0) = 1. By differentiat-
ing the path

ws(t) = u(s)v(t)u(s)−1

with respect to t we get a path

w′s(0) = u(s)Vu(s)−1 = x(s)

in the tangent space Ri + Rj + Rk, where V = v′(0) is the tangent vector to v(t) at
the identity.

23.4.4 Explain why the tangent vector x′(0) of the path x(s) is also a member of
Ri + Rj + Rk, and show by differentiation that

x′(0) = UV − VU,

where U = u′(0) is the tangent vector to u(s) at the identity.
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Thus we have an operation U,V �→ UV−VU on the tangent space that reflects
conjugation in the group. UV − VU is called the Lie bracket of U and V and is
often written [U,V].

23.4.5 Calculate [U,V] for U,V = i, j, k and hence show directly that [U,V] is in
Ri + Rj + Rk for any U and V in Ri + Rj + Rk.

23.4.6 Show that, if i′ = i/2, j′ = j/2, and k′ = k/2, then the Lie bracket oper-
ation on i′, j′, k′ satisfies exactly the same relations as the vector product
operation on i, j, k.

Thus the Lie algebra of SU(2), which is what we call the tangent space of
SU(2) under its Lie bracket operation, is essentially the same as R3 with the vector
product operation. It is nice to discover that this Lie algebra is something we
already know.

23.4.7 Why do SO(3) and SU(2) have the same Lie algebra?

23.5 Simple Lie Groups and Lie Algebras

The rotation group SO(3) is the prototype for many other simple Lie groups,
obtained by generalizing the concept of “rotation” in two ways. We can
generalize from rotations of R3 to rotations of Rn, and we can replace R by
C or H.

A rotation of Rn is defined to be a linear transformation of Rn that
preserves length and orientation. If we denote a linear transformation of
R

n by its matrix A, then it turns out that

A preserves length ⇔ AAT = 1,

where AT denotes the transpose of A and 1 denotes the identity matrix. It
follows, by taking the determinant of this equation, that det A = ±1. Such
matrices are called orthogonal, and those with determinant 1 are called
special orthogonal. The latter are the matrices that preserve orientation,
whence the name special orthogonal group SO(n) for the rotations of Rn.

The Lie algebra of SO(n) is denoted by so(n), and its members are
matrices of the form A′(0), where A(t) is a smooth path of matrices through
the identity in SO(n). It follows from the definition of SO(n) that

A(t)A(t)T = 1.

Differentiating this equation with respect to t and using A(0) = 1, one finds
(exercise) that

A′(0) + A′(0)T = 0,
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where 0 is the zero matrix. This means that each matrix A′(0) in so(n) is
skew-symmetric, that is, the entry in row i and column j is the negative of
the entry in row j and column i. In particular, all the diagonal entries are
zero.

Thus the Lie algebra so(n) consists of n × n skew-symmetric matrices
(in fact all of them, as we show for the case n = 3 in the exercises). The Lie
bracket operation that reflects conjugation in SO(n) is [U,V] = UV − VU,
by the same argument that we used for SU(2) in the previous section—
except with matrices U,V instead of quaternions.

All of the Lie algebras so(n), for n ≥ 3, are simple, with the curious
exception of so(4). These results were discovered by Lie in the 1880s,
though in the different language of “infinitesimal” transformations that we
mentioned in the previous section.

Simple Lie algebras reflect the simplicity of the corresponding groups,
or nearly so. SO(4) is definitely not simple; SO(3), SO(5), SO(7), . . . are
simple, while SO(6), SO(8), SO(10), . . . are almost simple in the sense that
the only normal subgroup of each is {1,−1}.

When R is replaced by C there is an analogous group of “rotations”
of Cn called the special unitary group SU(n). Finally, there is an analo-
gous group of “rotations” of Hn called the symplectic group Sp(n). The
Lie algebras of these generalized rotation groups are denoted by su(n) and
sp(n) respectively. Lie also found them to be simple, so the corresponding
groups SU(n) and Sp(n) are “almost simple.” For each of these groups, the
largest normal subgroup is finite, so its nonidentity elements are not near
the identity, and hence they are not detected by the Lie algebra.

It is a remarkable fact that the simple Lie algebras found by Lie include
all but five of the simple Lie algebras in existence. The five exceptions were
discovered by Killing (1888) and Cartan (1894). (Cartan showed that two
Lie algebras that Killing believed to be distinct are actually identical, and
he filled some gaps in Killing’s proofs.) These exceptional Lie algebras,
and the corresponding groups, had not been suspected by Lie, and Killing’s
discovery of them is considered by many to be one of the greatest mathe-
matical achievements of all time. (See, for example, the paper of Coleman
(1989).) Certainly, it was one of the greatest mathematical achievements
of the 19th century.

The five exceptional Lie algebras are called G2, F4, E6, E7, and E8, and
these names are also given, somewhat loosely, to the corresponding groups.
The algebras G2, F4, E6, E7 and E8 are of dimension 14, 52, 78, 133, and



23.5 Simple Lie Groups and Lie Algebras 511

248 respectively. In an extraordinarily apt way they extend Lie’s classical
families of Lie algebras arising from spaces with R, C, and H coordinates,
because they arise from the octonions O. The classical families are infinite
because the classical spaces can have arbitrary dimension n but, as was
mentioned in Chapter 20, O is different because it does not support a pro-
jective space of dimension n ≥ 3. Indeed, all five exceptional Lie algebras
and their groups are connected to O and the octonion projective plane OP2.

The first to point out a connection between exceptional Lie groups and
O was Cartan (1908), who observed that the 14-dimensional group G2 is
the group of automorphisms of O. Automorphisms are the invertible map-
pings ϕ of O onto itself such that

ϕ(u + v) = ϕ(u) + ϕ(v) and ϕ(uv) = ϕ(u)ϕ(v) for all u, v in O.

(By way of precedent for this result, it is worth mentioning that SO(3) is
the automorphism group of H. Each automorphism of H is in fact a rota-
tion of the space of pure imaginary quaternions.) The octonion projective
plane OP2 has two natural groups of transformations: the group of trans-
formations that preserve length, which happens to be F4; and the group of
transformations that preserve straight lines, which happens to be E6. The
groups E7 and E8 also arise from OP2, but in a way that is too complicated
to describe here. An almost magical web of relationships between O and
the exceptional Lie groups was worked out by Freudenthal (1951) and Tits
(1956).

Exercises

As an example of matrix differentiation, consider the following path of matri-
ces in SO(3):

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos t − sin t 0
sin t cos t 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

23.5.1 Describe the space rotation represented by A(t).

23.5.2 By computing A′(0), show that

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0
1 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ is in so(3).

By finding other suitable matrices in SO(3), show also that so(3) includes
the matrices

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 −1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Now we apply a basic rule of differentiation, the product rule, which works even
when products are noncommutative.

23.5.3 By imitating the usual proof of the product rule, show that

d
dt

A(t)B(t) = A′(t)B(t) + A(t)B′(t).

23.5.4 Deduce from Exercise 23.5.3 that A′(0)+A′(0)T = 0 for a path A(t) through
the identity 1 in SO(3) with A(0) = 1.

23.5.5 Suppose that A(t) and B(t) are paths through the identity 1 in SO(3), with
A(0) = B(0) = 1. Show, by differentiating A(t)B(t) and A(rt), that so(3) is
closed under sums and multiples by real numbers r.

It follows from Exercises 23.5.2 and 23.5.5 that so(3) includes all the real
skew-symmetric matrices

xI + yJ + zK =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −x −y
x 0 −z
y z 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Now we investigate the Lie bracket, [U,V] = UV − VU, of such matrices.

23.5.6 Verify that [I, J] = K, [J,K] = I, [K, I] = J, and hence explain why the
matrices xI + yJ + zK, under the Lie bracket operation, behave the same as
the vectors xi + yj + zk under the vector product.

This confirms the isomorphism between so(3) and the vector product alge-
bra, previously noticed in Exercise 23.4.7 via the isomorphism between su(2) and
so(3). Now we use properties of the vector product to confirm that so(3) is simple.
But first, what should it mean for a Lie algebra to be “simple”?

It follows from the parallel between conjugation in a Lie group G and the Lie
bracket in its Lie algebra g that a normal subgroup H of G (which is closed under
conjugation by all elements of G) corresponds to a subspace h of g that is closed
under Lie brackets with all elements of g. Such a subspace is called an ideal,
because it is roughly analogous to an ideal in a ring (Section 21.4). Continuing
the parallel, we call a Lie algebra simple if its only ideals are {0} and itself.

It follows that a simple Lie group G always has a simple Lie algebra g. How-
ever, it is often easier to prove the simplicity of g directly. This is the case for
so(3), when we view it as the vector product algebra.

23.5.7 Suppose that I is an ideal of the vector product algebra Ri + Rj + Rk that
includes a nonzero element xi + yj + zk. By taking vector products with
suitable elements of Ri + Rj + Rk, show that I also includes an element ri
for some real r � 0.

23.5.8 Deduce from Exercises 23.5.5 and 23.5.7 that I = Ri + Rj + Rk, so so(3)
is simple.
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23.6 Finite Simple Groups Revisited

The classification of simple Lie algebras, by Lie, Killing, and Cartan,
breathed new life into the search for finite simple groups. The idea of
inserting finite fields in place of the fields, R and C, previously known
for projective groups, could now be applied to many other continuous
groups. Dickson (1901a,b) found infinite families of new simple groups
corresponding to the infinite families found by Lie, and also an infinite
family corresponding to the exceptional group G2. Four years later he also
found an infinite family corresponding to E6. Then there was a hiatus for
nearly 50 years, before the story of these finite groups of Lie type was
finally wrapped up in the 1950s, mostly through the work of Chevalley
(1955).

The general picture of the finite simple groups at that time was quite
similar to that of the simple Lie algebras, only larger. Most of the finite
simple groups fell into infinite families: the cyclic groups of prime order,
the alternating groups An for n ≥ 5, and an infinite family for each simple
Lie algebra (with members corresponding to finite fields). Since each ex-
ceptional Lie algebra spawns an infinite family of finite simple groups, any
finite simple groups outside the infinite families are even more exceptional
than the exceptional Lie algebras. They are called sporadic simple groups,
following Burnside (1911), who referred to the Mathieu groups by that
name. As of 1960, the Mathieu groups remained the only known sporadic
groups, having stubbornly resisted classification for almost 100 years.

It turned out that 21 more sporadic groups remained to be discovered,
and it took heroic efforts to bring them to light and to prove that no other
finite simple groups exist.

Mathematicians began to realize the difficulty of existence questions
for simple groups with the publication of Feit and Thompson (1963). Feit
and Thompson gave a negative answer to a question raised by Burnside in
1911: is there a nonabelian simple group of odd order? Burnside’s question
was a natural one to ask, because all the known nonabelian simple groups
had even order. (As we have seen, the first few have orders 60, 168, 360,
504, 660, . . . .) But, to answer it, Feit and Thompson had to devise a mas-
sively intimidating argument that filled 255 pages. This length of proof was
unprecedented in group theory—and perhaps anywhere in mathematics—
but it was only the beginning. Before the classification of finite simple
groups was over, the experts had to digest proofs of over 1000 pages.
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And alongside theorems like those of Feit and Thompson—asserting
that broad classes of groups do not include simple groups—were equally
grueling searches for the tiny places where simple groups were still allowed
to exist, like flowers growing through cracks in the pavement.

The first finite simple groups to be discovered in nearly 100 years were
found by Janko in 1965. Janko was trying to prove that there are no simple
groups in a certain class, but his attempt ran into an obstacle that he eventu-
ally recognized as a new simple group—one of order 175,560—now called
J1. It was the first, and smallest, of four simple groups eventually discov-
ered by Janko, and now called J1, J2, J3, J4.

Another remarkable family of simple groups was discovered by Con-
way in 1967. Conway’s starting point was in the neighborhood of the
Mathieu groups M23 and M24, and the Golay codes. As we mentioned
in Section 23.2, the extended Golay code is a highly symmetric subset of
the space F24

4 whose points are 24-tuples with coordinates 0 or 1. The
symmetry group of this set is M24. We can also use M24 to construct a
highly symmetric set of points with integer coordinates in the “ordinary”
24-dimensional space R24. This was done by Leech (1967), and his highly
symmetric set is now called the Leech lattice. (A “lattice” in this context
means a set of integer points such that the vector sum of any two points is
also in the set.)

Leech tried to interest group theorists in the symmetries of his lattice,
but with little success. Conway was not a group theorist, but he decided
to set aside a little time on the Leech lattice each week, because his other
work was not going anywhere. The very first night he sat down to work on
the problem he made dramatic progress: he found the number

222 · 39 · 54 · 72 · 11 · 13 · 23 = 8,315,553,613,086,720,000,

which he believed to be the order (or, possibly, twice the order) of a new
simple group. With some trepidation, he phoned Thompson and told him
the number, because Thompson’s mastery of group theory was such that he
could recognize a potential simple group from its order alone. Sure enough,
Thompson phoned back in 20 minutes, confirming that Conway needed to
halve the number to get a simple group, and adding that there were two
other potential simple groups in its vicinity. Six hours later, Conway found
the first group, and went to bed. Within a week, he had found the other two
groups that Thompson had predicted.

The Leech lattice seems to be some kind of center of attraction in the
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universe of sporadic simple groups, with no fewer than 12 groups in its
gravitational field—the five Mathieu groups, the three Conway groups, and
four others. It reinforces the impression that extreme mathematical objects
tend to cluster together. M24 is an extremely transitive group, the Golay
code is an extremely efficient code, and the Leech lattice is an extremely
dense sphere-packing in R24. That is, if one makes each point of the Leech
lattice the center of a unit sphere, then the spheres just touch, and they fill
R

24 as densely as any lattice arrangement of spheres possibly can. The
Leech lattice was long suspected to have this property, but it was proved
only recently, by Cohn and Kumar (2004).

There are two excellent books that tell more of the Leech lattice story,
from both the mathematical and human points of view: Thompson (1983)
and Ronan (2006). The latter also takes the story of finite simple groups
to its climax, with the discovery of the so-called monster, whose almost
unbelievable properties are discussed in the next section.

23.7 The Monster

The largest sporadic group, and the last confirmed to exist, is a group now
known as the Monster. Its existence was first suspected by Gerd Fischer in
1973, but the Monster lived in mathematical limbo until the 1980s, when
enough became known about it to enable its explicit construction. The first
important fact was its order, found in 1974 by Conway to be

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,

a number that is approximately 1054. The huge size of the Monster was
one thing that made it difficult to approach. If one attempts to view the
Monster as a symmetric object in some space Rn, for example, then the
least dimension that works is n = 196883. This number, incidentally, is the
product 47 · 59 · 71 of the last three primes in the factorization of its order.

When the Monster was finally constructed, by Robert Griess in 1980
(published in Griess (1982)), there was a great deal of relief, but also a
huge accumulation of unfinished business. On the one hand, it remained
to be proved that the list of finite simple groups was now complete. Thou-
sands more pages had to be written before (around 2004) group theorists
became convinced that the job was done, and we do not know whether
there will ever be a really accessible proof. On the other hand, much of the
information gathered about the Monster only added to its mystery.
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The center of the mystery is the number 196883, because its successor,
196884, was a number already known in mathematics, but in a branch with
no apparent connection to the Monster: the theory of the modular function.
We have seen several appearances of the modular function already in this
book: solving the quintic equation in Section 6.7, in the theory of elliptic
functions in Section 12.6, as a function with non-Euclidean periodicity in
Section 16.6, and in the study of quadratic integers in Section 21.6. How-
ever, it is relatively easy to tie these appearances of the modular function
together, as may be seen in the book of McKean and Moll (1997).

The connection between the 196883 of the Monster and the 196884 of
the modular function, first noticed by John McKay in 1978, looks more like
a bizarre coincidence. After all, many 6-digit numbers turn up in mathe-
matics; it is not out of the question for two of them to be close together.
But let us see exactly how 196884 turns up in the modular function j(τ).
The function j(τ) repeats its value when we replace τ by τ + 1, as we have
seen in the exercises to Section 16.5. Thus j(τ) has period 1. Because of
this, j may be expanded in Fourier series, which it is appropriate to write
as a series in powers of

cos 2πτ + i sin 2πτ = e2iπτ = q.

When this is done, it turns out that

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · .
The first such expression for j is due to Hermite (1859) but, ironically,
there is an error and the published expression is

j(τ) = q−1 + 744 + 196880q + · · · .
If this error had gone undetected, perhaps the connection with the Monster
would not have been noticed!

What puts McKay’s observation beyond coincidence is the totality of
coefficients in the series for j(τ). There is a series of numbers describing
the Monster, called its character degrees, which goes 1, 196883, 21296876,
842609326, . . . , and the sum of the first n+ 1 character degrees equals the
coefficient of qn in the series for j(τ), for as many terms as anyone cares
to calculate. Something must explain the agreement between these two
series of numbers, but what? Conway called the unknown theory “mon-
strous moonshine,” drawing on both British and American senses of the
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word “moonshine”: the subject was dimly lit, perhaps illusory, and based
on illegally distilled information.

McKay also observed a connection between the modular function and
the exceptional Lie group E8, and others noticed a connection with the
Leech lattice. Moonshine seems to illuminate many extreme objects.

We now have rational explanations for most of the connections brought
to light by moonshine, using some beautiful new mathematics. A wide-
ranging account of this new mathematics may be found in Gannon (2006).
Most surprisingly, one of its key ingredients comes from physics, and in-
deed from the highly speculative part of physics known as string theory.
This was discovered by Borcherds (1994). String theory is perfectly sound
mathematics, but it is not yet acceptable physics, because no physical traces
of the mathematical objects called “strings” have yet been observed.

This is a curious state of affairs, but perhaps not unprecedented. Con-
sider Kepler’s model of the solar system using nested polyhedra (Section
2.2). The model turns out to be physically false, but there is still nothing
wrong with the regular polyhedra. Indeed, they are useful in other parts of
physics, such as the theory of crystals. Some mathematical physicists hold
out hope that some day even the Monster may be found to play some role
in the physical universe.

Exercises

23.7.1 Check that the sum of the first three character degrees of the Monster
equals the coefficient of q2 in the expansion of the modular function.

The expansion of the modular function led Hermite (1859) to a strange nu-
merical result:

eπ
√

163 = 262537412640768744

(an integer!) correct to 12 decimal places. In Hermite’s time, it would have been
very hard work to show that eπ

√
163 is not an integer by brute calculation. But

Hermite knew that eπ
√

163 must differ from an integer by a very small amount,
thanks to a remarkable result discovered by Kronecker (1857): if the integers in
Q[
√−N] have unique prime factorization, then j(

√−N) is an ordinary integer.
Kronecker’s result stems from the connection between the modular function and
lattice shapes, mentioned briefly in Section 21.6.

The largest value of N for which the integers in Q[
√−N] have unique prime

factorization happens to be N = 163. This instance of unique prime factorization
was known to Hermite, so he knew that

j
(
any integer in Q[

√−163]
)
= an ordinary integer.
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23.7.2 Show that τ = (1 − √−163)/2 is an integer of Q[
√−163] by finding the

quadratic equation that τ satisfies.

23.7.3 By substituting τ = (1 − √−163)/2 in the series for j(τ) in powers of
q = e2πτ, show that eπ

√
163 = integer − tiny number.

23.7.4 Verify that the integer in Exercise 23.7.3 equals (640320)3 + 744.

23.8 Biographical Notes: Lie, Killing, and Cartan

Sophus Lie was born on December 17, 1842, in the small farming com-
munity of Norfjordeid in Norway. His father, Johan Herman Lie, was a
Lutheran pastor and former teacher, his mother the former Mette Maren
Stabell from Trondheim. Sophus was the youngest of their six children.
Johan taught his children music, languages, history, and geography, but it
appears that Sophus first learned mathematics from his Aunt Edle.

At the end of 1850 Johan received a posting to Moss, a port in south-
eastern Norway near Oslo (then known as Christiania). During the family’s
move to Moss they were lucky enough to observe a total eclipse of the sun,
on July 28, 1851. Sophus went to Nissen’s Latin School in Christiania in
1857, to prepare for university, and he entered the University of Christiania
in 1859. Figure 23.5 shows him during his student days.

Figure 23.5: Sophus Lie
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Lie enjoyed his time as a student, becoming a keen gymnast, hiker,
and climber, and an active member of the Science Students Association.
He does not seem to have had a special interest in mathematics, but in
1862 he was taught by the mathematician Ludvig Sylow, who planted some
seeds of Lie’s future mathematical development. Sylow made pioneering
contributions to group theory and taught one of the first courses in Galois
theory, in which Lie was in an audience of just two or three students. Lie
was more interested in differential geometry at this time—he gave a talk
on evolutes to the Science Students Association in 1863—but the idea that
solvable equations have “solvable groups” lodged in the back of his mind.

As Lie was winding up his science studies in 1864, Norway was in a
period of nationalist turmoil. Relations with Sweden and Denmark were
tense, and many students enrolled in officer training school. Lie himself
considered a military career, but eventually dropped the idea because of his
weak eyesight. He experienced a period of depression in 1866, but picked
up enough in 1867 to give some public lectures on astronomy. Then in
1868 he reached a turning point, beginning a serious study of geometry
with a growing conviction that group theory was going to be important.

In 1869 Lie traveled to Germany and France to further his studies of
geometry. Around October 24 he crossed paths with the 20-year-old Felix
Klein in Berlin. Lie and Klein had a convergence of interests: first in the
work of Klein’s teacher, Julius Plücker, and second in the field they were
both just becoming aware of—group theory.

In 1870 Lie traveled to Paris, where he was joined by Klein. They met
the geometer Gaston Darboux, whose work on the differential geometry of
surfaces was a great inspiration to Lie, and Camille Jordan, a mathemati-
cian of many talents who at that time had just completed his great book
on Galois theory and the associated theory of finite groups, Jordan (1870).
This experience confirmed, for both of them, that their future lay in group
theory. However, they took different paths; Lie into the theory of continu-
ous groups and Klein into the theory of discrete groups.

In July 1870 the Franco-Prussian war broke out, and Klein had to leave
immediately for Germany. Lie stayed a little longer, since Norway was
neutral in the war, but in August he was mistaken for a German spy and ar-
rested. The mathematical symbols in his notes were thought to be a secret
code. He spent four weeks in prison before he was able to convince the au-
thorities that he was indeed a mathematician, partly due to the intervention
of Darboux.
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After this close shave, Lie quickly left France but continued to travel
in Italy and Germany, including a reunion with Klein in Düsseldorf. He
returned to Christiania in December, becoming something of a celebrity
because of his adventures in France. In 1871 he was awarded a doctorate
from the University of Christiania and in 1872 he was appointed professor
of mathematics, a position he held until 1886. During this period, Lie
laid the foundations of his theory of continuous groups, single-handedly
discovering the main theorems of the subject. He also found time to co-
edit Abel’s collected works (with Sylow) and to marry Anna Birch and
father three children.

Nevertheless, Lie was isolated in Norway, and disappointed by the little
recognition that he received. This was partly due to the novelty of his
work, but also due to lack of clarity on Lie’s part. In 1884, Klein had the
happy idea of sending his recently graduated student Friedrich Engel from
Leipzig to Christiania as Lie’s assistant. Engel proved to be the ideal editor
for Lie, and together they produced three massive volumes on the theory of
“transformation groups” between 1888 and 1893. In the meantime, Klein
left Leipzig for Göttingen in 1886 and Lie was appointed to replace him,
so his fruitful collaboration with Engel continued in Leipzig—for a while.

Lie never became really comfortable with the German language and
culture. His workload was heavy and he missed the landscape of Norway.
In 1889–1890 he suffered another bout of depression and was hospitalized
for seven months. Around this time his relationships with Engel and Klein
broke down, and they never completely recovered. In the preface to the
final volume of his book on transformation groups Lie wrote:

I am no pupil of Klein’s, nor is the reverse the case, although
it might be closer to the truth.

Whatever Klein may have felt about this slight, it did not stop him from
recommending Lie for the inaugural Lobachevsky Prize, offered by the
Kazan Scientific Society in 1897. Lie won, and was thus able to return to
Christiania in triumph. However, his health was failing, so he had little
time to enjoy his homecoming. He died of pernicious anemia in 1899.

For more details of Lie’s life, particularly his life outside mathematics,
see the excellent biography of Stubhaug (2002).

Wilhelm Killing was born on May 10, 1847 in the west German town
of Burbach, where his father was a legal clerk and his mother Katharina
was the daughter of a pharmacist. Until the late 1880s his career and Lie’s
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ran on almost parallel tracks—neither being aware of the other’s work—
until Killing’s great discovery of the exceptional Lie algebras.

Killing spent his early life in a series of towns in the Westphalia region
of Germany near his birthplace. He attended high school in Brilon in 1860
and commenced university studies in Münster in 1865. However, the level
of instruction in Münster was then quite low and Killing was largely self-
taught. Like Lie, he was particularly impressed by the works of Plücker.
Seeking a better education, he moved to Berlin in 1867, where Weierstrass
and Kummer were at the height of their powers. Under the direction of
Weierstrass, Killing completed a thesis on families of second-degree sur-
faces in 1872.

In Berlin he also met Anna Commer, the daughter of a professor at the
Academy of Art. They were married in 1875 and eventually had four sons
and two daughters.

Killing was full of admiration for Weierstrass, but this did not mean
that he wanted to become a research mathematician. Weierstrass himself
spent many years as a high school teacher, and Killing did likewise. He
interrupted his studies in 1870–1871 to teach in a high school in the town
of Rüthen, where his father had become mayor. The school was on the
point of collapse due to lack of teachers, and Killing spent up to 36 hours
per week in the classroom, teaching or tutoring in all subjects. This delay
of one year was a stroke of luck, however, because he returned to Berlin
just as Weierstrass was turning his attention to non-Euclidean geometry.
Killing became fascinated by spaces of constant curvature, and started to
do research on them even as he left Berlin to become a high school math-
ematics teacher. In 1879 he was back teaching in the very school in Brilon
where he had been a student.

Killing’s spare-time research enabled him to publish a couple of papers,
and this led him to a new job. On the recommendation of Weierstrass,
he was appointed to the Lyceum Hosianum—a school for the training of
Catholic priests—in the remote East Prussian town of Braunsberg in 1880.
In this unlikely setting, out of touch with other mathematicians, Killing
gradually uncovered a strange new world. Non-Euclidean geometry led
him to ask what forms of space could support the concepts of geometry,
which led him in turn to groups of transformations and their tangent spaces.
Independently of Lie, he had discovered what we now call Lie algebras.

Like Lie, Killing discovered that the generalized rotation groups have
simple Lie algebras. But unlike Lie, he noticed that the rotation groups
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do not account for all possible simple algebras. The two mathematicians
became aware of each other in 1884, through Felix Klein. Lie was dismis-
sive of Killing’s work, though Engel praised it, and Engel’s encouragement
probably helped Killing to press on to his discovery of the five exceptional
algebras. For a blow-by-blow account of this episode, and more details of
Killing’s life, see Hawkins (2000), Chapters 4 and 5. Figure 23.6 shows
Killing in 1889, around the time that he published his discoveries.

Figure 23.6: Wilhelm Killing

Killing returned to Münster in 1892 as professor of mathematics, and
later became rector of the university. He spent the rest of his life in teach-
ing, administration, and charitable work. Fittingly, his research was recog-
nized by the second Lobachevsky Prize, in 1900. He died on February 11,
1923.

Élie Cartan was born on April 9, 1869, in Dolomieu in eastern France,
near Lyon. He was the son of Joseph Cartan, the village blacksmith, and
Anne Cottaz. While in primary school he was noticed by Antonin Du-
bost, a school inspector (and later a prominent politician). Dubost obtained
funds for Élie to study at a high school in Grenoble and later at the École
Normale Supérieure, which he entered in 1888. In 1894 he obtained his
doctorate from the École Normale with one of the most famous theses of
all time, Sur la structure des groupes simples finis et continus.

In his thesis, Cartan gave the first complete proofs of Killings’s results
on the exceptional Lie algebras, correcting some errors made by Killing. In
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particular, it was really Cartan who found that there are five exceptions—
Killing had listed six, but he failed to notice that two of the algebras on his
list were isomorphic. Because Cartan was the first to produce a complete
and correct proof of Killing’s result, many later authors ignored Killing’s
work and attributed some of his key ideas to Cartan. Cartan himself gave
Killing full credit, but Killing’s eclipse was perhaps unavoidable, as Cartan
went from strength to strength.

In 1903 he was appointed professor at the University of Nancy and in
1904 he married Marie-Louise Brianconi. They eventually had three sons
and a daughter. Two of the sons died tragically in their youth, but the oldest
son, Henri, became a prominent mathematician and died as recently as
2008, at the age of 104. Thus only two mathematical generations separate
us from the world of mathematics in 1869, before the discovery of Lie
groups. Many of the changes that have taken place since 1869 are due to
the Cartans, father and son.

Élie Cartan moved to Paris in 1909, and began a long career at the
Sorbonne; first as a lecturer, then in 1912 as professor of differential and
integral calculus, in 1920 as professor of rational mechanics, and in 1924
as professor of higher geometry. He retired in 1940 and died on May 6,
1951. Figure 23.7 is a picture of him taken around 1930.

Figure 23.7: Élie Cartan
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As his accumulation of chairs suggests, Cartan brought the theory of
Lie groups into full bloom, uniting it with differential geometry and math-
ematical physics. Cartan also brought to light connections with hypercom-
plex numbers and topology that were not dreamed of in the 19th century.
Nice examples are the Lie groups that occur in the complex numbers and
quaternions, because multiplication of complex numbers and quaternions
are continuous group operations.

As mentioned in the exercises to Section 23.4, the complex numbers of
absolute value 1 are closed under multiplication and they form a Lie group
homeomorphic to the circle, or “1-sphere,” S1. Similarly, the quaternions
of absolute value 1 form a Lie group homeomorphic to the 3-sphere S3. So
S

1 and S3, which are well known as geometric or topological objects, can
also be viewed as Lie groups. The surprise is that they are exceptional in
this respect. Using methods of algebraic topology, Cartan (1936) proved
the remarkable result that S1 and S3 are the only spheres with a continuous
group structure.

Élie Cartan’s fame in Lie theory is matched by his fame in differen-
tial geometry and mathematical physics, where he introduced not only
Lie groups, but also ideas such as differential forms, moving frames, and
spinors. For more information on his life, and particularly his work, see
Akivis and Rosenfeld (1993).



24

Sets, Logic, and Computation

Preview

In the 19th century, perennial concerns about the role of infinity in
mathematics were finally addressed by the development of set theory and
formal logic. Set theory was proposed as a mathematical theory of infinity
and formal logic was proposed as a mathematical theory of proof (partly to
avoid the paradoxes that seem to arise when reasoning about infinity).

In this chapter we discuss these two developments, whose interaction
led to mind-bending consequences in the 20th century. Both set theory and
logic throw completely new light on the question, “What is mathematics?”
But they turn out to be double-edged swords.

• Set theory brings remarkable clarity to the concept of infinity, but it
shows infinity to be unexpectedly complicated—in fact, more com-
plicated than set theory itself can describe.

• Formal logic encompasses all known methods of proof, but at the
same time it shows these methods to be incomplete. In particular, any
reasonably strong system of logic cannot prove its own consistency.

• Formal logic is the origin of the concept of computability, which
gives a rigorous definition of an algorithmically solvable problem.
However, some important problems turn out to be unsolvable.

It might be thought that the limits of formal proof are too remote to be of
interest to ordinary mathematicians. But in the next chapter we will show
how these limits are now being reached in one of the most down-to-earth
fields of mathematics: combinatorics.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 525
DOI 10.1007/978-1-4419-6053-5 24, c© Springer Science+Business Media, LLC 2010
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24.1 Sets

Sets became established in mathematics in the late 19th century as a re-
sult of attempts to answer certain questions about the real numbers. Our
intuition of the real numbers—that they form a “line” without gaps—is a
mystery that mathematicians have struggled to explain since ancient times.
It underlies the concept of “motion” that Zeno tried to challenge with his
paradoxes; it resurfaced with calculus in the 17th century; and it intruded
into algebra when Gauss used the intermediate value theorem in his 1816
proof of the fundamental theorem of algebra. As we mentioned in Section
14.6, Bolzano (1817) realized that the intermediate value theorem demands
a proof, but he did not have a concept of real number on which a proof
could be soundly based.

Bolzano did, however, realize the need for a completeness property of
R that expresses the absence of gaps. He identified the least upper bound
property, that every bounded set of real numbers has a least upper bound,
and the equivalent nested interval property, that if

a0 < a1 < a2 < · · · < b2 < b1 < b0

then there is a number x such that

a0 < a1 < a2 < · · · ≤ x ≤ · · · < b2 < b1 < b0.

To prove such properties, we have to answer the question, what is a real
number? Several equivalent answers were given around 1870, all involving
infinite sets or sequences. The simplest was that of Dedekind (1872), who
defined a real number to be a partition (or “cut”) of the rational numbers
into two sets, L and U, such that each member of L is less than all members
of U. If one has a preconceived notion of real number, such as a point x
on a line, then L and U are uniquely determined by x as the sets of rational
points to left and right of it, respectively. Thus if x is preconceived, then L
and U are no more than auxiliary concepts that enable x to be handled in
terms of rationals, as Eudoxus did (Section 4.2). Dedekind’s breakthrough
was to realize that no preconceived x was necessary: x could be defined as
the pair (L,U). Thus the concept of sets of rationals was a basis for the
concept of real number.

Dedekind cuts give a precise model for the continuous number line R,
since they fill all the gaps in the rationals. Indeed, wherever there is a gap in
the rationals, the real number that fills it is essentially the gap itself: the pair



24.1 Sets 527

of sets L,U to left and right of it. Other formulations of this completeness
property of R are also easy consequences of Dedekind’s definition. For
example, each bounded set of reals (Li,Ui) has a least upper bound (L,U):
L is simply the union of the sets Li.

Dedekind seemed to have settled the ancient problem of explaining the
continuous in terms of the discrete, but in penetrating as far as he did, he
also uncovered deeper problems. The central problem is that the complete-
ness of R entails its uncountability, a phenomenon discovered by Cantor
(1874). The countable sets are those that can be put in one-to-one corre-
spondence with N = {0, 1, 2, . . .}, and they include the set of rationals and
the set of algebraic numbers, as Cantor also discovered. But if R is count-
able, this means that all reals can be included in a sequence x0, x1, x2, . . . .
Cantor (1874) showed that this is impossible by selecting from each se-
quence {xm} of distinct reals a subsequence a0, b0, a1, b1, a2, b2, . . ., such
that

a0 < a1 < a2 < · · · < b2 < b1 < b0

and with each xm outside one of the nested intervals (a0, b0) ⊃ (a1, b1) ⊃
(a2, b2) ⊃ · · · . It follows that any common element of all the (an, bn) is a
real x � each xm. A common element obviously exists if the sequence of
intervals is finite, and if the sequence is infinite, it exists by completeness,
as the least upper bound of the an. The common element x is a “gap” in
the given sequence {xm}.
Exercises

Cantor’s 1874 proof of the uncountability of R is based on the following con-
struction. Given a sequence x0, x1, x2, . . . of distinct reals, he found a “gap” in
them by picking out a0, b0, a1, b1, . . . as follows:

a0 = x0,

b0 = first xm with a0 < xm,

a1 = first xm after b0 with a0 < xm < b0,

b1 = first xm after a1 with a1 < xm < b0,

a2 = first xm after b1 with a1 < xm < b1.

...

24.1.1 Explain why the sequence a0, b0, a1, b1, a2, b2, . . . has the “gap” property
described above: each xm is outside one of the nested intervals (a0, b0) ⊃
(a1, b1) ⊃ (a2, b2) ⊃ · · · .
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We now explore how far we can enlarge the set of natural numbers and still
have a countable set.

24.1.2 Give a rule for continuing the sequence

1
1
,

2
1
,

1
2
,

3
1
,

2
2
,

1
3
,

4
1
,

3
2
, . . .

so as to include all positive rationals.

24.1.3 How can one then conclude that the set of all rationals is countable?

24.1.4 The words on a fixed finite alphabet can be enumerated by listing first the
one-letter words, then the two-letter words, and so on. Use this observation
to show that the set of polynomial equations with integer coefficients is
countable and hence that the set of algebraic numbers is countable.

Cantor used the latter result to prove the existence of transcendental numbers.
Namely, let {xm} be the sequence of algebraic numbers; we know that these are
not all the real numbers, so any other real number is transcendental.

24.2 Ordinals

The uncountability of R has been a great challenge to set theorists and
logicians ever since its discovery. The most successful response to this
challenge has been the theory of ordinal numbers, which grew out of Can-
tor’s (1872) investigation of Fourier series (see Section 13.6). The exis-
tence of a Fourier series for a function f depends largely on the structure
of the set of discontinuities of f , and thus leads to the problem of ana-
lyzing the complexity of point sets. Cantor measured complexity by the
number of iterations of the prime operation (′) of taking the limit points of
a set. For example, if S = {0, 1/2, 3/4, 7/8, . . . , 1}, then the prime oper-
ation can be applied once, and S ′ = {1}. It can happen that S ′ itself has
limit points, so that S ′′ also exists. In fact, one can find a set S for which
S ′, S ′′, . . . , S (n), . . . exist for all finite n, so one can envisage iterating the
prime operation an infinite number of times. In the case where all the S (n)

exist, Cantor (1880) took their intersection, thereby defining

S∞ = ∩n=1,2,3,...S
(n).

He viewed ∞ as the first infinite ordinal number. To avoid confusion with
higher infinite numbers soon to appear, I shall use the modern notation ω
for the first infinite ordinal.
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Having made the leap to ω, it is easy to go further:
(
S (ω)
)′
= S (ω+1),(

S (ω+1)
)′
= S (ω+2), . . ., and the intersection of this new infinite sequence is

S ω·2, where ω ·2 is the first infinite number after ω, ω+1, ω+2, . . . . After
ω · 2, one has

ω · 2 + 1, ω · 2 + 2, . . . , ω · 3, . . . , ω · 4, . . . , . . . , ω · ω, . . . .

All these can actually be realized as numbers of iterations of the prime
operation on sets of reals. We can also investigate the ordinal numbers
independently of this realization, as an extension of the concept of natural
number.

Cantor (1883) viewed the ordinals as the result of two operations:

(i) Successor, which for each ordinal α gives the next ordinal, α + 1.

(ii) Least upper bound, which for each set {αi} of ordinals gives the least
ordinal ≥ each αi.

The most elegant formalization of these notions was given by von Neu-
mann (1923). The empty set ∅ (not considered by Cantor) is taken to be
the ordinal 0, the successor of α is α ∪ {α}, and the least upper bound of
{αi} is simply the union of the αi. Thus

0 = ∅,
1 = {0},
2 = {0, 1},
· · ·
ω = {0, 1, 2, . . . , n, . . .},

ω + 1 = {0, 1, 2, . . . , n, . . . , ω},

and so on. The natural ordering of the ordinals is then given by set mem-
bership, ∈, and, in particular, the members of an ordinal α are all ordinals
smaller than α.

Cantor’s principle (ii) generates ordinals of breathtaking size, since it
gives the power to transcend any set of ordinals already defined. In partic-
ular, an ordinal of uncountable size is on the horizon as soon as one thinks
of the concept of countable ordinal, as Cantor did (1883). He defined an
ordinal α to be countable (or, as he later put it, of cardinality or cardinal
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number ℵ0) if α could be put in one-to-one correspondence with N. For
example,

ω · 2 = {0, 1, 2 . . . , ω, ω + 1, ω + 2, . . .}
is countable because of its obvious correspondence with

N = {0, 2, 4, . . . , 1, 3, 5, . . .}.
The least upper bound of the countable ordinals is the least uncountable
ordinal, ω1. Sets in one-to-one correspondence with ω1 are of the next
cardinality, ℵ1. Ordinals of cardinality ℵ1 have a least upper bound ω2 of
cardinality ℵ2, and so on.

Having found this orderly way of generating successive uncountable
cardinals, Cantor reconsidered the uncountable set R. Although no method
of generating members of R in the manner of ordinals was apparent, Can-
tor conjectured that the cardinality of R was ℵ1. This conjecture has since
become known as the continuum hypothesis. By 1900 it was recognized
as the outstanding open problem of set theory, and Hilbert (1900a) made it
number one on the famous list of problems he presented to the mathemati-
cal community. There have been two outstanding results on the continuum
problem since 1900, but they seem to make it less likely that we will ever
know whether the continuum hypothesis is correct. Gödel (1938) showed
that the continuum hypothesis is consistent with standard axioms for set
theory, but Cohen (1963) showed that its negation is also consistent. Thus
the continuum hypothesis is independent of standard set theory, in the same
way that the parallel postulate is independent of Euclid’s other postulates.
Whether this means that the notion of “set” is open to different natural
interpretations, like the notion of “straight line,” is not yet clear.

Exercises

For each countable ordinal α there is a set of rationals in [0,1] with order type
α. For example, the set {0, 1/2, 3/4, 7/8, . . .} has order type ω.

24.2.1 Give an example of a set of rationals in [0,1] with order type ω · 2.

24.2.2 Give an example of a set of rationals in [0,1] with order type ω · ω.

24.2.3 Given sets of rationals in [0,1] with order types α1, α2, α3, . . ., explain how
to obtain a set of rationals in [0,1] with order type at least as large as the
least upper bound of {α1, α2, α3, . . .}.

24.2.4 Explain why there is a set of rationals in [0,1], with order type α, for each
countable ordinal α.
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24.3 Measure

The reason for investigating sets of discontinuities in the theory of Fourier
series was the discovery of Fourier (1822) that these series depend on inte-
grals. Assuming that

f (x) =
1
2

a0 +

∞∑
n=1

(an cos nπx + bn sin nπx) ,

Fourier derived the formulas

an =

∫ 1

−1
f (x) cos nπx dx, bn =

∫ 1

−1
f (x) sin nπx dx.

Thus the existence of the series depends on the existence of the inte-
grals for an and bn, and this in turn depends on how discontinuous f is.
It was known (though not rigorously proved) that every continuous func-
tion has an integral, so the next question was how the integral should, or
could, be defined for discontinuous functions. The first precise answer was
the Riemann (1854a) integral concept, familiar to all calculus students,
and based on approximating the integrand by step functions. Any function
with a finite number of discontinuities has a Riemann integral, and indeed
so have certain functions with infinitely many discontinuities, but not all.
The classic function for which the Riemann integral does not exist is the
function of Dirichlet (1829):

f (x) =

{
1 if x is rational,
0 if x is irrational.

Eventually a more general integral, the Lebesgue integral, was intro-
duced to cope with such functions, but not until the focus of attention had
shifted from the problem of integration to the more fundamental problem
of measure. Measure generalizes the concept of length (on the line R), area
(in the plane R2), and so on, to quite general point sets. Since an integral
can be viewed as the area under a graph, its dependence on the concept of
measure is clear, though it was not immediately realized that the measure
of sets on the line had to be clarified first.

The need for clarification arose from the discovery of Harnack (1885)
that any countable subset {x0, x1, x2, . . .} of R could be covered by a col-
lection of intervals of arbitrarily small total length. Namely, cover x0 by
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an interval of length ε/2, x1 by an interval of length ε/4, x2 by an interval
of length ε/8, . . . , so that the total length of intervals used is ≤ ε. (This is
another proof, by the way, that R is not a countable set.) This seemed to
show that countable sets were “small”—of measure zero, as we now say—
but mathematicians were reluctant to say this of dense countable sets, like
the rationals. The first response, by Jordan (1892), was to define measure
analogously to the Riemann integral, using finite unions of intervals to ap-
proximate subsets of R. Under this definition, “sparse” countable sets like
{0, 1/2, 3/4, 7/8, . . .} did have measure zero, but dense sets like the ratio-
nals were not measurable at all.

The first to take the hint from Harnack’s result that countable unions
of intervals should be used to measure subsets of R was Borel (1898).
He defined the measure of any interval to be its length, and he extended
measurability to more and more complicated sets by complementation and
countable disjoint unions. That is, if a set S contained in an interval I has
measure μ(S ), then

μ(I − S ) = μ(I) − μ(S ),

and if S is a disjoint union of sets S n with measures μ (S n), then

μ(S ) =
∞∑

n=1

μ (S n) .

The sets that can be formed from intervals by complementation and count-
able unions are now called Borel sets. Borel’s idea was pushed to its logical
conclusion by Lebesgue (1902), who assigned measure zero to any subset
of a Borel set of measure zero. Since not all such sets are Borel, this ex-
tended measurability to a larger class of sets: those that differ from Borel’s
by sets of measure zero. It can be proved that the class of Lebesgue mea-
surable sets has the same cardinality as the class of all subsets of R. But
whether the measurable sets are all subsets of R is an interesting question
to which we shall return shortly.

The distinctive property of Borel–Lebesgue measure is countable ad-
ditivity: if S 0, S 1, S 2, . . . are disjoint measurable sets, then

μ (S 0 ∪ S 1 ∪ S 2 ∪ · · · ) = μ (S 0) + μ (S 1) + μ (S 2) + · · · .
This follows easily from Borel’s definition of measure for countable dis-
joint unions, because any countable union can be reassembled as a count-
able disjoint union.
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Lebesgue showed that countable additivity gives a concept of integral
that is better behaved with respect to limits than the Riemann integral. For
example, one has the monotone convergence property: if f0, f1, f2, . . . is
an increasing sequence of positive integrable functions, and fn → f as
n → ∞, then

∫
fn dx → ∫ f dx for the Lebesgue integral, whereas this is

not generally true for the Riemann integral (see Exercise 24.3.1).
Another motivation for countable additivity that Borel pointed out was

the theory of probability. If an “event” E is formalized as a set S of points
(“favorable outcomes”), then the probability of E can be defined as the
measure of S . Some quite natural events turn out to be countable unions;
hence it is necessary for probability measure to be countably additive. In
informal probability theory, countable additivity was assumed as far back
as 1690, when Jakob Bernoulli answered the following question he had
posed in 1685:

A and B play with a die, the one that throws an ace first being
declared the winner. A throws once, then B throws once also.
A then throws twice, and B does the same, and so on, until one
wins. What is the ratio of their chances of success?

To solve this problem, Jakob Bernoulli (1690) decomposed the event of
a win for A (or B) into the subevents of a win at A’s (B’s) first, second,
third, . . . , turn and summed the probabilities of these countably many
subevents. Formal probability theory, which was created by Kolmogorov
(1933), bases all such arguments on the theory of countably additive mea-
sures.

It could be said that set theory paved the way for measure theory by
showing the uncountability of R, thus enabling countable subsets of R to
be regarded as “small.” On the other hand, measure theory itself shows
the uncountability of R (by Harnack’s result), and in fact measure theory’s
assessment of the “smallness” of countable sets greatly influenced the later
development of set theory.

“Measure theoretically desirable” axioms, such as the measurability
of all subsets of R, turned out to conflict with “set theoretically desirable”
axioms such as the continuum hypothesis, and efforts to resolve the conflict
brought more fundamental questions about sets to light. These questions do
not reduce to clear-cut alternatives—the way geometric questions reduce
to alternative parallel axioms, for example—but they do seem to gravitate
toward the so-called choice and large cardinal axioms, discussed in the
next section.
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Exercises

24.3.1 Show that a function fn that is zero at all but n points has Riemann inte-
gral zero over any interval and that the non-Riemann integrable function of
Dirichlet is a limit as n→ ∞ of such functions fn.

The complexity of Borel sets may be roughly measured by the number of count-
able unions and complements needed to define them. Here are a few of the simpler
ones.

24.3.2 Show that a single point is the complement of a countable union of inter-
vals and hence that any countable set is a Borel set.

24.3.3 Deduce that the set of irrational numbers is a Borel set.

24.3.4 What is the measure of the set of irrationals between 0 and 1?

24.4 Axiom of Choice and Large Cardinals

The usual axiom of choice states that for any set S (of nonempty sets) there
is a choice function f such that f (x) ∈ x for each x ∈ S . (Thus f “chooses”
an element from each set x in S .) The axiom seems so plausible that early
set theorists used it almost unconsciously, and it first attracted attention in
Zermelo’s (1904) proof that any set S could be well ordered (that is, put
in one-to-one correspondence with an ordinal). This looked like progress
toward the continuum hypothesis. But Zermelo’s proof gave no more than
the existence of a well-ordering of S , given a choice function for the set of
subsets of S . There was still no sign of an explicit well-ordering of R. And
of course if one doubted the existence of a well-ordering of R, this threw
doubt on the axiom of choice. Further doubts were raised when the axiom
of choice was found to have incredible consequences in measure theory.

The first of these, discovered by Vitali (1905), was that the circle can be
decomposed into countably many disjoint congruent sets. Since congruent
sets have the same Lebesgue measure, it easily follows that the sets in ques-
tion are not Lebesgue measurable (by countable additivity; see Exercises
23.4.2–23.4.4).

Even more paradoxical decompositions were given by Hausdorff (1914)
(for the sphere) and Banach and Tarski (1924) (for the ball). The Banach–
Tarski theorem states that the unit ball can be decomposed into finitely
many sets that, when rigidly moved in space, form two unit balls! This
shows that not all subsets of the ball are measurable, even if one asks only
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for finite, rather than countable, additivity. For an excellent discussion of
the paradoxical decompositions and their connections with other parts of
mathematics, see Wagon (1985).

The measure-theoretic consequences of the paradoxical decomposi-
tions follow from the geometrically natural assumption that congruent sets
have the same measure. If one drops this assumption and asks only for
countable additivity and nontriviality (that is, not all subsets have mea-
sure zero), then the conflict with the axiom of choice seems to disappear.
No contradiction has yet been derived from these assumptions, but Ulam
(1930) showed that any set possessing such a measure must be extraor-
dinarily large—as large, in fact, as a model of set theory itself, and in
particular larger than the cardinals ℵ1,ℵ2, . . . ,ℵω, . . . . Thus if R has a
nontrivial countably additive measure, then R must be far larger than ℵ1,
and we still have a conflict with the continuum hypothesis. (For more on
the “largeness” of models, see Section 23.8.)

An even more desirable axiom than measurability would be Lebesgue
measurability of all subsets of R. This conflicts with the axiom of choice,
by Vitali’s theorem, but it was nevertheless shown to be consistent with
set theory by Solovay (1970), assuming the existence of a large cardinal.
Shelah (1984) showed that the large cardinal assumption is necessary.

Thus measurability of all subsets of R is intimately connected with the
existence of sets large enough to model the whole of set theory. This mind-
boggling concept seems to be the answer to many fundamental questions.
We shall find ourselves drawn to it again in the next sections when we ex-
plore the influence of set theory on logic. Meanwhile, for those who would
like a more detailed account of the development of set theory, and the con-
tentious axioms in particular, we refer to van Dalen and Monna (1972). For
recent developments in the theory of large cardinals, which some believe
will throw new light on the continuum hypothesis, see Kanamori (1994)
and Woodin (1999).

Exercises

The axiom of choice turns up even in elementary analysis, when one attempts
to formalize the idea of a continuous function. A natural definition in terms of
infinite sequences is equivalent to the standard ε-δ definition only if we assume
the axiom of choice.

Call f sequentially continuous at x = a if, for any sequence {an} such that
an → a, we have f (an)→ f (a).

24.4.1 Show, assuming the axiom of choice, that if f is not continuous at a then
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f is not sequentially continuous at a. (It is a consequence of Cohen (1963)
that this result cannot be proved without the axiom of choice.)

Vitali’s decomposition of the circle is created as follows. For each θ between
0 and 2π let S (θ) be the set of points on the unit circle whose angle differs from
θ by a rational multiple of 2π. Thus S (θ) = S (φ) if θ − φ = 2π × a rational, and
S (θ) ∩ S (φ) = ∅ otherwise.

24.4.2 Let S be a set (existing by virtue of the axiom of choice) that contains
exactly one element from each distinct S (θ) and let

S + 2πr = {θ + 2πr : θ ∈ S } for each rational r.

(Thus S + 2πr is S rotated through the rational multiple 2πr of 2π.) Show
that any two of the sets S + 2πr are either identical or disjoint.

24.4.3 Show that the circle is a countable union of sets S + 2πr.

24.4.4 Show that both assumptions μ(S ) = 0 and μ(S ) > 0 lead to contradictions,
and hence conclude that S is nonmeasurable.

24.5 The Diagonal Argument

The uncountability of R was shown again in a strikingly simple way by
Cantor (1891). His argument applies most directly to the set 2N of all sub-
sets of N, but there are variants that work similarly on the set NN of integer
functions and on R (which can be identified with a set of integer functions
in various ways). To show that there are uncountably many subsets of N
one shows that any countable collection S 0, S 1, S 2, . . . of sets S n ⊆ N is
incomplete, by constructing a new set S , different from each S n. S is the
so-called diagonal set {n : n � S n}, which obviously differs from S n with
respect to the number n. Q.E.D.

The “diagonal” nature of S can be seen by visualizing a table of 0’s
and 1’s in which

mth entry in nth row =

{
0 if m � S n,

1 if m ∈ S n.

In other words, the nth row consists of the values of the characteristic func-
tion of S n. The characteristic function of S is simply the diagonal of the
table, with all values reversed. A sequence x0, x1, x2, . . . of real numbers
can be diagonalized similarly by forming the table whose nth row consists
of the decimal digits of xn. A suitable way to “reverse” the digits on the
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diagonal is to change any 1 to a 2 and any other digit to a 1. (The resulting
sequence of 1’s and 2’s, after a decimal point, then defines a real number
x whose decimal expansion is unique. Hence x is not just different from
each xn in its decimal expansion but is definitely a different number.)

More generally, for any table of rows of integers, that is, any sequence
of integer functions fn, one can construct an integer function f unequal to
each fn by changing the values along the diagonal of the table. The diag-
onal argument was in fact first given in this context, by du Bois-Reymond
(1875), in order to construct an f with a greater rate of growth than all func-
tions in a sequence f0, f1, f2, . . . (Exercise 24.5.1). With hindsight, one can
even see a diagonal construction in Cantor’s first (1874) argument for the
uncountability of R (Exercise 24.5.2).

The diagonal argument is important in set theory because it readily
generalizes to show that every set has more subsets than elements (Exer-
cise 24.5.3), and hence that there is no largest set. What was not noticed at
first is that the diagonal argument also has consequences at a more concrete
level. This is because the diagonal of a table is computable if the table as
a whole is computable. Hence the argument does not merely show how
to add a new function f to a list f0, f1, f2, . . .—it shows how to add a new
computable function to a computable list. In other words, it is impossible to
compute a list of all computable functions. And of course the same goes for
lists of computable real numbers. This remarkable result went unnoticed
in the early days of the diagonal argument because computability was not
then regarded as an interesting concept, or indeed as a mathematical con-
cept at all. The controversies over the axiom of choice, however, helped to
sharpen awareness of the difference between constructive and nonconstruc-
tive functions. In the 1920s logicians began to investigate the concept of
computability more seriously, and by a “kind of miracle,” as Gödel (1946)
later expressed it, computability turned out to be a mathematically precise
notion.

Exercises

The diagonal construction is quite a natural way to construct a function or real
number “larger” than the members of a given countable set.

24.5.1 Given integer functions f0, f1, f2, . . ., define an integer function f such that
f (m)/ fn(m)→ ∞ as m→ ∞, for each n. Hint: Arrange that f (m) ≥ n fn(m)
for all m ≥ n.

24.5.2 Show that if a0 < a1 < a2 < · · · is a bounded sequence of real numbers,
then a = least upper bound of {a0, a1, a2, . . .} is a “diagonal number” of the
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sequence in the following sense. There are integers k0 < k1 < k2 < · · ·
such that the decimal digits of a exceed those of an after the knth place.

The last exercise applies the diagonal construction to any set I, to show that I
has more subsets than members.

24.5.3 Let I be any set, and let {S i} be a collection of subsets of I in one-to-one
correspondence with the elements i of I. Show that the natural “diagonal”
set S of this collection is a subset of I unequal to each S i.

24.6 Computability

The notion of computability was first formalized by Turing (1936) and Post
(1936), who arrived independently at a definition of computing machine,
now called a Turing machine. A Turing machine M is given by two fi-
nite sets, {q0, q1, . . . , qm} of internal states and {s0, s1, . . . , sn} of symbols,
and a transition function T that formalizes the behavior of M for pairs
(qi, s j). The machine M is visualized as having an infinite tape, divided
into squares, each of which can carry one of the symbols s j. (For most
purposes, M is assumed to start on a tape with all but finitely many squares
blank: s0 is taken to denote the blank symbol.) Depending on its inter-
nal state qi, M will make a transition: changing s j to sk, then moving one
square right or left and going into a new state ql. Thus the transition func-
tion is given by finitely many equations

T (qi, s j) = (m, sk, ql),

where m = ±1 indicates a move to right or left.
To use M to compute a function f : N→ N, some convention must be

adopted for inputs (arguments of f ) and outputs (values of f ). The simplest
is seen in Figure 24.1. M starts in state q0 on the leftmost 1 of a block of
n 1s, on an otherwise blank tape, and halts on the leftmost 1 of a block of
f (n) 1s, on an otherwise blank tape. M halts by virtue of entering a halting
state, that is, a state qh for which M has no transition from the pair (qh, 1).
A computable function f is one that can be represented in this way by a
Turing machine M.

It follows that there are only countably many computable functions f :
N→ N, since there are only countably many Turing machines. In fact, we
can compute a list of all Turing machines by first listing the finitely many
machines with one transition, then those with two transitions, and so forth.
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1 1 · · · 1

qh

f (n)

...

...

1 1 · · · 1

q0

n

Figure 24.1: Computing a function by Turing machine

This may seem to contradict the discovery from the previous section that a
list of all computable functions cannot be computed, but, as Turing (1936)
realized, it does not. The catch is that not all machines define functions,
and it is impossible to pick out those that do. Of course, it is possible to
rule out any machine that halts in a situation unlike that in Figure 24.1; the
difficulty is in knowing whether halting is going to occur. It is precisely
this difficulty that prevents computation of the diagonal function.

If it could be decided, for each machine M and each input, whether M
eventually halts, then we could find the first machine to halt on input 1, the
next after that to halt on input 2, the next after that to halt on input 3, and
so on. By changing the corresponding outputs according to some rule (say,
adding 1 if the output is a number, and taking the value 1 otherwise), we
could compute a function different from each computable function.

This contradiction shows that the problem of deciding, given a ma-
chine and an input, whether halting eventually occurs, is unsolvable. This
problem is called the halting problem and its unsolvability means that no
Turing machine can solve it. That is, if the questions “Does M on input
n eventually halt?” are written in some fixed finite alphabet, then there is
no machine that, given these questions as inputs, will give their answers
as outputs. The point is that, as far as we know, all possible rules or al-
gorithms for answering infinite sets of questions can be realized by Turing
machines. This is the “kind of miracle” referred to by Gödel (1946).
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Now that computers are everywhere, it is taken for granted that “com-
putability” has a precise, absolute meaning—synonymous with Turing ma-
chine computability. It is even a familiar fact that all computations can be
done on a single, sufficiently powerful machine; this corresponds to the
discovery of Turing (1936) of a universal Turing machine. However, these
claims were surprising in the 1930s, particularly to Gödel, who had shown
(1931) that the related notion of “provability” is not absolute. This will be
discussed further in the next section. Briefly, the reason for the difference
is that new computable functions cannot be created by diagonalization,
whereas new theorems can.

The halting problem was of no obvious mathematical significance in
1936, but it seemed no more difficult than other unsolved algorithmic prob-
lems in mathematics. Thus for the first time it was reasonable to suspect
that some ordinary mathematical problems were unsolvable. Moreover,
if it could be shown that a solution of a particular problem P implied a
solution of the halting problem, then the unsolvability of P would be rigor-
ously established. This method was used to demonstrate the unsolvability
of some problems in formal logic by Turing (1936) and Church (1936).
Church (1938) also put forward a strong candidate for unsolvability in or-
dinary mathematics: the word problem for groups.

This is the problem of deciding, given a finite set of defining relations
for a group G (Section 19.7) and a word w, whether w = 1 in G. There is
more than a superficial analogy between the word problem and the halting
problem. The group G corresponds to a machine M, words in G correspond
to expression on M’s tape, and w = 1 corresponds to halting. The defining
relations of G roughly correspond to the transition function of M, but un-
fortunately there is no machine equivalent of the cancellation of inverses
in G. This creates fierce technical difficulties, but they were overcome by
Novikov (1955). He succeeded in establishing the validity of the analogy
and hence the unsolvability of the word problem. This led to unsolvabil-
ity results for a host of significant mathematical problems, among them
the homeomorphism problem mentioned in Section 22.7. (The reference
given there, Stillwell (1993), also includes a proof of the unsolvability of
the word problem.)

A profound reworking of Novikov’s ideas, by Higman (1961), shows
that computability is a mathematically natural concept in the context of
groups. Higman showed that a finitely generated group H has a computable
set of defining relations if and only if H is a subgroup of a finitely generated
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group F with a finite set of defining relations. Thus “computation” is the
same as “generation” in a group that is “finitely defined” by generators and
relations.

Exercises

Turing (1936) actually discovered the unsolvability of the halting problem
by considering computable real numbers and applying the diagonal argument to
them. The argument is similar to the one above using computable functions, but a
little messier. Define a real number x to be computable if there is a Turing machine
M that represents x in the following manner.

• Starting on a blank tape, M prints the decimal digits of x on successive
squares of tape, eventually filling each square to the right of the square
initially scanned (if necessary, printing all 0s beyond a certain point).

• The squares to the left may be used, and reused, for preliminary computa-
tion, but squares to the right, once written, may not be rewritten.

24.6.1 Show that there is no algorithm for recognizing the Turing machines that
define real numbers in this way, since such an algorithm would give a way
to compute a number different from every computable number.

24.6.2 Explain informally how each Turing machine M may be converted to a
machine M′ such that M defines a computable number if and only if M′
does not halt.

24.6.3 Hence prove that no Turing machine can solve the halting problem.

24.7 Logic and Gödel’s Theorem

Since the time of Leibniz, and perhaps earlier, attempts have been made
to mechanize mathematical reasoning. Little success was achieved until
the late 19th century, when the subject matter of mathematics was clari-
fied by defining all mathematical objects in terms of sets. The reduction of
the many concepts of number, space, function, and the like, to the single
concept of set brought with it a corresponding reduction in the number of
axioms that seemed to be necessary for mathematics. At about the same
time, investigation of the principles of logic by Boole (1847), and partic-
ularly Frege (1879), led to a system of rules by which all logical conse-
quences of a given set of axioms could be inferred. These two lines of
investigation together offered the possibility of a complete, rigorous, and,
in principle, mechanical system for the derivation of all mathematics.
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The most thorough attempt to realize this possibility was the massive
Principia Mathematica of Whitehead and Russell (1910). Principia used
axioms of set theory, together with a small collection of rules of inference,
to derive a substantial part of ordinary mathematics in a completely formal
language. The purpose of the formal language was to avoid the vagueness
and ambiguity of natural language, so that proofs could be checked me-
chanically. Mechanical proof-checking was not then regarded as a goal in
itself but rather as a guarantee of rigor. When Whitehead and Russell began
writing their Principia in 1900, they believed that they were about to reach
the 19th-century goal of a complete and absolutely rigorous mathematical
system. They did not realize that the rigor of their system—the possibil-
ity of checking proofs mechanically—was in fact incompatible with com-
pleteness. Gödel (1931) showed that there are true sentences that can be
expressed in the language of Principia Mathematica but that do not follow
from its axioms. (Unless Principia is inconsistent, in which case all sen-
tences follow from its axioms. The assumption of consistency is actually a
weighty one, as we shall see by the end of this section.)

Gödel’s theorem created a sensation when it first appeared. Not only
did it shatter previous conceptions of mathematics and logic, but its proof
was of a new and bewildering kind. Gödel exploited the mechanical nature
of proof in Principia to define the relation “the nth sentence of Principia is
provable” within the language of Principia itself. Using this, he was able
to concoct a sentence that says, in effect, “This sentence is not provable.”
The Gödel sentence, if true, is therefore not provable. And if false, it is
provable, and so Principia proves a false sentence. Either way, provability
in Principia is not the same as truth.

Gödel’s proof was very difficult for his contemporaries to understand.
Combined with the novelty of treating sentences as mathematical objects
was the near inconsistency of a sentence that expresses its own unprovabil-
ity (a sentence that says, “This sentence is not true” is inconsistent). Post
(1944) presented Gödel’s theorem in a less paradoxical way by deriving it
from the classical diagonal argument. The key to Post’s approach is the
concept of a recursively enumerable set. A set W is called recursively enu-
merable if a list of its members can be computed, say by a Turing machine
that prints them on its tape. (Of course if W is infinite, the computation
lasts forever.) The paradigm of a recursively enumerable set is the set of
theorems of a formal system, such as Principia Mathematica. For such a
system one can compute a list of all sentences, a list of all finite sequences
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of sentences, and, by picking out those sequences that are proofs, a list of
all theorems—since a theorem is simply the last line of a proof.

Post’s idea was to look at the theorems about recursively enumerable
sets proved in a given system Σ and to compute a “diagonal sentence”
from them. Since recursively enumerable sets are associated with Turing
machines, it is possible to enumerate the recursively enumerable subsets
of N as W0,W1,W2, . . . by letting Wn be the set of numbers output by the
nth machine, under some reasonable convention. (Incidentally, there is
no problem of picking out suitable machines, as there is for computable
functions, since we do not mind if Wn is empty.) The diagonal set

D = {n : n � Wn},
being unequal to each Wn, is of course not recursively enumerable, but the
following set is:

Pr(D) = {n : Σ proves “n � Wn”}.
This “provable part” of D is recursively enumerable because we can list the
theorems of Σ and select those of the form “n � Wn.” We have Pr(D) ⊆ D,
assuming that Σ proves only correct sentences, but Pr(D) � D since Pr(D)
is recursively enumerable and D is not. This shows immediately that there
is an n0 in D that is not in Pr(D), that is, an n0 � Wn0 for which “n0 � Wn0”
is not provable.

Better still, a specific n0 with this property is the index of the recur-
sively enumerable set Pr(D). If Wn0 = Pr(D), then n0 ∈ Wn0 is equivalent
to n0 ∈ Pr(D), which means that “n0 � Wn0” is provable. But then it is true
that n0 � Wn0 , assuming that Σ proves only correct sentences, and we have
a contradiction. Thus n0 � Wn0 . This in turn is equivalent to n0 � Pr(D),
which means “n0 � Wn0” is not provable. (Notice, incidentally, that the last
part of this argument reveals “n0 � Wn0” to be a sentence that expresses its
own unprovability.)

It seems that Post was aware of this approach to Gödel’s theorem in the
1920s, before Gödel’s own proof appeared. However, Post’s more general
view of incompleteness as a property of arbitrary recursively enumerable
systems held him up until he was satisfied that computability was a math-
ematically definable concept. In December 1925 Post formulated a plan
for proving Principia Mathematica incomplete but, as he later wrote, “The
plan, however, included prior calisthenics at other mathematical and logi-
cal work, and did not count on the appearance of a Gödel!” (Post (1941),
p. 418).
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Gödel’s theorem comes from reflection on the nature of proofs in ordi-
nary mathematics. An even more devastating theorem, known as Gödel’s
second theorem, comes from reflection on the proof of Gödel’s theorem
itself. The latter proof, unusual though it is, can in fact be expressed in
ordinary mathematical language.

We described Post’s proof of Gödel’s theorem in an informal language
of Turing machines, but, with some effort, it can be expressed in a small
language for number theory called Peano arithmetic (PA). Indeed, this
“arithmetization of syntax” was one of Gödel’s most important ideas. By
expressing his proof in PA, he showed the incompleteness of classical
mathematics. PA is a language of addition and multiplication on N, with
basic logic and mathematical induction as the proof machinery. Turing
machines can be discussed in PA by interpreting sequences of symbols on
the tape as numerals, so that the changes they undergo in the course of
a computation become operations on numbers. Under this interpretation,
“n0 � Wn0 ” and “Σ does not prove ‘n0 � W0’ ” become sentences of PA.

At this point it is important to recall the hypothesis about Σ used in
the proof of Gödel’s theorem: Σ proves only correct sentences. This as-
sumption cannot be dropped (since one incorrect theorem usually allows
all sentences to be proved), but it can be weakened to the assumption that
Σ does not prove the sentence “0 = 1.” Since the latter assumption says
that a certain element (the number of the sentence “0 = 1”) does not belong
to a certain recursively enumerable set (the set of theorems of Σ), it can be
expressed as a sentence of PA, Con(Σ). In particular, PA expresses its own
consistency by the sentence Con(PA). With these modifications, Gödel’s
theorem for Σ = PA becomes the following sentence of PA:

Con(PA)⇒ PA does not prove “n0 � Wn0 .”

As we have seen, the sentence “n0 � Wn0” is equivalent to its own unprov-
ability, so an equivalent sentence is simply

Con(PA)⇒ n0 � Wn0 .

Now Gödel noticed that his proof could be carried out in PA. (The
rather laborious verification was carried out by Hilbert and Bernays (1936)).
Consequently, if Con(PA) can be proved in PA, then so can “n0 � Wn0 ,”
by basic logic. But if PA is consistent, “n0 � Wn0” cannot be proved in
it, by Gödel’s theorem, hence neither can Con(PA). (Gödel of course had
a different unprovable sentence, but it was similarly implied by Con(PA),
and equivalent to its own unprovability.)
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Thus the assertion Con(PA) that the axioms of PA are consistent is
in some way stronger than the axioms themselves. Similarly, if Σ is any
system that includes PA (such as Principia Mathematica and other systems
of set theory), then Con(Σ) cannot be proved in Σ, if Σ is consistent. This
is Gödel’s second theorem.

Exercises

It is instructive to spell out why the sentence “n0 � Wn0 ” expresses its own
unprovability, if this is not already obvious.

24.7.1 Fill in the gap so as to establish a chain of equivalences:

n0 � Wn0 ⇔ · · · ⇔ Σ does not prove “n0 � Wn0 ”.

A remarkable new form of Gödel’s theorem was discovered by Chaitin (1970).
Like Gödel’s own version, it is most easily explained in terms of computation.
Let us call a finite sequence σ of 0s and 1s computationally random if it cannot
be produced (from a blank tape) by a Turing machine whose description is shorter
than σ. To compare lengths fairly we assume that Turing machines are themselves
written as sequences of 0s and 1s. (This makes the definition of “computationally
random” dependent on the way we encode Turing machines, but never mind—the
proof of Chaitin’s theorem assumes only that the method of encoding is com-
putable.)

24.7.2 Give an informal argument to explain why the sequence of 10100 consecu-
tive 0s is not computationally random.

24.7.3 Show that at most 2n − 1 Turing machines have descriptions of length less
than n.

24.7.4 Deduce from Exercise 24.7.3 that there are infinitely many computation-
ally random sequences.

Despite the prevalence of computationally random sequences, they are very hard
to find. Chaitin’s incompleteness theorem states: any sound formal system proves
only finitely many theorems of the form “σ is computationally random.”

To prove Chaitin’s theorem suppose, on the contrary, that there is a formal
system, and hence a Turing machine M, that generates infinitely many theorems
of the form “σ is computationally random,” and no false statements of this form.
Suppose, for example, that M has length 106.

24.7.5 Explain informally how to convert M to a machine M′ that finds the first
theorem of the form “σ is computationally random” output by M, where σ
has at least 10100 digits.

24.7.6 Also explain informally why the length of M′ is less than 10100.

24.7.7 Deduce from Exercise 24.7.6 that we have a contradiction; hence M does
not exist.
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24.8 Provability and Truth

The previous section stressed that Gödel’s theorem is a statement of al-
ternatives: a formal system Σ either fails to prove a true sentence or else
proves a false one. Gödel’s second theorem identifies a sentence, Con(Σ),
which is either true and unprovable or false and provable, but the proof
does not say which alternative actually holds for a particular Σ, such as PA
or Principia Mathematica. How could it, without violating Gödel’s theo-
rem itself? Unless Σ actually is inconsistent, there can be no formal proof
that Con(Σ) is true!

Nevertheless, Gödel’s theorem tells us that we have nothing to lose
by adding Con(Σ) to the system Σ. If Σ is inconsistent, then it is already
worthless, and we are no worse off for having added Con(Σ). And if Σ is
consistent, we actually gain, because Con(Σ) is a new mathematical truth
not provable from Σ alone. In this case, Gödel’s theorem gives a way to
transcend any given formal system. Knowing that Con(Σ) is beyond the
scope of Σ (if Σ is consistent) is of practical value to mathematicians, for it
means there is no point trying to prove any sentence that implies Con(Σ).
If one wants to use such a sentence, it should be taken as a new axiom.

Sentences of mathematical interest actually arise in this way, most sim-
ply in set theory, where consistency is implied by the existence of a “large
set.” The usual axioms of set theory (called the Zermelo–Fraenkel, or ZF,
axioms) say roughly that

(i) N is a set.

(ii) Further sets result from certain operations, the most important of
which are power (taking all subsets of a set) and replacement (taking
the range of a function whose domain is a set).

Because of this, the axioms of ZF can be modeled by any set that contains
N and is closed under power and replacement. Such a set has to be very
large—larger than any set whose existence can be proved in ZF—but if it
exists then ZF must be consistent, since two contradictory sentences cannot
be true of an actually existing object. Thus the existence of a set that is
large in the above sense implies Con(ZF).

If ZF is consistent, then ZF + Con(ZF) is also consistent, but an even
larger set is required to satisfy the enlarged axiom system. These large-set
existence axioms are called axioms of infinity. Since they imply Con(ZF),
they cannot be proved in ZF. In particular, one cannot prove the existence of
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a nontrivial measure on all subsets of R since, as mentioned in Section 24.4,
this implies the existence of a large set. In fact, the existence of a nontrivial
measure on R is an axiom of infinity far stronger than those previously
mentioned. Gödel (1946) made the interesting speculation that any true
but unprovable proposition is a consequence of some axiom of infinity.

More recently, some “largeness” properties in number theory have been
found to imply Con(PA). The first of these was found by Paris and Harring-
ton (1977), using a modification of a combinatorial theorem of Ramsey
(1929). Paris and Harrington found a sentence σ that says that for each
n ∈ N there is an m such that sets of size ≥ m have a certain combinatorial
property C(n). They showed that σ follows from Ramsey’s theorem on
infinite sets (see Section 25.7), but that the function

f (n) = least m such that sets of size m have property C(n)

grows faster than any computable function whose existence can be proved
in PA. Thus σ in some sense asserts the existence of a “large” function.
The property C(n) is such that one can decide whether a finite set has it
or not; hence σ implies (very simply, and certainly in PA) that f is com-
putable. This shows immediately that σ cannot be proved in PA, but Paris
and Harrington in fact proved the stronger result that σ implies Con(PA).

Gödel’s theorem shows that something is missing in the purely formal
view of mathematics, and the axioms of infinity show that the missing ele-
ments may be mathematically interesting and important. Despite this, the
official view still seems to be that mathematics consists in the formal de-
duction of theorems from fixed axioms. As early as 1941 Post protested
against this view:

It is to the writer’s continuing amazement that ten years after
Gödel’s remarkable achievement current views on the nature
of mathematics are thereby affected only to the point of seeing
the need of many formal systems, instead of a universal one.
Rather has it seemed to us to be inevitable that these develop-
ments will result in a reversal of the entire axiomatic trend of
the late 19th and early 20th centuries, with a return to meaning
and truth.

Post (1941), p. 345

I believe that what Post was saying was this: Before Gödel, the goal of
mathematical logic had been to distill all mathematics into a set of axioms.
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It was expected that all of number theory, for example, could be recovered
by formal deduction from PA, that is, by forgetting that the axioms of PA
had any meaning. Gödel showed that this was not so, and in particular
that the sentence Con(PA), which expresses consistency, could not be so
recovered. But it is precisely by knowing the meaning of the PA axioms
that one knows they are consistent: contradictory sentences cannot hold in
the actual structure of N with + and ×. Thus it is the ability to see meaning
in PA that enables us to see the truth of Con(PA) and hence to transcend
the power of formal proof.

Exercises

An argument for the unprovability of “large” sets that does not assume the
unprovability of consistency was discovered by Zermelo in 1928 (Zermelo’s an-
nouncement is mentioned in Baer (1928)). Since this was before Gödel’s own
work, it seems fair to call this Zermelo’s incompleteness theorem. It states that, if
“large” sets exist, then this fact is not provable in ZF.

To pave the way for Zermelo’s argument, we need to explain how ordinals
measure the “complexity level”—called the rank—of sets. The simplest set is the
empty set 0, which is assigned rank 0. For each ordinal α, the sets of rank ≤ α+ 1
are those of rank ≤ α, together with all subsets of the set of sets of rank ≤ α.

24.8.1 Show that 1 = {0} has rank 1, and more generally that n+ 1 = {0, 1, . . . , n}
has rank n + 1.

If λ is an ordinal not of the form α+1, the sets of rank ≤ λ are those of rank α < λ,
together with all subsets of the set of sets of rank < λ.

24.8.2 Show that the ordinal ω = {0, 1, 2, . . .} has rank ω.

24.8.3 More generally, show that any ordinal α has rank α.

It is essentially an axiom of ZF (the axiom of foundation) that every set has a rank.
An ordinal λ is called inaccessible if the sets of rank < λ are closed under the

power and replacement operations. Thus, if an inaccessible λ exists, the sets of
rank < λ form a model of ZF. Also, if inaccessible ordinals exist, there is a least
inaccessible, μ.

24.8.4 Show that the sets of rank < μ are a model of ZF plus the sentence “there
is no inaccessible ordinal.”

24.8.5 Deduce from Exercise 24.8.4 that, if inaccessible ordinals exist, this fact
is not provable in ZF.
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24.9 Biographical Notes: Gödel

Kurt Gödel (Figure 24.2) was born in 1906 in Brünn, Moravia (now Brno,
Czech Republic) and died in Princeton in 1978. He was the second son
of Rudolf Gödel, the manager of a textile firm, and Marianne Handschuh.
Both his parents were members of the substantial German-speaking mi-
nority of the region, and his mother had received some of her education
at the French school in Brünn. Her influence seems to have been dom-
inant in Kurt’s upbringing, at least in the matter of church and school.
He attended Lutheran institutions and was unsympathetic to the Catholic
church, to which his father nominally belonged.

Figure 24.2: Kurt Gödel

Gödel had a generally happy childhood and was noted for his curiosity,
being known to his family as Herr Warum (Mr Why). The family was for-
tunate that Brünn was relatively untouched by World War I, and even after
the war the absorption of Moravia into the new nation of Czechoslovakia
had little effect on the Gödel family. The most disturbing event of Gödel’s
childhood was an attack of rheumatic fever at the age of six or seven, fol-
lowed by his learning, at the age of eight, that rheumatic fever can damage
the heart. To the end of his life he was convinced that he had a weak heart
and, when doctors found no evidence of this, he developed a distrust of the
medical profession as well. This led to a brush with death in the 1940s,
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when he left a duodenal ulcer untreated, and he became obsessively cau-
tious and prone to depression,

After completing secondary school, Gödel moved to Vienna (his fa-
ther’s birthplace) to enter university. He was at first undecided between
mathematics and physics but opted for mathematics after hearing a bril-
liant cycle of lectures by the number theorist Fürtwängler. He was intro-
duced to logic and set theory by Hans Hahn, who was interested in point
set problems in the theory of real functions. Hahn got Gödel involved in
the famous Vienna Circle of philosophers in 1926–1928 and later became
his thesis supervisor. The Vienna Circle aimed to put science and philoso-
phy on a rigorous basis by means of formal logic and no doubt had a strong
influence on Gödel’s work. However, his incompleteness theorem was ob-
viously a blow to the Vienna Circle, just as it was to formalists in math-
ematics. In fact, Gödel began to drift away from the Vienna Circle long
before he discovered his theorem, since his philosophical position tended
toward the diametric opposite of theirs. The Vienna Circle based its phi-
losophy on strictly material data, whereas Gödel was metaphysical to the
point of being interested in ghosts and demons (see for example Kreisel
(1980), p. 155).

In 1927 Gödel met his future wife, Adele Porkert, a dancer at a night-
club in Vienna. His parents objected to her, on the grounds that she was
six years older than Gödel and had been married before, and the couple did
not marry until 1938. The marriage endured, and friends noted how much
warmer Gödel became in her company. They had no children, and Adele
was probably the only person in Gödel’s life who could bring him down to
earth occasionally.

Gödel became an Austrian citizen in 1929 and rapidly rose to fame af-
ter the publication of the incompleteness theorem in 1931. He was invited
to the United States and made three visits to the Institute for Advanced
Study in Princeton. In between, however, he suffered bouts of depression
and spent some time in mental hospitals. In 1938 Hitler annexed Austria
and the atmosphere became increasingly oppressive, though Gödel does
not seem to have been perceptive about the menace of Nazism. He blamed
the situation on Austrian “sloppiness” and decided to leave only when he
was judged fit for military service—an obviously incompetent judgment in
his opinion.

During this tense period of his life (1937–1940), Gödel tackled the
main problems of set theory and proved the consistency of the axiom of
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choice and the continuum hypothesis. Thus he arrived at Princeton in 1940
on a second wave of fame. He settled into a position at the Institute for
Advanced Study, where he was to stay for the rest of his life. In the early
1940s he continued to work hard on set theory. In 1942 he found a proof
of the independence of the axiom of choice but left his work unpublished
when he found he was unable to do the same for the continuum hypoth-
esis (namely, to show that if set theory is consistent, one can consistently
assume that the axiom of choice is true but the continuum hypothesis is
false). These are the results, of course, that were eventually obtained by
Cohen (1963).

From 1943 onward, Gödel devoted himself mainly to philosophy. In-
deed, Kreisel (1980), p. 150, argues that all of Gödel’s discoveries stemmed
from his philosophical acuteness—allied with the appropriate, but generally
elementary, mathematical techniques. The incompleteness theorem, for ex-
ample, comes from observing the difference between provability and truth.
Gödel (1949) made an unexpected foray into another area of mathematics
of philosophical interest, the theory of relativity. He showed that there are
solutions of Einstein’s equations that contain closed timelike lines, theoret-
ically allowing the possibility of time travel. Gödel later calculated that the
amount of energy required to travel into one’s own past was prohibitively
large, but the feasibility of signals to and from the past remained open.
Indeed, he seems to have believed that this was a possible basis for the
existence of ghosts (Kreisel (1980), p. 155).

Gödel was understandably reticent about expressing such opinions pub-
licly. Even in the case of the incompleteness theorem, whose implications
for the question of minds versus machines were widely debated, he did not
publish his opinions. His private view, that the mind is more powerful than a
machine, may, however, have been important in enabling him to foresee the
incompleteness theorem in the first place. Indeed, it may not be too much to
say that Gödel’s receptiveness to scientifically unconventional ideas paved
the way for his unconventional theorems.
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Combinatorics

Preview

In this final chapter we look at another field that came to maturity in the
20th century: combinatorics. Like number theory before the 19th century,
combinatorics before the 20th century was thought to be an elementary
topic without much unity or depth. We now realize that, like number the-
ory, combinatorics is infinitely deep and linked to all parts of mathematics.
Here we emphasize the parts that link nicely to topics from earlier chapters,
but without completely sacrificing the distinctive features of the subject.

Combinatorics is often called “finite mathematics” because it studies
finite objects. But there are infinitely many finite objects, and it is some-
times convenient to reason about all members of an infinite collection at
once. In fact, combinatorics pioneered this idea with the use of generating
functions (already seen in Section 10.6).

Other important infinite principles in combinatorics are the infinite pi-
geonhole principle and the Kőnig infinity lemma. We illustrate these first
by some classical proofs in number theory and analysis, then in the 20th-
century fields of graph theory and Ramsey theory. Ramsey theory leads us
to a proof of the Paris–Harrington theorem, mentioned in Section 24.8 as a
theorem that cannot be proved in the strictly finite reasoning of PA.

Infinite reasoning is likewise essential for graph theory. The field had
its origins in topology, and it is still relevant there, but it has expanded
extraordinarily far in other directions. Graph theory today is exploring the
boundaries of finite provability first exposed by Gödel’s incompleteness
theorem.

J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, 553
DOI 10.1007/978-1-4419-6053-5 25, c© Springer Science+Business Media, LLC 2010
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25.1 What Is Combinatorics?

Combinatorics is a large and rapidly-growing area of mathematics with a
long history. But, until recently, it consisted of isolated fragments without
a sense of unity. We have seen some of these fragments in earlier chapters:

• Permutations and combinations. As we saw in Section 11.1, the bi-
nomial coefficients

(
n
k

)
and Pascal’s triangle were used in medieval

Chinese algebra. Independently, Levi ben Gershon interpreted
(
n
k

)
as

the number of combinations of n things, taken k at a time, and used
this interpretation to show that

(
n
k

)
=

n!
(n − k)!k!

.

Today we would say that he interpreted
(
n
k

)
combinatorially. This

interpretation shows, among other things, that n!
(n−k)!k! is always an

integer—a result that is not obvious on arithmetic grounds. In fact,
Gauss’s Disquisitiones, Section 127, contains the first “direct” proof
of this result using the concepts of prime factorization and divisi-
bility. Gauss’s proof is considerably longer than the combinatorial
proof.

• Generating functions. The algebraic interpretation of
(
n
k

)
, as the co-

efficient of xk in (1+x)n, is convenient for proving other properties of
the binomial coefficients; for example, the Pascal’s triangle property

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n
k

)
.

A function that packages a sequence of numbers as coefficients of
powers of x—the way that

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
are packaged by

(1 + x)n =

(
n
0

)
+

(
n
1

)
x + · · · +

(
n
n

)
xn

—is called a generating function. As we saw in Section 10.6, a gen-
erating function can also package an infinite sequence of numbers in
a compact way. In particular, the Fibonacci sequence F0, F1, F2, . . .

is packaged by the function

x

1 − x − x2
= F0 + F1x + F2x2 + · · · .



25.1 What Is Combinatorics? 555

This leads to the surprising formula

Fn =
1√
5

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 +

√
5

2

⎞⎟⎟⎟⎟⎠
n

−
⎛⎜⎜⎜⎜⎝1 − √5

2

⎞⎟⎟⎟⎟⎠
n⎤⎥⎥⎥⎥⎥⎦ .

• The Euler polyhedron formula, discussed in Section 22.2, reveals a
combinatorial property of polyhedra. Regardless of the shape or size
of the polyhedron, the numbers V , E, and F of its vertices, edges,
and faces must satisfy V − E + F = 2.

What these fragments have in common is a focus on finite, discrete as-
pects of mathematical objects that can be counted by natural numbers. For
this reason, combinatorics is also known as finite mathematics, discrete
mathematics, or simply “counting.” If one were to attempt a formal ax-
iomatic definition, one could say that combinatorics is the theory of finite
sets. There is a standard set of axioms for finite set theory, namely the ZF
axioms mentioned in Section 24.8, minus the axiom asserting the existence
of an infinite set. We call this axiom set ZT − Infinity for short.

In practice, combinatorialists do not prove theorems in ZF − Infinity,
since this would be unbearably tedious. Nevertheless, there are some in-
sights to be gained from this point of view. For one thing, it reveals that
combinatorics is equivalent, in a certain sense, to elementary number the-
ory. This follows from the work of Ackermann (1937), who pointed out
that number theory and finite set theory “contain” each other.

Finite set theory contains number theory because the natural numbers
can be defined as certain finite sets, as we saw in Section 24.2. Namely, 0
is the empty set and

1 = {0}, 2 = {0, 1}, . . . , n + 1 = {0, 1, 2, . . . , n}, . . . .

The axioms of finite set theory also allow one to prove the induction princi-
ple, which, as Dedekind and Peano discovered, is the basis for elementary
number theory.

Conversely, elementary number theory “contains” finite set theory, but
in a more subtle sense. Finite sets can be encoded by natural numbers, and
operations on finite sets can be encoded by operations on natural numbers
(in fact, by operations definable from addition and multiplication). This
was discovered by Gödel, as part of the machinery of his incompleteness
proof (Section 24.7). It follows that every theorem of combinatorics is
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encoded by a theorem of number theory, so combinatorics and number
theory are essentially equivalent.

Thus, if combinatorics is defined to be finite set theory, we can say
that combinatorics has exactly the same depth and degree of difficulty as
elementary number theory—which of course is plenty. In fact, this defi-
nition raises the specter of Gödel incompleteness in combinatorics. Just
as there are sentences of elementary number theory that cannot be proved
from the axioms of elementary number theory (the “Peano axioms”), there
are sentences of finite set theory that cannot be proved from the axioms of
finite set theory. What is remarkable is that such sentences actually arise
more naturally in combinatorics than they do in number theory. We will
see examples in Section 25.8.

For these reasons combinatorics cannot be entirely “finite” mathemat-
ics. The evolution of combinatorics since the 19th century bears this out.
Assumptions about infinite sets have been used increasingly often in com-
binatorics (as they have been in number theory for a longer period)—often
for convenience, but sometimes out of logical necessity. We study the evo-
lution from finite to infinite in the sections that follow.

Exercises

A spectacular example of a generating function is the one for the so-called
Catalan numbers Cn, which count the valid strings of n pairs of parentheses. The
valid strings may be defined inductively as follows:

• The empty string is a valid string.

• If a and b are valid strings, possibly empty, then so are a(b) and (a)b.

25.1.1 Confirm that C0 = 1,C1 = 1,C2 = 2, and C3 = 5 by enumerating the
possible valid strings.

25.1.2 Explain why Cn+1 = C0Cn +C1Cn−1 + C2Cn−2 + · · · +CnC0.

Now let
C(x) = C0 +C1 x +C2 x2 + · · ·

be the generating function of the Catalan numbers.

25.1.3 Compute C(x)2, and hence show that

coefficient of xn = C0Cn +C1Cn−1 +C2Cn−2 + · · · + CnC0.

25.1.4 Deduce from Exercise 25.1.3 that C(x) satisfies the equation

1 + xC(x)2 = C(x),
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so that

C(x) =
1 ± (1 − 4x)1/2

2x
.

25.1.5 Expanding (1 − 4x)1/2 by the binomial theorem, deduce from Exercise
25.1.4 that

Cn =
1 · 3 · 5 · · · (2n − 1)

(n + 1)!
2n.

25.1.6 Show also that

Cn =
1

n + 1

(
2n
n

)
.

25.2 The Pigeonhole Principle

An obvious property of finite sets is that if n objects (“pigeons”) are dis-
tributed among fewer than n sets (“pigeonholes”) then at least one set con-
tains more than one object. This property is called the pigeonhole prin-
ciple, and it was first used to prove serious theorems by Dirichlet around
1840 (see Dedekind’s Supplement VIII to Dirichlet (1863)). One of them
is the following theorem of number theory.

Dirichlet’s approximation theorem. For any irrational number α and
any integer Q > 1 there are positive integers p and q with 0 < q < Q and
|qα − p| ≤ 1/Q.

For example, suppose we choose Q = 100 and α = π. According to the
approximation theorem, there are an integer q < 100 and an integer p such
that

|qπ − p| < 1/1000.

Indeed, this happens for the rational approximation p
q =

355
113 to π that was

discovered by the Chinese mathematician Zu Chongzhi (429–500 ce). The
difference between π and 355

113 is less than 1000000, so we actually have

|113π − 355| < 1
10000

.

In this case we do even better than the theorem leads us to expect!

To prove the theorem we consider the Q + 1 numbers

0, 1, α − p1, 2α − p2, . . . , (Q − 1)α − pQ−1,
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where p1, p2, . . . , pQ−1 are integers chosen so that all the numbers lie be-
tween 0 and 1. If we now divide the interval from 0 to 1 into subintervals
of length 1/Q, then we have Q subintervals containing Q + 1 numbers. It
follows, by the pigeonhole principle, that at least two numbers are in the
same subinterval, and hence their distance apart is ≤ 1/Q. Since the dif-
ference between these numbers is necessarily of the form qα − p, where p
and q ≤ Q − 1 are integers, we have

|qα − p| ≤ 1/Q, where 0 < q < Q. �

Pell’s equation revisited

Dirichlet used his approximation theorem to prove that the Pell equation
x2 − Dy2 = 1 (Section 3.4) always has an integer solution. In his proof he
also made crucial use of the infinite pigeonhole principle, which states that
distributing infinitely many objects among finitely many sets results in at
least one infinite set.

Given a nonsquare integer D, Dirichlet finds integers x and y such that
x2 − Dy2 = 1 by thinning out the infinite set of all integer pairs p, q.

His first step is to find infinitely many such pairs for which

p2 − Dq2 = (p − q
√

D)(p + q
√

D) ≤ 3
√

D.

This is done by letting Q → ∞ in the Dirichlet approximation theorem
with α =

√
D, which gives infinitely many pairs p, q such that

|p − q
√

D| ≤ 1/q.

Then, since

|p + q
√

D| = |p − q
√

D + 2q
√

D| ≤ |p − q
√

D| + |2q
√

D|,

we have
|p + q

√
D| ≤ 3q

√
D.

And therefore

p2 − Dq2 = (p − q
√

D)(p + q
√

D) ≤ 1
q
· 3q
√

D = 3
√

D.

His second step is to apply the infinite pigeonhole principle:
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• Since there are only finitely many integers less than
√

D, p2 − Dq2

must have the same value N for infinitely many pairs p, q.

• Among these pairs p, q, infinitely many contain integers p leaving
the same remainder, A, on division by N.

• Among the pairs p, q for which p leaves remainder A, infinitely many
contain integers q leaving the same remainder, B, on division by N.

Thus at the end of the second step we have an integer N and an infinite set
of pairs p, q such that

• For each pair, p2 − Dq2 = N.

• All p leave the same remainder, A, on division by N.

• All q leave the same remainder, B, on division by N.

Now take two pairs, p1, q1 and p2, q2, from this set, so the correspond-
ing numbers, p1 − q1

√
D and p2 − q2

√
D, are distinct. It follows that the

number

x − y√D =
p1 − q1

√
D

p2 − q2
√

D
(*)

has both x and y nonzero. It also follows that

x + y
√

D =
p1 + q1

√
D

p2 + q2
√

D
,

and hence (multiplying the last two equations)

x2 − Dy2 =
p2

1 − Dq2
1

p2
2 − Dq2

2

=
N
N
= 1.

Thus we have a nontrivial solution of the Pell equation, provided that x
and y are integers. This last step is a routine calculation. First, we calculate
from (*) that

x =
p1 p2 − q1q2D

N
and y =

q1 p2 − q2 p1

N
.

We also know, since all p leave remainder A and all q leave remainder B,
that

p1 = a1N + A, p2 = a2N + A, q1 = b1N + B, q2 = b2N + B (**)
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for some integers a1, a2, b1, b2. So it remains to substitute the expressions
(**) in p1 p2 − q1q2D and q1 p2 − q2 p1 and see whether the results are
divisible by N. This last step is easy (given some guidance on how to
handle the term A2 − B2D), so we leave it to the exercises.

Exercises

25.2.1 Show that

p1 − q1
√

D

p2 − q2
√

D
=

p1 p2 − q1q2D
N

− q1 p2 − q2 p1

N

√
D.

25.2.2 Show that N divides q1 p2 − q2 p1 by substituting the expressions (**).

25.2.3 Given that p2
1 − q2

1D = N, show, by substituting the expressions (**), that
N divides A2 − B2D.

25.2.4 Show, by substituting the expressions (**) and using Exercise 25.2.3, that
N divides p1 p2 − q1q2D.

25.3 Analysis and Combinatorics

The infinite pigeonhole principle made another important appearance in
19th-century mathematics, in the following theorem about real numbers.
A theorem like this was first proved by Bolzano (1817), in the course of
his attempt to prove the intermediate value theorem. However, the theorem
was not appreciated until Weierstrass took it up again in the 1860s, as part
of a comprehensive theory of real numbers, limits, and continuity.

Bolzano–Weierstrass theorem. If S is an infinite set of points between 0
and 1, then there is a point X, every neighborhood of which contains points
of S other than itself.

A neighborhood of X consists of all the points within distance ε of X,
where ε > 0. We call a point X a limit point of S if every neighborhood
of X contains infinitely many points of S . Thus the Bolzano–Weierstrass
theorem asserts that any infinite set of points in the unit interval has a limit
point. This makes it a theorem of analysis but, as we will see in Section
25.6, the Bolzano–Weierstrass theorem is not out of place in a chapter on
combinatorics.

To prove the theorem we apply the infinite pigeonhole principle in-
finitely many times.
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We start by by dividing the unit interval [0, 1] into two halves, [0, 1/2]
and [1/2, 1]. Since the infinite set S is distributed between these two
halves, at least one of them contains infinitely many members of S . Pick
such a half (say, the leftmost that contains infinitely many members of S ),
and call it I1. We similarly find a half of I1, call it I2, that contains infinitely
many points of S , and so on.

The result of this process, illustrated in Figure 25.1, is an infinite se-
quence I1, I2, I3, . . . of subintervals of [0, 1], each of which contains in-
finitely many members of S . Also, each interval In+1 is a half of In, so
there is a single point X common to all of I1, I2, I3, . . ., by the nested inter-
val property mentioned in Section 24.1.

0 1
I1

I2

I3

I4

I5
...

X

Figure 25.1: Constructing the limit point X

Clearly, each neighborhood of X contains one of the intervals In, and
hence infinitely many points of S , so X is a limit point of S . �

An interesting consequence of the Bolzano–Weierstrass theorem is the
following:

Monotonic subsequence theorem. Any infinite sequence x1, x2, x3, . . .

of real numbers contains an infinite monotonic subsequence.

We call a subsequence y1, y2, y3, . . . monotonic if y1 ≤ y2 ≤ y3 ≤ · · ·
or y1 ≥ y2 ≥ y3 ≥ · · · . For example, the sequence

0, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 4/5, . . .

contains the monotonic subsequence 0, 1/2, 2/3, 3/4, 4/5, . . . .
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To prove the theorem we suppose that the sequence x1, x2, x3, . . . con-
tains infinitely many different numbers. (If not, then the sequence must
contain a constant sequence, which is trivially monotonic.) If the sequence
is unbounded, we can find an infinite monotonic subsequence by contin-
ually choosing members further in the unbounded direction. If the se-
quence is bounded, then the set S of its members has a limit point X, by
the Bolzano–Weierstrass theorem.

There are now two possibilities: S has infinitely many members greater
than X, or S has infinitely many members less than X. If S has infinitely
many members greater than X, let y1 be any one of them. Since X is a limit
point of S , there are infinitely many members of S between X and y1. So,
by looking along the sequence x1, x2, x3, . . . beyond y1 we will eventually
find a y2 between X and y1, then a y3 between X and y2, and so on. This
gives an infinite monotonic subsequence y1 > y2 > y3 > · · · above X.

Similarly, if there are infinitely many members of S less than X, we
only have to pick one of them, y1, and an infinite monotonic subsequence
y1 < y2 < y3 < · · · below X will follow. �

The monotonic subsequence theorem can be proved more “combina-
torially,” without appealing to limit points, as we will see in Section 25.7.
However, the limit point X makes for an easier proof, by providing a “tar-
get” for the monotonic subsequence to approach, like a heat-seeking mis-
sile. (If there is more than one limit point, all the better: there is more than
one target for the missile.) This is the first intimation that analysis—our
intuition about continuous structures like the line—can guide us to results
in discrete mathematics. In Section 25.7 we will see how this intuition can
even guide us to results about finite sets.

But first, it is high time we looked at some typical concepts and results
of finite combinatorics.

Exercises

25.3.1 Prove the monotonic sequence theorem directly for integer sequences.

25.3.2 Prove the following two-dimensional version of Bolzano–Weierstrass: any
infinite set of points in the unit square has a limit point.

25.3.3 Show that a convergent sequence of distinct points P1, P2, P3, . . . in the
plane contains a convergent subsequence of points Qi = (xi, yi) that is
“monotonic” in the sense that x1, x2, x3, . . . is monotonic and y1, y2, y3, . . .
is monotonic.
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25.4 Graph Theory

In the first three sections of this chapter I have placed combinatorics against
a classical background of number theory, geometry, and analysis. My pur-
pose was to show that combinatorics has deep roots, so presumably we can
expect big things of the subject. All this is true, but it is also true that com-
binatorics is the most naive branch of mathematics, accessible with almost
no background. The most naive branch of combinatorics is graph theory,
a subject that is visual and easily grasped, yet rich in connections with
other parts of mathematics. In this section we illustrate these connections
with the example of the Euler polyhedron formula, previously discussed in
Section 22.2.

First, what are the “graphs” studied in graph theory? They are not
graphs of functions as studied in calculus and analytic geometry. They are
(usually finite) structures consisting of vertices and edges. As in geometry,
we can think of vertices as points (but they are denoted by thick dots in
diagrams) and of edges as arcs connecting pairs of distinct vertices. The
positions of the vertices and the shapes of the edges are irrelevant: the
graph is completely specified by saying which vertices are connected by
edges. A common convention is that at most one edge connects a given
pair of vertices, so a graph is essentially just a pair of sets: a set of objects
called vertices, and a set of pairs of distinct vertices (the set of edges).

This is an abstract definition of graph, but usually we just draw pictures,
such as the four graphs shown in Figure 25.2.

Figure 25.2: Four graphs

To be precise, there are four connected graphs in Figure 25.2, a graph
being called “connected” when it contains a “path” between any two of its
vertices. A path is a sequence of distinct edges, each of which has a vertex
in common with the next. It is also true that Figure 25.2 can be viewed
as a picture of one disconnected graph with four “connected components.”
However, we usually confine our attention to connected graphs.
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Trees

A tree is a connected graph containing no closed paths, where a path is
called closed if its final vertex equals its initial vertex. Thus the first and
last graphs in Figure 25.2 are trees. (Moreover, the edges in the last graph
in Figure 25.2 form a path, and those in the second graph in Figure 25.2
form a closed path.) Another tree is shown in Figure 25.3.

Figure 25.3: A tree

If we let V denote the number of vertices, and E the number of edges,
of a tree, then we have the following:

“Euler formula” for trees. For any tree, V − E = 1.

We prove this by induction on V . If V = 1 we have a tree with one
vertex, and hence no edges, so V − E = 1. Now assume that the theorem
is true for trees with ≤ k vertices, and suppose we are given a tree T with
k + 1 vertices. In T we can find a vertex v that is the endpoint of only one
edge e, by following any path as far as possible. The path must reach an
“end” vertex v because T has no closed paths. Then if we remove both v
and e we still have tree, T ′, with V ′ = k vertices and hence E′ = k − 1
edges by induction. But then T has k edges, as required. �

Plane graphs

We call the formula V − E = 1 for trees an “Euler formula” because it is
a natural precursor to the Euler polyhedron formula. In fact, it leads to a
generalization of the polyhedron formula for graphs drawn in the plane.

A graph is called a plane graph if its vertices are points in the plane
and its edges are arcs in the plane that meet only at their endpoints. The
plane graphs include graphs of all convex polyhedra, because any convex
polyhedron can be projected one-to-one onto the plane (for example, by
first projecting the polyhedron onto a sphere around it, then projecting the
sphere stereographically onto the plane). As examples, consider the plane
graphs of the tetrahedron, cube, and octahedron shown in Figure 25.4.
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Figure 25.4: Plane graphs of polyhedra

A plane graph G has, in addition to vertices and edges, faces. The
faces of G are the regions into which the plane is cut by the edges of G
(think of actually cutting the plane along the edges of G). One sees, for
example, that the cube graph has six faces, as it should. The first proof
of the Euler polyhedron formula using plane graphs was given by Cauchy
(1813b). Cauchy considered only polyhedral graphs, but his idea extends
naturally to all plane graphs, and is considerably simplified thereby.

Any tree can drawn as a plane graph, necessarily with one face, because
there are no closed paths to create separate regions in the plane. Thus plane
graphs of trees satisfy V − E + F = 2, which is none other than the Euler
polyhedron formula. In fact we have:

Euler plane graph formula. For any connected plane graph G with V
vertices, E edges, and F faces,

V − E + F = 2.

This can be proved by induction on the number of closed paths in G.
If there are none, then G is a tree and we have V − E + F = 2 as explained
above.

If G contains a closed path p, consider any edge e in p. The graph
G′ that results from G by removing e is connected, because any vertices
previously connected via e are still connected (the “long way round”) via
what remains of p. Also, G′ has fewer closed paths, so the numbers V ′,
E′, and F′ of its vertices, edges, and faces satisfy V ′ − E′ + F′ = 2, by
induction.

For G itself, V = V ′, E = E′ + 1 (because G has the additional edge
e), and F = F′ + 1 (because G has a face on either side of the edge e, and
these two faces become one when e is removed). Thus V − E + F = 2 also,
as required to complete the induction. �
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It must be confessed that the penultimate step of this proof is not as
easy as it looks. It seems obvious that a closed path p in the plane has an
“inside” and an “outside”—and hence there is one face on the “in” side of
e and another on the “out” side of e—but this is actually a subtle theorem
of topology known as the Jordan curve theorem. Jordan (1887) recognized
that the theorem requires proof, but his proof was incorrect! The first proof
that meets modern standards of rigor was given by Veblen (1905).

The Jordan curve theorem is hard because it concerns arbitrary curves,
which can be infinitely complicated. These complications do not really
belong to combinatorics, so we have glossed over them in the proof above.
A complete proof of the Euler formula nevertheless has to do something
about closed paths in the plane, such as proving the Jordan curve theorem
for polygons. This is easier, and the restriction to polygons can be justified
by assuming that all plane graphs have straight edges (a valid assumption,
by a theorem of Wagner (1936)).

Exercises

A useful concept in graph theory is that of the degree of a vertex V, which is
the number of edges that contain V .

25.4.1 Show that the sum of the degrees equals twice the number of edges, and
hence that the number of vertices of odd degree is even.

With the help of this simple observation we prove a rather surprising result
known as Sperner’s lemma, due to Sperner (1928). The lemma concerns subdivi-
sions of the triangle into subtriangles, such as the one in Figure 25.5.

1

2 3

2

1

2 3

1

1

2

Figure 25.5: Division of a triangle into subtriangles with colored vertices
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The vertices of the subdivision are “colored” by labeling them 1, 2, or 3. The
coloring is arbitrary for vertices inside the triangle, but vertices on edges of the
triangle obey the following rules:

• The vertices V1,V2,V3 are labeled 1, 2, 3 respectively.

• Vertices on V1V2 are labeled 1 or 2.

• Vertices on V2V3 are labeled 2 or 3.

• Vertices on V3V1 are labeled 3 or 1.

The claim of Sperner’s lemma is that at least one subtriangle has vertices of all
three colors. In the example of Figure 25.5 this is the shaded triangle.

To prove Sperner’s lemma we construct a graph with the following vertices
and edges.

• A vertex inside each subtriangle, and also a vertex in the region outside the
triangle V1V2V3.

• An edge connecting any two of the vertices u, v just described, provided
that the regions containing u, v meet along an edge e whose vertices are
labeled 1 and 2 (in which case the connecting edge crosses e).

25.4.2 Explain why the edges from the vertex in the region outside V1V2V3 cross
the line V1V2, and hence show that the degree of this vertex is odd.

25.4.3 Explain why, for any other vertex u, the degree is

• 0 if u lies in a subtriangle whose vertices lack one of the labels 1, 2,

• 1 if u lies in a subtriangle whose vertices have all the labels 1, 2, 3,

• 2 if u lies in a subtriangle whose vertices have the labels 1, 2 only.

25.4.4 Deduce from Exercises 25.4.1 and 25.4.3 that there is an odd (and hence
nonzero!) number of subtriangles whose vertices have all the labels 1, 2, 3.

25.5 Nonplanar Graphs

As we emphasized at the beginning of Section 25.4, a graph is really an ab-
stract structure (a set of objects called vertices, and a set of pairs of distinct
vertices called edges) with many concrete realizations, such as drawings in
the plane. Naturally, we prefer realizations that are as simple as possible,
such as plane drawings in which edges do not cross.

However, not every graph can be drawn in the plane without edges
crossing. Two notorious examples are the graphs K5 and K3,3 shown in
Figure 25.6.
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K5
K3,3

Figure 25.6: Two nonplanar graphs

Such graphs are called nonplanar. K5 and K3,3 are sometimes said to
be given the letter K in honor of the Polish mathematician Kasimierz Ku-
ratowski. Kuratowski (1930) proved that any nonplanar graph “contains”
(in a sense we explain below) a copy of K5 or K3,3. K5 is also called the
complete graph on five vertices. It is one of an infinite family of graphs Kn,
each of which contains an edge between any two of its n vertices. K3,3 is
one of an infinite family of graphs Km,n, each of which has m + n vertices
and an edge from each of the first m vertices to each of the last n vertices.

It is quite hard to prove that each nonplanar graph “contains” (in a
suitable sense) a K5 or a K3,3. However, we can immediately prove that K5

and K3,3 themselves are nonplanar, using the Euler plane graph formula.

Nonplanarity of K5. Suppose, for the sake of contradiction, that K5

can be realized as a plane graph. We can see that V = 5 and E = 10 for K5,
so if F is the number of faces in its plane realization we have

5 − 10 + F = 2, by the Euler plane graph formula.

Thus F = 7.
Now, each face has at least three edges, because a face with two edges

has its two vertices joined by different edges, which does not happen in K5.
Therefore, the total number of edges, E, satisfies

E ≥ 7 × 3
2
.

(We have to divide by 2 because each edge belongs to two faces, and hence
is counted twice.) This contradicts the actual number E = 10, so K5 cannot
be realized as a plane graph. �
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Nonplanarity of K3,3. Again suppose, for the sake of contradiction,
that K3,3 can be realized as a plane graph. We can see that V = 6 and E = 9
for K3,3, so if F is the number of faces in its plane realization we have

6 − 9 + F = 2, by the Euler plane graph formula.

Thus F = 5.
Now in K3,3 there are no triangles, because any path of three edges

starts and ends in opposite sets of vertices, hence is not closed. Therefore,
each face in the plane realization of K3,3 has at least four edges, so the total
number of edges satisfies

E ≥ 5 × 4
2

(dividing by 2, as before, because each edge belongs to two faces). This
contradicts the actual number E = 9, so K3,3 cannot be realized as plane
graph. �

Since K5 is nonplanar, so is any subdivided K5, where subdivision is
the process of replacing certain edges of K5 by paths. An example is the
graph shown in Figure 25.7, in which the bottom edge has been replaced by
a 3-edge path, and the edge parallel to it by a 2-edge path. Intuitively, we
“subdivide” edges by inserting extra vertices in them. If a subdivided K5

has a plane realization, then so has K5, simply by erasing the extra vertices,
hence each subdivided K5 is nonplanar.

Figure 25.7: A subdivided K5

Similarly, the nonplanarity of K3,3 implies the nonplanarity of any sub-
divided K3,3.

These two results on the nonplanarity of subdivided graphs make up
the “easy direction” of Kuratowski’s theorem.

Kuratowski’s theorem. A graph is nonplanar if and only if it contains a
(possibly subdivided) K5 or K3,3.
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The “hard direction” is to prove that any nonplanar graph contains a
(possibly subdivided) K5 or K3,3. We do not attempt to explain the proof.
However, the exercises give enough examples to show that it is not easy
to find the K5 or K3,3 even in quite small nonplanar graphs. Nevertheless,
Kuratowski’s theorem gives a guaranteed test for nonplanarity, because we
can test whether or not a finite graph contains a subdivided K5 or K3,3 by
exhaustive search.

Exercises

Another famous nonplanar graph is the Petersen graph shown in Figure 25.8.

Figure 25.8: The Petersen graph

25.5.1 Use the Euler planar graph theorem to prove that the Petersen graph is
nonplanar. (Hint: You may need to assume that the graph contains no
quadrilaterals.)

25.5.2 Show that the Peterson graph “contains” a subdivided K3,3, thus giving a
different proof that the Petersen graph is nonplanar.

25.5.3 Show that the “twisted cube graph” shown in Figure 25.9 is nonplanar.

Figure 25.9: The twisted cube graph

Since K5 is nonplanar, so is any graph that contains it, such as K6 or K7.

25.5.4 Show that K5,K6,K7 may each be drawn on a torus without edges cross-
ing. (Hint: It may be helpful to represent the torus as a square with identi-
fied edges, as in Figure 22.11.)

25.5.5 Show also that K3,3 may be drawn on the torus without edges crossing.
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25.6 The Kőnig Infinity Lemma

The Kőnig infinity lemma first appeared in Kőnig (1926), where it played
a minor role in set theory. Kőnig (1927) noticed that it is quite generally
useful as a “means of reasoning from the finite to the infinite,” and finally
Kőnig (1936) placed it firmly in the graph theory setting where it seems
most natural. Today, it is usually stated as a property of infinite trees.

The lemma itself is quite easy. Its proof runs along similar lines to
those of the Bolzano–Weierstrass theorem of Section 25.3. (But, like the
Bolzano–Weierstrass theorem, it is surprisingly powerful.) To state it con-
cisely we say that a tree has finite branching if each vertex belongs to only
finitely many edges, and to further indulge the tree metaphor we call an
infinite path in a tree an infinite branch.

Kőnig infinity lemma. If T is an infinite tree with finite branching, then T
has an infinite branch.

To obtain an infinite branch in T we start at any vertex v. Since T is
infinite it contains infinitely many vertices, so at least one of the finitely
many edges out of v leads into an infinite subtree T1 of T (by the infinite
pigeonhole principle).

We choose such an edge as the initial edge of a path into T1, with v1 as
its first vertex in T1. Since T1 is also infinite, there is at least one edge out
of v1 that leads into an infinite subtree T2 of T1, and so on.

Thus by repeatedly choosing an edge that leads into an infinite subtree,
we obtain an infinite path in T . This is our infinite branch. �

It should be clear that this is essentially the same argument as that for
the Bolzano–Weierstrass theorem in Section 25.3. In the proof of Bolzano–
Weierstrass there is implicitly a tree of subintervals of [0, 1], branching
occurs each time we split a subinterval in two, and an infinite branch of
this tree gives the limit point we seek.

The Kőnig infinity lemma allows us to obtain many kinds of limit ob-
ject by constructing a “tree of finite approximations” to the object we seek.
Typically, we cannot foresee which finite approximations will extend to in-
finity, but the Kőnig infinity lemma allows us not to worry. If we construct
the tree of all finite approximations, the limit object is sure to occur as an
infinite branch.
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Application to map coloring

One of the most famous theorems of combinatorics is the four color the-
orem of Appel and Haken (1976). It states that any map (in the sense of
geography) can be validly colored with four colors, where valid coloring
satisfies the condition that adjacent regions (countries, states, or counties
say) are given different colors. Despite its fame, the four color theorem
occupies a lonely place in mathematics, because its known proofs are inor-
dinately long and seemingly unrelated to other parts of the subject.

However, the theorem has one corollary that is interesting and appro-
priate here: an infinite version that follows elegantly from the usual finite
version by the Kőnig infinity lemma. Indeed, the passage from coloring
finite maps to coloring infinite maps was one of the first applications of the
lemma, pointed out by Kőnig (1927).

Given an infinite map M, with countries C1,C2,C3, . . ., one constructs
a tree of valid 4-colorings of finite submaps (namely, of maps Mn consist-
ing of countries C1,C2, . . . ,Cn). The four color theorem ensures that this
tree is infinite, so it has an infinite branch. And it is clear from the nature
of the tree that an infinite branch represents a valid 4-coloring of M.

To illustrate the construction of the tree, consider the map M whose
first few regions C1,C2,C3,C4, . . . are shown in Figure 25.10 The tree of

...

· · · · · ·

...

C1 C2 C4

C3

Figure 25.10: Part of an infinite map M

valid 4-colorings is now constructed from M so that each branch of length
n, starting at the top vertex, represents a valid 4-coloring of the submap Mn

whose regions are C1,C2, . . . ,Cn.

• The top vertex (level 0) has four outgoing edges to vertices at level 1.
These four vertices represent the four possible colorings of C1 and



25.6 The Kőnig Infinity Lemma 573

we give them four different colors (shades of gray in Figure 25.11,
to make life easier for the printer).

• Each vertex at level 1 has up to four downward edges, leading to
vertices at level 2 that are given the allowable colorings of C2 (colors
different from those of the vertex at level 1 on the same branch when
C2 is adjacent to C1, as here).

• Each vertex at level 2 likewise has up to four downward edges, lead-
ing to vertices at level 3 that are given the allowable colorings of C3

(colors different from any of those on the same branch assigned to
regions adjacent to C3, as C1 and C2 are here), and so on.

Figure 25.11 shows the complete levels 1 and 2 of the tree of colorings
for the map M given in Figure 25.10, and parts of levels 3 and 4.

Each vertex at level n is the endpoint of a unique path from level 0
that assigns colors validly to C1,C2, . . . ,Cn. For example, the vertex v
represents the coloring (which is valid because C4 is not adjacent to C1)

C1 = , C2 = , C3 = , C4 = .

C1

C2

· · · · · ·C3

v
· · · · · ·C4

Figure 25.11: Part of the tree of 4-colorings for M

By the four color theorem, there are paths to every level. Thus the tree is in-
finite, and so it has an infinite branch, by the Kőnig infinity lemma. Clearly,
an infinite branch assigns valid colors to all the regions C1,C2,C3, . . . in M;
hence M can be 4-colored.
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Exercises

A remarkably simple proof that finite 4-coloring implies countable 4-coloring,
due to G. Galperin, may be found in the book Soifer (2009). This proof depends
on the Bolzano–Weierstrass theorem. Given a map with countries C1,C2,C3, . . .,
we represent each valid coloring of the submap with countries C1,C2, . . . ,Cn by
a finite decimal number 0.a1a2 . . . an, where ai is 1, 2, 3, or 4 according as Ci is
colored with the first, second, third, or fourth color.

25.6.1 It follows from the 4-color theorem that this set of numbers is infinite.
Explain why it has a limit point.

25.6.2 Explain how the limit point gives a valid coloring of the map with coun-
tries C1,C2,C3, . . . .

This proof suggests a way to replace the Kőnig infinity lemma by the Bolzano-
Weierstrass theorem in other proofs. However, it is often more natural to construct
a tree than a set of real numbers. Here is an example: proving that a countable
graph G is planar if and only if all its finite subgraphs Gn (involving the first n
vertices of G) are planar. We call a graph “planar” if it can be realized as a plane
graph.

25.6.3 Assuming that each finite planar graph has only finitely many topologi-
cally distinct planar realizations, describe a suitable tree of planar realiza-
tions of finite subgraphs G1,G2,G3, . . . of G.

25.6.4 Deduce from Exercise 25.6.3 and the Kőnig infinity lemma that G is planar
if all of G1,G2,G3, . . . are planar.

25.6.5 Deduce from Exercise 25.6.4 that G is planar if it contains no subdivision
of K5 or K3,3.

As another application of the Kőnig infinity lemma/Bolzano–Weierstrass, we
now prove a famous theorem of topology: the two-dimensional Brouwer fixed
point theorem. It states that any continuous map f of the triangle into itself has a
fixed point, that is, a point P such that f (P) = P. The key to the following proof
is Sperner’s lemma, from the exercises for Section 25.4.

The idea of the proof applies to any triangle, but for convenience we take our
triangle to be the equilateral triangle T in R3 with vertices

V1 = (1, 0, 0), V2 = (0, 1, 0), V3 = (0, 0, 1).

The triangle T is the part of the plane x1 + x2 + x3 = 1 for which x1, x2, x3 ≥ 0.
Hence

0 ≤ x1, x2, x3 ≤ 1

for each point (x1, x2, x3) in T .
Now suppose that f : T → T is a continuous map. For any point x =

(x1, x2, x3) we will write f (x)i for the ith coordinate of f (x).
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25.6.6 If f (x) � x for each point x in T , show that f (x)i < xi for some i.

We now “color” each point x in T with the least i such that f (x)i < xi. In particu-
lar, we apply this coloring to the vertices in an infinite sequence of triangulations
of T , the first three of which are shown in Figure 25.12. These triangulations are
obtained by repeating the subdivision of an equilateral triangle into four equilat-
eral subtriangles.

Figure 25.12: Triangulations of an equilateral triangle

25.6.7 Explain why V1,V2,V3 get colors 1, 2, 3 respectively and

• Vertices on V1V2 do not get color 3.

• Vertices on V2V3 do not get color 1.

• Vertices on V3V1 do not get color 2.

Thus the coloring of each triangulation in the sequence satisfies the conditions of
Sperner’s lemma, so each triangulation contains a subtriangle with vertices of all
three colors ( a “3-colored subtriangle”).

25.6.8 With the help of the Bolzano–Weierstrass theorem, show that there is a
convergent sequence of 3-colored triangles, that is, a sequence of 3-colored
triangles whose vertices all tend to the same point y = (y1, y2, y3).

Now, since we assume that f has no fixed point, y has a certain color: 1, 2, or 3.

25.6.9 Observing that f (y)i = yi for at most one coordinate of y (why?), deduce
from the continuity of f that any sufficiently small triangle, sufficiently
close to y, has at least two vertices of the same color.

This contradicts the definition of y, so the assumption that f has no fixed points is
false.

25.7 Ramsey Theory

Ramsey theory takes its name from the English mathematician and logician
Frank Plumpton Ramsey. Ramsey (1929) laid the foundations of the sub-
ject with two important theorems, now known as the finite Ramsey theorem
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and the infinite Ramsey theorem. Ramsey introduced these theorems in a
paper on mathematical logic, so they were not noticed by many mathemati-
cians. His influence grew with the paper of Erdős and Szekeres (1935),
which gave a simpler approach to Ramsey theory and introduced it to a
wider audience. Erdős and Szekeres gave an elegant proof of the finite
Ramsey theorem and also observed that it follows from the infinite Ram-
sey theorem by the Kőnig infinity lemma—an important connection that
Ramsey himself had not noticed.

To motivate the finite Ramsey theorem we note, as many have done,
the following curious fact: in any group of six people there are either three
mutual acquaintances or three mutual nonacquaintances. We translate this
fact into the language of graph theory by letting the six people be vertices
of a graph, drawing a red edge between any two who are acquainted, and
a blue edge between any two who are not acquainted. Then the fact about
acquaintances translates into the following fact about graphs:

Baby Ramsey theorem. A K6 whose edges are colored with two colors
always contains a monochromatic triangle (that is, a triangle whose edges
are all of the same color).

To see why this is so, notice first that each vertex v of a K6 belongs to
five edges. It follows that at least three of the edges out of v have the same
color (shown as black in Figure 25.13). So, the only way to avoid a triangle
of this color is to join the ends s, t, u of these three edges by edges of the
other color (shown as gray).

v

s

t

u

v

s

t

u

Figure 25.13: Monochrome edges and monochrome triangle

Thus there is always a monochromatic triangle. �

Notice also that 6 is the smallest value of n for which a 2-colored Kn

always contains a monochromatic triangle (or a monochromatic K3, as we
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will say for short). This is because there is a 2-colored K5 that does not
contain a monochromatic K3, as Figure 25.14 shows.

Figure 25.14: A 2-colored K5 with no monochromatic K3

This raises the following question: is there an n such that any 2-colored
Kn contains a monochromatic K4? The answer is yes, and 18 is the least
such value of n. (So, in any group of 18 people there are either four mutual
acquaintances or four mutual nonacquaintances.) More generally, we have
the following “finite Ramsey theorem”:

Ramsey theorem for 2-colorings of Kn. For any m there is an n such that
any 2-coloring of Kn contains a monochromatic Km.

This is not the most general finite Ramsey theorem. Instead of coloring
edges of Kn, which are 2-element subsets of the n-element set of vertices,
we can color k-element subsets of an n-element set. And instead of two
colors we can use any finite number. However, we will stick to 2-coloring
of edges of graphs, since the ideas of Ramsey theory can be illustrated
perfectly well in this setting.

We will not give a direct proof of the Ramsey theorem for 2-colorings
of Kn, since the elegant Erdős–Szekeres approach is outlined in the exer-
cises. Instead, we will give a proof of a countably infinite Ramsey theorem,
from which the finite Ramsey theorem follows easily.

The countably infinite Ramsey theorem

To state this theorem we consider the countably infinite complete graph Kω,
which has a countable infinity of vertices v1, v2, v3, . . . and an edge between
any two of them. Thus the edges of Kω can be enumerated as follows.

• The edges from v1 to v2, v3, v4, . . . .
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• The edges from v2 to v3, v4, v5, . . . .

• The edges from v3 to v4, v5, v6, . . . .

• And so on.

Given a 2-coloring of these edges, we find a monochromatic Kω on
a countably infinite subset of the vertices by “thinning out” the enumer-
ation above. The thinning process involves infinitely many applications
of the infinite pigeonhole principle, rather like the proof of the Bolzano–
Weierstrass theorem in Section 25.3.

Step 1. By the infinite pigeonhole principle, infinitely many edges out
of v1 have the same color. We let W1 be the set of vertices to which these
monochromatic edges lead, and let w1 be the first member of W1 in the
ordering of vertices.

Step 2. By the infinite pigeonhole principle again, infinitely many of
the edges from w1 to other vertices in W1 have the same color. Let W2 be
the set of vertices in W1 to which these edges lead, and let w2 be the first
member of W2 in the ordering of vertices.

Step n. By the infinite pigeonhole principle (for the nth time), infinitely
many of the edges from wn−1 to other vertices in Wn−1 have the same color.
Let Wn be the set of vertices in Wn−1 to which these edges lead, and let wn

be the first of them in the ordering of vertices.
By induction, Wn is infinite for each n, and hence we get an infinite

subsequence w1, w2, w3, . . . of the original vertices. Also the edges from
wn−1 to wn, wn+1, wn+2, . . . are all of the same color, since they are a subset
of the edges from wn−1 to the members of Wn, and the latter edges have the
same color by construction.

It is not necessarily the case that the color of the edges from w1 to
w2, w3, . . . is the same as the color of the edges from w2 to w3, w4 . . ., and
so on. However, by the infinite pigeonhole principle again, the same color
occurs infinitely often. Therefore (Step ω) we can choose an infinite sub-
sequence x1, x2, x3, . . . of w1, w2, w3, . . . such that

color of edges from x1 to x2, x3, x4 . . .

= color of edges from x2 to x3, x4, x5 . . .

= color of edges from x3 to x4, x5, x6, . . .

and so on. That is, the complete graph with the vertices x1, x2, x3, . . . is
monochromatic. �
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This proves the countably infinite Ramsey theorem. To deduce the
finite Ramsey theorem we suppose, for the sake of contradiction, that the
finite Ramsey theorem is false. That is, there is an m such that, for any n,
there is a rogue 2-coloring of the edges of Kn, namely, a 2-coloring that
contains no monochromatic Km.

Now construct a tree of rogue 2-colorings as follows. At level 0 put
a dummy vertex, connected to all vertices at level 1. At each level n > 0
put a vertex for each rogue 2-coloring of Kn. Also connect each rogue
2-coloring of Kn to each rogue 2-coloring of Kn+1 that extends it. Each
rogue 2-coloring of Kn+1 necessarily extends a unique rogue 2-coloring of
Kn (obtained by deleting all edges that include the vertex n+ 1). Hence the
graph of all rogue 2-colorings is indeed a tree.

Also, the tree is infinite, by the assumption that rogue 2-colorings of
Kn exist for all n. Thus the tree has an infinite branch, by the Kőnig infinity
lemma. But an infinite branch defines a 2-coloring of Kω, obtained by the
series of coloring extensions from Kn to Kn+1 along the branch.

It follows, by the infinite Ramsey theorem, that there is a monochro-
matic complete graph on an infinite set of vertices x1, x2, x3, . . . . In partic-
ular, there is a monochromatic Km on the vertices x1, x2, . . . , xm. This con-
tradicts our assumption that no 2-coloring in the tree contains a monochro-
matic Km. Hence the finite Ramsey theorem is true. �

Exercises

An elegant inductive proof of the finite Ramsey theorem was given by Erdős
and Szekeres (1935). Assuming that edges of graphs are colored red or blue (for
the sake of argument), they define the Ramsey number

R(p, q) = minimum m such that a 2-colored Km contains a red Kp or a blue Kq.

Then they prove that R(p, q) exists for all p, q ≥ 2 by induction on p+q as follows.

• Clearly R(2, 2) exists and equals 2.

• If R(p − 1, q) and R(p, q − 1) exist then so does R(p, q), and in fact

R(p, q) ≤ R(p − 1, q) + R(p, q − 1).

The hard part is to prove the inequality R(p, q) ≤ R(p − 1, q) + R(p, q − 1), which
is done by considering a 2-coloring of Km, where

m = R(p − 1, q) + R(p, q − 1).
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25.7.1 Explain why one of the following exists in the 2-colored Km:

Case 1. A vertex u with at least R(p, q − 1) blue edges attached to it.

Case 2. A vertex v with at least R(p − 1, q) red edges attached to it.

25.7.2 In Case 1, show (by considering the KR(p,q−1) at the ends of the blue edges
out of u) that Km contains either a red Kp or a blue Kq.

25.7.3 In Case 2, show (by considering the KR(p−1,q) at the ends of the red edges
out of v) that Km contains either a red Kp or a blue Kq.

25.7.4 Explain why R(2, 3) = R(3, 2) = 3.

25.7.5 Look again at the proof of the “Baby Ramsey theorem” and compare it
with the p = 3, q = 3 case of the proof above.

In Section 25.3 we mentioned that there is a proof of the monotonic sequence
theorem that does not appeal to limit points (via the Bolzano–Weierstrass theo-
rem). There is a purely combinatorial proof, using the infinite Ramsey theorem.

Given an infinite sequence x1, x2, x3, . . . of distinct real numbers, take the xi

as vertices of a graph, with

• A red edge connecting xi and x j if i < j and xi < x j.

• A blue edge connecting xi and x j if i < j and xi > x j.

25.7.6 Conclude, from the infinite Ramsey theorem, that x1, x2, x3, . . . contains
an infinite monotonic subsequence.

We reiterate that the infinite pigeonhole principle, which underlies both Bolzano–
Weierstrass and the infinite Ramsey theorem, is used infinitely often in both proofs.
Thus the two proofs of the monotonic subsequence theorem appear to be roughly
equal in complexity.

25.8 Hard Theorems of Combinatorics

It may seem like excessive use of force to employ the infinite Ramsey
theorem to prove the finite Ramsey theorem, when reasoning about finite
sets will suffice. However, the proof is a model for others, some of which
have no finite alternative. The most historically important of these is the
Paris–Harrington theorem mentioned in Section 24.8. As we said there,
the Paris–Harrington theorem is not provable in Peano arithmetic (PA),
and hence it is not provable in finite set theory either. Yet it follows easily
from the infinite Ramsey theorem!
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The reason is that the Paris–Harrington theorem is simply the finite
Ramsey theorem with an additional “largeness” condition imposed on the
monochromatic subset. Paris and Harrington call a finite set S of natural
numbers large if the number of members of S is greater than the smallest
member of S . It is this condition that makes their theorem unprovable in
PA, but it presents no obstacle to a proof from the infinite Ramsey theorem.

The proof begins, as in Section 25.7, by supposing that the theorem
is false for some size m of monochromatic set. This means that we can
construct a tree of “rogue colorings” not containing a large monochromatic
subset of size m or more. But then the Kőnig infinity lemma gives an
infinite monochromatic subset, from which we can extract a finite set S for
which the number of members is at least m and greater than the smallest
member of S . Thus S is large and we have a contradiction.

The Paris–Harrington theorem is certainly a natural variation of the
classical finite Ramsey theorem. Nevertheless, it was engineered by logi-
cians for the express purpose of being unprovable in PA, and hence un-
provable in finite set theory. Are there any theorems of combinatorics,
of independent interest, that happen to be unprovable in finite set theory?
Well, of course, the infinite Ramsey theorem is one such, because it implies
the Paris–Harrington theorem. However, the infinite Ramsey theorem can-
not even be stated in finite set theory, because it is not a sentence about
finite sets. It would be better to say that the infinite Ramsey theorem is
stronger than finite set theory, or that it is an “axiom of infinity.” Other
theorems that originate in combinatorics are also axioms of infinity in this
sense. Two of the most famous of them are Kruskal’s theorem and the
Robertson–Seymour theorem.

The Kruskal and Robertson–Seymour theorems

The theorem of Kruskal (1960) concerns the ordering of finite trees by
the embedding relation. We say that a tree T1 embeds in a tree T2, written
T1 	 T2, if there is a continuous one-to-one map of T1 into T2. The relation
	 is an example of a partial order, which means that it satisfies

T 	 T (reflexivity)

T1 	 T2 and T2 	 T3 implies T1 	 T3 (transitivity)

It is not a linear order, like the ordering of real numbers, because there
are trees T1 and T2 such that neither T1 	 T2 nor T2 	 T1. Nevertheless,
“complete disorder is impossible” in the following sense:
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Kruskal’s theorem. Any infinite sequence of finite trees contains an infi-
nite monotonic subsequence: T1 	 T2 	 T3 	 · · · .

Kruskal’s theorem does not extend to arbitrary finite graphs, because
one can give an infinite sequence of graphs, none of which embeds in any
other. An example is the sequence of polygon graphs, shown in Figure
25.15.

. . .

Figure 25.15: The polygon graphs

However, a similar theorem holds for a slight relaxation of the embed-
ding relation called the graph minor relation. We say that G1 is a minor of
graph G2 if some blowup of G1 embeds in G2. We “blow up” G1 by finitely
often replacing a vertex by two vertices connected by an edge. Thus any
tree is a blowup of a single vertex, and each polygon is a blowup of any
polygon with a smaller number of edges. The graph minor theorem is the
following:

Robertson–Seymour theorem. Any infinite sequence of finite graphs con-
tains an infinite monotonic sequence under the graph minor relation.

The proof of Kruskal’s theorem is too difficult to include here. An
accessible proof may be found in the last chapter of Diestel (2005). The
proof of the Robertson–Seymour theorem is barely accessible to anybody,
since it occupies a series of about 20 papers, published between 1983 and
2004.

Finite consequences of Kruskal and Robertson–Seymour

The apparent difficulty of these two theorems is matched by their logi-
cal strength. Like the infinite Ramsey theorem, they imply theorems that
can be stated, but not proved, in finite set theory. In 1981, the American
logician Harvey Friedman discovered variants of Kruskal’s theorem, con-
cerning finite sequences of trees, that follow from it but are not provable in
finite set theory. In fact, these variants of Kruskal’s theorem lie at a “higher
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level of unprovability” than the Paris–Harrington theorem, in a sense that
can be made precise by ordinal numbers. Friedman also discovered fi-
nite variants of the Robertson–Seymour theorem that follow from it but are
likewise highly unprovable in finite set theory.

These discoveries suggest that some kind of convergence between com-
binatorics, logic, and set theory is underway. Combinatorics seems to be
the most fruitful source of easy-to-understand but hard-to-prove theorems,
and it is also seems to be the place where insights from the infinite world
most clearly illuminate the finite world. The importance of principles con-
necting the finite world to the infinite world has been emphasized by the
Australian mathematician Terry Tao:

These principles allow one to tap the power of the infinitary
world (for instance, the ability to take limits and perform com-
pletions or closures of objects) in order to establish results in
the finitary world, or at least to take the intuition gained in the
infinitary world and transfer it to a finitary setting.

Tao (2009), p. 165

Another spectacular finite consequence of the Robertson–Seymour the-
orem is the following generalization of Kuratowski’s theorem on planar
graphs: for any surface S there is a finite set of “forbidden minors” for
graphs on S. That is, if a graph G cannot be drawn on S without edges
crossing, then one of the forbidden minors for S is a minor of G. This fol-
lows very easily from the graph minor theorem because, in a minimal set
of forbidden minors, one graph cannot be a minor of another. So the set of
forbidden minors cannot be infinite, by the Robertson–Seymour theorem.

We call this a generalization of Kuratowski’s theorem because Wagner
(1937) showed that K5 and K3,3 make up a minimal set of forbidden minors
for the plane. It is not clear whether the generalization to arbitrary surfaces
can be proved in finite set theory, but it is certainly a difficult theorem.
Apart from the plane (or sphere), the only surface for which the set of
forbidden minors is known is the projective plane, for which the minimal
set has 35 members. For the torus we do not even know the number of
forbidden minors, but it is known to be at least 16000.

Exercises

An interesting example of a graph that is not forbidden for the projective plane
is the Petersen graph, mentioned in the exercises to Section 25.5. In fact, when
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the projective plane is constructed by identifying antipodal points on the sphere,
the Petersen graph arises as the image of the dodecahedron graph on the sphere.

25.8.1 By labeling antipodal vertices of a dodecahedron A and A′, B and B′, C
and C′, . . . show that the vertex pairs {A, A′}, {B, B′}, {C,C′}, . . . and the cor-
responding edge pairs form a Petersen graph.

Other graphs that are not forbidden for the projective plane are K5 and K6.

25.8.2 Show that K6, and hence K5, may be drawn on the projective plane without
edges crossing. (Hint: Draw K6 on a Möbius band.)

On the other hand, K7 is forbidden on the projective plane.

25.8.3 A graph with V vertices, E edges, and F faces on the projective plane
corresponds to a graph with 2V vertices, 2E edges, and 2F faces on the
sphere. Why? Conclude that V − E + F = 1 for graphs on the projective
plane.

25.8.4 Use the formula in Exercise 25.8.3 to show that K7 cannot be drawn on
the projective plane without edges crossing.

25.9 Biographical Notes: Erdős

Paul Erdős (or Erdős Pál as he was known in Hungary) was born on March
26, 1913, in Budapest, to a middle-class Jewish family. His parents, Lajos
and Anna, were mathematics teachers, so Paul was immersed in mathemat-
ics from childhood. He took to it immediately, so much so that it became
almost his whole world for the rest of his life. His single-minded devotion
to mathematics—remarkable even for a mathematician—undoubtedly had
a lot to do with the shocks experienced by his family when he was a child.

Just as he was born, his two older sisters were carried off by scarlet
fever. Then in 1914, with the onset of World War I, Lajos was drafted
into the Austro-Hungarian army. Shortly thereafter, he was captured by
the Russians and imprisoned for six years in Siberia. Before his return, the
Austro-Hungarian empire vanished, and Hungary experienced a postwar
upheaval with the Hungarian Commune of Béla Kún. In 1919, the Com-
mune collapsed after 132 days, and was followed by a wave of “White
Terror” with attacks on Communists and Jews.

Understandably, Anna became a very protective mother to her only
remaining child, but she took protectiveness to bizarre extremes. Paul did
not enter school until age 11 (about the same time that he first learned to
tie his shoes) and he did not butter his own bread until 1934, when he
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made his first overseas trip. There were some things he never learned to do
and, after Anna died in 1971, colleagues had to step in to make his travel
arrangements, manage his bank account, and so on.

But always, Paul was learning and discovering mathematics. At the age
of four he discovered negative numbers by himself. At the age of 10, Lajos
showed him Euclid’s proof that there are infinitely many primes, and at the
age of 13 he had his first publication—the solution to a problem in a jour-
nal for secondary school students. At the age of 18, in his first year at the
Science University of Budapest, he came to the attention of serious math-
ematicians with a new and elementary proof of a theorem first proved by
the Russian mathematician Pafnuty Chebyshev in 1850. As Erdős himself
might have said (in words penned by the mathematician Nathan Fine):

Chebyshev said it, and I’ll say it again,
There is always a prime between N and 2N.

Chebyshev’s theorem is a new demonstration that there are infinitely many
primes, and it also gives an idea of how dense they are. As such, it can be
viewed as the first step towards a proof of the prime number theorem: the
number of primes less than N is asymptotically equal to N/ log N. That
is, if π(N) is the number of primes less than N, then the ratio of π(N) to
N/ log N tends to 1 as N tends to infinity.

The prime number theorem was conjectured around 1800 by Legen-
dre and Gauss, but not proved for almost 100 years, independently by
Hadamard (1896) and de la Vallée Poussin (1896). Their proofs made
heavy use of analysis, particularly the zeta function of Euler and Riemann
studied in Section 10.7, and for a long time a proof by elementary methods
was thought impossible. Erdős had something to say about this later, as we
will see.

Number theory was Erdős’s first love, but he discovered the joys of
graph theory through a course given by Dénes Kőnig while he was at uni-
versity. In 1935 he made his mark on the infant field of combinatorics with
the Ramsey theory paper Erdős and Szekeres (1935). This joint paper with
George Szekeres had a seemingly frivolous origin, but it was typical of the
way that Erdős liked to work: start with a simple problem that contains the
germ of a new idea, and generalize.

Szekeres and his future wife, Esther Klein, belonged to a circle of stu-
dent friends around Erdős. In the early 1930s they used to gather for math-
ematical conversations at the Erdős home, the city park, or on hikes in the
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hills around Budapest. On one of these excursions, Esther Klein raised a
problem in elementary geometry: does every set of five points in the plane,
no three of which are in a line, include four that are the vertices of a con-
vex quadrilateral? Klein proved that the answer is yes, by considering the
various possible cases, but a more general problem beckoned: for any in-
teger n, is there an N such that any N points in the plane (again, with no
three in a line) include n that are the vertices of convex n-gon? It was this
apparently simple problem that led Erdős and Szekeres to Ramsey theory.

In later years, Erdős came to call the problem of convex subsets the
“happy ending” problem; not only because it put Ramsey theory on the
map, but because George and Esther got married in 1936 and had a long
and happy life together. (They both died on August 28, 2005, within an
hour of each other.)

The 1930s were a time of mathematical ferment for Erdős and his
friends, but also a time of great anxiety. Most of them were Jewish, so
it was clear to them that they had to leave Europe to survive. George and
Esther Szekeres went to Shanghai and then Australia, and Erdős first to the
UK, then to the US. This was the beginning of his restless search for what
he called “another roof, another proof”—never with a permanent job, or
a home, or more than a suitcase full of possessions. However, his travels
began auspiciously enough, with a one-year fellowship at the Institute for
Advanced Study (IAS) at Princeton in 1938-1939.

The institute was set up in the 1930s as a haven for top mathematicians,
physicists, and other scholars. Its first permanent member was Albert Ein-
stein, and other stellar refugees from Europe soon followed, such as John
von Neumann and Kurt Gödel. The idea of the IAS was to allow its mem-
bers complete freedom to pursue their researches, without any teaching or
administrative responsibilities. This was fine for a dynamo like Erdős, who
spent a very productive year there, but not necessarily for more contempla-
tive types. Gödel, in particular, published only a handful of papers in his
40 years at the Institute, and spent long periods studying the philosophical
writings of Leibniz and Russell. Once, in exasperation, Erdős told Gödel
“you became a mathematician so that people should study you, not that
you should study Leibniz!”

The IAS may in fact have had some reservations about Gödel, because
he was not made a full professor there until 1953. However, at least they re-
newed his position every year until he became a permanent member. Erdős
became the only person ever “fired” from the IAS: not having his one-year
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fellowship renewed, and being allowed to stay for one further year only
when outside funding was found for him. It is not clear what Erdős did
wrong. Certainly, he was eccentric, but so was Gödel. Perhaps his peers at
the IAS thought his elementary methods were immature and shallow. If so,
they had to think again, because in 1949 Erdős discovered the most famous
elementary proof of all: an elementary proof of the prime number theorem.

Alas, the Erdős proof was tarnished by its entanglement with another
elementary proof of the same theorem, by the Norwegian mathematician
Atle Selberg. Selberg set the ball rolling in 1948 with an elementary proof
of a famous theorem of Dirichlet (1837), according to which there are
infinitely many primes in any arithmetic progression a+b, 2a+b, 3a+b, . . .,
where gcd(a, b) = 1. Dirichlet’s theorem was the oldest example of an
arithmetic theorem with apparently unavoidable use of analysis in its proof,
so Selberg’s proof was already a sensation. But Selberg (and Erdős, as
soon as he heard about Selberg’s proof) thought he could do better, with an
elementary proof of the prime number theorem.

What followed in 1949 was a proof by Selberg and a proof by Erdős,
as Selberg preferred, and not a joint paper, as Erdős would have preferred.
For his proof, Selberg was awarded the highest honor in mathematics in
1950, the Fields Medal, and a position at the IAS. Erdős was awarded the
Cole Prize in 1952 (a high honor, but not as high as the Fields Medal) and
the offer of a permanent position at Notre Dame. He spent a happy year
at Notre Dame, but his restless spirit could not be contained there. Indeed,
with the the coming of McCarthyism in the 1950s, Erdős found himself
shut out of the the US until 1959. Even then, it took the intervention of
senator Hubert Humphrey to obtain permission for a brief visit.

In 1963, the US finally became hospitable to Erdős again. His visa
problems ceased, and he met the mathematician Ron Graham, who became
his chief facilitator and protector. For the next three decades, Graham man-
aged Erdős’s affairs, eventually going so far as to build a special room in his
house where Erdős stayed on his frequent visits. Graham also championed
the mathematics of Erdős, particularly graph theory and Ramsey theory.
He coauthored the definitive book on Ramsey theory, Graham et al. (1990).
During these three decades, Erdős followed a chaotic whirlwind path from
roof to roof, proof to proof. Wherever he was, he drew people into math-
ematical conversations, assessed their abilities, and set them working on
problems appropriate to their mathematical strength. From these collabo-
rations, hundreds of joint papers followed, and with them the concept of
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Erdős number. Persons have Erdős number 1 if they have written a joint
paper with Erdős (there are currently 511 such persons), and Erdős number
n+ 1 if they do not have Erdős number n but have coauthored a paper with
someone having Erdős number n.

Erdős used to say that he wished to emulate Euler and die while do-
ing mathematics (see Schechter (1998), p. 201). He made virtually sure of
it, by sleeping very little and doing mathematics almost constantly while
awake. He even continued talking to mathematician friends in the operat-
ing theater during a cornea transplant and insertion of a heart pacemaker
in 1995 and 1996. And when he finally did die, on September 20, 1996, it
was during a mathematics conference in Warsaw. He got his wish.

Figure 25.16: Paul Erdős

Most mathematicians today remember Erdős as an old man (Figure
25.16), and indeed he liked to joke that he was a billion years old: when
he was a child the earth was said to be one billion years old; when he was
an adult the earth was said to be two billion years old. But in a sense he is
forever young—the Peter Pan of mathematics as his old friend Marta Sved
called him (see Soifer (2009), p. 235). He never lost the ability to inspire
young people to do mathematics, or to revive the mathematical energy of
his older colleagues. His legacy of awarding prize money for the solution
of hard problems has been maintained by Ron Graham, who continues to
pose Erdős-style problems and to pay out when they are solved. And Erdős
even continues to publish. Over 70 papers have appeared since his death.
He is as old, and young, as mathematics.
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Math. 1, 65–84. Oeuvres Complètes 1: 66–87.
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781–782.



592 Bibliography
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Berlin, 45–81. In his Werke 1: 315–342.

Dirichlet, P. G. L. (1863). Vorlesungen über Zahlentheorie. Braunschweig: F.
Vieweg und Sohn. English translation Lectures on Number Theory, with Sup-
plements by R. Dedekind, translated from the German and with an introduction
by John Stillwell, American Mathematical Society, Providence, RI, 1999.

Dombrowski, P. (1979). 150 Years after Gauss’ “Disquisitiones generales circa
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radicaux. In Bourgne and Azra (1962), pp. 43–71.



604 Bibliography

Gannon, T. (2006). Moonshine beyond the Monster. Cambridge Monographs on
Mathematical Physics. Cambridge: Cambridge University Press.

Gauss, C. F. (1799). Demonstratio nova theorematis omnem functionem alge-
braicum rationalem integram unius variabilis in factores reales primi vel se-
cundi gradus resolvi posse. Helmstedt dissertation, in his Werke 3: 1–30.

Gauss, C. F. (1801). Disquisitiones arithmeticae. Translated and with a preface by
Arthur A. Clarke. Revised by William C. Waterhouse, Cornelius Greither and
A. W. Grootendorst and with a preface by Waterhouse, Springer-Verlag, New
York, 1986.

Gauss, C. F. (1811). Letter to Bessel, 18 December 1811. Briefwechsel mit F. W.
Bessel, Georg Olms Verlag, Hildesheim, 1975, pp. 155–160. English transla-
tion in Birkhoff (1973).

Gauss, C. F. (1816). Demonstratio nova altera theorematis omnem functionem
algebraicum rationalem integram unius variabilis in factores reales primi vel
secundi gradus resolvi posse. Comm. Recentiores (Gottingae) 3, 107–142. In
his Werke 3: 31–56.

Gauss, C. F. (1818). Determinatio attractionis quam in punctum quodvis positionis
datae exerceret planeta si eius massa per totam orbitam ratione temporis quo
singulae partes describuntur uniformiter esset dispertita. Comm. Soc. Reg. Sci.
Gottingensis Rec. 4. In his Werke 3: 331–355.

Gauss, C. F. (1819). Die Kugel. Werke 8: 351–356.

Gauss, C. F. (1822). Allgemeine Auflösung der Aufgabe; die Theile einer gegebe-
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Also in his Werke 8: 220–224.



Bibliography 605

Gauss, C. F. (1832c). Theoria residuorum biquadraticorum. Comm. Soc. Reg. Sci.
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problematis. Acta Erud. 10, 281–282. In his Œuvres Complètes 10: 95–98.
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English translation in Poincaré (1985), 255–304.

Poincaré, H. (1892). New Methods of Celestial Mechanics. Vol. 1. Periodic and
asymptotic solutions, translated from the French, revised reprint of the 1967
English translation, with endnotes by V. I. Arnol′d, edited and with an intro-
duction by Daniel L. Goroff, American Institute of Physics, New York, 1993.

Poincaré, H. (1893). New Methods of Celestial Mechanics. Vol. 2. Approxima-
tions by series, translated from the French, revised reprint of the 1967 English
translation, with endnotes by V. M. Alekseev, edited and with an introduction
by Daniel L. Goroff, American Institute of Physics, New York, 1993.

Poincaré, H. (1895). Analysis situs. J. Éc. Polytech., ser. 2 1, 1–121. In his
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45–110. In his Œuvres 6: 435–498.
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Szabó, I. (1977). Geschichte der mechanischen Prinzipien und ihrer wichtigsten
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Viète, F. (1983). The Analytic Art. Kent, OH: The Kent State University Press.
Nine studies in algebra, geometry and trigonometry from the Opus Restitutae
Mathematicae Analyseos, seu Algebra Nova, translated by T. Richard Witmer.

Vitali, G. (1905). Sul problema della misura dei gruppi di punti di una retta.
Bologna.
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de géométrie peut se resoudre avec la règle et le compas. J. Math. 2, 366–372.

Weber, H. (1892). Leopold von Kronecker. Jahresber. Deutsch. Math. Verein. 2,
19.

Weeks, J. R. (1985). The Shape of Space. New York: Marcel Dekker Inc.

Weierstrass, K. (1863). Vorlesungen über die Theorie der elliptischen Funktionen.
Mathematische Werke 5.

Weierstrass, K. (1874). Einleitung in die Theorie der analytischen Funktionen.
Summer Semester 1874. Notes by G. Hettner. Mathematische Institut der Uni-
versität Göttingen.

Weierstrass, K. (1884). Zur Theorie der aus n Haupteinheiten gebildeten com-
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Wessel, C. (1797). Om Directionens analytiske Betegning, et Forsøg anvendt
fornemmelig til plane og sphæriske Polygoners Opløsning. Danske Selsk. Skr.
N. Samml. 5. English translation in Smith (1959), vol. 1, 55–66.

Westfall, R. S. (1980). Never at Rest. Cambridge: Cambridge University Press.
A biography of Isaac Newton.

Whitehead, A. N. and B. Russell (1910). Principia Mathematica. Cambridge:
Cambridge University Press. 3 vols. 1910, 1912, 1913.



628 Bibliography

Whitehead, J. H. C. (1935). A certain open manifold whose group is unity. Quart.
J. Math. 6, 268–279.

Whiteside, D. T. (1961). Patterns of mathematical thought in the later seventeenth
century. Arch. History Exact Sci. 1, 179–388 (1961).

Whiteside, D. T. (1964). Introduction to The Mathematical Works of Isaac New-
ton. Vol. I. Johnson Reprint Corp., New York, 1964.

Whiteside, D. T. (1966). Newton’s marvellous year: 1666 and all that. Notes and
Records, Roy. Soc. Lond. 21, 32–41.

Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Ann. of
Math. (2) 141(3), 443–551.

Woodin, W. H. (1999). The Axiom of Determinacy, Forcing Axioms, and the
Nonstationary Ideal. Berlin: Walter de Gruyter & Co.

Wright, L. (1983). Perspective in Perspective. London: Routledge and Kegan
Paul.

Wussing, H. (1984). The Genesis of the Abstract Group Concept. Cambridge,
MA.: MIT Press. Translated from the German by Abe Shenitzer.

Xia, Z. (1992). The existence of noncollision singularities in Newtonian systems.
Ann. of Math. (2) 135(3), 411–468.

Yáng Huı́ (1261). Compendium of analyzed mathematical methods in the “Nine
Chapters”.

Zermelo, E. (1904). Beweis dass jede Menge wohlgeordnet werden kann. Math.
Ann. 59, 514–516. English translation in van Heijenoort (1967).

Zeuthen, H. G. (1903). Geschichte der Mathematik im 16. und 17. Jahrhundert.
Leipzig: Teubner. Johnson Reprint Corp., New York, 1977.
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Abel
and abelian groups, 391
and elliptic functions, 225, 234
and modular functions, 103
and the quintic, 102
concept of genus, 239
faulty solution of quintic, 238
field concept, 458
lemniscate division theorem, 237
life story, 237

Abel’s theorem, 239, 242
absolute value, 415, 417

multiplicative property, 415, 417
acceleration, 244
Ackermann, 555
Adams, 254
addition of points

on elliptic curve, 327
addition theorem, 220, 230

and addition of points, 328
for arcsine integral, 233
for elliptic integral, 233
for exponential function, 316
for lemniscatic integral, 233
for lemniscatic sine, 236
for sine, 230

additive inverse, 419, 457
Adyan, 485
affinity, 398
al-Haytham, 160
al-Khazin, 417
al-Khwārizmı̄, 88

solution of quadratic, 93
al-Kuji, 30

Alberti, 128
Alexander, 488
algebra, 88

abstract, 383, 439
and analytic geometry, 89
and polynomial equations, 88
origin of word, 88

algebraic
curve, 34, 112

real, 290
function

fractional power series, 191
power series, 186

geometry, 32
origin, 89

integer, 445
rational, 445

number theory, 439
numbers, 440

form countable set, 527, 528
topology, 494

algorithm
Euclidean, 41
origin of word, 88
theory, 485, 525

analysis situs see topology 468
analytic geometry, 13, 110

and algebra, 89
and foundations, 121
and projective geometry, 119, 136
discovery, 111

anamorphosis, 131
angle division, 99

and complex numbers, 281
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de Moivre formula, 100
Leibniz formula, 100
Newton formula, 100
Viète formulas, 100

angular defect, 351, 363
on pseudosphere, 364

angular excess, 348
additive property, 351
measures area, 349

anthyphairesis, 45
and continued fractions, 46

Apéry, 196
Apollonius

and conic sections, 110
epicycles, 34
four-line problem, 111
theorem on dodecahedron, 25
theory of conics, 30
theory of irrationals, 96

arc length, 112, 336
and elliptic integrals, 228
of catenary, 342
of cycloid, 337
of lemniscate, 228
of logarithmic spiral, 337
of semicubical parabola, 337

Archimedes
and geometric series, 182
and mechanics, 67
and Pell’s equation, 47
and volume of sphere, 161
area of parabola, 53, 63, 157
cattle problem, 47
hydrostatics, 244
life story, 66
Method, 55, 67, 161

and statics, 244
results on the sphere, 63

on gravestone, 67
spiral, 162, 256
statics, 244

area
and angular excess, 349

of circle, 58
of cyclic quadrilateral, 84
of hyperbola, 65
of hyperbolic circle, 363
of logarithmic spiral, 337
of parabola, 63
of polygons, 60
of sphere, 63
of triangle, 58

Heron formula, 84
proportional to square, 59

Argand, 286
Aristotle

Prior Analytics, 12
and motion, 245
version of Zeno, 54

arithmetic–geometric mean, 199, 235
and Gauss, 235
and Lagrange, 236

Artin
Emil, 466
Michael, 466

Âryabhat.a, 74
associative law, 384, 415, 420

and Desargues’s theorem, 415, 432
asymptotic lines, 361
automorphism, 511
axiom of choice, 533

and continuous functions, 535
consistency, 551
implies well-ordering, 534
in measure theory, 534
independence, 551
statement, 534

axiom of foundation, 548
axioms, 17, 18

choice, 533
for fields, 419, 457
for groups, 384
for projective planes, 432
for rings, 420, 457
in Euclid’s Elements, 18, 335, 359
large cardinal, 533
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of infinity, 546
of set theory, 530, 533, 535, 546
parallel, 17, 335, 359, 360
Peano, 462

Bachet
Diophantus, 210
edition of Diophantus, 51, 203
stated four-square theorem, 39, 421

Banach, 534
Banach–Tarski theorem, 534
Barrow, 175, 247
Bartels, 355
Beeckman, 118

and frequency, 261
how he met Descartes, 123

Beltrami, 311, 345, 359
conformal models, 369
half-space model, 372
hyperbolic plane, 364
projective model, 366

Berkeley, 55
Bernays, 544
Bernoulli

Daniel, 200
derived Boyle’s law, 273
formula for Fn, 193
Hydrodynamica, 265
life story, 272
solution of wave equation, 263

definition of geodesic, 347
family, 267
Jakob, 179

and elliptic integrals, 228
and logarithmic spiral, 339, 341
Ars conjectandi, 269
countable additivity, 533
found brachistochrone, 259
introduced catenary, 257
lemniscate, 33, 228
life story, 268

Johann, 179
and

∑
1/n2, 190

and complex logarithms, 314

and complex numbers, 282
and tractrix, 341
found catenary, 256
introduced brachistochrone, 259
life story, 269
stole Daniel’s hydrodynamics,

274
taught Euler, 200
taught l’Hôpital, 270

Nicholas, 200, 269
trials, 269

Bertrand, 476
Bessel, 236, 320
Betti, 311
Bézout’s theorem, 109, 118, 120, 127

and fundamental theorem of alge-
bra, 290, 297

homogeneous formulation, 149
implies Pascal’s theorem, 151
stated by Newton, 119

Bhâskara I, 74
introduced term “pulverizer”, 74

Bhâskara II, 69, 78
cyclic process, 78
life story, 85
Lı̄lāvatı̄, 85

binomial
coefficient, 188, 204

as number of combinations, 206
divisibility property, 208
sum property, 207

series, 188
theorem, 157, 166, 186

and Fermat’s little theorem, 209
and interpolation, 187

Birkhoff, 494
Bolyai

Farkas, 356
father of János, 378
studied with Gauss, 378

János
hyperbolic geometry, 359, 365
life story, 378

Bolzano, 286
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intermediate value theorem, 286,
526, 560

Bolzano–Weierstrass theorem, 560
two-dimensional, 562

Bombelli, 203, 277
Bonnet, 347
Boole, 541
Borcherds, 517
Borel, 532
Bosse, 133, 153
boundary, 487
Boyle, 269

law, 273
brachistochrone, 259
Brahana, 473
Brahmagupta, 69

and Pell’s equation, 46
area of cyclic quadrilateral, 84
composition, 76
definition of a mathematician, 77
identity, 76
life story, 84
method for Pell equation, 76
quadratic formula, 93
rational triangles, 81

branch point, 301
Neumann picture, 303

Briggs, 188
Bring, 102
Brouncker, 166

and Pell’s equation, 44
continued fraction, 166

Brouwer fixed point theorem, 574
Brunelleschi, 128
Burnside, 513

calculus, 111, 157, 158
and combinatorics, 159
and differential geometry, 336
and interpolation, 188
and mechanics, 158, 244
and method of exhaustion, 158
and tangents, 158
fundamental theorem, 171

of Leibniz, 170
of Newton, 158, 167
priority dispute, 170

calculus of variations
and brachistochrone, 259
and isoperimetric problem, 270

Cantor, 264
continuum hypothesis, 530
defined ℵ0,ℵ1,ℵ2, . . ., 530
discovered uncountability, 527
first uncountability proof, 527
limit point operation, 528
ordinal generating operations, 529
theory of sets, 461
transcendental numbers, 528

Cardano, 97
and complex numbers, 100, 277
cryptography, 106
life story, 105
published Tartaglia’s solution, 104
quarrel with Tartaglia, 104, 107
solution of cubic, 98

cardinality, 529
cardinals, 530

ℵ0,ℵ1,ℵ2, . . ., 530
large, 533, 535
uncountable, 530

cardioid, 35
Cartan, Élie

and continuous groups, 495
and exceptional Lie algebras, 510
and Killing, 523
and octonions, 511
life story, 522

Cartan, Henri, 523
Cassini, 33, 265
Cassini oval, 33
Catalan numbers, 556
catenary, 256

and tractrix, 338, 341
arc length, 342

cattle problem, 47
Cauchy
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advised by Lagrange, 333
and permutation groups, 393
complex function theory, 266
integral theorem, 313, 319
life story, 333
neighbor of Laplace, 333
notation for identity, 393
notation for inverse, 393
polygonal number theorem, 39, 334
polyhedron theorem, 334
proof of Euler formula, 565
studied Laplace and Lagrange, 334
theory of elasticity, 334

Cauchy–Riemann equations, 313, 317
and hydrodynamics, 316

Cavalieri
and volume of sphere, 161
integration formula, 160
method of indivisibles, 161

Cayley
abstract group concept, 393
and projective geometry, 399
and space rotations, 504
introduced matrices, 496
matrices for quaternions, 426
numbers, 428
permutation group theorem, 394
projective model, 368
rediscovered octonions, 428

celestial mechanics, 253
named by Laplace, 254
of Poincaré, 254

Chaitin incompleteness theorem, 545
chaos, 254
Chebyshev’s theorem, 585
Chevalley, 513
Chinese remainder theorem, 71, 73, 204
choice function, 534
chord–tangent construction, 7, 48, 203,

218
Church, 540
circle division, 27, 236, 456
circular functions

and complex logarithms, 314
and complex numbers, 282
and cubic equations, 99
and elliptic functions, 226
and the circle, 226
partial fraction series, 324

circumradius, 23
cissoid, 32

cusp, 113
Clairaut, 265
class field theory, 463
class number, 451

formula, 460
classification

of continuous simple groups, 495
of finite simple groups, 495
of simple Lie algebras, 510
of surfaces, 471

Clebsch, 218, 227
addition of points, 328

code, 499
error-correcting, 499
Golay, 499
Hamming, 500
perfect, 501

coding theory, 499
Cohen, 530, 551
Colburn, 434
Cole, 496
combinatorics, 158, 553, 554

and analysis, 560
and calculus, 159, 193
as finite set theory, 555
as number theory, 555

common notions, 19
and equivalence relations, 20, 400

commutative law, 415, 420
and Pappus’s theorem, 415, 432

commutative ring, 420
complex curves, 295

and Newton–Puiseux theory, 306
as Riemann surfaces, 300
topology, 304
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complex functions, 266, 314
and differentiability, 317
and integration, 319
as power series, 317
real and imaginary parts, 316

complex numbers
absolute value, 417

multiplicative property, 417
and angle addition, 418
and angle division, 281
and circular functions, 282
and cubic equations, 100, 277
and elliptic functions, 226, 235
and quadratic equations, 276
conjugate, 285
early observations, 416
geometric properties, 286
geometric representation

by Argand, 287
by Cotes, 283
by Wessel, 287

Hamilton definition, 418
in algebra, 275
multiplication, 417

composition
Brahmagupta, 76
Diophantus, 78
of forces, 248
of functions, 384
of Pythagorean triples, 454

computability, 525, 538
and diagonal argument, 537
by Turing machine, 538
in groups, 540
of functions, 538
of real numbers, 541

computation, 525
and randomness, 545

Condillac, 293
Condorcet, 332
conformal mapping, 276, 313

and mapmaking, 318
conformal model, 359, 369

as part of C, 375
disk, 370
half-plane, 370

distance, 371
hemisphere, 369

in half-space, 372
congruence, 71

and groups of motions, 398
modulo n, 71, 207, 385, 461

congruence class, 461
conic sections, 17, 28

attributed to Menaechmus, 29
instrument for drawing, 29
projective view, 127, 139
second-degree equations, 109, 111

conjugates, 285
of quaternions, 427

Connelly, 334
constructible

number, 28
points, 94
polygons, 27

construction
of equations, 118
ruler and compass, 17, 25

of double circle arc, 231
of double lemniscate arc, 231

continued fraction
and Pell’s equation, 46, 80
definition, 47
for π, 166
periodic, 48

continuity, 286
and axiom of choice, 535
and differentiability, 249
and velocity, 248

continuous
functions, 248, 286

extreme value theorem, 287
intermediate value theorem, 287

magnitude, 57
Dedekind definition, 57

process, 3
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continuum hypothesis, 530, 535
consistency, 530
independence, 530

Conway, 514
coordinates, 1, 6, 13, 109

for projective planes, 415
hypercomplex, 495
in Hipparchus, 110
in Oresme, 110

Copernicus, 249
coset, 387

multiplication, 388
Cotes, 283

and complex logarithms, 315
and complex numbers, 283
Harmonia mensurarum, 315
theorem on n-gon, 283

countability, 527
countable additivity, 532
counting board, 90
covering, 302

of orientable surface, 480
of projective plane, 480
of pseudosphere, 480
of torus, 479
projection map, 304
sheets of, 302

and integration, 322
universal, 480

Cramer
and Bézout’s theorem, 120
and permutations, 392

Cramer’s rule, 91
cross-ratio, 127

and hyperbolic distance, 399
as a group invariant, 399
in Desargues, 133
invariance, 144, 146
Möbius invariance proof, 135
on finite projective line, 406

cryptography
and Fermat’s little theorem, 208
in Cardano, 106

in Viète, 107
Wallis, 173

cube, 22
duplication of see duplication of

the cube 26
rotation group, 395

cubic curves, 33, 109
and Fermat’s last theorem, 211
as tori, 306
five types, 116, 127
geometric features, 109, 113
isomorphic to C/Λ, 326
Newton classification, 115
of genus 0, 216
parameterization, 218, 226
projective classification, 328
projective view, 139

cubic equations, 87, 97
and circular functions, 99
and complex functions, 314
and complex numbers, 100, 275,

277
and trisection, 99
have real roots, 277
in Cardano, 98
in Viète, 99
solution, 97

curl, 267
curvature, 158, 335

and Euler characteristic, 477
center of, 340
constant

surface of, 335, 344, 366
due to Newton, 175
flow, 489
Gaussian, 335, 344

and solid angle, 476
integral of, 349

geodesic, 347
intrinsic, 343
Kaestner definition, 342
negative

and non-Euclidean geometry,
335, 345
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surface of, 335, 344, 359
Newton formula, 340
of plane curves, 340
of polyhedron, 474
of surfaces, 343
principal, 343
radius of, 340
Ricci, 491
Riemann, 310
total, 467, 476

curve
algebraic, 34, 112, 290, 295
behavior at infinity, 137
complex, 295
cubic, 32, 115
degree, 113
equidistant, 369

in conformal model, 371
geometric, 113
mechanical, 113, 243, 255, 335
on projective plane, 142
projective, 136, 295
rational, 295
transcendental, 113, 260, 335, 336

and differential geometry, 336
cusp, 109, 113

of cissoid, 33, 113
of semicubical parabola, 116

cycloid, 155, 243, 247, 256, 258
arc length, 337
as brachistochrone, 259
as tautochrone, 258
is own involute, 341

d’Alembert
and complex functions, 316
and conjugate solutions, 285
and Lagrange, 294
and Laplace, 294
and the Encyclopédie, 293
fundamental theorem of algebra, 285
lemma, 287
life story, 291

on algebra in geometry, 115
wave equation, 261

Darboux, 519
de la Hire, 153
de Moivre, 181

and generating functions, 193
formula, 101, 275
formula for Fibonacci numbers,

193
inversion formula, 169
solution by radicals, 100

De Morgan, 419
Dedekind

and irrationals, 12
and Peano axioms, 461, 462, 555
and Riemann surfaces, 461
cut, 57, 286, 461, 526

for irrational, 57
for rational, 57

defined algebraic integers, 439,
445

defined ideals, 439, 448
definition of

√
2, 57

definition of continuity, 57
definition of field, 419
friend of Riemann, 459
life story, 459
number fields, 458
product of ideals, 452
proved two-square theorem, 454
rigor, 55
student of Gauss, 357, 460
student of Riemann, 310
supplemented Dirichlet, 460

Degen, 238
eight-square identity, 429

degree
of curve, 17, 109, 113
of field, 458
of vertex, 566

Dehn
and hyperbolic geometry, 485
combinatorial group theory, 402
homology spheres, 488
solved Hilbert’s third problem, 60
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Desargues, 131
and cross-ratio, 133
Brouillon projet, 133, 153
life story, 153
projective geometry, 132
theorem, 127, 133

and algebra, 415, 431, 463
and foundations, 134
planar case, 135
statement, 133

used epicyclic curves, 153
Descartes, 109

and analytic geometry, 111
coordinate method, 19
factor theorem, 103, 285
folium, 113
Géométrie, 111
in the stove, 123
integration formula, 160
life story, 122
notation for powers, 103
polyhedron formula, 469

and Gauss–Bonnet, 474
descriptive geometry, 132
determinant, 149
diagonal argument, 536

and computability, 537
and Gödel’s theorem, 542
and rate of growth, 537
for real numbers, 536
for sets, 536

Dickson, 496, 513
Diderot, 293
differentiability, 249, 313
differential equations

and catenary, 257
and elastica, 259
and mechanics, 253
for geodesics, 347
partial, 243, 261, 262

of hydrodynamics, 273
differential geometry, 335

and calculus, 336

and curvature, 175, 340
and hyperbolic geometry, 365

differentiation, 158
Diocles, 32
Diophantine

equations, 7, 37
cubic, 49
linear, 43
no algorithm, 7, 38
quadratic, 44
rational solutions, 7

problems, 7
Diophantus, 4, 37, 203

Arithmetic
Bachet edition, 51
in Bombelli’s Algebra, 51

and complex numbers, 416
and Diophantine problems, 7
and Pythagorean triples, 8
and sums of squares, 424
chord and tangent methods, 89,

203
chord method, 48, 49

on folium, 114
composition, 78
identity, 76
life story, 50
method, 7, 69, 83

and elliptic functions, 218
and Fermat, 7
and Newton, 7
geometric interpretation, 49

solution of y3 = x2 + 2, 440
tangent method, 48, 49, 163

and Viète, 49
two-square identity, 417, 454

Dirichlet
and algebraic integers, 445
and Fermat’s last theorem, 210
approximation theorem, 557
class number formula, 460
function, 531, 534
pigeonhole principle, 557
principle, 309
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and Riemann mapping theorem,
319

justified by Hilbert, 319
replaced Gauss, 459
solution of Pell equation, 558
taught Riemann, 309
theorem on primes, 264, 587
Vorlesungen, 460

discrete process, 3
discriminant, 451

invariance of, 455, 463
distance, 121

and coordinates, 1, 13
and Pythagorean theorem, 14
definition of, 14, 121

distance–time graph, 247
divergence, 267

of harmonic series, 183
divisibility

and Pythagorean triples, 5
in Euclid, 5

division of stakes, 206
division property, 442
dodecahedron, 24

and Petersen graph, 584
dual to icosahedron, 24
rotation group, 396

Donaldson, 468
double periodicity, 235

and complex integration, 322
and Riemann, 236, 310, 323
of Weierstrass ℘-function, 324

double point, 113, 217
double root, 218
doubling the arc

of circle, 231
of lemniscate, 230, 231

du Bois-Reymond, 537
duplication of the cube, 17, 26

by cissoid, 33
by intersecting conics, 29
by Menaechmus, 29

Dürer, 129

Dyck
concept of group, 394
groups and tessellations, 397

e is transcendental, 27
Einstein, 436
Eisenstein, 309

and algebraic integers, 445
series, 324
student of Gauss, 357

elastica, 228, 256, 259
pictures, 260

elimination, 89, 119
and linear algebra, 149
and polynomial equations, 90
Gaussian, 89

ellipse, 28
arc length, 225, 228
as planetary orbit, 30

versus Cassini oval, 33
focus of, 30
not an elliptic curve, 228
string construction, 30

elliptic
curves, 228, 325

addition of points, 327
and Fermat’s last theorem, 325
isomorphic to C/Λ, 327
parameterized by ℘, ℘′, 327

functions, 40, 111, 171, 211, 218,
225, 228

addition theorem, 220
and complex numbers, 235, 313
and elastica, 259
and the torus, 306
birth day, 232
by inverting integrals, 234
double periodicity, 235, 322
series expansions, 324

integrals, 225, 228
addition theorem, 233
not elementary, 228

elliptic modular functions see modular
functions 102
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empty set, 529
Engel, 520
epicycles, 34

in astronomy, 249
used by Desargues, 153

equation
cubic, 97

solution, 97
differential, 253

for catenary, 257
for elastica, 259

Diophantine, 37
equation, 87
heat, 243, 264
linear, 69, 87, 89
modular, 405
partial differential, 243, 261
Pell’s, 37, 44, 69, 88, 203, 440
polynomial, 88
quadratic, 87

Brahmagupta formula, 88
in Babylon, 88
in Euclid, 88

quartic, 101
quintic, 87, 102
van Roomen, 108
wave, 243, 262

equivalence relation, 20
defined by group, 400

Erdős
and Ramsey theory, 576
happy ending problem, 586
life story, 584
number, 588
proof

of Chebyshev’s theorem, 585
of prime number theorem, 587

escape to infinity, 255
Euclid, 4

Elements, 4, 17, 202
Book V, 53, 56
common notions, 19, 400
postulates, 18

Tartaglia’s translation, 105
life story, 35
perfect number theorem, 40

and geometric series, 65
proofs of Pythagorean theorem, 11
Pythagorean triples formula, 4
theory of divisibility, 5
theory of irrationals, 95
view of quadratic equations, 88

Euclidean
algorithm, 37, 41, 69

as “pulverizer”, 46
criterion for irrationality, 70
for Gaussian integers, 443
for polynomials, 221
in Asia, 70

geometry, 121
on horosphere, 365
on torus, 482

plane, 121
rigid motions, 374
tessellations, 374

Eudoxus, 36, 53
definition of equality, 56
method of exhaustion, 58
theory of proportions, 56

Euler
addition theorems, 220, 233
Algebra, 202
and Bézout’s theorem, 120
and Chinese remainder theorem,

73
and chord–tangent construction,

218
and complex logarithms, 315
and complex numbers, 280
and conformal mapping, 318
and Fermat’s last theorem, 210
characteristic, 467, 469

and curvature, 477
and genus, 473
controls total curvature, 467
Poincaré generalization, 470

constant, 185
and zeta function, 197
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continued fraction formula, 167
cotangent series, 324
formula for eix, 315
formula for trees, 564
four-square identity, 423
geodesic differential equation, 347
life story, 200
pentagonal number theorem, 40, 202
perfect number theorem, 40
pictures of elastica, 259
plane graph formula, 565
polyhedron formula, 469

and combinatorics, 555
Legendre proof, 470
via plane graphs, 565

product formula, 195
proof of Fermat’s little theorem, 209,

383
proved two-square theorem, 454
rigid surface conjecture, 334
space rotation theorem, 502
student of Johann Bernoulli, 200
summed

∑
1/n2, 190

theorem on y3 = x2 + 2, 439, 440
values of ζ(s), 196
zeta function formula, 181, 195

exhaustion see method of exhaustion 58
exponential function, 169

addition formula, 316
complex, 313, 315

periodicity, 313, 315
extreme value theorem, 287, 288

factor theorem, 103, 190
Fagnano, 218

addition theorem, 220
duplication formula, 231

and modular equations, 405
studied by Euler, 232

lemniscate division, 236
Faltings, 210
Fano plane, 433
Feit, 513
Fermat, 109, 203

and analytic geometry, 111
and Diophantus, 49, 51
and Diophantus’s method, 7
and rational right triangles, 212
example of Pell’s equation, 79
infinite descent, 212
integration formula, 160
last theorem, 203, 210

and cyclotomic integers, 456
and elliptic curves, 203, 325
and Faltings, 210
attempt by Lamé, 456
attempt by Lindemann, 27
for n = 4, 210, 212
proof by Wiles, 211, 456
special cases, 210

life story, 222
little theorem, 203, 207, 383

proof using inverses, 386
Observations on Diophantus, 210
tangent method, 162

applied to folium, 162
theorem on y3 = x2 + 2, 440
theorems on sums of squares, 454
two-square theorem, 454

Ferrari, 97
dispute with Tartaglia, 104
poisoned, 106
solution of quartic, 102

Fibonacci
and cubic irrationals, 96
Book of Squares, 417
sequence, 181, 192, 440, 554

field, 96, 391, 415, 419, 457
definition, 419
finite, 406, 495
Galois, 497
of finite degree, 439, 458
of rational numbers, 457
theory, 440

Fior, 97
Fischer, Ernst, 465
Fischer, Gerd, 515
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flow
curvature, 489
incompressible, 266

and divergence, 267
irrotational, 266

and curl, 267
of fluid, 243
of heat, 243
Ricci curvature, 491

focus, 30
in astronomy, 31

folium
asymptote, 113, 114
double point, 113
drawn by Huygens, 113
has genus 0, 216
of Descartes, 113
parameterization, 114
tangent of, 162

foundations
arithmetic and set-theoretic, 56
geometric, 56
of geometry, 134, 463

four color theorem, 572
infinite, 572

via Bolzano–Weierstrass, 574
four-square theorem, 39
Fourier series, 261

and integrals, 531
and theory of heat, 264
of the modular function, 516

Freedman, 488
Frege, 541
Freudenthal, 430, 511
Frey, 211
Friedman, 582
Frobenius, 431
Fuchs, 493
function

algebraic, 171, 186
choice, 534
computable, 538
continuous, 248, 286

differentiable, 249, 313
Dirichlet, 531, 534
elementary, 228
elliptic, 171, 225
hyperbolic, 78, 363
linear fractional, 385
many-valued, 191
modular, 102, 235
rational, 186
symmetric, 390
theta, 40, 235
transcendental, 171, 260
zeta, 195

fundamental group, 467, 484
as group of motions, 485
defined by Poincaré, 485
generators and relations, 485
higher-dimensional, 494
of homology sphere, 491
of sphere, 467
of torus, 467

fundamental polygon, 473
and universal covering, 481
for genus 2, 482
for torus, 481

fundamental theorem
of algebra, 275, 285, 295

and Bézout’s theorem, 290, 297
and intersections, 297
d’Alembert proof, 285
Gauss proofs, 286, 289
motivated by integration, 284
real version, 285

of arithmetic, 43
of calculus, 171, 247

and Gregory, 198
generalized, 320
in Leibniz formalism, 171

of motion, 247
Fürtwängler, 550

Galileo, 245
and catenary, 256
and projectile, 245
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and velocity–time graph, 247
observed Neptune, 416
principle of inertia, 245

Galois
and modular equations, 405
and normal subgroups, 388, 391
and solvability, 495
and the quintic, 102, 103, 392, 410
discovered finite fields, 406
discovered simple groups, 404
field concept, 458
introduced group concept, 383, 391
life story, 409
studied Legendre’s Geometry, 410
theory, 391

and construction problems, 26
and regular polyhedra, 22
in Dedekind, 460

theory of ambiguity, 413
theory of fields, 391, 419

Galperin, 574
gamma function, 197
Gauss

and algebraic integers, 445
and binomial coefficients, 554
and Chinese remainder theorem, 73
and circle division, 27
and complex integration, 320
and conformal mapping, 318
and elliptic functions, 234
and lemniscate division, 237
and modular functions, 102, 235
and prime number theorem, 585
and quadratic forms, 455, 460
and the agM, 235
and unique prime factorization, 455
area of hyperbolic circle, 363
arithmetic–geometric mean, 199
construction of 17-gon, 27
curvature, 335, 344
Disquisitiones arithmeticae, 356
formula for sphere motion, 375, 425
fundamental theorem of algebra, 286

geodesic curvature, 347
geodesy, 343, 357
life story, 355
proved two-square theorem, 454
sphere, 300
taught Dedekind, 357
taught Eisenstein, 357
theorema egregium, 343
triangle tessellation, 376, 482

Gauss–Bonnet theorem, 348, 364, 467
polyhedral form, 474

Gaussian
curvature, 335, 344
elimination, 87, 89
integer, 439, 442

divisibility criterion, 444
division property, 442
Euclidean algorithm, 443

prime, 439, 442
factorization, 442

generating function, 192, 553
and combinatorics, 554
for combinations, 206
of Fibonacci sequence, 193

generators and relations, 397, 401
and topology, 402
read off tessellation, 402

genus, 211
and Euler characteristic, 473
and rational functions, 216
as number of holes, 307
implicit in Abel, 239
of algebraic curve, 307, 467
topological meaning, 300

geodesic, 346, 359
curvature, 347
differential equation, 347
mapped to straight line, 366
on cone, 348
on cylinder, 347
on pseudosphere, 347
on sphere, 346

geometric series, 53, 168
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and area of parabola, 64
and bodily substance, 270
and volume of tetrahedron, 63
in Euclid, 65, 181

geometric–harmonic mean, 199
geometrization conjecture, 468
geometry

algebraic, 32
analytic, 13, 87, 110
complex interpretation, 374
descriptive, 132
differential, 335
finite, 496
foundations of, 134, 463
hyperbolic, 363
non-Euclidean, 19, 111, 276, 335,

345, 359
of surfaces, 335, 366
projective, 119, 127, 132
spherical, 363

Gibbs, 437
Gödel, 178

and axiom of choice, 551
and continuum hypothesis, 530
and relativity theory, 551
arithmetization, 544

of finite sets, 555
incompleteness theorem, 464, 541,

553
and combinatorics, 556

life story, 549
“miracle” of computability, 537
second theorem, 544

in Hilbert and Bernays, 464, 544
Golay, 500
Golay code, 499
golden ratio, 27
golden rectangle, 22

constructibility, 95
Gordan, 463
Goursat, 321
Graham, 587
Grandi, 114

graph, 563
blowup, 582
complete, 568

in projective plane, 584
connected, 563
edge, 563
minor, 582
nonplanar, 567

contains K5 or K3,3, 570
of polyhedron, 564
Petersen, 570

and dodecahedron, 584
is nonplanar, 570

plane, 564
subdivided, 569
vertex, 563

graph theory, 553, 563
Graves

John, 419
discovered octonions, 415, 428
read literature on squares, 423

Robert, 425
gravitation, 249
Green, 320
Green’s theorem, 320

implies Cauchy’s theorem, 321
Gregory, 186

and interpolation, 188
and Taylor’s theorem, 187
and transcendence, 198
geometric–harmonic mean, 199
life story, 197
Vera quadratura, 198

Gregory–Newton formula, 186
Griess, 515
group

abelian, 388
simple, 404

alternating, 392, 495
transitivity of, 498

associativity, 393
binary icosahedral, 491
cancellation, 394
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concept of Galois, 391
continuous, 497
continuous simple, 495
cyclic, 385, 495

and radicals, 391
simple, 404

defining properties, 384
finite

of Lie type, 495, 513
simple, 495, 513
sporadic, 495

fundamental, 467, 484
generalized rotation, 510
identity, 384
inverse, 384
isomorphism, 393, 394
isomorphism problem, 485
Lie, 501
linear, 496
Mathieu, 497
Monster, 515
of motions, 398
of permutations, 391
of quaternions, 504
of real projective line, 399
of rigid motions, 374
of space rotations, 502

as projective space, 505
is simple, 505

of transformations, 383, 398, 496
on a cubic curve, 393
order, 499
orthogonal, 509
polyhedral, 395

and theory of equations, 396
presentation, 397
quotient, 388
rotation, 395, 497, 502
S n, 389
simple, 404, 495

smallest nonabelian, 404
sporadic, 513

smallest nonabelian, 404

solvable, 391
symmetric, 389

transitivity of, 498
symplectic, 510
transitivity of, 498
unitary, 510
word problem, 540

group theory, 17, 330, 383
and theory of equations, 391
combinatorial, 401

Hadamard, 283
Hahn, 550
Halcke, 85
Halley, 176, 254
halting problem, 539
Hamilton

defined complex numbers, 418
discovered quaternions, 415, 422
dynamics, 436
life story, 433
predicted conical refraction, 436
presented icosahedral group, 397
sought product of triples, 421

Hamilton, Richard, 489
Hamming, 500

code, 500
handle, 474
harmonic series, 181, 183, 184
harmony

and integer ratios, 11, 16
and Pythagoras, 11
of the spheres, 16

Harnack, 531
Harriot

and interpolation, 188
and logarithmic spiral, 336
and stereographic projection, 318
life story, 352
theorem on spherical area, 349,

363, 477
Hausdorff, 534
heat equation, 243, 264
Heath, 212
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Heaviside, 437
Hermite

and algebraic integers, 445
and modular function, 516
followed Galois’s hint, 392
preserved works of Galois, 410
solution of quintic, 102, 405
transcendence of e, 27

Heron, 31, 84
Heuraet, 337
Higman, 540
Hilbert

algebra of projective planes, 432
arithmetic and geometry, 12
basis theorem, 463
foundations of geometry, 121, 134
justified Dirichlet principle, 319
life story, 462
problems, 60

first, 530
second, 464
third, 60

program, 464
rectified flaws in Euclid, 19
theorem on constant curvature, 344
Zahlbericht, 463

Hipparchus, 110
Hobbes

denounced Wallis’s Conics, 120
in love with geometry, 18
on Arithmetica infinitorum, 164
on Torricelli’s result, 161

Holbein, 131
Hölder, 278
Holmboe, 238
homeomorphism, 468

problem, 486, 540
homogeneous coordinates, 147
homology, 486

sphere, 487
homomorphism, 458
homotopic paths, 484, 487
Hooke, 176, 269

and catenary, 256
horocycle, 368

in conformal model, 371
horosphere, 365

in half-space model, 372
is Euclidean, 365

Hudde, 163
Hurewicz, 494
Hurwitz, 431, 462
Huygens

and catenary, 256
and pseudosphere, 345
description of tractrix, 338
drew folium, 113
found tautochrone, 258
on discoveries in geometry, 158
pendulum clocks, 258

hydrodynamics, 265
and complex functions, 316

hydrostatics, 244
hyperbola, 28

arc length, 228
area of segment, 65
points at infinity, 138
quadrature of, 168

hyperbolic
circle, 369

in conformal model, 371
function, 363
geometry, 363

and differential geometry, 365
complex interpretation, 376
conformal models, 369
named by Klein, 363
projective model, 366

plane, 364
as covering, 482
rigid motions, 369
tessellations, 375

space, 372
rigid motions, 376

tessellation, 483
trigonometry, 364
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hypercomplex numbers, 415
algebraic properties, 430
and continuous groups, 495

hypergeometric, 165
differential equation, 376

icosahedron
constructibility, 95
Pacioli construction, 22
rotation group, 396
tessellation, 374

ideal numbers, 447
ideals, 439, 447

as kernels, 459
classes of, 451
containment and division, 448
defined by Dedekind, 448
factorization of, 452
gcd of, 452
in Z, 448
in Z[i], 449
in Z[

√−5], 450
maximal, 452
of Lie algebra, 512
principal, 449
product of, 452
shape of, 449
sum of, 448, 451

identity, 384
incommensurable see irrational 11
indivisibles, 161

in Arithmetica infinitorum, 165
induction, 203

and infinite descent, 214
characterizes natural numbers, 461
in Levi ben Gershon, 206
in Pascal, 206

inertia
and Galileo, 245
and Newton, 248

infinite, 525
completed, 54

and limits, 54
and set theory, 56

descent, 212
in Greek mathematics, 53
potential, 54
processes, 53

for finding volume, 61
rejected by Greeks, 54

product, 165, 181, 191
reasoning about, 54
sequence, 54
set of points, 54

infinite series, 158, 181, 182
for algebraic functions, 186
for circular functions, 168, 181,

184
for log, 169
for π, 184
in Greek mathematics, 182
inversion, 169

by de Moivre, 169
Newton’s calculus of, 158

infinitesimals, 55, 157, 171
of Robinson, 159
quotient of, 157, 171
sum of, 157, 171

infinity
behavior of curves at, 137
inflection at, 140
line at, 133
point at, 132

infinity see infinite 53
inflection, 109, 113, 140
inradius, 23
integer

algebraic, 445
cyclotomic, 456
Gaussian, 442
quadratic, 455
rational, 440, 445

integral
arcsine, 229
elliptic, 228
Lebesgue, 531
lemniscatic, 229
Riemann, 531
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integration, 158
and arc length, 337
and partial fractions, 284
complex, 319

and Riemann surfaces, 322
in “closed form”, 171, 228
of algebraic functions, 159

intermediate value theorem, 286
interpolation, 186

and calculus, 188
and Taylor’s theorem, 187
Gregory–Newton formula, 186

intersections
and Bézout’s theorem, 119
and fundamental theorem of alge-

bra, 297
and roots, 29, 118, 296
multiplicity, 296
of real algebraic curves, 290

invariants, 463
king of, 463

inverse
additive, 419, 457
Cauchy notation, 393
function, 169, 225
in group theory, 384, 394
mod p, 385
multiplicative, 420, 457
square law, 175, 176, 250

involute, 341
irrational, 1, 3, 11
irrationality of

√
2, 1, 3, 37

irrationals
Dedekind construction, 57
Euclid’s theory, 95
quadratic, 95

isometric surfaces, 344
isomorphic groups, 327, 393, 394
isomorphism, 326, 393

of Lie algebras, 512, 523
preserves structure, 327

isoperimetric problem, 270

Jacobi

and chord–tangent construction,
218

and elliptic curves, 325
and elliptic functions, 225, 234
and modular functions, 103
Fundamenta nova, 234
life story, 241
studied Euler, 241
theta functions, 40, 235
tried to solve quintic, 241

Jade Mirror, 90, 91
Janko, 514
Jia Xiàn, 205
Jordan

and Lagrange’s theorem, 387
and simple groups, 405
book on group theory, 392, 519
curve theorem, 566

for polygons, 566
measure, 532

Kac, 97
Kaestner, 342, 355
Kelvin, 309
Kepler

introduced term “focus”, 30
planetary spheres, 22, 249, 517
three laws, 249

kernel, 458
Killing

and Cartan, 523
and continuous groups, 495
and exceptional Lie algebras, 510
and Lie, 522
life story, 520

Klein
and Lie, 519
and modular functions, 235
and the quintic, 103
and uniformization, 330
Erlanger Programm, 383, 399
hyperbolic tessellations, 483
named hyperbolic geometry, 363

Klein, Esther, 585
Koebe, 330
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Kolmogorov, 533
Kőnig infinity lemma, 553, 571

and Bolzano–Weierstrass, 571
Kronecker

and algebraic integers, 445
and modular function, 517
and rational functions, 195
famous saying, 457

Kruskal’s theorem, 581
finite form, 582

Kummer
and algebraic integers, 445
and Fermat’s last theorem, 210
and prime factorization, 446
ideal numbers, 439, 447, 455

Kuratowski, 568
theorem, 569

generalized, 583

Lagrange
and algebraic numbers, 440
and conformal mapping, 318
and epicycles, 34
and permutations, 383
and the agM, 236
and the discriminant, 463
celestial mechanics, 332
equivalence of forms, 451
four-square theorem, 39, 421
life story, 331
Mécanique analytique, 332
protégé of d’Alembert, 294
proved two-square theorem, 454
subgroup theorem, 387
theorem on Pell’s equation, 46, 78
theory of equations, 390

studied by Galois, 410
theory of quadratic forms, 454

Lamé, 210, 456
Lambert

and conformal mapping, 318
imaginary sphere, 363
introduced hyperbolic functions, 363
spherical geometry, 363

Landau, 96
Laplace, 332

explained secular variation, 254
Mécanique céleste, 254
protégé of d’Alembert, 294

large cardinals, 533
lattice of periods, 326

shape, 328
Laurent, 322
Lavoisier, 332
law of large numbers, 269
least upper bound

of ordinals, 529
property of R, 526, 527

Lebesgue, 531
Leech, 514
Leech lattice, 514

and sphere-packing, 515
Legendre

and elliptic integrals, 233
and Fermat’s last theorem, 210
and prime number theorem, 585
and volume of pyramid, 61

Leibniz
and Acta Eruditorum, 179
and formal logic, 541
and function concept, 171
and integral calculus, 220
and interpolation, 188
and Pascal’s triangle, 178
calculus, 157, 170
combinatorics, 177
first publication on calculus, 170
found brachistochrone, 259
found catenary, 256
integral sign, 171
life story, 177
logic, 177
proof of Fermat’s little theorem,

209
solution by radicals, 100

Leibniz–de Moivre formula, 101
and logarithms, 314

lemniscate
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and elastica, 259
arc length, 228
as spiric section, 33
division, 236

Abel’s theorem, 237
doubling the arc, 230
of Bernoulli, 228

lemniscatic
integral, 229

addition theorem, 233
sine, 235

addition theorem, 236
derivative, 236
period, 235

Leonardo, 131
Leverrier, 254
Levi ben Gershon, 203, 204

and permutations, 389, 554
l’Hôpital

found brachistochrone, 259
taught by Johann Bernoulli, 270

Lie
algebra, 507

exceptional, 510
simple, 507, 510, 512

and continuous groups, 495
and Killing, 522
and Klein, 519
and simple Lie algebras, 510
bracket, 507

and conjugation, 508
concept of group, 507
group, 501

simple, 507
life story, 518

limaçon, 154
limit

and completed infinite, 54
of a sequence, 54
point, 528, 560
rotation, 369

Lindemann, 27, 184
line at infinity, 133

linear
equations

Chinese method, 89
Cramer’s rule, 91
Diophantine, 43, 74
Gaussian elimination, 89
in the Nine Chapters, 89

fractional transformations, 144,
330

and 3-transitivity, 500
as rigid motions, 376
given by three values, 400, 406
groups of, 397
of finite projective line, 406
realize projections, 146

group, 496
independence, 458
recurrence relation, 193

for rational function, 195
transformation, 496

Liouville
and elliptic integrals, 228
and half-plane model, 372
published Galois’s works, 413

Listing, 472
Liu Hui, 89
Lobachevsky

hyperbolic geometry, 359, 365
hyperbolic volumes, 365
life story, 380
supervised by Bartels, 380
taught by Bartels, 355

logarithm
basic property, 65
complex, 271, 282, 313, 314

and circular functions, 314
infinitely many values, 315

geometric definition, 65
tables, 189

logic, 525

Maclaurin, 120
Mādhava, 166
Magnus, 403
manifold, 487
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Markov, 486
mathematics, 16
Mathieu, 497

groups, 497
are sporadic, 513
sharply transitive, 501
simplicity of, 498
transitivity of, 498

Matiyasevich, 7, 44
matrix, 496

differentiation, 511
orthogonal, 509
skew-symmetric, 510, 512

Maxwell, 267
equations, 436

measure, 531
and probability, 533
Borel, 532
countable additivity, 532
Jordan, 532
Lebesgue, 532
zero, 532

mechanics, 243
and integration, 248
before calculus, 244
calculus, 158
celestial, 253
continuum, 243
in Archimedes, 67
quantum, 244

Menaechmus, 29
and conic sections, 29, 110
construction of

3√
2, 110

duplication of the cube, 29
Mengoli, 189
Mercator, 168

power series for log, 185, 197
projection, 318

Mersenne, 131
and Descartes, 124
primes, 40
vibration law, 261

Merton acceleration theorem, 244

method of exhaustion, 12, 36, 53, 58
and approximation, 58
and area of parabola, 65
avoids limits, 60
generalizes theory of proportions,

58
in Euclid, 58

method of finding 1, 73, 80
metric, 310
Minding, 344

hyperbolic trigonometry, 364
Minkowski, 462
Möbius

and cross-ratio, 135
and surface topology, 307
and transformations, 136
band, 143

and nonorientable surfaces, 472
classification of surfaces, 471
groups of transformations, 398

modular equations, 405
modular functions, 102, 235

and lattice shape, 329, 456
and quadratic integers, 456
and the Monster, 516
and the quintic, 102
periodicity, 330

monic polynomial, 445
monotonic subsequence

of graphs, 582
of numbers, 561

via Bolzano–Weierstrass, 562
via Ramsey theorem, 580

of trees, 582
Monster, 515

and modular function, 516
and moonshine, 516
and string theory, 517
order of, 515

Moore, 497
Mordell, 211

theorem, 49
multinomial coefficient, 209



Index 651

multinomial theorem, 209
multiplicative inverse, 420
multiplicative property, 427

of absolute value, 420
for complex numbers, 417
for octonions, 428
for quaternions, 423

of norm, 427, 444
multiplicity, 295, 296

and Bézout’s theorem, 297
mystic hexagram, 150

Neil, 112, 337
Neptune, 254
nested interval

property of R, 526, 561
Neumann

and Riemann mapping theorem, 319
branch point picture, 303

Newton
algebra of infinite series, 167
and Bézout’s theorem, 119
and Diophantus’s method, 7, 49
and fractional power series, 191
and interpolation, 188
and Kepler’s second law, 251
calculus, 157, 158, 167, 248
classification of cubics, 109, 115,

140
curvature formula, 340
De analysi, 168
De methodis, 167
De motu, 176
defined tractrix, 338
despised Euclid at first, 175
first law, 248
formula for sin nθ, 100
found brachistochrone, 259
impressed by Descartes, 174
introduced curvature, 175
inverse square law, 253
law of cooling, 264
law of gravitation, 16, 30, 249
laws of motion, 248

life story, 174
Principia, 115, 176, 253
proved spirals transcendental, 256
second law, 248
sine series, 169
study of fluids, 265

Newton–Puiseux theory, 192
and algebraic curves, 306
and branch points, 301
and complex functions, 322

Niceron, 131
chair, 132

Nielsen, 485
Nine Chapters, 89
Noether

Emmy, 458
life story, 464
schon bei Dedekind, 439, 466
student of Gordan, 465
theorem on invariants, 465

Max, 464
non-Euclidean geometry, 19, 111, 335,

359
and linear fractional transformations,

330
and negative curvature, 345
and pseudosphere, 345
in Saccheri, 362
model of, 359

nonconstructibility
of 3√

2, 96
due to Wantzel, 96
Landau proof, 96

nonmodularity, 211
norm, 427

and prime factorization, 446
multiplicative property, 444
of algebraic integers, 442, 458
of Gaussian integer, 442

normal subgroup, 388, 391, 458
Novikov, 540
number

algebraic, 440
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definition, 440
cardinal see cardinals 530
complex, 225, 275
constructible, 28
hypercomplex, 415
ideal, 439, 447
irrational, 1, 3, 11

and theory of proportions, 56
Dedekind construction, 57

negative, 457
ordinal see ordinals 528
pentagonal, 40
perfect, 40, 208
polygonal, 38
prime, 40
rational, 6, 53
real, 53, 286

generalizations, 415
tetrahedral, 207
transcendental, 27, 528
triangular, 38, 207

octahedron, 22
rotation group, 395

octonions, 415, 428
and the group G2, 511
as pairs of quaternions, 429
diagram for multiplication, 428
Dickson formula for product, 429
discovered by Graves, 428
rediscovered by Cayley, 428

orbit, 400
order of a group, 387, 499
ordered pair, 14
ordinals, 528

and well-ordering, 534
generating operations, 529
inaccessible, 548
ordered by ∈, 529
uncountable, 529
von Neumann, 529

Oresme, 110, 181, 182
and harmonic series, 183
coordinates, 110, 244

series summation, 182
velocity–time graph, 110, 244, 246

orientability, 472
Ostrogradsky, 320
Ostrowski, 290

PA see Peano arithmetic 544
Pappus’s theorem, 127

and algebra, 415, 431, 463
special case of Pascal’s, 152

parabola, 28
and suspension bridge, 256
area of segment, 63
as trajectory, 245
cartesian, 118
point at infinity, 138
semicubical, 112, 116, 337

parallel axiom, 17, 19, 360
alternatives, 361
and angle sum, 362
and Pythagorean theorem, 362
equivalents of, 360
Euclid’s version, 360
fails in negative curvature, 367

parameterization
by circular functions

of circle, 226
by elliptic functions

given by Clebsch, 227
known to Jacobi, 227
of cubic curves, 218, 226

by rational functions, 216
fails for y2 = 1 − x4, 221
of circle, 216
of folium, 217

of curves y2 = p(x), 227
Paris–Harrington theorem, 547, 553

via Ramsey theorem, 580
partial order, 581
Pascal

calculating machine, 155
Essay on Conics, 150
Etienne, 154

and the limaçon, 154
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life story, 154
scientific work, 155
supported Desargues, 153
theorem, 150

generalizes Pappus’s, 152
Plücker proof, 151

triangle, 155, 204, 206
and combinatorics, 554
in China, 204
in Leibniz, 178

Pauli matrices, 426
Peacock, 419
Peano arithmetic, 544, 553
Peano axioms, 462, 555

and combinatorics, 556
Pell’s equation, 37, 44, 69, 88, 203

and algebraic numbers, 440
and Archimedes, 47
and Brahmagupta, 46
and Brouncker, 44
and continued fractions, 46
and Lagrange, 46
and pigeonhole principle, 558
Dirichlet solution, 558
in Bhâskara II, 78
in Brahmagupta, 75
in India, 71

pendulum, 228
clocks, 258
cycloidal, 258

and involute, 341
ordinary, 258

pentagon, 25
construction, 27

Perelman, 489
periodicity, 225

double, 225, 322
of complex exponential, 313, 315
of modular function, 330

permutation, 203, 206, 389
cycles, 408
even, 392
group, 391

Cayley’s theorem, 394
permutations, 383
Perrault, 153
Perseus, 33
perspective, 128

Alberti’s veil method, 128
depiction of tiled floor, 129

℘-function, 233
π, 26, 70

Brouncker formula, 166
infinite series, 166
is approximately 355/113, 557
transcendence, 27, 184
Viète formula, 165
Wallis formula, 165

pigeonhole principle, 557
and Pell’s equation, 558
infinite, 553, 558

and Bolzano–Weierstrass, 560
and infinite Ramsey theorem,

578
plane graph, 564

Euler formula, 565
face, 565

Plato, 4
Plimpton 322, 4, 5

and complex numbers, 419
and Pythagorean triples, 4

Plücker, 519
proof of Pascal’s theorem, 151

Plutarch, 67
Poincaré

and chaos, 254
and elliptic curves, 325
and elliptic functions, 219
and Euler characteristic, 470
and non-Euclidean geometry, 330,

359, 493
and rational points, 49
and uniformization, 330
celestial mechanics, 254
conjecture, 467, 486, 487
created algebraic topology, 494
defined fundamental group, 485
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formulas for hyperbolic motions,
375

group theory, 399
homology sphere, 487

fundamental group, 491
hyperbolic tessellations, 483
last theorem, 494
life story, 492
theory of differential equations, 494

point
as ordered pair, 14
at infinity, 119, 132, 141, 439

in Desargues, 133
in Kepler, 133
on projective line, 133

Pólya, 475
polygonal

number theorem, 39
numbers, 38

polyhedron
formulas, 469
nonrigid, 334
regular, 17, 20
rigid if convex, 334

polynomial equations, 87
and elimination, 90

and intersections of curves, 90
in the Jade Mirror, 90

in several variables, 90
Poncelet, 133
Post, 538

on meaning and truth, 547
version of Gödel’s theorem, 542

before Gödel, 543
potential, 266

field, 265
theory, 276

power series, 181, 185
and calculus, 158
for algebraic functions, 186
for complex functions, 313, 317

from Cauchy’s theorem, 321
for cosine, 317

for exponential function, 169, 317
for log, 185
for sine, 169
fractional, 181, 191, 322
in Lagrange, 332
Laurent, 322

prime
divisor property, 41, 42
factorization, 43
Gaussian, 442
number theorem, 585

elementary proof, 587
primes, 40, 181

and sums of squares, 454
in arithmetic progressions, 264
infinitely many, 37, 40, 196
Mersenne, 40

and perfect numbers, 40
of form 22h

+ 1, 38
Principia

of Newton see Newton
Principia 253

of Whitehead and Russell, 464,
542

priority dispute
Newton–Leibniz, 170, 177, 271,

274
over hydrodynamics, 274
over isoperimetric problem, 271

probability theory, 269
and generating functions, 193
and measure, 533
and Pascal’s triangle, 206
Cardano, 106
Kolmogorov, 533

projectiles, 105
projective

completion
of C, 300
of R, 299

geometry, 119, 127, 132
and analytic geometry, 119

line, 141, 144
as infinite circle, 133, 142
complex, 295, 298
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finite, 405, 495
real, 146, 298, 385

model, 359, 366, 368
plane

and algebra, 432
curves on, 142
finite, 433
forbidden minors, 583
is nonorientable, 143, 473
octonion, 511
real, 141
sphere model, 298

space
finite, 497
real, 505

transformations, 144, 368, 384, 399
pseudosphere, 338, 342

and angular defect, 364
and horocycles, 368
by revolving tractrix, 344
constant negative curvature, 345
Gaussian curvature, 346
geodesics, 347, 373
has hyperbolic trigonometry, 364
mapped into half-plane, 373
principal curvatures, 346

Ptolemy, 34
Almagest, 34
epicycles, 34, 249

Puiseux, 192
pulverizer, 46, 74
Pythagoras

and harmony, 11
life story, 15
theorem of, 2

Pythagorean equation, 37
Pythagorean theorem, 1, 2

and distance, 14, 121
and Hobbes, 18
and parallel axiom, 362
converse, 2
in Asia, 70
proof, 9

Pythagorean triples, 1, 4
and divisibility, 5
composition of, 454
formula, 4

in Diophantus, 8
in Euclid, 4

in Babylon, 4, 11
in Plimpton 322, 4
of rational functions, 221
rational, 7

Pythagoreans, 16
and “all is number”, 16
vibrating string, 261

Qin Jiushao, 73
quadratic

equations, 92
and complex numbers, 276
in al-Khwārizmı̄, 93
in Babylon, 92
in Brahmagupta, 93
in Euclid, 93

forms, 112
class number, 451, 460
equivalence, 455
Gauss theory, 460
Lagrange theory, 454

formula, 88
integers, 455
irrationals, 95

quantum theory, 244, 426
quartic equations, 101
quaternions, 415, 422

and rotations, 425, 504
and spherical trigonometry, 425
and vector analysis, 437
conjugate, 427
fundamental formula, 422
group of, 504
matrix representation, 426
product, 422

quintic equations, 87, 102
and group theory, 383, 391
and simple groups, 405
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R, 526
completeness property, 526, 527
least upper bound property, 526, 527
measurability of subsets, 533

implies large cardinals, 535
nested interval property, 526, 561
uncountability, 527

measure theory proof, 533
well-ordering, 534

radical, 383, 390
Raleigh, 352
Ramsey, 547, 575

theorem
baby, 576
Erdős–Szekeres proof, 579
finite, 575
infinite, 547, 576

theory, 553, 575
rank, 548
rational

box, 84
field, 457
function

parameterization, 216, 295
numbers, 6, 12

field of, 457
form countable set, 527

points, 7
on cubic curve, 49, 203
on curve of degree 2, 215
on curve of genus > 1, 211
on curve of genus 0, 215
on curve of genus 1, 218
on the circle, 7
on the folium, 218

Pythagorean triples, 7
right triangles, 82, 211
solutions, 7, 69
triangles, 81

Brahmagupta formula, 81
recurrence relations

and
√

2, 44, 55
linear, 193

regular
polygon, 21
polyhedra, 20

and finite groups, 22
and Galois theory, 22
rotation groups, 395
theory of Theaetetus, 36

relativity, 244, 436
resultant, 119, 149

as a determinant, 149
rhumb line, 336
Ribet, 211
Richard, 410
Riemann

and double periodicity, 236, 323
and Euler characteristic, 470
and foundations of geometry, 310,

357
and genus, 307, 467
and rational curves, 295
complex function theory, 266
distance formula, 372
friend of Dedekind, 459
functional equation for ζ(s), 197
hypothesis, 196, 312
integral, 531
life story, 308
mapping theorem, 319
read Euler and Legendre, 308
surface, 300, 307, 472

and complex integration, 322
is orientable, 472

taught Dedekind, 310
tessellations, 376
theory of elliptic functions, 323
zeta function, 196

rigid motions, 346
as linear fractional

transformations, 376
group of, 374
of Euclidean plane, 374
of hyperbolic plane, 368, 369, 399
of hyperbolic space, 376
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of sphere, 375
of tessellation, 485

ring, 420, 439, 457
commutative

with unit, 420, 445
of integers, 457
theory, 440

Robertson–Seymour theorem, 581, 582
Roberval, 111, 160, 246
Rodrigues, 425
rope stretching, 2
roses of Grandi, 114
rotations, 369, 395

and groups, 395
as products of reflections, 502
generalized, 510
group of, 497
of polyhedra, 395
of Rn, 509
of space, 502
of the plane, 502
product of, 504

Rousseau, 293
Ruffini, 102
ruler and compass construction, 25

of points, 94
of regular 17-gon, 27
of regular pentagon, 27
of square root, 26

Russell, 36, 464, 542

Saccheri, 361
saddle, 344
Salmon, 328
scalar product, 427
Schwarz

and Riemann mapping theorem, 319
and universal covering, 481
tessellations, 359, 376

Scipione del Ferro, 97, 103
secular variation, 254
Seifert and Threlfall, 485
Selberg, 587
separation of variables, 264

set theory, 56, 525
and completed infinite, 56
and Fourier series, 261, 264
and large cardinals, 535

sets, 525
and mathematical objects, 461, 541
and real numbers, 526
Borel, 532
countable, 527
nonmeasurable, 534
recursively enumerable, 542
uncountable, 530

sheets, 302
side and diagonal numbers, 44, 77
similarity, 398
simple-connectedness, 487
Sitnikov, 254
Sluse, 163
Smale, 488
solid angle, 475
solution by radicals, 102, 390
space of n dimensions, 310
Sperner’s lemma, 566

gives Brouwer fixed point, 574
sphere

homology of, 487
tessellations, 374
three-dimensional, 487

as a group, 504
as continuous group, 524

volume and area, 63
spherical geometry, 363

imaginary, 363
triangles, 363

spira, 33
spiral

equiangular, 336
is transcendental, 256
logarithmic, 336

area, 337
is own involute, 341
self-similarity, 339

of Archimedes, 162, 256
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spiric sections, 33
squaring the circle, 17, 26, 184, 336
statics, 244
Steiner, 309
stereographic projection, 300

and conformal models, 370
conformality

due to Harriot, 318
due to Ptolemy, 318

Stevin, 248
Stirling, 116
subgroup, 385, 387

normal, 388
Suiseth, 182
sums of squares, 38, 454

and primes, 454
eight, 429
four, 421
rational, 424
three, 421
two, 417

Sun Zi, 71
surface

closed, 471
compact, 471
covering, 480
curvature, 343
nonorientable, 472
normal form, 472
of constant curvature, 335, 344, 478,

488
Hilbert theorem, 344

orientable, 472
Riemann, 322, 472

surgery, 490
suspension bridge, 256
Sved, 588
Sylow, 519
symmetry, 390

geometric, 398
in equivalence relation, 20, 400
of tessellations, 394

Szekeres, 576

tangent method
of Diophantus, 48, 163
of Fermat, 162
of Hudde and Sluse, 163

tangent space, 507
tangent vector, 507
Tao, 583
Tarski, 534
Tartaglia, 97

and projectiles, 105
disclosure to Cardano, 104
life story, 104
translation of Elements, 105

Taurinus, 364
tautochrone, 258
Taylor

Brook, 187
derived Mersenne’s law, 261
series, 187
theorem, 187

Richard, 211
tessellations

groups of, 397, 401
of Euclidean plane, 374
of hyperbolic plane, 375
of sphere, 374, 397

tetrahedron, 22
Euclid’s dissection, 62
rotation group, 395
volume, 60

in Euclid, 53, 62
Thales, 18
Theaetetus, 36
theory of equations, 102, 389
theory of proportions, 12, 53, 56

and irrational numbers, 56
in Euclid, 56

theta functions, 40, 235
Thompson, 513, 514
three-body problem, 253
Thurston, 468, 488

geometrization conjecture, 488
proved by Perelman, 489
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Tietze, 485
tiled floor, 129
time travel, 551
Tits, 511
topology, 330, 467

algebraic, 494
and double periodicity, 310
and graph theory, 553
and group theory, 402
and regular polyhedra, 471
combinatorial structures, 468
general, 468
geometric, 468
in Erlanger Programm, 468
of algebraic curves, 295
of complex curves, 304
of surfaces, 307

Torricelli, 161
and distance–time graph, 247
and logarithmic spiral, 337
infinite solid, 183

torsion, 340
torus, 306

and cubic curves, 306
and elliptic functions, 226, 306, 313
and spiric sections, 33
as space of equivalence classes, 326
complete graphs on, 570
constructed by pasting, 326
Euclidean geometry, 482
fundamental group, 467
fundamental polygon, 481
integration on, 322
nonbounding curves, 322, 487

tractrix, 338
constant tangent property, 338
is involute of catenary, 341
parametric equations, 342

trajectory, 245
transcendence, 27

Cantor proof, 528
of e, 27, 198
of π, 27, 184, 198

transcendental
curve, 113, 335
function, 171, 186, 199
number, 27, 528

transformations
continuous, 398

invertible, 468
group of, 383, 398, 496
in Möbius, 136, 398
linear, 496
linear fractional see linear

fractional transformations 144
projective, 132, 385

translation, 369
transposition, 392
tree, 564

branch, 571
Euler formula for, 564

trigonometric series, 263
trisection, 17, 26

and cubic equations, 99
Turing, 538, 540

machine, 538
universal, 540

unsolvability of halting problem,
539

Uccello, 136
Ulam, 535
uncountability, 527

of ordinals, 529
uniformization, 329
unique prime factorization, 37, 196, 439

and Gauss, 455
and squares, 441
fails in Z[

√−5], 446
fails in Z[ζ23], 456
failure seen by Kummer, 446
of Gaussian integers, 442

unsolvability, 525, 539
in Diophantine equations, 7
in group theory, 485, 540
in logic, 540
in topology, 486
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van der Waerden, 466
van Heuraet, 112
van Roomen, 108
Vandermonde, 390
vanishing point, 129
Veblen, 497, 566
vector

addition, 248
and hypercomplex numbers, 418

analysis, 437
and quaternions, 437

product, 427, 509
space, 440

basis, 458
dimension, 458

velocity–time graph, 110, 246
vibrating string, 249, 261
Vienna Circle, 550
Viète, 99

and Diophantus, 49
cryptography, 107
formula for cos nθ, 100
Genesis triangulorum, 418
life story, 107
product formula, 165
solution of cubic, 99

Vitali, 534
Vitruvius, 66
volume, 60

of sphere, 63, 161
of tetrahedron, 60

in Euclid, 62
von Neumann, 529
von Staudt, 432

Wachter, 365
Wagner, 566, 583
Wallis

and complex numbers, 279
Arithmetica infinitorum, 164
arithmetized geometry, 120
cryptography, 173
infinite product formula, 165
life story, 172

product, 190
Wantzel, 26

and 3√
2, 96

wave equation, 243, 262
Weber, 357
Weierstrass

extreme value theorem, 287
intermediate value theorem, 287
℘-function, 233, 324

double periodicity, 324
rigor, 55
theorem of complex numbers, 431

well-ordering, 534
Whitehead, Alfred, 464, 542
Whitehead, Henry, 488
Wiles, 211
word problem, 540
Wren, 176, 337

Xia, 255
Xylander, 51

Yáng Huı́, 205

Zeno
and infinite series, 182
paradoxes, 54, 526

Zermelo, 534
incompleteness theorem, 548
well-ordering theorem, 534

Zermelo–Fraenkel axioms, 546, 555
zero divisors, 433
zeta function, 195

and prime number theorem, 585
Euler formula, 195
functional equation, 197
Riemann, 196
trivial zeros, 196, 197
values found by Euler, 196

Zeuthen, 212
Zhū Shijié, 90, 205
Zn, 385
Zu Chongzi, 557
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