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Preface

Although concepts that we now consider as part of topology had been
expressed and used by mathematicians in the nineteenth century (in particular,
by Riemann, Klein, and Poincarè), algebraic topology as a part of rigorous
mathematics (i.e., with precise definitions and correct proofs) only began in
1900. At first, algebraic topology grew very slowly and did not attract many
mathematicians; until 1920 its applications to other parts of mathematics were
very scanty (and often shaky). This situation gradually changed with the
introduction of more powerful algebraic tools, and Poincaré's vision of the
fundamental role topology should play in all mathematical theories began to
materialize. Since 1940, the growth of algebraic and differential topology and
of its applications has been exponential and shows no sign of slackening.

I have tried in this book to describe the main events in that expansion prior
to 1960. The choice ofthat terminal date does not correspond to any particular
occurrence nor to an inflection in the development of the theory. However,
on one hand, I wanted to limit the size of this book, which is already a large
one; and, on the other hand, it is difficult to have a bird's eye view of an
evolution that is still going on around us at an unabated pace. Twenty years
from now it will be much easier to describe what happened between 1960 and
1980, and it will probably fill a book as large as this one.

There is one part of the history of algebraic and differential topology that
I have not covered at all, namely, that which is called "low-dimensional
topology." It was soon realized that some general tools could not give
satisfactory results in spaces of dimension 4 at most, and, conversely, methods that
were successful for those spaces did not extend to higher dimensions. I feel
that a description of the discovery of the properties of these spaces deserves
a book by itself, which I hope somebody will write soon.

The literature on algebraic and differential topology is very large, and to
analyze each paper would have been unbearably boring. I have tried to focus
the history on the emergence of ideas and methods opening new fields of
research, and I have gone into some details on the work of the pioneers, even
when their methods were later superseded by simpler and more powerful ones.
As Hadamard once said, in mathematics simple ideas usually come last.



VI Preface

I assume that the reader is familiar with the elementary part of algebra and
"general topology." Whenever I have had to mention striking applications of
algebraic topology to other parts of mathematics, I have summarized the
notions necessary to understand these applications.
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Notations

General Notations

N, Z, Q, R, C, H, F,: integers ^0, rational integers, rational numbers, real
numbers, complex numbers, quaternions, finite field with q elements.

S„: sphere Xj I<^jl2 = 1 in R".
D„:ballXyl^l2^ linR".
el5 e2,..., e„: canonical basis of R" (also written e0, e,,..., e„_().
T" n-dimensional torus R"/Z".
P„(F): n-dimensional projective space over a field F.
GL(n, F): general linear group, i.e., group of automorphisms of the vector

space F"; or group of invertible n x n matrices with entries in F.
SL(n, F): for F a commutative field, subgroup of GL(n, F), consisting of

matrices of determinant 1.
O(n): orthogonal group, subgroup of GL(n, R) leaving invariant the euclidean

scalar product.
SO(.i): group of rotations O(n) n SL(n, R).
U(n): unitary group, subgroup of GL(n, C) leaving invariant the hermitian

scalar product.
U(n, H), Sp(n): unitary group over the skew field of quaternions, leaving

invariant the hermitian scalar product in H".

Categories

C: arbitrary category.
C°: category dual to C.
Set, PSet: category of sets, of pointed sets.
Gr, Ab: category of groups, of commutative groups.
ModA, Vectk, Algk: categories of modules over a ring A, of vector spaces over

a field k, of algebras over a field k.
T, PT: category of topological spaces, of pointed spaces.
7": any subcategory of T.
Jj : category of pairs (X, A), X topological space, A subspace of X.



XVI Notations

Notations of Set Theory and General Topology

pt.: set or space with only one element.
Id, IdE, 1E: identity map of the set E.
A U B: disjoint union of A and B (sets or spaces).— o
A, A, Fr(A): closure, interior, frontier of a subset A of a topological space.
HmX„: direct limit of a sequence of sets, spaces, or groups (relative to mor­
~* phisms%,„+1:X„->X„+1).
limXa: inverse limit of an ordered family (XJ^ (I ordered set) relative to

morphisms (pßa: Xß -> Xa for a < ß.

Quotient Spaces (Part 2, chap. V)

X/A: space obtained by collapsing the subset A of X.
Cx, CX: cone, reduced cone of X.
§X, SX: suspension, reduced suspension of X.
X v Y, Va^a- wedges of pointed spaces.
X a Y = (X x Y)/(X v Y): smash product.
X * Y: join of two spaces X, Y.
X {Jj- Y: attachment of X to Y by means of a continuous map /: A -> Y, for a

subspace A <= X.
Zy, Zy. mapping cylinder of f: X -> Y, reduced mapping cylinder.
Cy, Cy: mapping cone of f: X -> Y, reduced mapping cone.

General Notations in Algebra and Homological Algebra

Ker/, Coker/, Im/: kernel, cokernel, image of a homomorphism /: A-> B
of modules.

A © B: direct sum of two A-modules.
A ®A B, A ® B: tensor product of two A-modules.
Hom(A, B): module of homomorphisms A -> B.
End(A) = Hom(A, A), ring of endomorphisms of A.
Tor(A,B): Part 1, chap. IV, §5,B.
Ext(A,B): Part 1, chap. IV, §5,D.
H„(n;G), H"(n;G): homology and cohomology groups of the group n with

coefficients in the group G: Part 3, chap. V, § 1,D.

Homology of Chain Complexes and Cohomology of
Cochain Complexes (Part 1, chap. IV, § 5)

C. = (Cj-)J>0: chain complex.
bp: Cp -> Cp_j: boundary operator (also written b).
Zp, Z (C.) = kerbp: module of p-cycles.



Notations XVll

Bp, Bp(C.) = Imbp+1: module of p-boundaries.
Hp(C.) = Zp/Bp: p-th homology module.
C" = (CJ)j;>0: cochain complex.
dp: C -> C+1 : coboundary operator (also written d).
Zp, ZP(C) = Kerdp: module of p-cocycles.
Bp, BP(C) = Imdp.f. module of p-coboundaries.
H"(C) = Zp/B": p-th cohomology module
ôn: H„(C.) -> H„_!(A.) connecting homomorphism of the homology exact

sequence for the exact sequence 0 -> A. -> B. -> C. -> 0 of chain
complexes (also written d).

rk(M): rank of a finitely generated Z-module.
%(C.) = Xj(~" l)"'r'c(Cj): Euler-Poincaré characteristic of a finitely generated

chain complex of Z-modules.
/. = (fp): C. -► C;-. chain transformation (Part 1, chap. IV, §5,F).
Hp(/.) = fp*: Hp(C.) ->• Hp(C.'): homomorphism in homology corresponding

to a chain transformation f..

Axiomatic Homology and Cohomology
(Part 1, chap. IV, §6,B)

Hp(X), Hp(X, A): homology modules.
Hp(/): Hp(X, A) ->• Hp(Y, B): homomorphism corresponding to the morphism

/: (X, A) --+ (Y, B) in J, (also written /_).
^(X, A): H?(X, A) -> H(J_j (A): connecting homomorphism (written d).
H"(X), H"(X, A): cohomology modules.
W(f): HP(Y, B) -> HP(X, A): homomorphism corresponding to the morphism

/: (X, A) -> (Y, B) (also written /*).
ô: W1 (A) -> H"(X, A): connecting homomorphism.
fl0(X), fl°(X): reduced 0-homology and 0-cohomology modules.

Singular Homology and Cohomology
(Part 1, chap. IV, §2 and §3)

Ap: standard p-simplex.
S.(X; Z) = (Sp(X; Z)): singular complex of X.
H.(X;Z) = (Hp(X;Z)): singular homology of X.
Sp(X, A; Z) = Sp(X; Z)/SP(A; Z) for a subspace AcX.
Hp(X, A; Z): relative singular homology.
u„, = Hp(u): Hp(X; Z) -> Hp(Y; Z): homomorphism in homology deduced from

a continuous map u: X -> Y.
Op(X), op: p-th Betti number of X.
SP(X; G) = Hom(Sp(X; Z), G): group of singular p-cochains.
HP(X;G): p-th singular cohomology group of X with coefficients in G.
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HP(X, A; G): p-th relative singular cohomology group, for A c X.
u* = Hp(u): Hp(Y;G)-> HP(X;G): homomorphism in cohomology deduced

from a continuous map u: X -> Y.
Hf(X;G): p-th singular cohomology group of X with compact supports.
a^-b: cup-product of two cohomology classes in H'(X; A): Part 1, chap. IV, §4.
a^u: cap-product of a homology class a and a cohomology class u: Part 1,

chap. IV, §4.
u/c', c"\u: right (left) slant product of a cohomology class u and a homology

class c'{c")\ Part 1, chap. IV, §5,H.

Cech and Alexander-Spanier Cohomology
(Part 1, chap. IV, §3)

HP(X;G): p-th Cech cohomology group of X with coefficients in G.
C(X;G): group of maps of Xp+1 into G.
Cg(X; G): subgroup of C(X; G) consisting of maps vanishing in a

neighborhood of the diagonal.

C"(X;G) = C(X;G)/Cg(X;G): group of Alexander-Spanier p-cochains.
<5P: C(X; G) -> C+1 (X; G): p-th coboundary operator.
HP(X;G): p-th Alexander-Spanier cohomology group.

Sheaves, Sheaf Cohomology (Part 1, chap. IV, § 7)

/„.(J"-"): direct image of a sheaf by a continuous map.
r(Jr): sections of a sheaf.
H'(X; J"""): cohomology of X with coefficients in a sheaf J""".
H"j,(X; J"-"): cohomology of X with supports in $ and coefficients in !F.

Spectral Sequences (Part 1, chap. IV, §7,D and
Part 3, chap. IV, § 3,C)

M' = ©? M,, differential graded module, with d(Mq) <= M,+1, and decreasing
filtration F, with F"(M') = 0,M, n F"(M').

ZP": set of z e F"(M") n Mp+q with dz e Fp+r(M-), Zp = @qZp", Wrlx =
Mp+,nrfz?_rr; e« = zp"/(zpl}-"-1 + B£,);

dr: Ep" -> Ep+r'"-r^ drodr = 0
If E; = ®p,qE™, H"(E;) = e;+1 for the coboundary dr.

E"" = FPHP+«(M,)/F',+ 1H',+''(M").
For a graded differential module M' = ©„M" with d(Mq) <= M«_1 and an

increasing filtration F, with Fp(M") = ©? M* n Fp(M"), one writes Z'pq.
set of z e Fp(M')nM'*' with dz e Fp_r(M'); Z'p = ©,Zp„, B'„ =
Mp+"nrfZ;+r, E'„ = Z^/(Z'p-\„+1 + B-1).



Notations xix

De Rham Cohomology (Part 1, chap. Ill, §3)

<9p(M): smooth p-forms on the manifold M.
3ip(M): smooth p-forms on M with compact support.
HP(M): De Rham cohomology, i.e., cohomology of the cochain complex

{SP{M)) for the exterior differential cu i—> da>.
Hf(M): De Rham cohomology with compact support, i.e., cohomology of the

subcomplex (3>p(M)).
(a'p(M): p-currents on M with compact support.
Hp(M): homology of (S'P(M)) for the boundary operator b = 'd.

Fundamental Classes (Part 2, chap. I, § 3,A and
chap.IV,§3,A)

[M]: fundamental homology class of an oriented pseudomanifold M.
efj",: cohomology fundamental class, or orientation class of an oriented smooth

compact n-dimensional manifold M, class of the n-form cu such that
{m<«= 1.

sn: orientation class of the sphere S„.
j"m,k- f°r an oriented smooth n-dimensional manifold M and a nonempty

compact subset K, fundamental class relative to K, element of
H„(M,M -K;Z).

Degree and Fixed Points (Part 2, chap. I, chap. Ill,
and chap. IV, § 1,B)

deg/: degree of a continuous map /: M -> M', where M, M' are compact
connected oriented pseudomanifolds of the same dimension.

d(f, M,p): degree of f relative to M and p, for a continuous map /: M -> R"
and a point p <£/(Fr(M)).

dega/: local degree at the point a e X, for a C°° map: X -> Y of smooth oriented
manifolds of the same dimension, a being isolated for /.

Ik (A, B): linking number of two chains A, B with no common points, of
dimensions k and n — k in a connected oriented n-dimensional
combinatorial manifold X, when a A and ßB are boundaries, for integers a, ß.

Fix(/): set of fixed points of a map /: X -> X.
A(/): Lefschetz number of/, when X is a finite simplicial complex.

Homotopy (Part 3, chap. I and II)

^{Y, y0;X, x0): set of continuous maps (Y, y0) -> (X, x0) of pointed spaces, with
the compact-open topology.

[Y,y0;X,x0] = n^iY,y0;X,x0)): set of arcwise connected components of
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^(Y, y0;X, x0), or, equivalently, homotopy classes of maps
(Y, yo) ~* (X, x0) of pointed spaces.

[/]: homotopy class of a continuous map / of pointed spaces.
* : the point e, eS„

[0,1], I: the interval 0 s? t s? 1 in R.
Q(X,x0) = <£(S1,*;X,x0): space of loops inX of origin x0.
7t„(X, x0) = 7r0(^(S„, *;X, x0): n-th homotopy group of the pointed space

(X,x0).
Ut:nn{X,x0)-+nn{Y,y0): homomorphism l/]i->[uo/] (written [u] o [/],

for a continuous map u of pointed spaces).
(QP(X), xp): pointed iterated loop space of (X,x0).
E: [Y,y0;X, x0] -> [SY,y0;SX,x0]: homotopy suspension.
E(/) or Sf: natural map (SY, y0) -> (SX, x0) deduced from

/: (Y,y0) - (X,x0), so that E([/]) = [S/].
[u, u] e 7rm+„_! (X, x0): Whitehead product of u e nm(X, x0) and v e n„{X, x0).
£„: relative homology class in H„(Ä„,Ä„ — A„;Z) of the identity map of A„.
K: [/] "*■ f*(en): Hurewicz homomorphism nn{X, x0) ->• H„(X; Z).
"^(Y, B, >>0; X, A, x0): subspace of <^(Y, y0; X, x0) consisting of maps / such that

/(B) c A (with y0 e B, x0 e A).
[Y, B,y0;X, A, x0]: set of relative homotopy classes in ^(Y, B,y0;X, A,x0).
Q"(X, A, x0) ~ ^(D„, S„_!, *; X, A, x0): iterated space of paths.
7t„(X,A,x0) = 7i0(<^'(DB,SB_j,*;X,A,x0)): relative homotopy set for n^l

(group for n > 2).
u#: nn(X, A,x0) -»• 7i„(Y, B,y0): map [/] -»• [u o/] for u a map (X, A) -»• (Y,B)

such that u(x0) = y0.
ô: nn(X, A, x0) -> 7r„_x (A, x0): connecting map of the homotopy exact sequence.

Fibrations (Part 3, chap. Ill)

X = (E, B, F,7i) [or (E, B, F), or (E, B, 71)]: fibration with total space E, base
space B, typical fiber F, projection n.
Eh = n~l(b): fiber at the point kB.

(/, g): (E, B, n) -> (E', B', n'): morphism of fibrations, with g: B -> B' and
/: E -> E' continuous, such that n'(f(x)) = g(n{x)).

fb = /lEft: continuous map Eh -> E'g(b).
g*{X): pull-back of a fibration (E, B, n) by a continuous map g: B' -> B;

g*{X) = (E',B',7i') with E' = Ex,B'cEx B', n' = pr2|E'.
X' x X": product fibration (E' x E", B' x B", n' x n") of two fibrations X' =

(E', B', n'), X" = (E", B", n").
E' ® E": direct (or Whitney) sum of two vector bundles E', E" with base space

B.

E' ® E": tensor product of two vector bundles E', E" with base space B.
P x GF: fiber space associated to a principal fiber space (P, B,G) and to an

action of G on F.
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Q(X, A, x0) = #([—1,1], { —1,1},*;X, A, x0): space of paths in X with origin
at x0 and extremity in A <= X.

PXoX = Q(X,X, x0): space of paths in X with origin x0.
(PXoX, X,Q(X, x0), n): fibration with total space the space of paths PXoX, base

space X and fiber 7t"1 (x0) = Q(X, x0), space of loops of origin x0.
G„ p(F): grassmannian of p-dimensional vector subspaces of the vector space

F" over the field (or skew field) F.
G^ p(R): special real grassmannian of oriented p-dimensional vector spaces in

R".

S„ p(F): Stiefel manifold of orthonormal frames of p vectors in F", for F = R,
C or H.

(EG, BG, G): principal fiber space with «-universal total space EG, «-classifying
base space BG, structural group G.

Characteristic Classes (Part 3, chap. IV)

wr(Ç) (or wr(E)): Stiefel-Whitney class wr(Ç) e Hr(B; F2) of a real vector bundle
É = (E.B.R").

w(E; t) = Xr Wr(E)tr (or w(E) = £r wr(E)), total Stiefel-Whitney class of E.
pk{Ç) e H4,t(B; Z): Pontrjagin class of the vector bundle £.
e(£) e H"(B; Z): Euler class of an oriented vector bundle Ç = (E, B, R").
ck(Ç): Chern class of a complex vector bundle Ç = (E, B, C").
c(E; 0 = Xr cr(E)tr (or c(E) = £r cr(E)), total Chern class of E.
sk(c(Ç)): polynomial expressing t\ + t\ + ■• • + t\ in terms of the elementary

symmetric polynomials oj in the tj, where at is replaced by ck(Ç).

ch(<^): Chern character of £, equal to X?=o 77si.(c(£))­



Introduction

Ever since the concept of homeomorphism was clearly defined, the "ultimate"
problem in topology has been to classify topological spaces "up to
homeomorphism". That this was a hopeless undertaking was very soon apparent,
the subspaces of the plane R2 being an obvious example. From this
impossibility were born algebraic and differential topology, by a shift of emphasis
which consisted in associating "invariant" objects to some types of spaces
(objects are the same for two homeomorphic spaces). At first these objects
were integers, but it was soon realized that much more information could be
extracted from invariant algebraic structures such as groups and rings.

The algebraic invariants which have provided most insight into the
structure of topological spaces are homology and homotopy groups. In the two
first parts of this book I shall describe the evolution of homology. Homotopy
theory did not start in earnest until 1930; Part 3 is devoted to its explosive
development and its relations with homology, which it soon overwhelmed as
a central concept of topology.

A remarkable feature in the history of homology and homotopy is the way
in which notions initially introduced in these theories for applications to
problems of topology unexpectedly found fruitful applications to other parts
of mathematics and have become the starting points of extensive theories:
categories and functors, homological algebra, and K-theory are outstanding
examples.

In modern, sophisticated terms the central concept in homology is the
category S(C) of generalized chain complexes in an abelian category C. The
objects of that category are infinite sequences

A.: •• - A„_2 &- A„_, J^-An^ A„+1 ^ ••• . (1)
where, for each n e Z, A„ is an object of C and d„ a morphism of C, with the
conditions

dn_1dn = 0 for every n e Z. (2)
When A„ = 0 for n < 0, one speaks of chain complexes. The d„ are called
boundary operators.

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-41,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



4 1. Simplicial Techniques and Homology

The morphisms are sequences /. = (f„): A. -> B. where, for each n e Z,
f„: A„ -> B„ is a morphism of C, and in the diagram

L­

A„-i < A„ < A„+1

/„+1

Bn-i «—^- B. «-7 B*+i

(3)

all squares are commutative; one says the /„ commute with the boundary
operators. One has lmd„+1 <= Kerd„ <= A„ for every n e Z; the quotient
H„(A.) = Kerd„/Imd„+1 is called the n-th homology object of A.. From (3) it
follows that/„(Kerrf„)<=Ker(^),/„(Imrf„+1)<=Im(^+1), so there is a morphism

H„(/.):H„(A.)-H„(B.)

deduced canonically from /., and

(A.,X)^(H„(A.),H„(X)) (4)
is a covariant functor from S(C) to C. When C is the category ModK of modules
over a commutative ring A, the elements of A„(resp. Kerd„, resp. Imd„+1)are
called n-chains (resp. n-cycles, resp. n-boundaries).

It took 50 years to reach this level of abstraction. The first occurrence of a
chain complex is to be found in Poincaré's papers of 1900, although he did
not use the language of modules and homomorphisms as we do now, but the
equivalent one of matrices. After an unsuccessful attempt in 1895 to give a
genuine mathematical formulation to the intuitive ideas of Riemann and Betti,
probably inspired by earlier work of the nineteenth century on polyhedra and
the Euler formula, he restricted himself to compact triangulated spaces (or
finite cell complexes); for a triangulation T consisting of cells homeomorphic
to convex polyhedra and in finite number he took n-chains consisting in formal
linear combinations of oriented cells of T of dimension n with integer
coefficients for each integer n §= 0; they form a free Z-module C„(T), and one takes
C„(T) = 0 for n < 0. To define the boundary operator

CCXO-C^fT)
for n > 0 it is enough to define d„{a) for every n-dimensional cell a by linearity;
Poincaré took dn(a) equal to the sum of all (n — l)-dimensional cells on the
frontier of a, each affected with a coefficient +1, chosen according to the
orientations taken on the cells of T in such a way that the relation (2) holds.
He was obviously guided by the intuitive idea that in R2 or R3, "a boundary
has no boundary", in the sense that, for instance, the points on the frontier of
a closed disk in R2 look different from the interior points, whereas on the
frontier any two points look alike.

From this beginning the evolution of homology went through a series of
steps, the description of which constitutes Part 1 of this book. We summarize
them below, not necessarily in chronological order.
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I) Poincaré had already proved that a subdivision of every cell into smaller
cells gives the same homology for the subdivided triangulation. This allows
one to only consider euclidean simplicial complexes, in which every cell is a
rectilinear simplex contained in some RN with large N.

II) To define a simplex a in such a simplicial complex K it is only necessary
to know its vertices. Taking a total ordering on the set £ of all vertices of all
simplices in K, and writing a = (a0al...a„) for the n-simplex a with vertices
üj written in the given order, the boundary operator is given by

nd„a = X (-i)J(a0al...âJ...an). (5)
j=o

It is clear that the chain complex C.(K) is completely independent of the
topology of K. It can be defined for an arbitrary (finite or infinite) set £ where
the "simplices" are finite subsets of £, subject only to the condition that any
subset of a simplex is again a simplex. This defines what is called a
combinatorial complex.

III) Poincaré does not seem to have thought of what we now call "mor­
phisms" between chain complexes. This definition was made possible by the
notion of simplicial mapping introduced by Brouwer. If K and L are two
euclidean simplicial complexes, a simplicial mapping /: K -> L is
characterized by the condition that for each simplex a of K,f{a) is a simplex (possibly
of smaller dimension) of L, and the restriction of f to a is affine. This implies
that / is entirely determined by the images f{a„) of the vertices of K, which are
vertices of L. Brouwer was not interested in homology, but the Princeton
topologists* deduced from such a map / a morphism /: C.(K) -> C.(L) in the
following way: given total orderings of the vertices of K and of L, if a =
(a0a1...a„) is an n-simplex of K, then f„{o) = 0 if the vertices /(a;) are not
all distinct for 0 =$ j; ^ n; if they are the vertices of an n-simplex f(a) =
(b0bl... bn) of L (in the chosen ordering), then

fn(a) = e{b0b1...bn)

where £ = 1 if the permutation {f(a0)f(a1)...J\an))h-*(b0b1...b„) is even,
e = — 1 if that permutation is odd. The commutativity of (3) for A. = C.(K),
B. = C.(L) is then readily verified.

IV) Poincaré conjectured that if a space X can be triangulated, the
homology groups of the chain complex C.(T) defined by a triangulation T are
independent of the chosen triangulation T and of the orientations chosen on
each cell. This was first proved by Alexander using simplicial approximation,
another even more important idea of Brouwer. For two triangulated spaces
X, Y and any continuous map /: X -> Y it is possible, for each £ > 0, to find
subdivisions of the triangulations of X and Y and a simplicial map g: X -> Y
relative to these subdivisions such that the distance of/ and g is at most £ and
/ and g are homotopic.

* Chiefly Veblen, Alexander and Lefschetz.
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This result accomplished the first goal of homology theory: attach to any
triangulable space X a system of "homology groups" H„(X) (for n^O)
invariant under homeomorphism.

V) It is easy to define triangulations on usual compact spaces such as S„,
P„(R), T". Poincaré conjectured that C ' manifolds and algebraic varieties (with
singularities) can be triangulated. The second conjecture was proved by van
der Waerden and the first one by Cairns around 1930.

VI) Beginning around 1925 several topologists began to try to define
homology groups for spaces on which no triangulation is known, or even
possible. Two ideas emerged. The first, singular homology, introduced in an
imperfect form by the Princeton topologists, and defined with maximum
generality by Eilenberg, takes as n-chains in any space X the formal linear
combinations (with integer coefficients) of the continuous maps A„ -> X, where
A„ is the standard n-simplex in R"+1 ("singular n-chains"). They thus form a
free Z-module S„(X), generally with infinite basis; the boundary operator
d„: S„(X) -> S„_!(X) assigns to a continuous map /: A„ -> X the (n — l)-chain

dnf= Î(-VJf°Sj
J=o

where sy. An_l -> A„ is the affine map which sends A„_j onto the face of A„
opposite to the;-th vertex, with conservation of the order of the vertices.

The other method, developed by Vietoris, Alexandroff, Lefschetz and Cech,
starts from a (finite or infinite) open covering "U = (UJ of X; to this covering
is associated its nerve, a combinatorial complex N(^) whose vertices are the
Ua and the n-simplices are the non-empty intersections of n sets Ua. This
defines a chain complex C.(^), and from the homology groups H„(<#) of these
chain complexes one deduces homology groups H„(X) by an inverse limit
process on the open coverings °U (or on some family of open coverings, for
instance the finite ones).

VII) Earlier, homology groups "with coefficients" were also introduced.
Given a commutative group G and a chain complex A. = (A„) consisting of
Z-modules, one can form the chain complex

A.®ZG = (A„®ZG)

and the homology H.(A. ®z G), written H.(A.; G), is called the homology of
A. "with coefficients in G". Before the general definition of tensor products by
Whitney, only the case in which the A„ are free Z-modules was considered.
For singular homology, the dimension of Hp(X;Q) is called the p-th Betti
number bp(X) of the space X. For an arbitrary group G, Hp(X; G) is entirely
determined by G and the groups Hp(X; Z) and Hp_[ (X; Z) (formula of
universal coefficients).

VIII) Lefschetz also defined the new notion of relative homology H.(K, L)
for a finite simplicial complex K and a subcomplex L. The notion could easily
be extended to singular and Cech homology, and its properties later were
recognized as the first manifestations of the homology exact sequence: if three
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chain complexes A., B., C. are elements of a short exact sequence of morphisms

0 —► A. -^* B. -% C. —► 0

then there exists an infinite sequence of canonically defined morphisms dn:
H„(C.) -> H„_!(A.) such that the sequence

►H,(Aj^H,(Bj-^H,(C.)-^H1.1(A1) ► ••• (6)
is exact.

For singular homology one considers a space X and a subspace Y and the
singular complexes S.(X), S.(Y). The natural injection ;: Y -> X defines an
injective morphism S.(;'): S.(Y)-> S.(X), hence a chain complex S.(X, Y) =
S.(X)/S.(;')(S.(Y)). The homology H.(S.(X,Y)) of that chain complex is the
relative singular homology H.(X, Y), and one has the exact sequence of singular
homology

• • • -» H„(Y) - H„(X) - H„(X, Y) - H,.,(Y) - • • • (7)

IX) From the beginning homology theory had been pervaded by the
general (and vague) idea of duality. Poincaré clearly considered that the climax of
his work in topology was his famous duality theorem. For an n-dimensional
compact oriented C1 manifold X, where a triangulation T is given, he described
a topological construction of a "dual" triangulation T*, reminiscent of the
geometrical duality of spherical polygons known since the 17th century. It was
rigorously shown later that this provides for each oriented p-cell ap of T an
oriented "dual" (n — p)-cell b'n-p of T*, such that the Kronecker intersection
index i(ap,bJn-p) = <5y. From this it is easy to show that the matrices of the
boundary operators CP(T) -> Cp_j(T) and C„_P+1(T*) -> C„_P(T*) are
transposes of each other. Once the invariance of the homology of a triangulation
had been established, this gave for the Betti numbers the equality

Vp(X) = &p(X). (8)
X) In conformity with the misconceptions of duality, beginning with

Poncelet, for whom it took place in a single space instead of two spaces "in
duality", Poincaré duality was considered as holding between elements of a
single graded group H.(X); this view was not modified even after De Rham,
in 1930, had shown that for a compact C manifold X, Hp(X; R) is isomorphic
to the quotient of the space of closed differential p-forms on X by the subspace
of exact ones.

It was only in 1935, under the influence of Pontrjagin's duality theorem—
where a compact commutative group is completely different from its discrete
"dual"—that Alexander and Kolmogoroff realized that a p-form a on a
smooth compact manifold X can be considered, by integration on a smooth
p-chain, as a homomorphism cw a (9)
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of the subspace of CP(X) consisting of those chains, into R. This led them to
the general definition of cohomology.

At the level of arbitrary generalized chain complexes (1) this definition is
little more than a tautology: change the indexing in (1) by writing A'„ = A_„
and d'n = d_n for every neZ, and write (1) as

d'„ d'„+1A •: ► A„ ► A„+1 ► A„+2 ► • • •
with d'„+ld'„ = 0 for all n; such a sequence takes the name generalized cochain
complex and d'n is called the n-th coboundary operator; one merely speaks of
a cochain complex when A'n = 0 for n < 0. When C = ModK the elements of
A'n (resp. Kzrd'„, resp. Imd^) are called n-cochains (resp. n-cocycles, resp.
n-coboundaries). H"(A") = KeTd'n/lmd'n_l is the n-th cohomology object of A".
To each morphism /': A" -> B" corresponds a morphism

H"(/'-): H"(A") ~* H"(B'-)

so that H" is a covariant functor from the category of generalized cochain
complexes to C.

But if one takes for C the category Ab of additive commutative groups,
there is another, non-trivial, way to obtain a generalized cochain complex
from a generalized chain complex A. in Ab: for an arbitrary commutative group
G put

A"G = Hom(A„,G) (10)
<5"=HomK+1,lG):Hom(A„,G)->Hom(A,,+1,G) (11)

Then

Ab:-" ►AJ-^A"B+1-^AJ+2 ►••• (12)
is a generalized cochain complex. This defines a contravariant functor

A. i—> A'G

which to a morphism /.: A. -> B„ associates /G = (/G) with

^ = Hom(/„,lG):BG-,AG.

Hence for any n there is a contravariant functor

(A.,/.)-(H"(Ab),H"(/G)).

When A. = C.(K), where K is a finite cell complex, one thus defines
cohomology groups H"(K; G) = H"(AG) which do not depend on the triangulation of
K, but only on its topology. If/: K -> L is a continuous map, one has for each
n^Oa homomorphism

/*:H"(L;G)-H"(K;G) (13)
defining a contravariant functor on the category of cell complexes. This is the
case which was first considered by Alexander and Kolmogoroff but similar
definitions lead to singular cohomology groups H"(X; G) and Cech cohomology
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groups H"(X; G) for all spaces X; observe that these are also covariant functors
inG.

It is also possible to define cohomology groups of a space X by directly
associating a cochain complex to X without using a chain complex as an
intermediate. If X is a smooth manifold, one may consider the De Rham
complex

where Clp is the vector space over R of all C°° differential p-forms (for p = 0
the C°° functions) and d the exterior differential. One thus obtains the De
Rham cohomology spaces HßR(X); when X is compact the De Rham theorem
gives a canonical isomorphism of HÔR(X) on the dual vector space (H„(X; R))*.

There is a similar direct definition of cohomology for an arbitrary space,
due to Alexander and Spanier. The n-cochains are equivalence classes of
mappings /: X"+1 -> G (not necessarily continuous), two mappings being
equivalent if they coincide on a neighborhood of the diagonal in X"+1. The
coboundary operator 5" associates to the class of such a map the class of the
map

n+l

(X0'X1' •••>X/.+ l)l—> 2^ (_ Ui(X0>- • • >xj>- ■ ■ >Xn + l)­

XI) Once cohomology had been defined it was possible to better
understand duality in algebraic topology. In the first place definition (10) means that
a bilinear map AG x A„ -> G is defined as

(f,u)^f(u)eG
also written (/, u)i—» </, u>. From the definition (11)

<ô»f,u> = <j,d„uy, (14)
it follows that when / is a cocycle and u a cycle, </, u> only depends on the
classes fe H"(A'G) and u e H„(A.), and can therefore be written </, u>, thus
defining a bilinear map

H"(A-G)xH„(A.)-G

or equivalently a linear map

H"(AG)-Hom(H„(A.),G) (15)
sending/ to the linear map u i—» </,u>. When A. is a free Z-module the map
(15) is surjective, and it is injective if in addition H„_!(A.) is free.

Various "products" (i.e. bilinear maps) may be defined using duality. If K
and L are cell complexes, the products a x t of a cell a of X and a cell t of L
are the cells of a cell complex K x L. If A is a commutative ring, one defines
a bilinear map

KM:Hom(Cp(K),A) x Hom(C,(L). A)-» Hom(Cp+,(K x L),A)
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which to f x g assigns the linear map

ic«(/xj):ffXîM/(#)
(product taken in A). These maps commute with coboundary operators, hence
yield A-bilinear maps

fcM:Hp(K;A) x H«(L; A) - HP+«(K x L;A). (16)

When A is a field these maps are injective, and HP+*(K x L;A) is the direct
sum of their images (Kiinneth formulas). Similar maps can be defined for
singular or Cech cohomology.

Now consider a space X and the diagonal map

D: xi—>(x,x)

of X into X x X. By functoriality, this yields linear maps in singular
cohomology

D*:H"(X x X;A)-»H"(X;A)

for all n, hence for any pair of integers p ^ 0, q ^ 0 one has a composed map

H"(X;A) x H"(X;A)-^HP+"(X x X;A)-^Hrt(X;A) (17)
which is called the cup-product and written

(u, v) i—> u -— v. (18)
It is easy to see that on the direct sum H"(X;A) = ©„^0H"(X; A) the maps
(18) define a structure of associative anticommutative graded A-algebra, called
the cohomology algebra of X with coefficients in A.

One can also define another A-bilinear map

Hp+,(X;A)xH'(X;A)-»H,(X;A)

for singular homology and cohomology, written

(c, u)i—>c-- u (19)
and called the cap-product, such that

<c~u,i;> = (c,u^-v} foralleeH«(X;A). (20)
XII) Using the cap-product, a better version of Poincaré duality can be

given. If M is a C1 compact n-dimensional manifold, connected and oriented,
there is a privileged class fin e H„(M; Z) which is a generator of that group; if
M is equipped with a triangulation T and each «-simplex of T is given the
orientation induced by the orientation of M, \in is the class of the sum of those
n-simplices; it is called the fundamental (or orientation) class of M. Then the
homomorphism

H'(M;Z)-»H.._p(M;Z),

defined by
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«H ^„— U,

is bijective. For nonorientable manifolds the same result holds for homology
and cohomology with coefficients in F2.

A similar definition can be given for another kind of "duality" first
discovered in 1922 by Alexander. Suppose Y is a compact subset contained in
S„, homeomorphic to a smooth manifold of dimension < n — 1. Alexander
defined (for the first time) homology groups for the open set S„ — Y (for which
it is only possible to construct a triangulation with infinitely many cells), and
he proved that for p ^ n — 2, Hp(Y;F2) is isomorphic to HH_P_,(S,. — Y;F2),
and if S„ — Y has q connected components, H"~'(Y;F2) ^ Ff-1.

Using a refined localized version of the fundamental class this can be
generalized to a canonical isomorphism for singular homology and cohomology

H"(Y;Z)2;H„_p(X,X-Y;Z) (21)
when X is an oriented n-dimensional compact manifold and Y a closed
submanifold. If it is only supposed that Y is an arbitrary closed subset of the
manifold X, the isomorphism (21) still holds, provided one replaces singular
cohomology HP(Y; Z) by Cech cohomology HP(Y; Z). Various improvements
and similar results can be given: passage to non compact spaces, replacement
of Z by F2 for a non orientable manifold X, and finally extension of the
theorems to C° manifolds (not necessarily triangulable).

XIII) Around 1940 topologists began comparing the various definitions of
homology and cohomology given in the previous years. It was shown that
Cech cohomology and Alexander Spanier cohomology give isomorphic
cohomology groups, whereas the singular cohomology of a space may differ
from its Cech cohomology.

Eilenberg and Steenrod inaugurated a new approach by focusing not on
the machinery used for the construction of homology or cohomology groups,
but on the properties shared by the various theories. They selected a small
number of these properties and took them as axioms for a theory of homology
and cohomology; they showed that many other properties, formerly
separately proved for each theory, were in fact consequences of the axioms, and
they examined each theory accordingly to see if it satisfied the axioms. Their
most interesting result was the proof that on the category of compact
triangulable spaces all theories verifying the axioms give isomorphic groups; in other
words, there is only one notion of homology and cohomology in that category.

XIV) The last stage in the evolution of homology theory has been
dominated by the concept of sheaf cohomology, invented by J. Leray in 1946.
It may be considered a general machinery applicable to problems designated
by the vague words "passage from local to global properties": when some
mathematical object attached to a topological space X can be "restricted" to
any open subset U of X, and that restriction is known for sufficiently small
sets U, what can be said of that "global" object? Problems of this type had
arisen since the 1880's for analytic functions of several complex variables,
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studied by H. Poincaré, P. Cousin and later H. Cartan and K. Oka. Beginning
in 1942 Leray attacked a similar problem for cohomology: given a space X,
what can one say on the cohomology algebra H'(X; A) when the cohomology
algebras H'(U; A) are known for sufficiently small open sets U <= X? The
machinery he devised in 1946 in order to tackle that problem was gradually
refined and generalized by him and other mathematicians in the ensuing years.

It is first centered on the notion of a sheaf 3F of A-modules on X. This is
defined by assigning to each open subset U of X a A-module J^U), and to
each pair of open sets V => U a A-homomorphism pvv: ,^(V) -> F(U)
satisfying the condition that if W => V => U are three open sets

Pvw = Pvv ° Pvw (22)
Furthermore, the A-modules fF(\J) must satisfy two additional axioms:

(F I) If U = Ux u U2 is a union of two open sets, and s e .<F(\J) is such that
Pu,u(s) = ° and Pu2u(s) = 0, then s = 0.

(F II) If U is a union of a family (UJ of open sets, and a family (sj with
sa e .^(UJ is such that for Ua n Vß # 0,

then there exists s e .^(U) such that pv tJ(s) = sx for every a.

The elements s e J^U) are called the sections of the sheaf & over U.
When X is connected and locally connected and M is any A-module, there

exists a sheaf J^ on X such that ,:F(U) = M for all connected open sets U, and
puv is the identity if V => U are any two connected open sets; it is called the
constant sheaf defined by M.

One defines a morphism f: J"7 -> ^ for two sheaves of A-modules on X by
assigning to each open set U <= X a homomorphism fv: ,f£"(U) -> ^(U) of
A-modules in such a way that if V => U are two open sets, the diagram

Jf(V) Puv > J^(U),/v fu
%(V) > %(U)

Pvv

is commutative. This defines the category 5AA(X) of sheaves of A-modules on
X; it can be shown that it is an abelian category.

For each point x e X the A-modules J^U) for all open neighborhoods U
of x form a direct system for the homomorphisms puv; they therefore have a
direct limit

ir(x) = lim#'(U)
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called the stalk ofS? at the point x; its elements are called the germs of sections
of J"7 at the point x.

As an example of a sheaf, suppose X is Hausdorff, let x0 e X be any point,
and take J^(U) = {0} if x0 <£ U, J^(U) = M if x0 e U (M any A-module),
with pvv = 0 if x0 i U, puv = IdM if x0 e U. Then ,F{x) = {0} if x # x0, and
J^Xq) = M ("skyscraper sheaf"),

The second item in Leray's procedure was the definition, for any sheaf .F
on X, of groups H"(X; J^) for all integers n "5 0, called the cohomology groups
ofX with coefficients in fF. The modern conception of these groups subsumes
them under the general idea of "derived functors". If a functor T: 5AA(X) -> Ab
transforms monomorphisms into injective homomorphisms (but does not
necessarily transform epimorphisms into surjective homomorphisms), a
canonical process assigns to T a sequence of derived functors

R"T. ShA(X) -> Ab

which may be considered as characterizing the "failure of exactness" of T: if
0 -> J^' -> .F -> .F" -> 0 is an exact sequence, there corresponds to it a long
exact sequence

0 -> T(#"') -> T(#") -> T(.jF") -> R^JF') -*• RXT(J^) -> R'T^")

->R2T(J"r')->R2T(J^)->-­

Writer^) = J^(X), the group ofsectionsof J^otwX; this defines a functor
r with values in Ab, and the groups H"(X; !f) are the values at SF of the derived
functors

R"T:ShA(X)->Ab.

When X is compact, connected, and locally connected, if i? is the constant
sheaf with stalks equal to the ring A, the group H"(X; y) is naturally
isomorphic to the Alexander-Spanier cohomology group H"(X; A).

The third and most remarkable part of Leray's theory attacked the following
general problem: given two spaces X, Y and a continuous map/: X -> Y, what
are the relations between the cohomology groups of X, of Y, and of the "fibers"
f1(y) for y e Y? When X and Y are locally compact and / is proper, for
any integer q, there is a sheaf J^q(f) on Y whose stalk at each y e Y is
H"(/~'(>');^)- Hence for any p^O one may consider the cohomology group

H"(Y; #■«(/)). (23)
When X is a product Y x Z and / the first projection, H"(X; A) is the direct

sum of the groups (23) for p + q = n when A is a field, by Kiinneth's formula.
In the general case Leray invented a kind of "algebraic approximation", now
called a spectral sequence, of which (23) is the first term; in the best cases the
process gives valuable information on the quotients of a filtration of the group
HP+*(X; A). This device has become one of the most useful tools in applications
of homological algebra to all branches of mathematics, from logic to operator
algebras.
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XV) Using sheaf cohomology and an algebraic "dualizing" process, A.
Borel and J. Moore have defined a homology theory for locally compact
spaces such that the sequence (7) is exact for any closed subset Y of such a
space X (whereas it is not in general for Cech homology) and the other
Eilenberg-Steenrod axioms are also verified.



Chapter I

The Work of Poincaré

§1. Introduction

Concepts and results belonging to algebraic and differential topology may
already be noted in the eighteenth and nineteenth centuries, but cannot be
said to constitute a mathematical discipline in the usual sense. Before Poincaré
we should therefore only speak of the prehistory of algebraic topology; that
period has been described in detail in the recent book by J.C. Pont [373], to
which we shall refer when necessary.

It is quite difficult for us to understand the point of view of the
mathematicians who undertook to tackle topological problems in the second half
of the nineteenth century: When dealing with curves, surfaces, and, later,
manifolds of arbitrary dimension, with their intersections or their existence
when submitted to various conditions, etc., they relied exclusively on
"intuition," and thus followed—with a vengeance—in the footsteps of Riemann,
behaving exactly as the analysts of the eighteenth or early nineteenth century
in dealing with questions of convergence or continuity! It is certainly incorrect
to attribute this attitude (as many authors do) to an unending evolution of
a general concept of "rigor" in mathematical arguments, which would be
doomed to perpetual change; what history shows us is a sectorial evolution
of "rigor." Having come long before "abstract" algebra, the proofs in algebra
or number theory have never been challenged; around 1880 the canon of
"Weierstrassian rigor" in classical analysis gained wide acceptance among
analysts, and has never been modified. Furthermore, even in manifolds of
dimension 2, where the word "intuition" might have had some justification,
inaccuracies and inconclusive arguments were pointed out as early as 1873
([373], pp. 82-83*) in the topological papers of Riemann and Betti.

One is tempted to attribute this schizophrenia of the mathematical
community to the compartmentalization still prevalent at the end of the nineteenth

* Beware that the words linearmente connesso of Betti, which mean "arcwise
connected," are wrongly translated "simply connected" by Pont.

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-42,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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century, the various mathematical theories having a tendency !o ignore each
other; however, oven u universal mathematician like Hubert was still
occasionally guilty of "intuitive" arguments of a kind that he would indignantly
have rejected if they had concerned the convergence of a series t[22.<], vol. li.
p, 327 328); and we shall see that in his topological papers Poincaré himself
appeared as one of the worst offenders, ft was only after 1910 that uniform
standards of what constitutes a correct pxoof became universally accepted
in topology, with Brouwer's work on sirr.pi.eiai approximation ! [H'-Sj, pp. 420
552} and WcyTs treatment of the theory of Ricniann surfaces [483]; again, this
standard has remained unchanged v\cr since.*

Of course, before F rechet (1906} and Hausdorff {1914. the general notion
of topological space had not been defined; what had become familiär after the
work of Weiet.strass and Cantor were the elementary topological notion.»
(open sets, closed sets, neighborhoods, continuous mappings, etc.) in the
spaces R" and their sub-spaces; these notions had been extended by Kieiiia....
(in an "'intuitive''' way and without any precise definition) to "n-dimensionai
manifolds" (or rather what we now would call (.""-manifolds with r ;> 1 ).

We shall have plenty of opportunity to stress the importance, in algebraic
topology, of various constructions of new spaces from gi\en ones. Surprisingly
enough, the simplest of all, the cartesian product of two or more arbitrary
spaces, does not seem to ha\c been considered before 1908 i'456]. The general
notion of quotient *puce appeared even later (Fart 2, chap. V). but a special
case was used (without any precise definition) as early as ihe 1870s: the "gluing
together" of spaces along homeomorphic subspaces. Klein I[273]. \ol. 3.
pp. 36- 43) and Poincaré obtained a compact surface by gluing together
isometric edges of a "fuchsian" curvilinear polygon, and a little later von Dyck
extended thai method to define examples of higher-dimensional manifolds:
projective space P„(Ri. for example, by identification of symmetric points (with
respect to the origin) of the sphere S;, ([147 j. pp. 278 279 and 284).

Function spaces did not appear before 1906/

§2. Poincaré's First Paper: Analysis Situs

Toutes les voie-, diverses où je m'étais cügawe successivement mo comlui'.aÎL-nt à
Y Anal) vi.s Situs. J'avilis besoin des données de cette Science pour poursuivre mes etudes
sur les courbes définies par les equations diffc.cnticllcs et pour les étend,e »u\
équations différentielles d'ordre supà.ieur, ct. er, particulier... celle* du problème des trois
corps. J'en .nais besoin pour réunie des fonctions non uniforme* de deux vatîables.
.Ven avais besoin pour l'élude de> iniêurales tmillipics et pour '"application de cette

* The same situation was repeated in algebraic geometry, where until around 1950 a
large part of the arguments were based on "intuition.*"
+ The "continuity methods" used by Klein and Poincaré in their work on the uni«
formization problem may be regarded as forerunners of the concept of a function as
a "point" in some set, of which traces are even to be found in Riemarra,
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étude au développement de la fonction perturbatrice. Enfin j'entrevoyais dans
['Analysis Situs un moyen d'aborder un problème important de théorie des groupes, la
recherche des groupes discrets ou des groupes finis contenus dans un groupe continu
donné ([364], p. 101).

This is how Poincaré motivated his determination to investigate the basic
concepts of algebraic topology, which he called Analysis Situs; his first results
were announced in a Comptes-Rendus Note of 1892 ([369], pp. 189-192) and
developed in a long paper entitled Analysis Situs published in 1895 ([369],
pp. 193-288); between 1899 and 1905 he returned to the theory in five papers,
which he called Compléments à VAnalysis Situs. As in so many of his papers,
he gave free rein to his imaginative powers and his extraordinary "intuition,"
which only very seldom led him astray; in almost every section is an original
idea. But we should not look for precise definitions, and it is often necessary
to guess what he had in mind by interpreting the context. For many results,
he simply gave no proof at all, and when he endeavored to write down a proof
hardly a single argument does not raise doubts. The paper is really a blueprint
for future developments of entirely new ideas, each of which demanded the
creation of a new technique to put it on a sound basis. We shall devote this
chapter to a detailed examination of Analysis Situs and of the first two
Compléments.

Poincaré's starting point was the same as those of his predecessors (he
quoted Riemann, Betti, and von Dyck), and his "intuitive" style is very similar
to theirs; but immediately novelties appeared that gave rise to algebraic
topology as we understand it.

The first and most important one was that, whereas mathematicians before
him tried to attach numbers invariant under homeomorphism to spaces,
Poincaré was the first who introduced the idea of computing with topological
objects, not only with numbers. He did this in two different ways, by defining
the concepts of homology and of fundamental group; in this chapter we shall
concentrate on the first one, postponing to Part 3, chap. I, the theory of the
fundamental group, the first step in the homotopy theory of today.

In the first three sections of Analysis Situs, Poincaré began, reasonably
enough, by trying to define the spaces he considered. They must be subspaces
of some RN, and are what we now call connected C1 differential manifolds.
However, most of the examples introduced later in the paper were obtained by
the "gluing" process, which we mentioned in § 1, and Poincaré never bothered
to show that they satisfied the preceding definition! Among the C1 manifolds
he considered he concentrated on the compact ones without boundary (those
he called closed (p. 198)), or the ones that are open in a C1 submanifold W of
some RN, of dimension N — p, defined by p global equations

Fl=F2 = ----Fp = 0 (1)
between the N coordinates, the Fj- (1 ^ j =* p) being defined in a neighborhood
of W in RN, and having in that neighborhood a jacobian matrix of rank p
everywhere. He specified that an open set V in W of the kind he considered
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should be defined by adjoining to the equations (1) a finite set of inequalities
<pa > 0, where the <pa are C1 functions defined in a neighborhood of W. We
now know that any open subset V of W may be defined in that way; the context
shows that Poincaré had a very special kind of open set in mind: he wanted
the frontier of V in the space W to be defined as the union of a finite number
of submanifolds va of dimension ^N — p — 1, each of which is the set of
points satisfying equations (1) plus one equation % = 0, as well as the
remaining inequalities <pY > 0 for y # a. Furthermore, he tacitly assumed that
when v„ has dimension N — p — 1, every point of va is both in the closure of
V and of the open subset U„ of W defined by replacing (p„ > 0 by % < 0 in
the definition of V, and Ua is assumed to be nonempty. This seems to be the
meaning of his claim that the union of the vx is the "complete boundary" of
Vin W (p. 198).*

An unformulated assumption, common to Poincaré and all his predecessors,
and repeatedly used by everyone, has to do with the idea of deformation, a
notion that is never precisely defined but that probably is our present-day
concept of isotopy; quite often it is asserted that "infinitely near" manifolds
may be "deformed" into each other! It is also tacitly assumed that when a
finite union of submanifolds vx in W constitute the "complete boundary" of
an open set, then, if one "deforms" in W the v„, the union of the "deformed"
submanifolds is again a "complete boundary." f

To arrive at his conception of homology, Poincaré started, as Riemann
and Betti had done, from a system of (q — 1 )-dimensional connected (and
apparently compact) submanifolds vlt ..., vk (without boundary) of a
p-dimensional manifold W, whose union constitutes the "complete boundary"
of a connected q-dimensional submanifold V of W (with q < p), and to express
this fact he elected to write by convention

"i + v2 + • • • + vx ~ 0, (2)
calling this relation a "homology" between the vr However, he immediately
added a completely new and crucial proviso: homologies can be combined
as ordinary equations. The context shows that the operations he meant by
this are addition and subtraction. This implies that he should define linear
relations

klv1+k2v2 + --- + kivx~0 (3)

* Sometimes (p. 198) he disregarded the va of dimension <N — p — 2, and called
"complete boundary" of V the union of the vs of dimension N — p — 1, which is not a
ciosed set in genera!.
+ The closest approximation to a definition of "deformation" is probably the one given
by Picard and Simart ([362], voi. I, p. 28); they considered a family as given above by
a system of equations and inequalities depending on parameters, and assumed that
two such manifoids corresponding to "infiniteiy near" vaiues of the parameters
constitute a "eompiete boundary."
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when the ks are arbitrary (positive or negative) integers.* When all k} are > 0,
Poincaré said (3) means that there exists a q-dimensional set V in W, the
"complete boundary" of which consists in "fct manifolds slightly different from
vt, k2 manifolds slightly different from v2, ■■■■> kA manifolds slightly different
from v" (p. 207). This rather cryptic statement is explained in the exposition
of Poincare's theory given two years later by Picard and Simart ([362], vol.
I, pp. 32-34), with examples illustrating the concept: in (3), each kjVj should
be replaced by the sum of k} distinct manifolds, each one of which is deduced
from Vj by "small deformations."

To allow negative integers as coefficients in (3), Poincaré appealed to the
concept of oriented manifold introduced by Klein for surfaces and generalized
by von Dyck for manifolds of arbitrary dimension.* In Analysis Situs, Poincaré
gave a characterization of orientable manifolds by what is still one of the
modern criteria: there exist charts (Ux, \j/x) such that the transition diffeo­
morphisms i^A(UA n U„) -+ i^„(UA n LLJ have positive determinants for all
pairs of indices such that U^nU^ 0. Unfortunately, the relation between
the orientation of an open set V in a q-dimensional manifold W of the kind
specified above and the orientations of the (q — l)-dimensional manifolds Vj
on its frontier is quite obscure in Analysis Situs. However, the context and the
more detailed explanations Poincaré gave in the first Complément (p. 294)
show that what he had in mind can be expressed in the following way. Let a

* This may weli be the first exampie of a process that has become commonpiace in
modern mathematics: When one wants to study the objects of some set E, one considers
the A-moduie C(E) of formal linear combinations of objects of E with coefficients in a
commutative ring A, and then, using properties of the objects of E, one introduces
submodules (or quotients of submoduies) of C(E); this associates to E aigebraic objects
invariant under automorphisms of E. Before Poincaré the only simiiar construction
of that type was the formation of "divisors" on an algebraic curve by Dedekind and
Weber, aithough they used a multiplicative notation (the submodule consisting here of
"principal divisors"). For algebraic surfaces this was iater replaced by an additive
notation in the Itaiian school. Couid Poincaré have been inspired by that theory? In
Analysis Situs he does not mention algebraic geometry at all, aithough in the third and
fourth Compléments he continued the work of Picard by applying homology theory to
aigebraic surfaces (Part 2, chap. VII, § 1,A).
* Kiein's idea was to take a smali circuit (the "indicatrix") around a point, and to
"orient" it by choosing on it a positive direction. He then conceived this circuit to
be moved around continuously on the connected surface, and he distinguished two
cases, depending on whether when coming back to the initial point the direction along
the circuit is always preserved or may be reversed for some closed paths on the surface
(as in the Möbius band). One may repiace the circuit by an ordered frame of two vectors
in the tangent plane; this is what von Dyck did to extend the notion of "indicatrix" to
«-dimensional manifoids, by considering an ordered frame of n independent tangent
vectors. The word "orientable" only appeared with Tietze [466] and Alexander;
Poincaré used the oider denomination of "one-sided" and "two-sided," aithough Kiein
and von Dyck had pointed out that this is a notion relative to the embedding of the
manifold into a iarger one, not an intrinsic concept: P, (R) is orientable but one-sided
when embedded in P2(R) ([373], p. 124; [421], pp. 272-273).
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q-dimensional submanifold W of R" be defined by n — q equations EjF) = 0
(1 < j ^ n — q), where the rank of the jacobian of the Fj is n — q, and the e;
are + 1; then W is orientable, and the problem is to define for W an orientation:
Poincaré did this by defining an orientation as an ordering of the equations
EjFj = 0, and a choice of signs for the e}; changing one sign or permuting two
equations replaces the orientation by the opposite one.* Then let V be an open
subset of W and let v be a (q — l)-dimensiona! manifold that is a part of the
"complete boundary" of V and that is defined by the equations

et Fi = ■ ■ • = e„_,Fn_<I = <p = 0;

as orientation of v take the one defined by this ordering; Poincaré called the
orientations of V and v directed related (resp. inversely related) if <p > 0 (resp.
<p < 0) in a neighborhood of v in V. Poincaré then made the convention that
when a "homology" (2) is written the orientations of the Vj must be directly
related to the orientation of the submanifold V of which they constitute the
"complete boundary"; if the orientation of Vj is inversely related to that of V,
Vj must be replaced by — v-} in the relation (2). Nothing is said about the
meaning of kjVj in (3) when kj is <0 and different from — 1.

Regarding Poincaré's sweeping assertion that one may "add" homologies,
we should observe that in doing so he entirely glossed over a nontrivial
difficulty: given two q-dimensional manifolds V, V", how does one prove there
exists a q-dimensional manifold having as "complete boundary" the union of
the "complete boundaries" of V and V"? Certainly V u V" will not do in
general, for it will not be a smooth manifold. (The intersection V n V" is not
necessarily empty!) Finally, there is a rule of computation for "homologies"
that is not explicitly stated at first, but that will be used in the examples
(p. 244): for any integer c # 0, the homologies £ } kjVj ~ 0 and £y ckjVj ~ 0 are
considered to be equivalent (see pp. 244-245).

These definitions determine the frame within which Poincaré intended to
develop the ideas introduced by Riemann and Betti. For an n-dimensional
manifold U, he defined the q-dimensional Betti number Pq for 1 < q < n — 1 by
the condition that Pq — 1 is the maximum number of distinct compact
connected q-dimensional submanifolds (without boundary) contained in U and
which are 'independent," i.e., between which there exists no "homology" with
coefficients not all 0.f In Analysis Situs, Poincaré seemed to be convinced that
these numbers are the same as the "orders of connection" defined by Betti; at

* This definition may seem artificiai, but it is in fact ciose to another modern way of
defining an orientation by the choice of a g-form that is everywhere #0: one has oniy
to consider a q-form w such that

w a d(et F,) a ■ ■ • a d(Ë„-HFn^) = dx% a • • ■ a dx„
and take its restriction to W.
f Since Lefschetz's Topology [304], the term "Betti numbers" designates the numbers
P,-l.
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any rate, the first examples (p. 208) coincide with those of Betti (namely, an
open ball, the interior of a torus, and the open set between two concentric
spheres or between two tori having the same axis). Another example is
obtained by considering a ball B: |x| < p in R3, and a finite number of compact
connected disjoint surfaces S^ (1 < j < m) contained in B; the example is the
connected component U of B — (J^S, having as frontier the union of the S,
and the sphere \x\ = p. The Betti numbers of all these examples are written
down with no more proofs than in Betti's paper.

Before turning to different and more interesting examples, Poincaré first
paused (section 7) to generalize, for integrals of differential p-forms (1 ^ p <
n — 1 ) in a n-dimensional manifold, the relations established by Riemann for
n = 2, and then by Betti for arbitrary n, between the Betti numbers (for
dimensions 1 and n — 1 only) and the periods of the integrals of 1 -forms and
(n — l)-forms. Referring to a previous paper of his on double integrals ([367],
pp. 440-489), he considered what we now call closedp-forms<y (i.e., those for
which dm = 0); he did not introduce the exterior derivative but said that these
forms are characterized by "integrability conditions." The periods of such a
form are the values of its integral along compact p-dimensional submanifolds
without boundary, and Poincaré stated without proof that they are linear
combinations with rational coefficients of P, — 1 periods; this of course
immediately follows from the Stokes formula, which, surprisingly, is not
mentioned explicitly.* Of course we now see this as the first step toward the De
Rham theorems (chap. Ill, § 3), but until Cartan's revival of these results,
nobody seemed to have thought of them.

In section 9 Poincaré endeavored to prove his central result on
homology, the famous duality theorem for compact, connected, and orientable n­
dimensional manifolds without boundary, which he formulated as Pp = P„__p
for 1 < p ^ n — l.f Again an important new concept emerged, which only
came to full fruition with the work of Lefschetz [300] and of De Rham [389].
Inspired by the results of Kronecker on the number of solutions of a system
of equations [288], which he had used himself repeatedly in previous papers
(see, for instance, [368], pp. 303-304), Poincaré defined, for two oriented
submanifolds Vx, V2 of complementary dimensions p and n — p in an n­
dimensional manifold U, and for a common point M where Vt and V2
intersect transversely} an intersection number S(M) equal to ± lß Then, sup­

* The formula is written down in [370], vol. 3, p. 10. The first mathematician to have
written down Stokes' formula for an arbitrary dimension was probably V. Volterra
(Opere mat., vol. I, p. 407).
* Poincaré said the formula was known and used by some mathematicians whom he
did not name.
' This means that the tangent spaces of Vt and V2 at the point M intersect in the single
point M.
s If z (resp. Zj, z2) is a positive n-vector [resp. a positive p-vector, a positive (n — p)­
vector] in the tangent space of V (resp. V,, V2). one has z, a z2 = c-z for a number
c # 0, and S(M) is the sign ±1 of c.
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posing that Wt and V2 intersect in a finite number of points M; (1 s$ i ^ m)
and that they intersect transversely at each M;, he put N(V,, V2) = £;S(M;).
He then wanted to show that a "homology" (2) between q-dimensional
oriented compact connected submanifolds (without boundary) of an n­
dimensional manifold U is equivalent to the fact that ^ N(V, Vj) — 0 for any
oriented (n — q)-dimensional submanifold V of U intersecting transversely
each Vj in a finite number of points. That theorem easily yields the inequality
P, < PB_, between Betti numbers of U and, by exchanging q and n — q, the
duality theorem.

The proof given by Poincaré (probably inspired by Kronecker [288]) for
q = n = 1 seems correct, at least when the Vj are distinct. (The general case is
not considered.) But his attempt to prove the result for q < n — 1 is totally
unconvincing: it consists in assuming (of course without any justification) that
there is a smooth (q + l)-dimensional submanifold W c U containing all the
v/$, considering the 1-dimensional intersection V' = VnW, and applying the
result obtained for q = n — 1 to that curve. Even granted the existence of W,
one would still [as Heegaard will observe later (§ 3)] have to prove that each
curve V e W has the form V n W for an (n — q)-dimensional submanifold V.

At the end of section 9 Poincaré considered the case n = 4k + 2 and the
number N(Vl5V2) for two oriented (2k + l)-dimensional submanifolds, that
only depends on their homology classes. He claimed (without any proof) that
it is possible to define N(Vls V2) for any pair of oriented compact connected
manifolds of complementary dimensions by "deforming" them into manifolds
for which the conditions of intersection are those described above (the "general
position" argument*); the fact that the dimensions of Vj and V2 are odd
numbers then implies that N(V2,Vi) = -NCV^Vj), and in particular N(V, V) =
0 for all (2k + l)-dimensional submanifolds V. Considering the determinant
det(N(Vi5 V,)) for a maximal system of "independent" (2k + l)-dimensional
submanifolds of U then gave him the result that the Betti number P2it+1 of U
is odd.

In section 10 of Analysis Situs Poincaré introduced a series of very interesting
examples of three-dimensional orientable compact connected manifolds, and
then devoted several of the next sections to the computation of their Betti
numbers. These spaces are obtained by a generalization to three dimensions
of the process Klein ([273], vol. 3, pp. 36-43) and Poincaré himself ([366],
p. 148) had used to construct surfaces by gluing together edges of a curvilinear
polygon. This time Poincaré started from a compact convex polyhedron K
and took its quotient by an equivalence relation R. One of his examples is the
projective space P3(R), obtained (without giving it its name) by identifying
symmetric points ±z of the boundary of a regular octahedron of center O (a

* This had been used by algebraic geometers for many years; the idea is that when the
manifolds depend on parameters, they will intersect transversely except for values of
the parameters that form a rare set in parameter space. (For a modern version of that
idea, see Part 3, chap. VII, § 1,A.)
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construction equivalent to the one given by von Dyck [147]). All the other
examples are obtained by taking for K the cube

0^x,y,z^\,
and the general description of the relation R may be given in the following
way: (1) R is a closed relation; (2) no two points in the interior* of an edge
(resp. of a face, resp. of K) are equivalent under R; (3) R identifies each closed
face (resp. each edge, each vertex) with at least another face (resp. edge, resp.
vertex) and the identification of two faces (resp. edges) is given by an affine
transformation. (The simplest of these examples is the one where the
identifications are given by xt-*x + l, y*-*y + I, zt-+z + I, and then K/R is the torus
T3.) However, Poincaré wanted K/R to be a manifold, and he showed that for
that R must satisfy a necessary condition obtained by considering in K/R a
small sphere S with center at a point A0, which is the image of a vertex A of
K; the inverse image of S in K is then a union of intersections of K with small
spheres having as centers the vertices of K equivalent to A under R. These
intersections are spherical triangles, and the union of their images in K/R
should be the whole sphere S. In other words, these images should be the faces
of a spherical polyhedron, and hence satisfy the Euler relationv-e+f=2, (4)
where v is the number of vertices, e is the number of edges, and / is the number
of faces. But these numbers are easy to evaluate: / is the number of vertices
of K equivalent to A, v the number of equivalence classes of half edges of K
whose extremities are the vertices equivalent to A, and finally e is the number
of equivalence classes of quarter faces of K adjacent to a vertex equivalent to
A. The relation (4) therefore imposes conditions on the relation R that are not
always verified, as is shown by one of Poincaré's examples.

Section 11 is devoted to another type of manifold, also inspired by the
theory of fuchsian groups, namely, the space of orbits X = RJ/G, where G is
a "properly discontinuous" group of diffeomorphisms of R3 (see Part 3,
chap. I, § 1). Poincaré limited himself to the case in which G is generated by
three transformations:

(x,y,z)i->(x + l,y,z), (x,y,z)t-+(x,y + \,z),

{x,y,z)t-*(ax + ßy,yx + öy, z + 1 ),

where a, ß, y, ô are integers such that <xô — ßy = 1; the cube K is then the
closure of a "fundamental domain" for G. (Two of the previous examples turn
out to be special cases of this one.)

It is quite remarkable that this example seems to have inspired the general
definition of the fundamental group %x (X) of a manifold, which follows in

* The interior is taken with respect to the affine linear variety generated by the edge
(resp. a face).
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section 12 and which we will describe in more detail in Part 3, chap. I, § 1. For
X = R3/G the group n^X) is naturally isomorphic to G, since R3 is simply
connected. Bent upon the computation of the Betti numbers Pt = P2 in his
examples, Poincaré singled out the fact that when, in a fundamental group
3ti(X), there is a relation

sf's!2 • • • s%" = Id (<Xj positive or negative integers) (5)

between classes Sj of closed curves C, (1 < j < m) with a common point, it
gives rise to a "homology"

«iC» +a2C2 + ---+a,„Cm~0 (6)
between the C,-. (he assumed without proof that a curve which can be
"deformed" to a point bounds a smooth surface.) He also assumed without proof
that all homologies between curves in X are linear combinations of those
obtained in that manner for all relations (5) in Jij(X).

The determination of the Betti numbers of Poincaré's examples then
proceeds as follows. In all these examples opposite faces of the cube K are
identified by R; Poincaré stated (without proof) that a system of three
generators of the (noncommutative) group n^X) is obtained by considering for each
pair of opposite faces F, F' an arc joining a point of F to the point of F' with
which it is identified; it becomes a closed curve in X, and Poincaré claimed
that the classes in tt^X) of these three curves are the generators of n^X),
provided the three arcs have a common point O inside K. To obtain the
relations among these generators, he "deformed" the arcs in such a way that
if Fj and F2 are two faces of K having a common edge E, the arcs joining O
to points of Ft and F2 coincide and have a point of E as their extremity
(different from a vertex). Each equivalence class of edges of K then yields
a relation, and from these relations Poincaré deduced the corresponding
"homologies" and finally the value of Pi. Then, in section 14, concentrating
on his last type of examples, he launched a long discussion to show it is possible
to choose an infinity of matrices (" f ) with integral entries and determinant
1 for which the corresponding groups G are nonisomorphic. As the Betti
number Pt is always ^4, he concluded that there are infinitely many three­
dimensional manifolds with the same Betti numbers, no two of which are
horn eom orphie.

This led him to raise two interesting questions: (1) Are there two non­
homeomorphic manifolds having the same Betti numbers and the same
fundamental group (cf. [421], p. 279) and (2) given an arbitrary group G, does there
exist a manifold for which G is the fundamental group (cf. [421], p. 180 and
Part3,chap.II,§6,FJ7

In section 15, Poincaré introduced two more examples. The first example
is another way of considering the sphere S2 as a two-sheeted covering space
of the projective plane P2(R), by using the Veronese mapping of S2 into R6:

(x, y, z) (-» (x2, y2, z2, xy, yz, zx).
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The second example is much more interesting, being the only example in
Analysis Situs of the determination of the Betti numbers for a manifold (other
than spheres) of arbitrary even dimension. Poincaré considered the product
W = S,-! x S,-! with q 3? 2 and the map

n: (y,r)H-»((yI. + z^^,, {yfr)^^, (>',-zk + |tZi)Kys,)
of W into R" with n = q(q + 3)/2. If H is the diagonal y = z in W and
V = tt(W — H), then W — H is a two-sheeted covering space of the (2q — 2)­
dimensional manifold V; 7r(W) = V is its closure in R", and V — V = n(U) is
diffeomorphic to S,j_,. Poincaré showed that V is orientable when q is odd
and nonorientable when q is even. The Betti numbers of W can immediately
be obtained from the Runneth theorem (chap. II, §5), but this was not
available to Poincaré. He therefore used an ad hoc method introducing the
two "axes" in the product, U, = S,_j x {Q0}, U2 = {Q0} x S,_j, where Q0
is a point of S,_t; W - (UjuU?) = (S,_, - {Q0}) x (Sr.t - {Q0}) is then
diffeomorphic to R2* 2. By "intuitive" deformation arguments Poincaré arrived
at the conclusion that any compact submanifold v of W of dimension h<q—\
may be "deformed" into a submanifold contained in W — {\3l u U2), hence
v ~ 0, which shows that Ph = 1 and, by duality, PA = 1 for h > q — 1; if v has
dimension q — 1, more refined arguments give c-mU, + wU2 for suitable
integers m, n. Finally, to show that Uj and U2 are homologically
"independent," hence that P,_t = 3, he used the following very ingenious argument:
let a be the closed (q — l)-form on S,_j, invariant by rotation and such that
js _,c — 1» and let a1,a2 be the pullbacks of a on Uj and U2; if A is an irrational
number, <<j, + ka1,m\3l + wU2> =£ 0 for any pair of integers m, n not both 0.

Then follows an obscure and totally unconvincing argument (pp. 268-269)
leading to the conclusion that for V the Betti number P^_t = 2. (An equally
obscure passage on pp. 262-263 could be interpreted as meaning that when
one deletes from a p-dimensional manifold a q-dimensional submanifold with
q ^ p — 2, the Betti numbers do not change!) Finally it transpires that the
purpose of this long discussion was to obtain counterexamples to the result
on Pn/2 mentioned in section 9 for orientable compact connected manifolds of
dimension 4k + 2, since V is orientable and of dimension 4k, or nonorientable
and of dimension 4/c + 2.

In the last three sections of Analysis Situs (16-18), Poincaré turned to a new
problem with far reaching consequences for his initial outlook in the first and
second Compléments (§3). Ever since Schläfli ([413] and [373], pp. 29-31)
posed the problem, several mathematicians tried to extend to n dimensions
the Euler formula (4), limiting themselves most of the time to a convex
polyhedron (see the bibliography in [138]). What replaced the left-hand side
of (4) was the alternating sum

a„_j - a„_2 + a,,_3 -■■■+(- ly-1«,,, (7)
where a,- is the number of j-dimensional faces of the polyhedron. On the other
hand, the Euler formula (4) itself had given rise to many uncertainties and
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errors when mathematicians tried, since the beginning of the nineteenth
century, to extend it to nonconvex polyhedra.* The general formula had
finally been given by Jordan [268] in the form»-e + /=3-P, (8)
when the surface of the polyhedron is a manifold having Pt as "Betti number"
in Poincare's notation. At the end of Analysis Situs, Poincaré undertook to
prove the corresponding formula giving the value of (7) in R" for an arbitrary
n; going even beyond that goal, he observed that the theorem is a purely
topological one and should therefore be formulated in an arbitrary n­
dimensional manifold.

He thus had first to define what is meant by a finite (curvilinear) p-dimen­
sional polyhedron V. His definition is essentially (with some imprecision) the
modern one: V is a compact, connected p-dimensional manifold contained in
an «-dimensional manifold W; V is the disjoint union of a finite family T of
"cells"* of various dimensions ^"p; each j-dimensional cell C is an open subset
of a j-dimensional submanifold U of W, such that there exists a homeomor­
phism (in fact a Cl-diffeomorphism* in Poincare's paper) of an open
neighborhood in U of the closure C of C in U, onto an open subset of R\ mapping C
on a closed ball, and C on its interior; the frontier C — C of C in U must be
a union of fc-cells of the family T, with k ^ j — 1. Using a word later introduced
by Weyl ([483], p. 21) we shall say that the family T is a triangulation of the
manifold V. Poincaré observed that any (p — 1 )-cell of T is on the boundary
of exactly two p-cells of T. Calling Xj the number of j-cells in T, he wanted to
prove that the alternating sum

«, - «,,_! + «,_2 +(-lY<*o (9)
depends only on V, and not on the particular triangulation T.

Poincaré made three attempts to give such a proof. The first two rely on
the same "natural" idea: if T and T' are two triangulations of V, the family T"
of intersections of a cell of T and a cell of T' should be a triangulation of V,
and it would be enough to show that passing from T" to T (or T') does not
change the number (9). However, after sketching a method to yield that result
by successive steps leading from T" to T (or T') by a sequence of intermediate
triangulations, he realized that the intersection of a cell of T and a cell of T'
may have components that are not simply connected (for instance, the
intersection of two open caps covering S2).

* See M.B. Brückner, Vielecke und Vielfläche, Leipzig, Teubner, 1900. pp. 58-66.
t It seems that the nearest approximation to this notion (for p "S 3) before Poincaré
was von Dyck's idea of building up a space by successive adjunction or deletion of
cells ([373], pp. 147-148); but he does not seem to have thought of a general definition
of curvilinear polyhedron.
* In applications, Poincaré often met homeomorphisms that were only piecewise C1.
so that he should have allowed this possibility in his definition of cells.
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To avoid this obstacle, and assuming that V is contained in some RN, he
tried in the second "proof to compare T with a triangulation T' of a special
type, consisting of the intersections of V with the "triangulation" of RN whose
N-cells are the connected components of the complement of the union of the
hyperplanes x} = kö (1 < j < N, — oo < k < + oo) with small enough 3. This
is also doomed to fail, for an intersection of a C'-manifold with a linear variety
is susceptible of the weirdest pathology, as we mentioned earlier; Poincaré was
probably not aware of it. Even if all cells of T are analytic manifolds* their
intersections with linear varieties may fail to be smooth, and that fact could
not have escaped Poincaré. Nevertheless, if this difficulty is ignoredf (for
instance, if the cells of T are rectilinear convex polyhedra in the usual sense),
Poincaré's argument is remarkable: the fact that the "mesh" S is arbitrarily
small allowed him to assume that the points of the cells of T that are interior
to a p-cell of T' belong to the "star" of a single q-cell vq of T [a notion which
he had introduced earlier (p. 276) under the name of "aster"]. He was then
able to use induction on p; if ^ is the number of j-cells of T that are in the star
of vq (q < j < p), by intersecting that star with a small sphere with center
belonging to vq, by induction he obtained the relation

("2 if p — q is even
j^O if p — q is odd

% ~ V» + Tp-2 - • • ■ +7,4-1 = \n :e _ ,. :„ _AA 0°)

and from that he was able to deduce the equality of the numbers (9) for T and
T'. One cannot fail to see in this kind of argument a forerunner of the method
based on "sufficiently fine subdivisions" of cells, which was later at the root
of the correct proofs of Brouwer and Alexander (chap. II and Part 2, chap. I).

In the third "proof Poincaré aimed not only at proving the independence
of (9) from the triangulation, but also at giving its value in terms of the Betti
numbers, i.e., the "Euler- Poincaré characteristic"

3- Pj + P2 -■••+ Pp_, for even p
Pp~i - Pp-2 + — + P2 - Pi for odd p.

Actually he only considered the cases p = 2 and p = 3. For p — 2, his idea
is clear enough: he wanted to show that every 1-cycle is homologous to a
1-cycle consisting only of edges of the polygons of the triangulation, which
gave him a2 + Pj — 1 1-cycles, between which (by a very obscure argument)
he claimed there is only one "homology," so that, in our language, the space
of 1 -cycles has dimension <x2 + Pl — 2; linear algebra then shows this implies

* Poincaré takes for granted that any compact manifold may be submitted to an
arbitrarily small "deformation" transforming it into an analytic one (p. 200). In the
remainder of Analysis Situs and in the Compléments, it is never stated explicitly if the
manifolds are analytic, and often he submits them to "deformations" that obviously
cannot be analytic (e.g., p. 311).
t On p. 311, Poincaré brushed aside similar objections by an argument of "general
position."
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that the space of O-boundaries has dimension ax — (<x2 + Px — 2). But since V
is connected, any two vertices of the triangulation may be joined by a path
consisting of edges of the triangulation and O-boundaries form a space of
dimension a0 — 1, hence

«0 - 1 = «i - («2 + Pt - 2), (12)
which is Jordan's formula (8). Of course Poincaré did not use our algebraic
language, but it may be said that his argument has a "cohomologicar flavor.
Indeed, he considered what we now call "0-cochains," of the triangulation T,
functions q> assigning an arbitrary real number to each vertex, and to each
oriented edge of T he assigned the difference <p(a) — <p(b) of the values of <p at
the origin a and at the extremity b of the edge. This gave him a system of
generators of what we now call the "1-coboundaries," and for him the two
sides of (12) are just two different evaluations of the number of linearly
independent "1-coboundaries."

When Poincaré tried to apply similar methods to the case n = 3, he met
difficulties for 1-coboundaries, for he wanted to prove that when a 1-cycle K
bounds a surface R it also bounds a surface R" that is the union of some of
the 2-cells of T. To try to prove this he "decomposed" R into the union of its
intersections with the 3-cells of T, and therefore had to cope again with the
inextricable pathologies of the intersections of C°°-manifolds. Things are much
worse for 2-boundaries, and all his assertions regarding them are in fact
unsupported by any proof.

Thus ends this fascinating and exasperating paper, which, in spite of its
shortcomings, contains the germs of most of the developments of homology
during the next 30 years.

§ 3. Heegaard's Criticisms and Poincaré's First Two
Compléments à VAnalysis Situs

If we disregard the Picard-Simart chapter of 1897, which is a mere
commentary on Poincaré's Analysis Situs ([362], vol. I), the first paper to appear
on algebraic topology after Poincaré's was the dissertation of the Danish
mathematician Heegaard (1871-1948) published in 1898 (and translated into
French in 1918 [221]). Heegaard was interested in the topology of complex
algebraic surfaces and reduced its study to that of suitably constructed three­
dimensional manifolds. His arguments were just as "intuitive" as those of his
contemporaries, but this did not prevent him from noting obscurities or flaws
in Poincaré's paper. In the definition of a "homology"

vi + vz + "" + vx ~ 0

between distinct compact connected manifolds, he questioned the possibility
that the Vj have nonempty intersections ([221], p. 214). But what brought his
paper to Poincaré's attention was an example of a three-dimensional orienta­
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ble manifold* for which Heegaard claimed the Betti numbers were P, = 2,
P2 = 1, in contradiction with the duality theorem. When he examined that
example, Poincaré realized that, contrary to what he probably had believed
in Analysis Situs, his definition of "Betti numbers" did not coincide with the
Riemann-Betti "orders of connection" (which Heegaard took as definition of
his "Betti numbers"): the qth "order of connection" is the largest number of
distinct q-dimensional compact connected manifolds vj (1 < j ^ k) such that
their union is not the boundary of a (q + l)-dimensional manifold, but this
does not preclude the existence of integers mi (1 < / < 1) not all equal to ± 1
and for which the "manifold" Wjt?j + Wjt^2 + ■■■ + m^v^ (in the sense of
Poincaré) is a boundary. The simplest case takes place in projective space
P3(R), where the projective line PX(R) is not a boundary, but 2Pt(R) bounds
an open set homeomorphic to R2.

Poincaré had to admit that his first attempt to prove the duality theorem
was completely unsatisfactory, since it seemed to apply to the "orders of
connection" as well! It is quite likely that he realized that his arguments were
beyond repair, but he rose to the challenge and discovered that the techniques
he had used to prove the generalized Euler formula in Analysis Situs could
lead to a completely new conception of homology; he developed it in the first
two Compléments published in 1899 and 1900 ([369], pp. 290-370), and it
became the backbone of "combinatorial topology" ever after.

The numbers attached to a manifold V by Riemann, Betti, and Poincaré
himself in Analysis Situs were obviously invariant under any C!-diffeomorphism.
What Poincaré did in the first Complément was to assume that there existed
a triangulation of the manifold V and to attach numbers to that,
triangulation. Of course, this immediately raised three questions: (1) Is it possible to
define a triangulation on a compact connected C^manifold?* (2) Are the
numbers defined by Poincaré (which he calls thé "reduced Betti numbers" of
the triangulation) independent of the chosen triangulation? (3) If so, are they
equal to the "Betti numbers" as defined in Analysis Situs! We shall see that
Poincaré's attempts to give positive answers to these questions could not
succeed, and they were only settled much later.

After describing Heegaard's criticisms in the introductory section I of the
first Complément, Poincaré began, in section II, by making precise the relations
(which we have described in §2, and which he had left implicit in Analysis
Situs) between the orientations of an open subset V of an «-dimensional
manifold W and those of the (n — l)-dimensional manifolds vx of its frontier.
Then, assuming that a triangulation T of a compact connected manifold V
has been given and that orientations have been chosen for each cell of T, he
defined for each pair consisting of a q-cell a? and a {q — l)-cell af'1 of T a

* The intersection of the cone z2 = xy in C3 with the cylinder |x|2 -I- \y\2 = 1.
f Of course, the existence of such a triangulation is obvious on "elementary" manifolds
such as S„, T", or P„(R).
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number eg equal to 0 if af~l is not contained in the frontier of a? and to + 1
(resp. — 1) if af~l is contained in the frontier of af and the orientations of af
and of af~l are directly (resp. inversely) related.

Keeping the terminology introduced in Analysis Situs, Poincaré called a
linear combination of q-cells Eâjo? (i)

ï

with integer coefficients k{ a "manifold" and the linear combinationZ War1 (2)
the "set of manifolds" constituting its "complete boundary." In fact, once the
£fj have been fixed, the handling of these putative "manifolds" by Poincaré
was usually purely algebraic. After Poincaré the linear combinations (1) were
considered "formal combinations," and more aptly called chains* The boundary
of the chain (1) is then the chain (2) and should not be confused with a subset
of V. From now on we shall use this terminology for more clarity and use the
word frontier of a subset A <= V and the notation Fr(A) for the set of points
of V that are both in the closure of A in V and in the closure of the complement
V — A. The big step forward in that shift of emphasis is that it will give a
regular procedure for the computation of the "reduced Betti numbers" of a
triangulation, whereas in Analysis Situs (and earlier in Betti's paper) the Betti
numbers were obtained by unsupported guesswork.

First Poincaré showed that the boundary of the boundary of a chain is 0.
Then, mimicking the definitions of Analysis Situs, he called the chain Z^-af
closed (our cycles) if its boundary is 0, and wrote a "homology"£â,o7~0 (3)

i

if the chain Zi-l.af IS the boundary of a (q + l)-chain. What he called (section
III) the "reduced Betti number" P'q is the largest number such that there exists
P^ — 1 closed chains which are not linked by a homology with coefficients not
all 0. He wrote aq the number of q-cells of T, and introduced two numbers a'q
and a'q: in our language aq — a"q and <xq — tx'q are, respectively, the dimensions
(over the rational field Q) of the vector space of closed q-chains and of the
vector space of boundaries of (q + l)-chains; hence, P'q — 1 = <x'q — a, and
a'q = a,_j — a',-l (the space of boundaries of q-chains is isomorphic to a
supplementary of the subspace of closed q-chains).* From these relations an
"Euler-Poincaré" relation follows at once:

a„ - an_x + ••• + (-1)"«0 = 1 - (!»;_! - 1) + - + (-l)"(Pi - 1) + (- 1)".
(4)

* That terminology is due to Alexander.
* Lacking a convenient algebraic language, Poincaré's definitions are extremely clumsy;
for instance, he says that a.'v is "the number of cells which remain distinct, when cells
linked by homologies are not considered as distinct"!
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Poincaré's main goal in the first Complément was to give a new proof of
the duality theorem; but before we examine the fundamental techniques he
invented for that purpose, we shall briefly review his unsuccessful efforts to
answer the three questions previously mentioned. In sections IV-VI, he
wanted to prove that his "reduced Betti numbers" are the same as the "Betti
numbers" he had defined in Analysis Situs. To this end he had to prove that
(A) any compact connected q-manifold v in V is homologous to a q-chain of
T (in the sense of Analysis Situs) and (B) there are no "homologies" between
q-chains of T that are not linear combinations of the ot£ "homologies" defined
in section III.

His argument for statement A is given in three enigmatic lines at the end
of section V (p. 309); it seems to be based (without being explicitly stated) on
what he had done in section 18 of Analysis Situs, decomposing the manifold
t;into a union of its intersections with the cells of a "sufficiently fine"
triangulation T' and replacing each of these intersections by a homologous chain on
the boundary of the cell; as usual, this founders on the pathology of
intersections of manifolds.

The necessity of passing from a triangulation T to a finer one T' by suitable
subdivisions of the cells of T compelled Poincaré to prove that this operation
does not change the "reduced Betti numbers," and this is what he did (this
time very carefully) in sections IV and V. The passage from T to T is not at
first described very clearly, but the fundamental property which emerges is
that every q-cell of T' is a cell of a triangulation of an h-cell of T, for a smallest
dimension h > q, and that this h-cell is uniquely determined. Using this fact,
and the fact that the frontier of a q-cell is homeomorphic to Ss_,, Poincaré
first showed that in a "homology" between q-cells of T' those for which h > q
may be disregarded and then that the "homology" between the remaining
q-cells of T' is equivalent to a "homology" between the uniquely determined
q-cells of T, in which everyone of these (/-cells of T' is contained. (There
are a number of improperly used symbols in the argument, but that is easily
corrected.)

After this clever proof, section VI of the first Complément, which follows,
shows Poincaré at his worst, intersecting and "deforming" manifolds in the
most reckless way without the slightest justification in an attempt to prove
statement B in the particular case n = 4, q = 1. (Even if the argument could
be made rigorous, it would not extend to more general cases.)

Finally, in section XI of the first Complément, Poincaré tried to prove the
existence of a triangulation of an analytic manifold V. He wanted to use
induction on the dimension of the manifold.* But he assumed that there is a
covering of V by closures of domains of charts such that these domains have
no common points and each of them has piecewise analytic frontiers in V, a
result that certainly is not obvious; in the course of his argument he once more

* A similar idea leads to a proof of the triangulability of an algebraic variety, smooth
or not ([478], [311]).
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takes intersections of analytic manifolds without any mention of their possible
pathology.

We now come to the three essential innovations that launched
"combinatorial topology": simplicial subdivisions by the "barycentric" method, the use
oV'dual triangulation"* and, finally, the use ofincidence matrices and of their
"reduction." It will be convenient here to consider simultaneously the first and
second Compléments, since much of the material introduced in the first was
taken up again, improved, and generalized in the second.

The "barycentric" subdivision T' of a triangulation T of an «-dimensional
manifold consists in taking in each cell of T a point (the "barycenter") and
defining for each q-cell v of T a triangulation of v into simplices by induction
on q: consider the "pyramids" having as vertex the barycenter of v, and as
bases the simplices in the barycentric subdivisions of the p-cells forming the
frontier of v for all p < q — 1;* T is then the collection of the triangulations
of all the «-cells of T.

To define the "dual" triangulation T* of T Poincaré introduced different
groupings of the simplices of T. He considered the barycenter b0 of a p-cell
ap of T, and the closures of the (« — p)-simplices of V having that point as a
vertex and intersecting ap transversely; the union bn^p of these simplices and
of those of the simplices in their frontier that have è>0 as a vertex was believed
by Poincaré to be homeomorphic to an open ball of R"-'' and was named by
him the (« — p)-cell dual to ap; T* was then the triangulation of V consisting
of all the duals of the cells of T. As a matter of fact Poincaré, in the first
Complément, only considered in detail the case n = 4. This did not prevent
him, in the second Complément, from freely using the previous construction
for all dimensions; the fact that for n > 4 the è>„_p, for p > 1, are not necessarily
"cells" in Poincaré's sense was only discovered much later, and it was
necessary to modify the definition of triangulation of a manifold accordingly to
make sense of the Poincaré construction (chap. II, §4).

Poincaré then stated without proof (even for « = 4) that (apparently for
suitable orientations of the cells of T and T*, which he does not define) the
coefficients ef/ and eg which he introduced for T* and T, respectively, are
linked by the relations (p. 340) <C+1 = 4". (5)

As T' is obtained by subdivision of both T and T*, it follows from Poincaré's
result in section V of the first Complément that the "reduced Betti numbers"
Pp and P* of T and T*, respectively, are the same. Strangely enough, this only
comes as an afterthought at the end of section VII of the first Complément,
after Poincaré tried to give a direct proof by "deformation" of the relation
Pf = Pj for « = 4.

* Poincaré says "polyèdre réciproque."
f This construction (which for n — 3 is mentioned by Euler [Opera Omnia, (1), t. XXVI,
p. 105]) uses the fact that a cell is homeomorphic to a convex polyhedron.
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To prove the duality theorem (for "reduced Betti numbers"), it is therefore
necessary to show that P„% = Pp- (6)
This results from the algorithm that Poincaré set up for the computation of
the "reduced Betti numbers," in an imperfect manner in the first Complément,
and in its final form in the second; it will be the decisive step in the concept
of homology.

The algorithm rests on the remark that the numbers xq, x'q, and <x\
introduced by Poincaré do not change when each system of app-cells (for 0 ^ p ^ n)
is replaced by an equal number of linear combinations with integral
coefficients of those cells, provided that for each p the matrix of these coefficients
is invertible. If Eq is the aq x at_t matrix (eg) (the "incidence matrix"), the
corresponding matrix, after these replacements, has the form PEqQ, where P
and Q are, respectively square matrices in SL(a„, Z) and SL(a4_1; Z), and may
be chosen arbitrarily. A classical theorem proved by H.S. Smith in 1861*
shows that it is possible to choose the unimodular matrices P, Q in such a way
that in the matrix PEqQ = (py), p^ — 0 for i # ./', the pu (the "invariant factors"
of Eq) are integers such that pu divides pj+lii+1, and pu — 0 if and only if
i > yq, where yq is the rank of Eq (as a matrix over Q). This shows at once that
the maximum number of linearly independent closed q-chains [resp. linearly
independent boundaries of (q + l)-chains] is <xq — yq (resp. yq+i), henceP, - 1 =a,-y, - Vi- (?)

Poincaré also observed that if one of the invariant factors pa is an integer
c > 1, then there is a (q — l)-chain z such that cz ~ 0, although z is not
boundary of a q-chain. It seems likely that the example of the Möbius band
led him to interpret this phenomenon as revealing what he calls torsion
intérieure (interior twisting) in the manifold. To describe it (in section 6 of the
second Complément) he introduced "closed sequences" (a\, a\,..., a*) of q-cells
of T, where a* = a\ but all the r — 1 q-cells a\,..., a*-x are distinct, and any
two consecutive cells af, af+i for 1 < j ^ r — 1 have frontiers whose
intersection is the closure of a single (q — l)-cell bf~x of T; the sequence is orientable
if it is possible to define orientations on the cells af and bf1 (1 < j ^ r) such
that bf1 is directly related to one of the cells af, af+l and inversely related to
the other. Poincaré then proved that if all the closed sequences of q-cells
are orientable, all the corresponding invariant factors pu are 0 or 1. This
phenomenon led him to give the name torsion coefficients to the pa different
from 0 and l;f he probably thought they were also independent of the
triangulation T, but he did not attempt to prove it.

* Had Poincaré read Smith's paper, or the version of that paper given by Frobenius
in 1879? At any rate he deemed it necessary to reprove the theorem in section 2 of the
second Complément.
t It is easy to define a closed sequence of three triangles in a triangulation of the Möbius
band that is not orientable, and similarly a nonorientable closed sequence of five
triangles in a triangulation of the projective plane (see [304], p. 53).
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With the help of his algorithm for the computation of the "reduced Betti
numbers" it was easy for Poincaré to prove relation (6). By (5), the matrix
£*_p+1 relative to the dual triangulation T* is the transposed matrix of Ep,
hence its rank y*-p+l is equal to yp, and as a*_p+1 = ap-i, then by (7)

"n-p+l = an-p+l ~~ fn-p+\ ~ In-p+l = ap-l ~" Ifp ~~ "?p~l ~ "p-f

Surprisingly, Poincaré does not seem to have been aware of the purely
algebraic fact that not only are the ranks of a matrix (with integral entries)
and its transposed matrix equal, but that they also have the same invariant
factors; at any rate, to show that the torsion coefficients are the same for the
triangulation T and its dual T*, he resorted to a partly topological argument
that gave him a new proof of (6) at the same time. For that purpose he
introduced a new notion in section 5 of the second Complément, later known
(Part 2, chap. V, §2,E) as the join of two polyhedra and used by many
topologists.

In general, if A and B are two nonempty compact subsets of some RN, it is
possible to embed A (resp. B) in a (N + l)-dimensional vector subspace E (resp.
F) of R2N+2, such that E and F are supplementary and such that a point of
R2N+2 not inAuB cannot be on two distinct straight lines meeting both A
and B.* The union of the line segments joining a point of A and a point of B
is the join of A and B.

Poincaré then considered the dual triangulations T, T* of V, and for each
p-cell af of T and each q-cell bf of T with p + q = m^n, the join of these two
cells, which he wrote afbf, and the union of all these joins. His main result
was that any m-cycle YaU^ififtf ^OI f"ixed P> <? is homologous to a m-cycle
]Lft,*M'i*a!'~1fr*+1 (a*! being deleted when p = 0).f By induction on p this
enabled him to establish a one-to-one correspondence between homologies
of T and homologies of T* from which he finally deduced the equality of the
Betti numbers and of the torsion coefficients for T and T*.

We should also mention that Poincaré did not lose sight of his first attempted
proof of the duality theorem in Analysis Situs. In the second Complément he
showed that for dual cells af, b*'9, orientations can be chosen such that
N(af, b"~q) — ( — l)q. In the first Complément he proved the following theorem
for n — 3: the condition for a homology c£,-i?j ~ 0 between 1-cycles vh linear
combinations of 1-cells of a triangulation T (c integer ^0), is that ^[N(»,.,V) =
0 for all 2-cycles V, linear combinations of 2-cells of the dual triangulation T*.
He was probably convinced of the possibility of extending that proof for
arbitrary values of n and q, which in fact was done later by Veblen and Weyl
[484].

Finally at the end of the second Complément Poincaré stated for the first

* One has only to embed A (resp. B) in a hyperplane of E (resp. F) that does not contain
the origin.
+ This generalizes the obvious fact that in a pyramid the base can be continuously
deformed into the lateral surface.
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time a (wrong) version of the "Poincaré conjecture"; he thought at that time
he could prove that when all Betti numbers are equal to 1 and there is no
torsion for a compact, connected, orientable n-dimensional manifold V, V is
homeomorphic to S„. It was only in the fifth Complément ([369], pp. 475-498)
that he obtained for n — 3 a counterexample of such a manifold V with n^V)
not trivial (Part 3, chap. I, §4,D); he then formulated the conjecture that for
n = 3,7Cj(V) = 0 implies that V is homeomorphic to S3, a result which to this
day is neither proved nor disproved.

With all their shortcomings, the chasm between Poincaré's papers on
algebraic topology and what existed before him is so wide that one must agree
with the opening sentence of Lefschetz's Topology: "Perhaps on no branch of
mathematics did Poincaré lay his stamp more indelibly than on topology."



Chapter II

The Build-Up of
"Classical" Homology

§ 1. The Successors of Poincaré

It took about 30 years to construct a theory of homology applicable to
curvilinear "polyhedra," embodying all the ideas of Poincaré and entirely
rigorous. In a period in which the number of professional mathematicians was
definitely on the increase, it is surprising that this new field of research at first
attracted so few people. This is true even if one takes into account topological
questions such as the theory of dimension or the theory of fixed points (see
Part 2), which until 1920 were not directly linked to homology but attracted
much more attention, owing to the spectacular use of simplicial methods by
L.E.J. Brouwer (1881-1966). For many years Brouwer himself was completely
isolated in Holland; in France, after Poincaré's death and until 1928 only
Hadamard and Lebesgue were interested in these questions, but they did not
use simplicial methods; Italian mathematicians do not seem to have been
attracted at all to topology, nor the English until 1926. The progress in the
build-up of homology is entirely due to (1) a handful of mathematicians in
Germany, Austria Hungary, and Denmark: P. Heegaard, M. Dehn (1878­
1952), H. Tietze ( 1880-1964), E. Steinitz ( 1871 -1928), and after 1920 H. Kneser
(1898-1973), H. Kiinneth (1892-1974), W. Mayer (1887-1948), L. Vietoris
(1891- ), and H. Hopf (1894-1971); and (2) the three members of what may
be called the "Princeton school": O. Veblen (1880-1960), J.W. Alexander
(1888 1971), and S. Lefschetz ( 1884-1972).

The first treatise on this "classical" algebraic topology was Veblen's Analysis
Situs, published in 1922 (but a preliminary version was given as "Colloquium
lectures" in 1916); it was followed by the much more complete book Topology
by Lefschetz (1930), the very popular Lehrbuch der Topologie of H. Seifert and
W. Threllfall (1934), and the book by P. Alexandroff and H. Hopf entitled
Topologie I (1935).*

* This was the first example of a projected treatise in several volumes, which stops with
the first one; other conspicuous examples are the well-known books by Eilenberg­
Steenrod [189] and Godement [208].

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-43,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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§ 2. The Evolution of Basic Concepts and Problems

The emphasis Poincaré put on C!-manifolds (or even analytic ones) was
immediately abandoned by his successors. For them the closures of the cells
of a triangulation are merely deduced by homeomorphisms from closures of
bounded convex euclidean (rectilinear) polyhedra, so that all notions relative
to triangulations are invariant under homeomorphisms. Furthermore, they
generalized the notion of (curvilinear) "polyhedron" defined by Poincaré, and
until 1925 they only considered the homology of what they called complexes.
Unfortunately that word is given different meanings by the mathematicians
who use it; for the sake of clarity we shall use a terminology that distinguishes
these meanings, even if it does not coincide with the one used in the papers
we describe. In §§2-5 of this chapter, a triangulation will only be defined for
a compact space X: as with Poincaré, it will mean a finite partition T of X in
cells of various dimensions, such that the frontier of a cell of T in X is the
union of cells of T of strictly lower dimension. Each cell is given an orientation;
but Poincaré's additional requirement that, for the maximal dimension p of
the cells of T, each (p — l)-cell should be contained in the frontier of exactly
two p-cells of T (see §4) is dropped.* The pair (X, T) (or, by abuse of language,
X itself) will be called a cell complex; after § 5 of this chapter, we shall say
finite cell complex, since more general "cell complexes" will also be defined.
The barycentric subdivision of Poincaré (chap. I, §3) naturally led to the
introduction of simplifiai cell complexes, where the cells of the triangulation
T are (curvilinear) simplices and each face of a simplex of T belongs to T (and
is not merely a union of simplices of T). This condition still leaves open the
possibility that the intersection of the frontiers of two simplices of T of
dimension k contains more than one simplex of T of dimension k — 1.* To get
the simplicial complexes obtained by barycentric subdivision that possibility
must be excluded; it is easy to see* that this is equivalent to the condition that
there exists a homeomorphism of X on a compact subset X' of some RN of

* In their first paper [21], Alexander and Veblen impose the condition that in a cell
complex where p is the maximal dimension of the cells, every cell of dimension q < p
is contained in the frontier of at least one cell of dimension q + 1; this was later
dropped.
f As an example, consider the usual description of the two-dimensional torus T2 as
obtained by identification of opposite sides of a rectangle, and decompose the rectangle
into two triangles by the diagonal.
+ This is proved in [421], p. 46. If X„ is the union of all simplices of T of dimension
s£n (later called the n-skeleton of X), the homeomorphism X-<X' is defined by
induction on the X„. The set X0 consists of the vertices of the simplices of T; each vertex
is mapped onto a unit vector of the natural basis of RN, where N is the number of
vertices. The extension of a homeomorphism of X„ onto XJ, to a homeomorphism of
X„+, onto X'„+l is then reduced to the case in which X„ and X„ are the frontiers of two
simplices of dimension n + 1, in which case the extension is immediate by means of
barycentric coordinates.
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large dimension such that T is sent by that homeomorphism onto a
triangulation T' of X' consisting of rectilinear simplices such that the faces of each
simplex of T' belong to T. This is the definition of a simplicial complex (X,T)
chosen by Lefschetz [304] and which we shall adopt (after § 5 of this chapter
we will say finite simplicial complex); the simplicial complexes such as (X', T')
will be called euclidean simplicial complexes, and in most questions we
may only consider euclidean simplicial complexes; this has the advantage of
avoiding all difficulties linked to the intersections of manifolds. Of course,
barycentric subdivisions of euclidean simplicial complexes are also taken
rectilinear.*

This enlarged concept of triangulation of course changes nothing in
Poincaré's definition of the Betti numbers and torsion coefficients of the
triangulation, nor in the algorithm for their computation. In fact, that
algorithm is so obviously of an algebraic nature and uses so little of topology that,
in the very first paper on topology published after Poincaré's Compléments,
the Enzyklopädie article of Dehn and Heegaard [138], there is already an
attempt to define "homology" in a purely algebraic context, where the "cells"
are elements of finite sets without any topological properties, with an ad hoc
system of axioms. This axiom system was slightly improved by Steinitz in 1908
[456], but he did not go beyond a notion of "orientation" within this context,
and it was only Weyl in 1923 [484] who consistently pursued this idea and
built up an algebraic "homology" theory; his axioms, however, like those of
Steinitz, were so narrowly tailored to mimic the topological situation that they
did not seem applicable to very different topological problems or to algebraic
ones.

Weyl had already considered, in addition to Poincaré's incidence matrices,
the Z-modules Cy having as bases the sets of oriented j-cells. In 1925 H. Hopf,
at the beginning of his career, spent a year at Göttingen; E. Noether, who then
was engaged in the process of liberating linear algebra from matrices and
determinants, observed that the boundaries of /-chains defined a homo­
morphism of Z-modules hf.C^C^ (1)
such that b,-, o b,. = 0, (2)
and that the consideration of Betti numbers and torsion coefficients amounted
to that of the Z-modules

H^Kerbj/Imb^; (3)
Hopf accordingly used these homology modules when writing his 1928 paper

* The orientation of a simplex may be defined by choosing an order among its vertices;
two orderings give the same orientation if they are deduced from one another by an
even permutation.
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on the Lefschetz trace formula (Part 2, chap. Ill, §2). Independently, in 1926,
Vietoris also needed to get rid of matrices in order to define homology for
more general spaces than simplicial complexes (see below, chap. IV, §2), and
he used the definition (3) of homology groups for a simplicial complex, without
relating it to general notions of linear algebra [475].

This seemingly innocuous modification was to have important consequences,
both for the ulterior development of algebraic topology and later for algebra
itself (see chap. IV), since it was clear that the definition of homology modules
could at once be extended to arbitrary (finite or infinite) sequences C. =
(C/)jîïo of modules over any ring, and to module homomorphisms bj (j 2s 1)
satisfying (2) (when b0 is taken by convention to be the unique homomorphism
C0 -* {0}). We shall say that such a system (Cj-,b-) is a chain complex; Mayer,
in 1929 [336], was apparently the first to consider such systems, with the
additional restriction that the C,- are free modules with finite bases; he calls
them "complexes." *

In particular, he considered the following situation, suggested to him by
Vietoris: each Cj has a basis, union of two subsets Bj, B? such that, if Cj, C?,
and Cf are the Z-modules having as bases Bj, Bf, and Bj n Bf, respectively,
the sequences (Cj), (Cf), and (Cf) are again differential graded modules
for the restrictions of the homomorphisms bj. Mayer looked for a relation
between the homology modules Hj, H/, H?, and Hj of (Cj), (Cf), (C/), and
(Cj), respectively; he proved that Hj = E, ® Gj_j, where Gj <= H? consists of
the classes of cycles that are boundaries both in Cj and Cf, and Ej consists of
the classes of the sums of a cycle of Cj and a cycle of Cf. In 1930 Vietoris
[476] completed Mayer's result and showed that

Ej~(Hj©H/)/(H//Gj). (4)
These results, later incorporated into what became known as the Mayer­
Vietoris exact sequence (chap. IV, §6,B), were to have many applications in
algebraic topology.*

The first example of a chain complex different from the classical modules
of "chains" of a triangulation was linked to a more abstract conception
of those chains, which appeared simultaneously around 1926 in papers
by Alexander [14], Alexandroff [22], and M.H.A. Newman [356] and was
characterized by van der Waerden [477] as "pure combinatorial topology."

* We shall also use the notation C. for the direct sum (J);» o ^ (in modern terminology,
this is a differential graded module) when no confusion can arise. For rings of coefficients
which are principal ideal rings, it is equivalent to saying that each C,- is free or that
their direct sum is free; we will also say in that case that the chain complex C. = (Cy)
is free. More special "abstract" free chain complexes, mimicking the simplicial
complexes, were introduced by Tucker, and used by the American school around 1940, in
particular for the definition of cohomology.
f Mayer himself gave an application of his results to the usual torus T2 considered as
union of two cylinders, their intersection being also the union of two disjoint cylinders
([336], p. 41).
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The underlying idea is that rectilinear euclidean simplices and their
orientation are entirely determined by the sequence of their vertices. Disregarding
anything else, we shall therefore define a combinatorial complex as a set V
equipped with a (finite or infinite) set S of finite subsets, the combinatorial
simplices, submitted only to the restriction that if S e S and S' <= S, then also
S' e <3; the dimension, faces, and orientation of these combinatorial simplices
are defined in an obvious way. The module Cj of alternating j-chains of the
combinatorial complex is then the set of finite linear combinations with
integral coefficients

Xx;(af,a/,...,a/), (5)
i

where x' e Z, and (a?, a},..., a{) is the sequence (in an arbitrary order) of the
distinct vertices of a ;-dimensional simplex, with the identification

(af°\ af(1),..., afJ)) = sgn(7t)(a?, a\,..., a{) (6)
for any permutation n of {0,1,...,;}. The boundary operator (1) is then
defined by*

br(a°,a>,...,a/)= £ (- l)«(a°, ...,^...,a/) (7)

and makes (C,-) into a chain complex, the homology of which is, by definition,
the homology of the combinatorial complex (X, 8). Another equivalent
definition of Cj consists in choosing a total order on X, and considering only in (5)
the sequences such that a? < a} <■■■ < a{ for this order; this shows that Cj
is a free Z-module.

To each euclidean simplicial complex (X, T) is thus associated a finite
combinatorial complex (V, <3), where V is the finite set of all vertices of all
simplices of T, and <3 is the subset of ^S(V) consisting of the sets of vertices of
all simplices of T. It is clear that there is an isomorphism of the chain complex
of (X, T) onto the chain complex of (V, S), commuting with the boundary
operators, and therefore giving a natural isomorphism of the homology of
(X, T) onto the homology of (V, S). Conversely, it is easily shown ([308],
p. 97) that for each finite combinatorial complex, there exist euclidean
simplicial complexes to which it is associated; they are called the realizations of
the combinatorial complex, and it can be proved that any two realizations of
the same combinatorial complex are homeomorphic.

It is possible to define for a combinatorial complex K = (V, S) a notion that
reduces to the classical "barycentric subdivision" for simplicial complexes: the
first derived complex K' of K is a combinatorial complex, where the set of
vertices is the set <3 of combinatorial simplices of K: a combinatorial p-simplex
of K' is a set S, <= S2 <= ■•• <= Sp+1 of p + 1 distinct simplices of K, totally

* Eilen berg and Mac Lane introduced the convention that a "hat" above a letter means
that this letter should be omitted in the sequence in which it is inserted.
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ordered by inclusion, the dimensions of which form an arbitrary strictly
increasing sequence ([308], p. 164).

Another chain complex emerged with the consideration of "singular sim­
plices," which we will introduce in § 3. In a combinatorial complex K, and
with the same notations as above, the module Cj of /-chains of this chain
complex consists again of the linear combinations (5), but in which this time
af, a-, ..., aj are vertices of a combinatorial simplex Se S but are not
necessarily distinct; such sequences (af,...,a{) with repetitions are called
degenerate simplices of K. The identification (6) is not applied to degenerate
simplices: if the boundary of a degenerate /-simplex is again defined by (7),
the right-hand side is a combination of degenerate (;' — l)-simplices.

It is clear that there is a natural injection h: Cy -» Cj, and a retraction
r: Cj -» Cy obtained by replacing the coefficients of the degenerate simplices
by 0; both mappings commute with the boundary operators, and therefore
yield homomorphisms Hy -» Hj and Hj -» Hy for the homology modules, but
it is not immediately obvious that these homomorphisms are bijective. This
was taken for granted by both Alexander [9] and Lefschetz [304] and the
proof was only provided in 1938 by Tucker [471], who showed that if a chain
(5) consisting only of degenerate simplices is a cycle, it is also a boundary.
The use of the chain complex (Cj) by these authors was never very explicit;
with the work of Eilenberg on singular homology (chap. IV, § 2) it gave way
to a much less hybrid type, namely, the chain complex (Cj'), where the ;'­
chains are simply the linear combinations of all sequences (af,aj,...,a{)
consisting of vertices of the same simplex (distinct or not), but no identification
is made; the boundary operator is still given by (7). There is a natural surjection
Cj' -» Cj, the kernel of which is generated by the degenerate simplices and the
differences

(af°\af ",..., afJ)) - sgn^Kaj0',^",... ,af).

The elements of Cj' are the ordered j-chains of the combinatorial complex; the
proof that the homology of (Cj') is naturally isomorphic to that of (Cy) was
initially made by using a homotopy operator, and is an easy consequence of
the method of acyclic models (chap. IV, § 5,G).

Another novelty in homology was introduced by Tietze [466]* and taken
up by Alexander and Veblen [21], the homology modulo 2, where the
coefficients of the cells in a chain are integers mod 2. This dispenses altogether with
any consideration of orientation of the cells, and the "incidence matrices" now
have coefficients in the field F2 of two elements, hence are equivalent to
matrices (py) with pt. = 0 if i # ;' and pu = 0 or 1 (or, equivalently, the
homology modules are now vector spaces over F2). This does not give new
topological invariants, since the dimension ofthat vector space for dimension p is

* This seems to be the first paper that questions the validity of Poincaré's arguments,
and points to pathologies in the theory of differential manifolds ([466], pp. 32, 36, and
41)
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the sum of the p-dimensional Betti number and of the number of torsion
coefficients in dimensions p and p — 1 which are not divisible by 2; it is now
possible to generalize the duality theorem for nonorientable n-dimensional
compact connected triangulated manifolds, that expresses the isomorphism
of the p-dimensional and the (n — p)-dimensional homology vector spaces
over F2. Later Alexander considered more generally "homology modulo m"
for any integer m [14], and Lefschetz realized that the "homology with
division" of Poincaré was simply "rational homology" with coefficients in the
field Q ([302], p. 234), but this still did not yield any invariant not expressible
by the known ones.

These attempts testify to the persistence of the search for a system of
numerical or algebraic invariants of a topological space that would entirely
characterize it up to homeomorphism, on the model of what Jordan and von
Dyck had succeeded in doing (with insufficient proofs) for surfaces ([373],
p. 139); we saw in chapter I that the introduction by Poincaré of homology
and of the fundamental group was certainly motivated in part by this search.
But even for dimension 3, where the Poincaré conjecture remained undecided,
it was soon realized that the fundamental group was not sufficient to
determine an orientable manifold up to homeomorphism. This followed from the
study of a remarkable family of three-dimensional, compact, connected
orientable manifolds, first defined by Tietze in 1908, and now called the lens spaces
([466], §20). For an odd prime p and an integer q such that 0 ^ q ^ p — 1,
the lens space L(p, q) is defined by Tietze as the quotient space D3/R, where
D3 is the ball |x| < 1 in R3, and R is the equivalence relation whose classes
consist of the one-element sets {x} for |x| < 1, and of the orbits of the cyclic
group Z/pZ, acting on the sphere S2: |x| = 1 by the action

(k,(v,e))^(v + ^y-,(-lfo\ (8)
<p and 6 being the usual longitude and latitude. Later another equivalent
definition of L(p, q) was formulated as the space of orbits of the group Z/pZ
acting on the sphere S3: this sphere is considered to be the manifold |z, |2 +
\z2\2 = 1 in the space C2, and the action is

(fc,(z1,z2))^Kz1,cüt«z2) (9)
with to = e2nilP, The fundamental group of L(p, q) is Z/pZ, and the homology
modules are H t = Z/pZ, H2 = 0, so that the value of q is irrelevant;
nevertheless, Tietze suspected (but could not prove) that, for instance, L(5,1 ) and L(5,2)
are not homeomorphic. This was proved in 1919 by Alexander [10], using a
construction of L(5,1) and L(5,2) different from that of Tietze, whose paper was
not mentioned;* another proof was provided by de Rham in 1931 (see Part 2,
chap. VI, § 3, A), using the notion of linking coefficient (Part 2, chap. I, § 3).

* See [421], p. 216.
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More urgent than this ultimate and more and more elusive goal* was the
immediate necessity to prove conclusively that the homology modules defined
by two different triangulations of the same compact, connected space X are
isomorphic (the invariance problem), which would show that these homology
modules only depend on the homeomorphism class of the triangulable space.
A "natural" method would have been to show that, for two triangulations T,
T' of X, there existed two suitable subdivisions of T and of T' that could be
deduced from one another by a homeomorphism of X; this was given the name
Hauptvermutung in algebraic topology by H. Kneser [274], but for a long time
it could only be proved for complexes of dimension 2, and remained undecided
for higher dimensions. It was finally shown much later [349] that the "Haupt­
vermutung" is true for dimension 3, but counterexamples exist for dimension
^ 5. The invariance property must therefore be proved by independent means.

During that period the concepts of deformation, homotopy, and isotopy
finally acquired a precise meaning. The words homotopy and isotopy were
coined by Dehn and Heegaard in their Enzyklopädie article with a purely
combinatorial definition adapted to their "abstract" conception of homology
([138], pp. 205-207), and they were not retained by later workers, with the
exception of Steinitz.f Brouwer seems to have been the first to give our present
definition of homotopy ([89], p. 462): two continuous mappings /:X-»Y,
g: X -»• Y are homotopic if there exists a continuous mapping F: X x [0,1] -»•
Y such that F(x,0) = f(x) and F(x, 1) = g(x) in X.

The final touches to the homology theory of cell complexes were brought
about by the theory of intersections (§ 4), the introduction of product spaces
(§ 5), and, finally, the concept of relative homology (§ 6). Around 1930 algebraic
topology was ready for further extensions and new concepts.

§ 3. The Invariance Problem

There are two proofs of the independence of homology from the triangulation
of a simplicial complex. Both are essentially due to Alexander ([9] and [14]);*
they both use the new ideas of simplicial mapping and simplicial approximation,
and the first one is also based on a new concept, the singular chains.

Simplicial mappings are a natural extension to n dimensions of the classical

* It has finally been proved by A.A. Markov [332] that there cannot exist any algorithm
(in the sense of the theory of recursive functions) that would allow one to determine if
two euclidean simplicial complexes X, Y of dimension > 4 are homeomorphic or not.
He considers the fundamental groups 7tj(X), 7tj(Y); these groups may be any group
finitely generated and finitely presented, and the algorithm would enable one to decide
if two such groups are isomorphic or not. But it is known that no such algorithm exists.
f Steinitz only uses the Dehn-Heegaard notion of "homotopy" to introduce an
abstract notion of "orientation"; Dehn and Heegaard themselves do not seem to have
used it at all for questions of homology.
* For a third, indirect, proof by Alexander, see § 6.
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notion of piecewise linear function of a real variable. Let X be a euclidean
simplicial complex; a simplicial mapping f of X into a euclidean simplicial
complex Y is a continuous mapping such that for all p, and any p-simplex S
of X,/(S) is contained in a a-simplex of Y for a number q ^ p and the restriction
of/ to S is affine. This restriction is therefore entirely determined by the values
of/at the vertices of S, which must be vertices of a a-simplex of Y for a number
q ^ p, not necessarily distinct, but otherwise entirely arbitrary.

For combinatorial complexes X, Y (§ 2) a simplicial mapping will be a map
/: X -»• Y such that for all p and any p-simplex S of X (which are finite subsets
of X here), /(S) is contained in a a-simplex of Y for some q < p. Thus there is
a one-to-one correspondence between the simplicial mappings of a euclidean
simplicial complex X into a euclidean simplicial complex Y, and the simplicial
mappings of the combinatorial complex associated to X into the
combinatorial complex associated to Y. By linearity, if (Cj(X)) and (Cj(Y)) are the chain
complexes of ordinary and degenerate simplices in X and Y, one deduces for
each ;', from a simplicial mapping /: X -»• Y, a homomorphism /: Cj(X) -»
Cj(Y), by the formula

fj((a0,a1,...,aJ)) = (f(a0),f(al),...,Aaj)) (10)
for each (ordinary or degenerate) /-simplex (a0,al,...,aj). If g: Y -» Z is a
second simplicial mapping and h = g o / X -»• Z, h is also a simplicial mapping
and h = g a f. Furthermore, it can easily be shown that for the boundary
operators

by°j5=^-,ob,; (11)
hence / = (/) is a homomorphism of chain complexes, which yields a
homomorphism /„,: (Hj-(X)) -»• (Hj(Y)) of graded homology modules. If it is
composed with the natural homomorphisms (Hj-(X)) -»• (Hj(X)) and (Hj(Y)) -»•
(Hj-(Y)) (§2), this also gives a homomorphism (H,-(X)) ->• (H,(Y)), which topol­
ogists identified with f% even before it had been proved that the natural
maps Hy -» H} are isomorphisms. The homomorphism /„.: (Hj-(X)) -»• (H^(Y))
can also be defined directly, if the definition (10) is modified by taking
fj((a0,a1,...,aJ)) = 0 when the simplex (f(a0),f(ai),...,j\aj)) is degenerate.
With the same notations as above, (g ° /)+ = g^ ° /„.

The idea of simplicial approximation is due to Brouwer ([89], p. 459). He
considered two euclidean simplicial complexes X, Y (satisfying some
additional conditions that we disregard) and a continuous map/: X -» Y such that
for any simplex a of X f(a) is contained in a simplex of Y. Then for any e, > 0
there is a triangulation T' of X obtained by repeated barycentric subdivisions
of the given one T, and a map g: X -»• Y that coincides with / at the vertices
of the new triangulation, is such that |/(x) - g{x)\ =$ e for all x e X and is an
affine map in every simplex of T'. We shall return in Part 2, chaps. I, II, and
III to describe the way he used this result with great virtuosity to prove his
famous theorems without linking them to homology.

In his first proof Alexander realized that he could extend Brouwer's method
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to all euclidean simplicial complexes X, Y and to an arbitrary continuous map
/: X -»• Y.* The stars of the triangulation of Y form an open covering of Y;
replacing the triangulation of X by one obtained by repeated barycentric
subdivisions, it can be assumed that for the new triangulation the image of
any star of X is contained in one of the stars of Y. Thus, if (ak)l ^k!SN are the
vertices of the new triangulation of X, and (b-), ^j^N' are the vertices of the
triangulation of Y, let bv(k) be one of the vertices of Y whose star contains the
image of the star of ak. If; + 1 vertices at are the distinct vertices of a /-simplex
of X, the bvik) are (not necessarily distinct) vertices of a a-simplex of Y with
q < ;'. If a simplicial mapping g is defined by g(ak) = op(t) for all k, g is a
simplicial approximation of f, with |/(x) — g(x)\ ^ 3(5, where ö is the
maximum diameter of the simplices of Y. Furthermore, for any x e X,/(x) and g(x)
are the extremities of a segment contained in Y, and therefore / and g are
nomotopic.

The notion of singular chain also arose from the need to consider continuous
maps /: X -» Y between euclidean simplicial complexes, both having arbitrary
dimensions. It was first mentioned by Dehn Heegaard in their Enzyklopädie
article [138]; they of course realized that phenomena such as the Peano curve
implied that the image /(E) of a cell E may exhibit the weirdest pathology, so
they included in their conception not only the image /(E), but also the cell E
itself in rather vague terms;f they do not seem to have made any use of it to
prove anything.

In [9] Alexander had the idea* that the singular simplices might be used to
define new kinds of chains by linear combination, and be provided with
boundary operators with which one could define new homology modules that
ipso facto would be independent of any triangulation; the invariance problem
would then be solved if he could define isomorphisms of these modules on the
homology modules of an arbitrary triangulation. At least this is what we may
guess from the context of his paper, for his definition of singular cells is simply
translated from Dehn-Heegaard. He never said when two images of different
p-cells by two continuous mappings should be identified, nor what the
boundary of a singular cell should be. This vagueness was only partly improved in
the successive versions of Alexander's proof given (this time for cell complexes)
by Veblen ([474], p. 102), van der Waerden [477], and Lefschetz ([304], chap.
II); it was only in a short note published in 1933 that Lefschetz, "to clear up
misconceptions," defined a singular cell on a space X [305]: he considers pairs
(ep,f), where ep is a p-dimensional oriented convex polyhedron in some RN,
and /: ep -»• X is a continuous mapping; singular p-cells are classes of such

* Although Alexander did not mention any paper on algebraic topology with the
exceptions of Poincaré's and his own joint paper with Veblen [21], it is quite certain
that he knew Brouwer's work, for it is quoted in a 1913 paper by Veblen.
f "Wir nennen C'„, aufgefasst als das Abbild eines bestimmten C„, einen n-dimensionalen
Komplex mit Singularitäten,..., und geben ihm die Bezeichnung C|,(C„)" (p. 164).
* Alexander only considered homology mod 2 on manifolds.
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pairs for the equivalence relation {ep,f) = (e'p,f), where f'=f°u and u is
an affine bijection u:e'p^> ep* If bp denotes the boundary map for euclidean
polyhedra, then the equivalence

(bpep,f\bpep) = (bpe'p,f'\bpe'p)

holds when the equivalence relation is extended to "singular chains," linear
combinations of singular cells;f this clearly defines a boundary operator for
these new "chains," and from these data one deduces by the standard method,
applicable to all chain complexes, homology modules that this time obviously
only depend on the space X up to homeomorphism. To make things precise,
we shall attach the qualification "topological" or the index "top" to the
notions entering in the homology of singular chains. For any continuous
mapping g: X -» Y the image by g of a singular cell on X is defined by

g(epJ) = (ep,gof) (12)
and therefore this can be extended by linearity to a homomorphism gp:
Cp°p(X) -»• Cp°p(Y) of singular chains, permuting with boundary operators
and yielding a homomorphism #„,: (Hjop(X)) -» (H)op(Y)) of graded homology
modules with the relation (gl o g2)^ = glif o g2if for two continuous mappings.

Granted this clarification, Alexander's method may be stated as
follows: For a triangulation T of a euclidean simplicial complex X, there is a
homomorphism H,-->Hjop (13)
from the homology defined by chains of T to the homology of singular chains,
defined in a natural way: each p-simplex Ep of the triangulation T is identified
to the singular p-simplex (Ep, Id.), and its boundary with the (singular)
boundary ofthat singular simplex. What has to be shown is that (13) is bijective, or
equivalently that: (A) every topological p-cycle wp is topologically homologous
to a p-cycle of T; (B) every p-cycle zp of T that is a topological boundary is
also a boundary of T.

Some preliminary results are needed. First is the fact that the homology of
T is naturally identified with the homology of any triangulation T' deduced
from T by barycentric subdivision. We have seen in chap. I that Poincaré had
already given a substantially correct proof of that result, and others were
proposed by Tietze ([466], p. 42), Alexander himself ([9], p. 153), Veblen
([474], p. 90), and Lefschetz ([304], p. 68). This invariance by subdivision is
immediately extended to the homology of singular chains,* and has as a
consequence the fact that in the proof of A (resp. B) the singular chain wp [resp.

* This allows one to take all the ep equal to the same simplex, which will be done later
(chap. IV, §2).
f In addition, Lefschetz imposed the relation ( — ep,f) = —(ep,f), where — ep is the
simplex ep with opposite orientation.
* A subdivision of a singular cell (ep,f) consists of the singular simplices (e'p,f\ep),
where (e'p) is the family of p-simplices of a subdivision of ep.
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the singular (p + l)-chain of which zp is the topological boundary] may
consist of singular simplices whose images in X are arbitrarily small.

The second result that emerges from Veblen's invariance proof ([474],
p. 102) and more clearly from Lefschetz's, is, at last, a correct statement and
proof of the invariance of homology under homotopy (the irrelevance of
"deformation," so long taken for granted, as we have seen in chap. I). Writing
SP(RN) the Z-module of the simplicial p-chains in RN, linear combinations with
integral coefficients of the oriented euclidean simplices in RN, start with an
elementary simplicial subdivision* of a product Ap x I in RN+1 (a "prism"),
where Ap is a p-dimensional euclidean simplex in RN and I = ]0,1[. With
suitable orientations, we obtain the relation between p-chains in RN+1

bp+1(Ap x I) = Ap x {1} - Ap x {0} + (bp(Ap) x I) (14)

and by linearity this gives in the Z-module SP(RN+1) the relation

bP+1 (Pp(zp)) = zp x {1} - zp x {0} + Pp_, (bpzp), (15)

where, for each integer q, zq i—> Pq(zq) is the linear map of S?(RN) into Sq+1 (RN+1 )
that coincides with the map A^i—> Aq x I on each a-simplex A,. From (15), by
applying to both sides the homomorphism deduced from a continuous map
F: X x I -»• X as shown above, where X is a euclidean simplicial complex, this
immediately gives the first example of a homotopy formula for singular p­
chains zp in X (cf. chap. IV, § 5,F):

/(z,,) - g(zp) = bp+1(F(zp x I)) - F((bpzp x I)), (16)

where/(x) = F(x, 1), g(x) = F(x,0), from which it follows at once that if zp is
a singular p-cycle, f(zp) and g(zp) are topologically homologous.

To prove A, after subdividing the singular simplices of wp in order to be
able to apply the Alexander construction of simplicial approximations
described above, one shows that there exists a homotopy of wp on another
singular chain wp, whose singular simplices (ep, g) are such that g is an affine
map of ep into a p-simplex of T sending vertices of ep into vertices of that
p-simplex. This would clinch the matter, except that the affine map g is not
necessarily bijective.

This difficulty was ignored by Alexander and van der Waerden; Veblen's
proof is very obscure and he does not seem to have distinguished, for cycles
of T, between the concepts of "topologically homologous to 0" (i.e., being
boundary of a singular chain) and "homologous to 0 in T" (i.e., being boundary
of a chain of T). Lefschetz realized that wp is not identified with a p-chain of

* If A0A,---Ap is the sequence of vertices of Ap, identified with Ap x {0}, and
B0B] • • ■ Bp is the sequence of the vertices (AJ? 1) of Ap x } 1}, the subdivision consists
of the (p + l)-simplices

(-l)lA0A1-A1BlBltl-Bp
for 0 < k ^ p; this generalizes the decomposition of a prism into tetrahedra, which
goes back to Euclid.
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T but with a p-chain in the module C'p of chains of ordinary and degenerate
simplices of T; but we have seen that he identified the homology of (Cj) and
of (Cj), a result that was only proved in 1938.

The proof of proposition B is very similar. The singular (p + l)-chain of
which zp is the topological boundary is subdivided in such a way that a
homotopy of that (p + l)-chain can be defined as above, with the added
proviso that the vertices of zp remain invariant under the homotopy; zp is then
identified to the boundary of a (p + l)-chain wp+l of C'p+i, which may contain
degenerate simplices; but as zp does not contain degenerate simplices, it is also
the boundary of the (p + l)-chain obtained by deleting from wp+1 the
degenerate simplices, and that is a chain of T.

Alexander's second proof [14] did not use singular simplices any more, and
relies exclusively on simplicial approximation. It was enough to show that if
two euclidean simplicial complexes X, X' are homeomorphic, and T (resp. T')
is a triangulation of X (resp. X'), then the homology modules H.(T) and
H.(T') are isomorphic. Let /: X -> X' be a homeomorphism, with inverse
g = f~l : X' -»• X. Let (T,) [resp. (T)')] be the sequence of successive barycentric
subdivisions of T (resp. T'); the maximum diameter of the simplices of T, (resp.
Tj) tends to 0; hence, for each index i, there is an index j and a simplicial
approximation gi} of g, from Tj to T,; similarly, there is an index k > i and a
simplicial approximation fjk of /', from Tt to T-. The composite hik = gtj o f.k
is then a simplicial map of Tt into Tf; suppose iand k large enough; then, owing
to the relation g° f = lx, for every p, every p-simplex a of T;, and every
p-simplex t a a of Tt [which is a p-simplex of the {k — i)-th barycentric
subdivision of a], hik sends every vertex of t to a vertex of a.

Let fjk: Cp(Tk) -> CP(T/) and gi}: CP(T;) -*Cj-'T;) be the homomorphisms of
modules of ordinary and degenerate p-chains corresponding to the simplicial
maps fJk and gt], and hik = gt] ° fjk. Cp{Tk) -> C^T,) their composite. On the
other hand, let sdt_; be the homomorphism of Cp(T;) into Cj,(Tfc) that
associates to every p-simplex of T, the sum of the p-simplices of Tt contained in
it, with the same orientation; then /.it(sdk_,(o-)) = a + 0ik, where 0ik is a
degenerate p-chain. This lemma is proved by induction on p, being obvious by
definition for p = 0. The assumption on hik implies that for any p-simplex t
of Tt contained in a, either hik(x) = ±a or hik(x) is a degenerate p-simplex;
hence hit(sdt_I-(o-)) = c. a + 6ik, where c is a constant and 6lk is a degenerate
chain. But as hik o sdt_; is a simplicial map,

Msdfc_;(bp<7)) = c.bpO- + bp6ik

and bp6!k is degenerate. On the other hand, the induction hypothesis implies

Msdt_;(bpO-)) = bpa + 6'ik,

where 0'ik is degenerate; the comparison of the two formulas gives c = 1.*

* This lemma is a special case of the Sperner lemma, proved two years later by the
same method ([30], p. 376).
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Assuming, as Alexander does, that the homology H.(Tj) can be identified to
the homology H'(T,) of ordinary and degenerate chains, (h^)* = (gy)* ° (fa)*
is the identity in H.(Tf); similarly a "right inverse" is obtained for (fa)*, which
proves that (fa)* is an isomorphism; the theorem then results from the fact
that H.(T) (resp. H.(T')) is isomorphic to H.(Tt) (resp. H.'T/)).

§ 4. Duality and Intersection Theory on Manifolds

A. The Notion of "Manifold"

After the invariance problem had been solved, two main items remained in
the implementation of the program outlined by Poincaré: a rigorous proof of
the duality theorem and a complete theory of intersections, barely begun by
Poincaré (chap. I, §2). Obvious examples show that in neither question can
one work with a general cell complex; some restrictions have to be introduced
in order to make available the arguments Poincaré used for his "manifolds."

We have seen (chap. I, §2) that the concept of a Cr-manifold for r ^ 1 was
clear to Poincaré. In what follows we will systematically use the name n­
dimensional C°-manifold to designate what is also called a locally euclidean
space, namely, a Hausdorff space in which any point has a compact
neighborhood homeomorphic to a closed ball in R".* The triangulability of Cr-manifolds
for r ^ 1 was only proved in 1930 (chap. Ill, §2); but (except for n < 3) the
triangulability of C°-manifolds remained undecided until about 1960, when
counterexamples were found for dimensions ^ 5. In the meantime, in order
to use simplicial methods, topologists had to settle for more tractable
definitions of "manifolds."

In fact, several definitions were proposed ([308], pp. 342 343); the first one
was described by Veblen ([474], pp. 91-95) and it is a definition that is based
on a given triangulation T into "cells" [in the sense of Poincaré (chap. I, §2)]
of the compact space X, but Veblen did not investigate its invariance under
homeomorphism. The definition generalizes Poincaré's condition that for the
maximal dimension n of the cells of T, each (n — l)-cell should be in the
frontier of exactly two n-cells: for any /c-cell C (k < n — 1), let Z"~t_1 (C) be the
union of the /-cells ( / < n — k — 1) that are in the frontiers of the n-cells having
C in their frontier but the closures of which do not meet the closure of C. Then
(X, T) is a manifold (without boundary) in Veblen's sense if, for all k < n — 1
and all /c-cells C, Z"~k~l (C) is homeomorphic to the sphere S„_fc_j.

However, since (as Poincaré had shown in his fifth Complément) the
homology of a sphere is not enough to characterize it up to homeomorphism, it was
not possible to verify Veblen's condition by purely combinatorial means, and,
in particular, it was not at all obvious that it would be satisfied by a triangu­

* Of course, to be sure that this definition is meaningful, one has to invoke Brouwer's
theorem on the invariance of dimension (Part 2, chap. II, § 1).
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lated Cr-manifold, so that the proof of Poincaré's duality theorem for these
manifolds, given by Veblen, could not be considered as conclusive. This
observation was first made in print by Vietoris in 1928; he therefore proposed
to consider only what he called h-manifolds, defined by induction on the
dimension in the following way: such a manifold is a compact n-dimensional
simplicial complex (X,T) for which the frontier of the star of each vertex of T
is an (n — l)-dimensional h-manifold with the homology of S„_l. A similar
(unpublished) observation was made by Alexander, who proposed to weaken
Veblen's condition by requiring only that the Z"~t_1 (C) be cell complexes with
the same homology as Sn_fc_,. This definition was adopted by Lefschetz in
1929 and by most of the later writers under the name of combinatorial

manifolds; it is easily shown that they are the same as Vietoris' h-manifolds.

B. Computation of Homology by Blocks

We have seen in §3 that after Poincaré it was essentially known that the
homology of a cell complex is naturally isomorphic to the homology of a
simplicial subdivision of the complex. But if one starts with a simplicial
complex (X, T) and regroups simplices into "blocks" [as in Poincaré's
construction of "dual cells" (chap. I, § 3)], it is useful to know conditions that allow
the computation of the homology of the complex to be performed by using
only these "blocks" of simplices.

This question was analyzed by Seifert and Threlfall in their book [421].
They defined a system of blocks by giving, for each p ^ 0, a basis of the
Z-submodule Kp of the (free) Z-module Cp of p-chains of T, satisfying for each
p > 0 the two following conditions (where as usual Zp and Bp are the sub­
modules of cycles and boundaries in Cp):

l.bpKp = Kp_,nBp_,;
2. Zp = (Kp n Zp) + bp+1 Kp+1.

This implies that Zp = Bp + (Kp n Zp), hence, for the homology groups

Hp = Zp/Bp ~ (Kp n ZP)/(KP n Bp) = (Kp n Zp)/bp+1 Kp+1. (17)

In other words, (Kp) is a chain complex for the same boundary operator as
(Cp), and the homology of (Kp) is isomorphic to the homology of (X, T). This
is useful not only for proving Poincaré duality (see below), but also for
practical computation of homology modules for explicitly given complexes.

C. Poincaré Duality for Combinatorial Manifolds

The simplest proof of Poincaré duality for an oriented combinatorial manifold
X with a simplicial triangulation T is the one described by Pontrjagin ([374],
p. 186). He considered the barycentric subdivision T' of T, and "regrouped,"
as did Poincaré, the simplices of T' into "dual cells," forming the dual
triangulation T* of T. Any such "dual cell" E of dimension k has a frontier F
such that the pair (E, F) has the same relative homology (§6) as the pair
(Dt, Sfc_j ) consisting of the unit ball Dt in Rfc and its frontier St_,. This follows
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from the definition of combinatorial manifolds, and implies that the "dual
cells" of T* form a system of blocks with which one may compute the
homology of X: only condition 2 of B needs a proof, which can be done most simply
by descending induction on the dimension k ([421], p. 235). It is still necessary
to check the relation between the incidence matrices of T and of T*, but this
follows easily from the definitions.

The proofs of Vietoris and Lefschetz ([304], pp. 135-140) are similar: start
from a combinatorial manifold X, whose triangulation T into "cells" is related
to a simplicial triangulation T' by the fact that each "cell" is the star of a vertex
of T' (the center of the star), and T' is the barycentric subdivision of T. Then
assume that the frontier of a /c-star is a union of stars of dimension ^fc — 1,
that each /c-star, for k < n — 1, is in the frontier of a (k + l)-star, and finally
that the homology of the frontier of a /c-star is isomorphic to the homology
of St_!. This implies, as in the particular case of a simplicial complex, that the
"dual" cells obtained by the Poincaré construction have the same properties,
and the Poincaré duality follows as before.

In their 1934 book Seifert and Threlfall showed that it is possible to replace
in this proof the definition of combinatorial manifold by a definition
independent of the triangulation: it is enough to suppose that the compact space X is
triangulable and that it is an n-dimensional generalized manifold in the sense
defined in 1933 by Lefschetz [306] and Cech [122] (Part 2, chap. IV, §3);
here this simply means that for any xeX, the relative homology (§6)
H?(X,X — {x}H;Z) is 0 for q # n and isomorphic to Z for q = n ([421],
pp. 236-241).*

The duality theorems proved by Lefschetz and Cech in these papers of 1933
applied to generalized manifolds that were not necessarily triangulable, and
therefore had to be proved by other methods (see Part 2, chap. IV, §3).

D. Intersection Theory for Combinatorial Manifolds

When Poincaré's construction of "dual cells" is possible, it is easy to extend
in a "cell complex" X his definition of the "Kronecker index" N(Vj, V2) (chap.
I, §2) to a "Kronecker index" N(ap, o*_p), where ap is a p-cell of the complex
and b*_p its dual cell, both oriented: one transcribes the definition of Poincaré
using the oriented vector spaces that are the directions of one of the simplices
constituting ap (resp. b*_p) with vertex at the intersection of ap and b*_p ([369],
p. 242). This was done in 1923 by Veblen and Weyl [484], Assuming that the
homology of X could be computed by using both the given "cell complex"
and its dual, they defined in that way a bilinear form on the product Hp x H„_p
of the homology modules, and this form determines a duality between Hp and
H„_p. Actually there was very little to add to Poincaré's arguments to reach
that conclusion, and it is a bit surprising that he did not do it himself, even
taking into account the clumsy character of the linear algebra he had at his
disposal.

* These conditions are satisfied by C manifolds for r > 1.
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The papers by Alexander and Lefschetz on intersections, which date from
about the same time as those of Veblen and Weyl, are much more ambitious.
Both authors started their mathematical careers in algebraic geometry, which
Alexander abandoned almost immediately in favor of topology. Lefschetz, on
the contrary, kept a continued and vigorous interest in the topic for more than
30 years, and we shall see later (Part 2, chap. VII, § 1,B) how, by expanding
the ideas of Picard and Poincaré, he "planted the harpoon of algebraic
topology into the body of the whale of algebraic geometry," to use his own
words ([296], p. 13). But it should be emphasized here that if in the hands of
Lefschetz algebraic geometry was transformed by this injection of algebraic
topology, the latter, as we shall see presently and later, received from him
impulses inspired by algebraic geometry just as valuable as the ones it gave
in return (see [435]).

In the type of algebraic geometry begun around 1870 by Clebsch, Brill, and
M. Noether and followed by Halphen, Picard, Humbert, Zeuthen and the
Italian school, algebraic subvarieties of a complex projective space and
algebraic families of such varieties were a fundamental tool. Under ill-defined
conditions, for two subvarieties V, W of a third variety X, the combinations
V + W, V — W, fcV (for an integer k) were considered as subvarieties (or
"virtual" subvarieties) when V and W have the same dimension, as well as the
"product" V. W when dim V + dim W > dim X; in the best cases V + W
would be the set-theoretic union and V. W the set-theoretic intersection, but
the complexity of the general definitions ruled out any possibility of dealing
with varieties (or classes of "equivalent" varieties in some sense) as elements
of a group or a ring. We may wonder if Poincaré was not inspired by these
would be algebraic operations when he introduced his "chains" of varieties in
algebraic topology. At any rate this analogy was central in Lefschetz's early
work, and Poincaré's algebraic manipulations probably appealed to him more
than the complicated geometric constructions of the Italians; following ideas
of Picard he combined algebraic and topological arguments in an original
way and obtained remarkable new results (see Part 2, chap. VII, §1,B); but
since he was as reckless as Poincaré (and the Italians) in his use of "intuition,"
none of these results could be supported at that time by a convincing proof,
which he and others could only supply 10 years later.

When Alexander and Lefschetz shifted their investigations to cell complexes
and combinatorial manifolds, they naturally were led to generalize the concept
of intersection to arbitrary cycles. But Alexander did not make any effort to
clarify nor even to define that concept, which apparently he considered
"intuitive" enough; his short notes on the subject [13] were only bent on showing
by examples that the formulas giving intersections of cycles on two manifolds
X, Y could be essentially different* even if the homology modules of X and Y
are isomorphic.

* In today's terminology, the intersection rings (or cohomology rings) of X and Y are
not isomorphic. Other examples were given by de Rham ([388], p. 104).
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Lefschetz took the matter much more seriously. Although at first he did not
express it in this form, what he needed was, for an n-dimensional compact,
connected, and oriented combinatorial manifold X, and for any two integers
p, q such that 0 < p, q < n, a bilinear mapping

{zp,zq)h^zp.zq

of Hp x Hq into Hp+q_„ (replaced by 0 if p + q < ri), such that

z,.z, = (-l)("-')("-'Vz, (18)
and

{zp.zq).zr = zp\zq.zr) (19)
for any three integers p, q, r in [0, n]. Of course, when zp and zq are homology
classes of cycles that are submanifolds and whose intersection is a (p + q — ri)­
dimensional submanifold, the homology class of that submanifold should be
zp. zq up to sign; furthermore, when q = n — p, zp. z„_p is a scalar multiple Âz0
of the homology class z0 of any point of X, and the scalar X should be the
"Kronecker index" defined by Poincaré, which Lefschetz wrote (zp.z„_p).

We shall see later (chapter IV, §4) that once cohomology was introduced,
it was easy to define the products zp. zq for manifolds using the "cup-product"
of Whitney; here therefore, we shall only give a sketchy description of the
direct methods which Lefschetz initially used in [300] and [301] to define the
products zp.zq.

His idea was to consider singular cycles Cp, Cq having, respectively, zp, zq
as homology classes, and deduce from them a (p + q — n)-singular cycle
having zp. zq as homology class. As could be expected, all he could actually
do was to define a whole family of singular cycles, all homologous to each
other, by a fairly complicated approximation process, of which he published
two variants.

Both variants start with the definition of the oriented intersection "product"
P. Q of two oriented convex polyhedra of respective dimensions p, q contained
in a third one R of dimension n with p + q ^ n; P, Q, R are open in the
respective linear affine varieties VP, VQ, and VR they generate. If P n Q = 0,
take P. Q = 0; otherwise, P. Q is only defined when VPn VQ has dimension
s = p + q — n; P n Q is then a convex polyhedron open in VP n VQ, and there
is a way of assigning to VP n V0 an orientation canonically dependent on those
of VP, VQ and VR;* P.Q is then the convex polyhedron PnQ with that
orientation, and

Q.p = (-l)("-p)("-«)p.Q. (20)
When P and Q satisfy all these conditions, they are said to be "in general
position."

* Orienting an n-dimensional vector space means choosing a decomposable n-vector
spanning that space. Let u, v, w be decomposable multivectors orienting the directions
of VP, VQ, Vr; then w defines a "regressive" product u v v, and that s-vector orients the
direction ofVPn VQ.
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Now let X be an n-dimensional euclidean simplicial complex, which is a
compact, connected, oriented combinatorial manifold with triangulation T. If
C0 is a p-chain and Co is a a-chain of T, the "intersection product" C0. C'0 can
be defined by linearity provided that when a p-simplex of C0 and a a-simplex
of Co have a nonempty intersection, they are contained in the closure of the
same «-simplex of T and are in general position; C0. C0 is then a (p + q — n)­
chain.

Now suppose C is a singular p-chain and C is a singular a-chain on X. Their
geometric intersection is by definition the intersection of their images in X;
assume that p + q > n, and that the geometric intersections of C with b,C'
and of bpC with C are empty. The general idea is, after suitable subdivisions
of T, C, and C, to apply to C and C a refined (and somewhat complicated)
version of the Alexander approximation process (§ 3), in order to obtain a
p-chain C0 of T and a a-chain C'0 of T which satisfy the above condition and
are such that bpC0 n C0 = C0 n b?C0 = 0. In his first version [300] Lefschetz
had to introduce an additional condition on chains C0 and C0 in "general
position" in order to ensure that the relation

b,(Co.Co) = bpCo.Q + (-ir'C0.b,C0 (21)
holds; when the above condition on the boundaries of C and C is added the
approximation process yields an s-cycle C0C0. He could then easily show
that the homology class of that cycle did not depend on the approximation
used as long as that approximation deformed the singular chains by an
amount smaller than a fixed quantity depending only on T, C, and C.

In the second variant [301] he had the idea of using the "intersection
product" P. Q of oriented convex polyhedra only when Pisa p-cell of a (not
necessarily simplicial) triangulation T of X, and Q is a a-cell of the dual
triangulation T*. There is then no need to suppose "general position" for P
andQ:automatically,either PnQ = 0 or P n Q is a (p + q — n)-dimensional
convex polyhedron, and the application of the approximation process is
greatly simplified.

However, in both variants, it is still necessary to prove that the homology
class zp.zq obtained is also independent of the triangulation chosen on X, and
in both cases this necessitates a long and complicated argument.

Today the properties of the intersection products zp. zq are expressed by
saying that they define, by linearity, a structure of (associative and anti­
commutative) ring, on the direct sumH.= © Hp (22)

0=Sp=Sn

of the homology modules, and that this ring is an invariant of the complex X
under homeomorphism. It is a curious reflection on the clumsiness of algebra
before van der Waerden that this formulation, which seems so obvious to us,
was only given by Hopf in 1930 [242] (perhaps again under the influence
of E. Noether). Alexander and Lefschetz, in the case of homology over the
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rationals, picked up bases (zP) in each Hp, wrote out the expressions of the
intersection products

k

and then limited themselves to saying that the systems (a^) of rational numbers
are "tensors" invariant under homeomorphisms!

§ 5. Homology of Products of Cell Complexes

Even the cartesian product of two arbitrary sets (excepting of course subsets
of the R") was not a notion in common use at the end of the nineteenth century
(although it had been explicitly defined by Cantor). Only among algebraic
geometers did it occasionally occur, for instance when Cayley considered the
product of two algebraic curves or C. Segre the product of two complex
projective spaces of arbitrary dimension; then these products were
immediately given a structure of algebraic variety. The first mathematician who
introduced the concept of a topological space, product of two given
topological spaces, was apparently Steinitz in 1908 [456], but the investigation of the
relations between the topology of the two factor spaces and the topology of
their product was only begun independently by Kiinneth ([289], [290]) and
Lefschetz [301] in 1923.

Both limited themselves to euclidean (rectilinear) compact connected cell
complexes; actually, once the invariance problem had been solved (§3),
computation of the homology of X x Y for two such cell complexes X, Y was an
exercise in elementary linear algebra; for simplicity we shall describe it in the
algebraic language of today. From the given triangulations T(X), T(Y) of X
and Y into convex polyhedra (not necessarily simplices) a similar triangulation
T(X x Y) is derived by taking all products A x B for A e T(X) and B e T(Y),
and the Z-module SP(X x Y) of p-chains of T(X x Y) is just the direct sum

S,(XxY)= 0 (St(X)®Sp_t(Y)). (24)
o=st<p

Now the "reduction" of Poincaré's incidence matrices amounts to a
decomposition

Sp(X) = Zp(X)©Fp(X) (25)
into a direct sum of two submodules such that the boundary map bp is 0 in
ZP(X) and is an injection FP(X) -»• Zp_, (X) in Fp(X); by the theory of invariant
factors there are bases (ep_, ) of Zp^ (X) and (/p') of FP(X) such that for those
bases the matrix of bp considered as an injection of FP(X) into Zp_( (X) is the
matrix (pu) defined in chap. I, § 3, after removal of the zero columns. Now for
the boundary map in T(X x Y), if A is a fc-cell of T(X) and B is a (p — fc)-cell
ofT(Y),

bp(A x B) = btA x B + (- l)fc A x bp_tB. (26)
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As Sp(X x Y) splits into a direct sum of the Z-modules

Ft(X)®Fp_t(Y), Ft(X)®Zp_t(Y), Zt(X)®Fp_t(Y),

Zt(X)®Zp_t(Y)

for 0 < k ^ p, the matrix of bp: Sp(X x Y) -»• Sp_j(X x Y) splits accordingly
into blocks, all of which are trivially written down immediately, with the
exception of the matrix of

bp: Ft(X) ® F,_t(Y) - (Zt_,(X) ® Fp_t(Y)) © (Ft(X) ® Z^^Y)); (27)

but the "reduction" ofthat matrix is at once brought down to the "reduction"
of 2 x 2 matrices. One thus obtains a regular algorithm for computing the
homology modules of X x Y when one knows those of X and Y; in particular,
one has for the Betti numbers the "Kiinneth formula"

op(XxY)= X MX)/vt(Y) (28)
from which one deduces at once for the Euler-Poincaré characteristics

X(X x Y) = z(X)z(Y). (29)
It is just as easy to compute the intersection ring of X x Y when X and Y

are oriented combinatorial manifolds; from formula (26) it follows that the
cartesian product of two cycles is a cycle; if we denote by zp x z'q the homology
class of the cartesian product of a cycle of class zp in X and of a cycle of class
z'p in Y, then

(zk x z'p-k).(uh x u;_„) = (zt.u„) x (z;_t.u;_„). (30)

§ 6. Alexander Duality and Relative Homology

Until 1920 homology had only been defined for finite cell complexes
(connected or not). In a remarkable paper [11] published in 1922 (the first draft
of which goes back to 1916) Alexander broke new ground by considering the
homology of open subsets of an R"; at the same time he showed how the
Brouwer theorems, proved by him without reference to homology (Part 2,
chaps. I and II), could be inserted into the theory of homology and extended
in that way.

He considered a subspace of a sphere S„ (n > 2), which is a compact
(connected or not) curvilinear cell complex X of dimension m < n (for instance, a
closed Jordan curve, for n = 2 and m = 1). He first had to define the
homology of the open set S„ — X. Alexander did not do this formally, but considered
a simplicial subdivision T of S„ and the sequence of triangulations 1} obtained
by successive barycentric subdivisions of T; p-chains of S„ — X are then
p-chains of any 1} that are linear combinations of p-simplices contained in
S„ — X. In order to add a p-chain C of 1} and a p-chain C of Tt for k > j (both
combinations of p-simplices contained in S„ — X), he replaced each simplex
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in C by the sum of the simplices of Tt into which it is decomposed. (Actually
Alexander worked in homology mod. 2, in which he did not have to bother
with signs.) Boundary operators and homology are then defined as usual, but
a priori the homology modules might not be finitely generated.

Another equivalent method is to define the homology of an arbitrary open
subset U of R" by an extension of the concept of triangulation for such a set:
this time it means a locally finite partition T of U into cells of various
dimensions, with the condition that the frontier of any cell of T is a finite
union of cells of T of strictly lower dimension;* more generally, from now on
we shall call a space equipped with such a triangulation a cell complex. The
p-chains are then defined as linear combinations of a finite number of cells of
T, and boundaries and homology are defined as for finite cell complexes [30],
Alexander's remarkable result was that if X c S„ is a finite curvilinear cell
complex, all Betti numbers (mod 2) of S„ — X are finite and satisfy Alexander
duality

dimH/,(X;F2)=dimH„_/,_1(S„-X;F2) for 1 s? p s? n - 2, (31)

dimH0(S„ - X;F2) = dimH11_1(X;F2) + 1,

dimH.,_1(S„-X;F2) = dimH0(X;F2)- 1 (32)
[with HP(X;F2) = 0 by convention when p is larger than the dimensions of
the simplices of X],

The very ingenious and rather intricate proof relies on splitting X into a
union of two (curvilinear) cell complexes Y, Z, and , from the knowledge of
the cases in which X is replaced by Y, Z or Y n Z, to deduce the result for X:
a typical "Mayer-Vietoris" procedure (although, as we have seen in §2, the
papers of Mayer and Vietoris were only published 7 years later). This is applied
in three steps, each one using the results of the preceding one.

The first step concerns the case in which X is homeomorphic to a closed
cube of any dimension m ^ n; then it is shown that Ht(S„ — X) = 0, except
for k = 0 [a generalization of Brouwer's "no separation" theorem (Part 2,
chap, II, §4)], The procedure consists in an induction on m, splitting X into
two half cubes and using contradiction, by an infinite iteration of the splitting
into cubes with diameters tending to 0, The second step is devoted to the case
in which X is homeomorphic to a sphere Sm; induction on m, splitting X into
two closed hemispheres with an intersection homeomorphic to Sm_j, to each

* To prove the existence of such a triangulation for an arbitrary open subset U of R",
one may consider the closed n-dimensional cubes of R" having as vertices the points
of 2~*Z", and 2~k as lengths of their edges; let Ck be the set of those cubes contained
in U, and C'k the subset of Ck consisting of cubes having no common interior point
with the cubes of Cfc_, ; the triangulation T is obtained by decomposing each cube
belonging to the union of the C'k for all integers k ^ 1 into disjoint open cubes of all
dimensions <n. This method was already used by Runge in R2 ([30], p. 143); it was
considered as well known by Brouwer ([89], p. 316).
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of which the first case can be applied. This already contains as a particular
case the Jordan-Brouwer theorem (Part 2, chap. II, §3) for m = n — 1.

The general case (for which X may be taken as a curvilinear simplicial
complex) is treated in the third step, by a double induction on m = dim X and
on the number of simplices of maximum dimension m in X. Write b'p{X) =
dim HP(X;F2) for simplicity. First split X into the union of the closure Y of
one m-simplex and the closed complement Z of that simplex and prove that

op(X)=o;(Z) and Vn_p_x(S„ - X) = &„'_„_,(S. - Z) for p < m - 2. (33)

By induction, assume that

b'Jft - fei-, (Z) = &„'_„._,(S„ - Z) - o„'_m(S„ - Z) (34)
and show that

bm(X) - om_, (X) = ^_m_, (X) - K_m(X) (35)

[add 1 on the right-hand sides of (34) and (35) when m = n — 1]. Finally, after
having split off all simplices of dimension m, one gets a cell complex Z0
of dimension ^m — 1; the induction hypothesis shows that 0 = »„(Zq) =
^n-m-i(S„-Z0) and om_,(Z0) = ^_m(S„ - Z0). The final step consists in
proving that b'm{X) = b^m.1{Sn — X) (with 1 added on the left-hand side if
m = n — 1) by looking at the {m — l)-simplices of Z0 and at the m-simplices
of X of which these {m — l)-simplices are faces; finally/^.[(X) = o^_m(S„ — X)
by (35).

At the end of the paper Alexander observed that relations (31 ) and (32) yield
a third proof of the independence of homology from the triangulation used
to compute it, since the triangulations of X and of S„ are independent of each
other.

Alexander's paper was, on one hand, the starting point of investigations by
several mathematicians (Vietoris, Alexandroff, Lefschetz, Pontrjagin, Cech)
aiming at generalizing homology modules to spaces other than compact
complexes or open subsets of R"; we shall describe these developments in chap.
IV, §2.

On the other hand, it led Lefschetz to introduce the new and important
concept of relative homology. In his first publication on that subject [302] he
introduced this notion for homology with rational coefficients and for very
general spaces, thus linking with the generalizations we just mentioned. In his
book [304] Lefschetz separated the homology of finite cell complexes from
its generalizations and allowed coefficients in Z, Z/mZ, or Q. If K is a finite
euclidean simplicial complex, L is a union of simplices of K, the boundary
bLC of a chain C of K relative to L (or mod L) is the sum of the simplices of
K in the expression of bC that are not contained in L, so that a p-chain C of
K is a cycle mod L (resp. is homologous to 0 mod L) if its (usual) boundary is
a combination of simplices of L [resp. if there is a (p + l)-chain of K whose
(usual) boundary is the sum of C and of simplices of L]; hence, the definition
of the homology modules of K mod L, which Lefschetz wrote Hp(K, L). More
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generally, he also gave the corresponding definitions when K is an "open
complex," an open subset of a compact euclidean simplicial complex K' that
is a union of simplices of K'.

With these definitions Lefschetz first considered the case in which K is an
n-dimensional euclidean simplicial complex, and L is a subcomplex of K
(which is automatically closed in K since the faces of a simplex of L have to
be in L). He then proved that the homology of K mod L only depends on the
topology of K — L (first appearance of what later will be called "excision");
for that purpose he adapted the homotopy process used by Alexander in his
first proof of invariance (§3) in such a way that a singular chain having its
frontier in L is deformed into another chain whose frontier remains in L
([304], p. 86). Lefschetz also investigated the relations between the homology
of K, the homology of L, and the homology of K mod L ([304], pp. 149-150),
which later took their final form in the exact sequence of relative homology
(chap. IV, §6,B).

Supposing that K — L is also an orientable combinatorial manifold,
Lefschetz first generalized to the homology of K mod L the Poincaré duality.
He denoted by K* the union of the duals of the simplices of K that are not
simplices of L; then he showed that K* is a compact simplicial complex, and
that its incidence matrix of (n — p)-chains and (n — p — l)-chains is, up to sign,
the transpose of the incidence matrix of the (p + l)-chains and p-chains of
K- L.

From this he was able to deduce, by an entirely different method, Alexander's
duality theorem, at least in the special case in which L is a subcomplex of S„
[for a suitable (curvilinear) triangulation of S„] by showing that in this case
the relative homology module HP(S„, L) is isomorphic to the "absolute"
homology module Hp_, (L) for 1 < p < n, by an argument that again is essentially
part of the exact sequence of relative homology ([304], pp. 143-144).

Finally, Lefschetz took up the more general situation in which L, <= L are
two subcomplexes of K, and by a more refined argument, he can show that if
L2 = L — L., then for the Betti numbers

op(K-L1,L2)=o.,_p(K-L2,L1) (36)
and a corresponding relation holds for the torsion coefficients ([304], pp. 141­
142).



Chapter III

The Beginnings of
Differential Topology

§ 1. Global Properties of Differential Manifolds

We have seen (chap. I, §2) that Poincaré already had a conception of n­
dimensional manifolds of class Cr (r integer ^ 1 or oo) and of analytic
manifolds (sometimes called Cw manifolds) which was essentially the modern one.
In papers dealing with such a manifold X, it was usually assumed that in
addition X was a submanifold of some RN, with the Cr (or C) structure
induced by the canonical structure of RN: each point of X has a neighborhood
V in RN such that V n X is defined by the annulation of N — n C (resp.
analytic) functions defined in V and having a jacobian matrix of rank N — n
at each point. Until 1935 nobody seems to have tried to prove the existence
of such an "embedding" for a manifold "abstractly" given by a system of charts
and transition homeomorphisms; nor, for that matter, had anybody studied
global properties of such embedded manifolds, except in relation to special
connections defined on X (mostly Riemannian structures).

The proof of the most basic results of the theory of differential manifolds
was the work of a single man, Hassler Whitney (1907- ). In his papers
([506] and [507]) of 1936 (announced in the note [504] of 1935), he broke
entirely new ground. He distinguished immersions (called by him "regular
maps") as Cr-maps such that the tangent map is injective at every point, and
embeddings, which are injective immersions. His first theorem was that for any
connected m-dimensional Cr manifold M, there is a Cr immersion of M into
R2m, and a proper embedding (i.e., one for which the inverse image of a compact
set is compact) of M in R2m+1,* The idea of the proof, for a compact manifold
M, was to cover M by a finite number of open sets II (1 =$ j' ^ h) that are
domains of charts cp/. U,- -»• Rm. The map / = (<p,, q>2,..., cph) is then an
immersion of M into RAm, going down to R2m or R2m+1 by suitable projections
of/(M) into these spaces. If M is not compact, M is exhausted by an increasing
sequence (Vfc) of relatively compact open subsets; the immersion is then defined

* Later Whitney was able to show that there is even an embedding of M into R2m; the
proof is long and difficult [515],
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inductively on each Vt. Whitney added the remarkable (and more difficult)
result that the image of M by the Cr embedding may be chosen as an analytic
submanifoldofR2m+1.

In the very ingenious proof of that theorem Whitney introduced what was
to become one of the most useful notions in the theory of differentiable
manifolds: the concept of tubular neighborhood. Given an m-dimensional Cr
manifold M embedded as a closed submanifold in an n-dimensional manifold
V, there exists an open neighborhood T of M in V (a "tube") and a surjective
Cr map 7t : T -»• M (a "projection") such that:

1. 7u(x) = x for all x e M;
2. the sets 7c_1 (x), when x takes values in M, are disjoint, and each of them is

Cr-diffeomorphic to an open ball in R"~m;
3. for any x e M, there is an open neighborhood U of x in M such that there

exists a Cr-diffeomorphism cp: U x B -»• 7r-1(U) with n(<p(y, b)) = y for y e
U, where B is an open ball in R"~m.

These conditions can be expressed by saying that T may be identified with
the normal vector bundle of M in V, a notion which Whitney actually defined
in a companion note presented to the Academy on the same day (see Part 3,
chap. Ill, §1).

As an example of the use of tubular neighborhoods the Weierstrass
approximation theorem for continuous functions can be generalized in the following
way: if K is a compact subset ofaCr manifold X, and/: K -»• Y is a continuous
map of K into a Cr manifold Y, then, for a distance d defining the topology
of Y, and for any £ > 0, there is an open neighborhood U of K in X and a Cr
map g of U into Y such that d(f(x), g{x)) =$ v. for all x e K. One is immediately
(by the embedding theorem) brought back to the case X = Rm, Y = R"; given
a tubular neighborhood T of a relatively compact open neighborhood V of
/(K), the Weierstrass theorem shows that there exist n polynomials h}- in m
variables such that, for h = (ht,..., h„) one has d(f(x), h(x)) =$ <5, where ô =$ e/2
is such that the points at a distance =5(5 of f{K) belong to T; the function
g(x) = n(h{x)) is the required one. Furthermore, all maps g:K-*Y such that
d(f(x), g(x)) =$ e/2 in V are homotopic to /; if the restrictions off and g to the
interior K are of class Cr, the homotopy between /and g may be taken of class
CinRx ]0,1[.

During the next few years, these useful results were completed, first by the
introduction of Cr partitions of unity, which, for any open subset U of a Cr
manifold X, any closed subset F <= U, and every Cr numerical function /
defined in U, proved the existence of a Cr function g defined in X and such that
g(x) = /(x) in F; partitions of unity also made possible a very simple proof of
Stokes' formula [52]. The use of partitions of unity easily gives a
generalization of the approximation theorem mentioned above, when the set K is any
closed subset of X.

Another property that was much used later is Sard's theorem [407]: if X, Y
are two Cr manifolds, the critical points of a Cr mapping /: X -»• Y are the
points x e X such that the tangent mapping Tx(f): TX(X) -»• T/(JC)(Y) at that
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point is not surjective; the theorem states that if r > n/p, where n = dim X and
p = dim Y, the image /(E) of the set E <= X of the critical points of / is a null
set [which implies that Y — /(E) is everywhere dense, which is the most often
applied corollary of the theorem].*

§2. The Triangulation of C1 Manifolds

Ever since the publication of Poincaré's papers of 1899-1900 the existence of
triangulations on differential manifolds and on algebraic varieties had been
open problems. They were solved almost simultaneously for algebraic
varieties by van der Waerden [478] and Lefschetz [304]; the latter even extended
his result to analytic varieties (see Part 2, chap. VII, § 1).

For C manifolds the first correct proof of the existence of a C triangulation
was announced in 1930 by Cairns [96], and published in detail in 1934 [97];
he only considered closed submanifolds M of some space R" (which turned
out not to be a restriction after Whitney's embedding theorem). Later Brouwer
([88] pp. 453-458), Freudenthal [204], and J.H.C. Whitehead [497] published
modifications of Cairns' proof (Brouwer's proof having the peculiarity of
having been written in conformity with the principles of intuitionism). The
most perspicuous of these variants is probably the one inserted by Whitney
in his book on Geometric Integration Theory ([516], pp. 124-135). He
considered a triangulation T of R" in sufficiently small euclidean simplices alk,
where alk has dimension k, with the following properties:

l.Mnff'= 0iflc<s=n- dim M; hence M n Fr(<rj:) = 0.
2. M n o-j has at most one point.
3. The angles between the tangent space to M at the unique point of M n <js'

(when this set is not empty) and the linear s-dimensional linear variety of
R" generated by als are not too small.

Then, for k ^ s, Whitney proved that the sets M n o[ that are not empty
are "almost" convex polyhedra, and that they are all contained in a tubular
neighborhood U of M in R". The projections, by the map n: U -»• M, of the
closures of the simplices meeting M then yield the required C1 triangulation
of M.

§ 3. The Theorems of de Rham

Between Poincaré's brief mention of their "periods" in Analysis Situs (chap. I,
§2) and 1920 nobody seems to have investigated the global theory of exterior
differential forms. E. Cartan used them extensively during that time in his

* Less precise forms of Sard's theorem had earlier been obtained by A.B. Brown [90],
A. Morse [352], and Whitney. The latter also gave an example of aC' map of R2 into
R, such that the image of the set of critical points ofthat map is the whole interval [0,1].
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papers on Lie groups and on Pfaff systems but only for local theorems; it was
only in 1922 that he wrote a book on Integral Invariants [104] where global
properties began to be considered. In particular, he proved that in a space R"
any closed C1 p-form is the exterior differential of a (p — l)-form, a fact that
was classical for p = 1; he called that result "the converse of Poincaré's
lemma," but, in fact, unknown to Cartan it had already been proved (in a
different language) by Volterra in 1889 (Opere matematiche, vol. I, pp. 407­
422). In the same book Cartan noted that the result could not be generalized
to an arbitrary differential manifold, since on the sphere S2 every 2-form is
closed but it is not always the exterior differential of a 1-form.

Cartan's interest in topology was aroused a little later by the fundamental
papers of Weyl in 1925 inaugurating the global theory of Lie groups. One of
the key results proved by Weyl was that the fundamental group of a compact
Lie group is finite, enabling him to use integration theory on arbitrary
compact Lie groups. This was the spark at the origin of the wonderful series of
papers that Cartan published between 1927 and 1935 on the global theory of
Lie groups and homogeneous spaces, in which the topological properties were
in the foreground [98]. It was certainly quite natural for him to again try to
use in these researches the exterior differential forms on a C1 manifold that
had become through the years a kind of "trademark" of his papers. It is
probable that when he became acquainted with homology he was struck by
the analogy between the formula bp_j o bp = 0 for boundary operators, and
the formula d{dco) = 0 for exterior differential forms. At any rate, pursuing the
analogy in order to prove the theorems he had in mind for compact Lie groups,
he was led to consider, for each integer p^O, the maximum number of closed
p-forms coj such that no linear combination £; A/0*;» with real coefficients k3
not all 0, should be exact; and he conjectured that for an oriented C1 manifold
M of dimension n, that number is equal to the Betti number bp of M.

Now, there is a natural bilinear map

(c, co)i—><c, co> = co (1)
where c runs through the p-cycles of a C1 triangulation* of M and co through
the closed C1 p-forms on M; and Stokes' formula shows that <c,co> = 0 if
either co is exact or c is a boundary. Assuming the Betti numbers of M are
finite, the proof of Cartan's conjecture boils down to two results:

I. If the closed form co is such that <c, co} = 0 for all p-cycles, it is exact.
II. If the p-cycle c is such that <c,cu> = 0 for all closed p-forms, it is a

boundary.

In 1928 Cartan published a Comptes-rendus note [101] conjecturing (in a
slightly different but equivalent formulation) the truth of these two results. At

* Both Cartan and de Rham explicitly assumed that such a triangulation exists.
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that time de Rham was working toward his thesis, and after reading Cartan's
note he very quickly saw that he could prove theorems I and II. Starting with
a C1 triangulation T of M, his method consisted in considering the dual
triangulation T* (chap. I, § 3); letting a'q be the q-cells of T, and A'„_q be the
(n — q)-cell of T* dual to a'q, de Rham first showed that he could construct for
each Ajq an open set D(A{), diffeomorphic to an open ball in R", such that:

1. D(AJlJ) is contained in the interior of the union of the closures of the n-cells
having a'n_q in their boundary.

2. If A^_! is contained in the boundary of A{, D(A*_j) is contained in D(AJlJ).

Next he defined for each AJq what he called an "elementary form «(A^)"
associated to that cell: an (n — q)-form on M, vanishing outside D(AJlJ), and
such that:

1. If b,(A>) = Yk XJkA*_,, then d{œ{A{)) = £t Âjkco(K-i)•
2. (aq,œ(A{_q)y = (5j; (Kronecker's delta).

Having done this, de Rham proved that any C1 p-form on M can be written
co + d£, where co is a linear combination of elementary p-forms and £ is a
(p — l)-form. From that result it is easy to deduce theorems I and II of Cartan
[389].

Of course, when cohomology was defined (chap. IV, § 3), it was quite clear
that, on a smooth differential manifold, if S'P(M) is the vector space (over R)
consisting of the Cœp-forms on M, the exterior differentials

^:<fp(M)-.fp+1(M)

define a cochain complex (Sp(M))p^0, hence cohomology vector spaces HP(M).
Similarly, if 3)p{M) is the subspace of (fp(M) consisting of compactly supported
p-forms, the restrictions dp\@>p{M) define another cochain complex (@p(M))p^0,
hence other cohomology vector spaces Hf (M). Finally, if M is oriented, the
bilinear map

(Ä«)
ß a a (2)

defined in 3$n_p{M) x <fp(M), can easily be shown to establish a duality
identifying HP(M) with the dual vector space (H""'')*. After 1950 the relations
between these spaces and other cohomology modules were put in a more
general context by the theory of sheaf cohomology (chap. IV, §7,E).

De Rham himself did not try to translate his results in cohomological
language before 1950, but from 1935 onward he tried to define new objects
that would include both p-forms and p-chains as special cases; he called them
p-currents by analogy with electric currents, which can be represented by 1­
chains when they consist of electricity flowing through a net of thin wires, and
by 2-forms when the current is a flow of electric charges in a three-dimensional
body, and the 2-form defines the flux of these charges through an element of
surface. At first de Rham limited himself to what he called elementary p-currents
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on an n-dimensional Cœ manifold M: he considered the pairs (cp+k, cak), where
cp+k is a C° (p + /c)-chain and cok is a Cx /c-form (k being any integer such that
0 ^ k ^ n — p); the vector space over R consisting of the formal linear
combinations of these pairs is divided by the subspace generated by the elements
(c, 0), (0, ca), (c' + c", ca) — {c',ca) — (c",co), {c,ca' + ca") — (c, ca') — (c, co"), and
Â(c, eu) — (c, 2cü) for Â e R; the quotient space Cp is by definition the space of
elementary p-currents. Then a linear map bp: Cp -> Cp_! can be defined by

bp.(cp+t,cüt) = (cp+k,dcak) + {-\f{bp+kcp+k,œk) (3)

and it is easy to see that this defines (Cp)p^0 as a chain complex, hence there
are homology vector spaces for elementary currents.

In 1950 de Rham gave a much more general definition of currents, using
the techniques introduced by Sobolev and L. Schwartz in the theory of
distributions [393]. The vector space Sp{X) over R, consisting of the C°°
p-forms on a Cœ manifold X is equipped with a unique topology of Fréchet
space having the following property: in the domain U of any chart of X,
convergence of a sequence (co(v)) of p-forms means that, when co(v) is expressed
in local coordinates, its coefficients as well as their derivatives of any order
converge uniformly in U. The dual S"P(X) is then the space of all linear forms
T on SP{X) that are continuous; it can be shown that for any such linear form
there is a compact set K <= X such that T(co) = 0 for all forms <o having a
support that does not meet K. The elements of S"P(X) are the compactly
supported real p-currents on X; as the exterior differential d: Sp{X) -> S"P+1(X)
is a linear map, continuous for the Fréchet topologies, it has a transposed map
bp+1: (fp+1(X)-> <fp(X), and these maps define a chain complex (S"p(X))p^0,
hence homology vector spaces Hp(X).

Although de Rham did not use the cohomological language, he also proved
in substance that the homology vector space Hp(X) could be identified
naturally with the cohomology vector space H"~P(X) defined by compactly
supported (n — p)-forms when X is an oriented n-dimensional manifold. Indeed,
in that case, integration of n-forms on X enables one to define a natural
injective homomorphism

^..-pPO-^fX)
by the relation

<;,(/?),*> = j j? a« (4)
for each p-form a. This map sends closed forms into cycles and exact forms
into boundaries, and defines a linear map

;*:Hrp(X)-Hp(X). (5)
De Rham proved that this map is bijective by a process generalizing the
regularization of distributions used by Sobolev and Schwartz. More precisely,
he proved a "homotopy formula" (chap. II, §3 and chap. IV, §5,F) for p­
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currents on X: for each p, there exist two sequences of linear maps

Rm: S'P{X) - S'p{X), Am: S'P{X) -> S'p+1 (X)

such that:

1. For each compactly supported p-current S,

Rm(S) - S = Am(bpS) + bp+1 (Am(S)) (6)
and for m ^ m0 (index dependent on S), Rm(S) = jp(ßm) for a compactly
supported (n — p)-form ßm.

2. If S = ;p(a), Am(S) = ;p+1(y) for some compactly supported (n - p - 1)­
form y.

3. For each neighborhood U of the support of S, the supports of Am(S) and
Rm(S) are contained in U for large enough m.

4. Rm and Am are weakly continuous, and for given S, Am(S) tends weakly to
0 when m tends to +00.

Another way to formulate de Rham's result is to say that the cohomology
vector space HP(X) is naturally isomorphic to the dual vector space (Hp(X))*.
In chap. IV, § 6,C, we shall see how de Rham related the vector spaces Hp(X)
to singular cohomology without using sheaf theory.

After 1935 the continuation of differential topology was closely linked to
the development of the ideas of homotopy and fiber bundles, and these will be
taken up in Part 3, chap. IV.



Chapter IV

The Various Homology and
Cohomology Theories

§ 1. Introduction

After 1925 topologists began to look for an extension of the notion of
homology groups, until then restricted to the very special and rather artificial case
of cell complexes, that would have meaning for the most general topological
spaces possible; several such extensions were proposed. The concept of
homology groups was enlarged by taking elements of an arbitrary commutative
group as coefficients of chains; the duality theorems of topology were thus put
in relation with the duality of commutative groups, at first for finite groups
only. But the discovery of Pontrjagin duality for locally compact commutative
groups yielded a method of dealing with general discrete or compact
commutative groups as coefficients. It also gave birth to a trend that was very popular
until around 1950 (although all but later abandoned*), namely, to consider
homology groups as topological groups for suitably chosen topologies and
to use the Pontrjagin theory to express the duality theorems in topology.
Another closely related development inspired by duality was the introduction
of the concept of cohomology and the discovery of the products connected
with it. Algebraic notions thus played an ever increasing part in homology
theories, and after 1940 the mutual interaction of algebra and topology
became the central topic, leading, on one hand, to the axiomatization of
homology theories, and, on the other hand, by a kind of backlash, to the
creation of homological algebra and of the concepts of category and functor.
Finally, a new idea emerged: the group of values taken by cochains of a space
X could vary in X instead of being a fixed group; it is best expressed in the
notion of sheaf cohomology, which, with the attendant algebraic device of
spectral sequences, rapidly conquered many mathematical theories far
removed at first sight from topology.

Until 1940 the topologists who had built up the homology of complexes,

* Witness the most widely used books, dating from the period 1960-1970 such as [5],
[212], [440].

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-45,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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above all Alexander and Lefschetz, were still active in its extensions. They
were joined in the United States by newcomers such as Tucker and Steenrod
(1910-1971), who were students of Lefschetz at Princeton, and Whitney, who
came from Harvard, and who between 1935 and 1940 displayed an
extraordinary production of new ideas in almost any question connected with
algebraic topology, as we saw in chap. Ill and will again observe in Parts 2
and 3. In Zürich Hopf had led a brilliant school since 1931 [Stiefel (1909­
1979), Eckmann, Gysin, Samelson], and in the USSR Alexandroff (1896­
1982), influenced by E. Noether and Lefschetz since 1925, was joined by
Pontrjagin (1908- ), and (for a short time) by Kurosh (1908-1971) and
Kolmogoroff (1903-1987). In Czechoslovakia there appeared a very original
topologist, Cech (1893-1960), but (probably due to the unauspicious political
circumstances) he had no followers. In contrast Brouwer, in the Netherlands,
at last found pupils worthy of him in Freudenthal (1905- ), E.van Kam pen
and Hurewicz (1904-1956).* The latter originally came from Poland; he and
his younger compatriot Eilenberg (1915- ) might have started a school of
algebraic topology there, but by 1939 both were in the United States, where
they brought a new impetus to the American school, especially when Eilenberg
joined forces with the algebraist Mac Lane (1908- ) and created homological
algebra with him. Finally, in England M.H. A. Newman ( 1897-1984), who had
been isolated since he had started working on homology in 1926, acquired
a brilliant student and colleague in the person of J.H.C. Whitehead (1904­
1960). The French school only began in 1945 with Leray (1906- ), Koszul
(1921- ), and H. Cartan ( 1904- ).

Perhaps again as a consequence of World War II and the political turmoil
that preceded it, until 1950 the number of these newcomers to algebraic
topology was not much greater than in the preceding period; it was only
in the postwar generation that the explosion came. With the exception of
Alexander, Lefschetz, and Leray, all topologists named above took an active
part in the first steps of homotopy theory until after 1950, when it was no
longer possible to dissociate it from homology (see Part 3).

§ 2. Singular Homology versus Cech Homology and
the Concept of Duality

As defined by Lefschetz in 1933 [305] the notion of singular simplex in a space
X, which itself was a compact euclidean simplicial complex, clearly did not
use any of these special properties of X, and actually was meaningful for any
topological space X. Lefschetz's definitions, however, had some defects
stemming from the equivalence relations he introduced between the pairs {ep,f)
(chap. II, § 3); the most troublesome was that the Z-module of singular p­
chains was not free. It was only in 1943 that Lefschetz's definitions were

* For a spirited account of life around Brouwer in 1925-1930, see [29].
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slightly modified by Eilenberg [172] to overcome these defects. His definitions
were substantially equivalent to the ones now commonly adopted: if Ap is the
"standard" euclidean simplex, i.e., the set of points (x0, xl,..., xp) in Rp+1 such
that Xj > 0 for 0 <;'^ p and x0 + x1 + ■ ■ ■ + xp = 1, a singular p-simplex in
X is a continuous map s: Ap -> X. The singular p-chains are the elements of
the Z-module SP(X; Z) [also written Sp(X)] of formal linear combinations of
the singular p-simplices in X, with integer coefficients.

Then let a-s be the continuous map oy Ap_, -> A defined by

0j(xO>xl> ■ ■ ■ >xp-l) = (x0> • • • >xJ-l,v,Xj, ■ ■ ■ ,Xp-l). (1)

Define the boundary of a singular p-simplex s by

bps=£(-l)^off,. (2)
j=o

By linearity this defines the boundary of any singular p-chain, and it is readily
verified that these homomorphisms make S.(X) = (Sp(X))p;>0 into a free chain
complex (chap. II, §2); each SP(X) will in general have an infinite basis. The
corresponding homology Z-modules are the singular homology groups
Hp(X; Z) of the space X. In this conception all equivalence relations have
disappeared; these homology groups are shown to be isomorphic to those
defined by Lefschetz by using the homotopy operators which eliminate the
degenerate simplices (chap. II, § 3).

If A is any subspace of X, Sp(A) is a free Z-submodule of SP(X) having a free
supplementary [with basis all the continuous maps s: Ap -> X for which
s(Â~p) <£ A]; hence,

S.(X,A;Z) = (Sp(X;Z)/Sp(A;Z))p>0

is again a free chain complex, the boundary operator being defined bybps = bps (3)
for any class s e SP(X; Z)/SP(A; Z). This yields the relative singular homology
module Hp(X, A; Z). If u: X -> Y is a continuous map with u(A) <= B for subsets
A c X, B c Y, a homomorphism of Z-modules

Sp(u):Sp(X,A;Z)-Sp(Y,B;Z)

can be deduced from it by putting Sp(u)(s) = ü~ö~s. Since these commute with
the boundary operators, they define homomorphisms

«„ = Hp(u): HP(X, A; Z) - Hp(Y, B; Z) (4)
such that, if v. Y -> Z is a continuous map and v(B) <= C, then Hp(t; o u) =
Hp(i;) o Hp(u).

The fact that singular homology was somewhat neglected in the 1930s
apparently arose from the realization of its inadequacy in the attempts at
extension of Alexander duality (chap. II, § 6) to an arbitrary compact set X <= S„
different from S„. This is seen on a simple example given in 1925 by Alexandroff
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[23]: consider in R2 the open set U consisting of pairs (x,y) such that

0 < x < 2/37T, sin 1/x < y < 2;
X is the frontier of U. It immediately follows that U and the complement
of Ü in R2 are connected open sets; hence, H0(R2 — X;F2) s Ff. But any
singular 1-simplex in X has an image that does not meet some open subset V
of X defined by

0 < x < a, y = sin 1/x
for some a > 0 (depending on the 1-simplex); from that it follows that the
singular homology Hj(X;F2) = 0, and the first Alexander relation (32) of
chap. II, §6 is not satisfied.

This independently led Alexandroff [22], Vietoris [475], and Lefschetz
[304] to define other homology modules for compact metric spaces. Their
common starting point was the idea of "approximating" a compact metric
space X in a certain sense by a sequence of simplicial complexes or
combinatorial complexes (chap. II, §2) a device which may be traced back to
Brouwer for compact subsets of R2 ([89], pp. 523-526; see Part 2, chap. I, § 1).

For each £ > 0, Vietoris defined an s-complex (or e-chain) on X to be a linear
combination (with coefficients in Z or F2) of a finite set of combinatorial
simplices (finite subsets of X), each one of which has a diameter «g e. (The
supremum of the diameters of these simplices is called the mesh of the e­
complex.) A Vietoris p-cycle is then a sequence yp = {)>p)„^o °f finite
combinatorial p-cycles (chap. II, § 2), such that; (1) the mesh of yp tends to 0; (2) for
each n, one may write yp+1 — yp = bp+1a£+1, where the mesh of the chain xp+1
also tends to 0. Write yp ~ 0 if there exists a sequence (ßp+i) of combinatorial
(p + l)-chains whose mesh tends to 0, and yp = bp+lßp+1. Linear
combinations of Vietoris cycles with coefficients in Z, or F, for prime q, or Q, are defined
in an obvious way, giving the Vietoris homology modules by the usual process.
(Vietoris himself only considers coefficients in Z or F2; he called "Brouwer
numbers" the dimension over F2 of his homology groups; these numbers may
be infinite for general compact metric spaces.) In a later paper Vietoris showed
that these numbers are 0 for m-cycles if the dimension of X [in the sense of
Lebesgue and Brouwer (Part 2, chap. II)] is smaller than m; furthermore, he
proved that they coincide with the Betti numbers mod. 2 when X is a finite
euclidean cell complex.

The point of view of Lefschetz [304] was very close to that of Vietoris, but
he only considered compact subsets of some RN; the chains he took have
coefficients in Q or in some Fr Starting from a simplicial triangulation T of
SN, he associated to X and T the neighborhood N(T) consisting of the union
of all simplices of T meeting X. Taking a sequence (T„) of triangulations whose
mesh tends to 0, he defined a "p-cycle yp on X" as a sequence {Tp)n^0 of
simplicial p-cycles in SN such that Tp is contained in N(T„) and that for each
n there is an m > n such that Tp and T'p are homologous in N(T„) for s^-m,
t ^ m; yp is homologous to 0 if for each n there is an m > n such that Tp ~ 0
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in N(T„) for all s ^ m, He thus obtained, as did Vietoris, "Brouwer numbers"
(which may be infinite) ßp(X), and he proved the extension of Alexander
duality

ßp(X) = dim HN_P_, (SN - X; Q) for 1 ^ p ^ N - 2 (5)
/Vi (X) + 1 = dim H0(SN - X; Q), jS0(X) - 1 = dim HN_, (SN - X; Q). (6)

He did not show the Brouwer numbers equal to the Betti numbers when X
is a finite (curvilinear) cell complex; he had corresponding results for
coefficients in Fq.

Alexandroffs method of approximation [22] is based on a different and
new idea, related to the concept of dimension introduced by Lebesgue and
Brouwer (Part 2, chap. II). It consists in associating to each finite open
covering °U = (UJ of a compact metric space X, a combinatorial complex (finite
set) ~N(%) called the nerve of the covering. Its vertices are the \JX, and the
p-simplices of N(^) are the subsets {11^,11^,..., 14 } of p + 1 sets of the
covering such that the intersection U,, n Uai n • • • n Ua / 0. A finite open
covering <JW = (U'ß) of X is finer than % = (Ua) if each UJ, is contained in at
least one Ua; if cp(ß) is defined as one of the indices a such that U'ß a Ua, the
mapping Up i—» LL,(/J) is a simplicial mapping (chap. II, §3) of the nerve N(ati')
into the nerve N(^), which depends on the choice of cp; but for the homology
groups, the corresponding </>„,: H.(N(^')) -> H.(N(^)) is independent of that
choice.

Alexandroff then said that a sequence (^„) of finite open coverings of X is
a projection spectrum if the maximum diameter of the sets belonging to °Un
tends to 0 with \/n, and if %n+i is finer than ,JUn for all n. He showed that for
any integer p ^ 0, the dimension of the vector space Hp(N(^„); F2) tends to a
(finite or infinite) limit, which is independent of the "projection spectrum" (°Un)
and which is none other than the "Brouwer number" ßp{X) of Vietoris.
Independently of Lefschetz, he also proved relations (5) and (6) for coefficients in
F2 when X is a subspace of some RN.

In the ensuing years these results were extended around three new themes:
(1) direct and inverse limits, (2) definition of topologies on homology groups,
and (3) the concept of duality between commutative groups, culminating
around 1935 in what is now called Cech homology.

The third of these themes is most developed in Pontrjagin's paper of
1931 [374]. All the "duality" theorems proved before him for the situation
considered by Alexander (i.e., a closed subset X c RN homeomorphic to a
euclidean simplicial complex) only concerned "Betti numbers" for homology
with coefficients in a field (Q or an Fp); Lefschetz himself had pointed out in
his book ([304], p. 144) that no similar theorem was known for homology
with coefficients in a ring Z/mZ for an arbitrary integer m. The problem
attacked by Pontrjagin was to obtain results linking homology groups of X
and RN — X (for any compact subset X of RN) instead of relations between
numbers; as he observed ([374], p. 171), even when the coefficients are taken
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in a field, the equality of Betti numbers only guarantees the isomorphy of the
homology groups when these numbers are finite.

It is a well-known fact that among the concepts of linear algebra, duality
was the one least understood until around 1940, owing to the accidental
circumstance that the dual of a vector space of finite dimension over a
commutative field is isomorphic to that space. A similar accident occurs in
H. Weber's theory of finite commutative groups, but there, fortunately,
nobody had identified a group with its group of characters. Although Pontrjagin
made no mention of characters before 1932, it is possible that they led him to
the concept of duality that he develops in his 1931 paper. He based it on the
notion of a Z-bilinear map

q>: (u, u)i—><u, t;>

of a product U x V of two finitely generated groups into a third commutative
group M, which in fact he restricted to Z or Z/mZ. He called the pair (U, V)
primitive (with respect to cp) if cp is nondegenerate (i.e., <u, v} = 0 for all v e V
implies u = 0, and <u, i>> = 0 for all u e U implies v = 0). He showed that this
always implies (for his choice of M) that U and V are isomorphic: if M = Z,
U and V are isomorphic to some Z\ and if M = Z/mZ, U and V are direct
sums of modules Z/qjZ, where the qj are divisors of m.

He then applied this notion to the Poincaré duality theorem for a compact
orientable combinatorial manifold X (chap. II, § 4) of dimension n and showed
that Hp(X;Z/mZ) and H„_p(X;Z/mZ) form a primitive pair for the bilinear
form <a,b} equal to the class mod m of the Kronecker index {z.z'), where z
(resp. z') is the homology class with integer coefficients of a cycle of homology
class a (resp. b) with coefficients in Z/mZ. Similarly, if X is a subcomplex of
some triangulation of S„ contained in RN, Pontrjagin proved that for 1 < p ^
n — 2, Hp(X;Z/mZ) and Hn_p_1(R" — X;Z/mZ) are a primitive pair for the
bilinear form <a, by, which this time is the class mod. m of the linking
coefficient"* of a p-cycle of class a and a (n — p — l)-cycle of class b.

Pontrjagin had similar results for homology with coefficients in Z but
he had to restrict himself to what he called the "Betti groups," namely, the
quotients of the homology groups by their torsion subgroups. From this he
obtained the isomorphism theorems already proved by Lefschetz, but his
emphasis had changed, duality being the main result and isomorphism an
accidental consequence.

To handle the case in which X is an arbitrary compact subspace of R",
Pontrjagin first defined the direct limit of a sequence (G„) of (not necessarily
commutative) groups, relatively to a sequence of homomorphisms

* This notion, which had already been defined by Gauss for closed curves in ordinary
space, was defined in general by Brouwer (Part 2, chap. I, § 3): an (n — p — l)-cycle C
in S„ — X is the boundary in S„ of an (n — p)-chain C", since Hn_p_j(Sn) = 0 for
1 < n — p — 1 < n. The linking coefficient of a p-cycle C and of C is the Kronecker
index (a . b"), where b" is the homology class of C".
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'Pn+l.n' Cr„ —> Cr„+1;

he took all sequences (x„) such that for each n, x„ e G„ and x„+1 = <p„+i,„(x„),
and he considered two such sequences (x„), (y„) as equivalent if x„ = y„ from
a certain index on. If (x„) is equivalent to (x^) and (y„) is equivalent to (y'„),
then the sequence (x„)>.,) is equivalent to (x'ny'n), and this defines on the set of
equivalence classes of sequences a structure of commutative group, the direct
limit of the sequence (G„) with respect to the homomorphisms <pn+l<n, later
written lim G„ when no ambiguity may result about the <p„+lt„. Pontrjagin
showed that if he replaced the sequence (G„) by a subsequence (G„ ) and the
homomorphisms <pn+Un by

•Afc + l.fc = <Pnk+1,nk + 1-l ° %k + 1-l,nk + 1-2 ° • • • ° <Pnk + l,nk

there is a natural isomorphism of lim G„ onto lim G„.
He also considered, for a sequence (G„) of groups, homomorphisms in the

opposite direction ö„,„+1: G„+1 -> G„, but, surprisingly, added that "such a
sequence has no limit group" ([374], p. 196), thus missing the notion of
inverse limit! However, specializing his definitions to commutative groups, he
observed that if (Uj, Vj), (U2, V2) are two "primitive pairs," relative to the
same group M, to each homomorphism u: U1 -> U2 corresponds a unique
(later called "transposed") homomorphism 'u: V2 -> Vj such that

<"(^iX>'2> = <^i/"(y2>> (7)
(in modern notation). Therefore, when (U„, V„) is a sequence of "primitive
pairs," to an "inverse sequence" of homomorphisms ö„,„+1 : U„+1 -> U„, there
corresponds a unique "direct sequence" '0„,„+1: V„ -> V„+1, for which
Pontrjagin defined a direct limit lim V„; he called that group "the dual to the
inverse system (U„)," and it served as a substitute for the missing inverse limit.

Next, Pontrjagin applied these notions to the "Alexander duality" for a
compact subset X c R". Like Lefschetz he took a fundamental decreasing
sequence of closed neighborhoods NfT}) of X (see above) and considered (for
coefficients in Z/mZ) the maps

HP(N(T,+1))-HP(N(T,)) (8)
H^^R" - N(T,))- H^p-^R" - N(T,+ 1)) (9)

for 1 ^ p < n — 1. From the definition of "linking coefficients" it easily
follows that these maps are transposed of each other. As the direct sequence
(Hn_p_1(Rn - N(Tj))) has Hn_p_1(Rn - X) as a direct limit, the "dual," in
Pontrjagin's sense, of the inverse sequence (Hp(N(Tj))) is isomorphic to that
group. Finally Pontrjagin showed that this is still true if, instead of the
Hp(N(Tj)), he takes as inverse sequence (Hp(N(^))) based on the "projection
spectrum" corresponding to the Alexandroff "nerves" of a decreasing sequence
of finite open coverings (°ttj) of X in R".

Cech's paper [119], published in 1932, was obviously written without
knowledge of Pontrjagin's paper of the previous year. In that paper Cech was
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not interested in duality theory, but wanted to define homology groups (with
coefficients in Q) for the most general topological space X. Instead of
considering Alexandroff's "projection spectra," which are sequences of finite open
coverings, he at once took all finite open coverings °lt of X; they constitute a
directed set (for the "refinement" relation), since, for two such coverings It',
%", the finite open covering % consisting of the nonempty intersections of a
set of <%' and a set of 0lt" is finer than both W and W. He thus obtained
an inverse system of groups (Hp(N(^);Q)) for each p (thus dispensing with
Alexandroff's "equivalence" between projection spectra). He then introduced
for that particular system the now familiar concept of inverse limit, which
Pontrjagin had missed: its elements are the families (a#), where a# e
Hp(N(^); Q), and if alt is finer than %', a%, is the image of a# by the natural
homomorphism HP(N(^);Q) -»• HP(N(^');Q); he thus attached to X
homology vector spaces Hp(X; Q) over Q. He could also define relative homology
vector spaces Hp(X, A; Q) for any subspace A of X: If NA(^) is the subcomplex
of N(^) formed of the simplices meeting A, take the inverse limit of the vector
spaces HP(N ('"#), NA(^); Q). Instead of considering the set ^ of all finite open
coverings of X, a subset JÇ' of JÇ may be taken if it is cofinal to <5, ie-, such
that for every covering f ej1; there is a covering f e^' finer than ,JU. Finally,
Cech showed that his definitions extend to coefficients in Z/mZ, and that for
completely normal spaces X, finite open coverings may be replaced by finite
closed coverings without changing the homology (later it was shown that it is
enough to suppose X normal).

The theme of topological homology groups first appears in Vietoris's paper
[475]: if yp = (yp) and öp = (öp) are two Vietoris p-cycles for a compact metric
space X, their distance is taken as the infimum of the numbers p ^ 0 such that
jp — öp = bp+1ap+1 and the mesh of the (p + l)-chain ap+1 is p. This gives
a distance on the homology group HP(X;F2), and Vietoris showed that
Hp(X; F2) is compact for that distance.

This was one of Pontfjagin's starting points in his 1934 paper [375]; the
other came from Alexandroff's extension of homology over the coefficient
rings Z, Z/mZ and Q used until then, to homology with coefficients, first in
an arbitrary commutative ring [23], and next in an arbitrary commutative
group G: for a finite simplicial euclidean complex K, with ap simplices of
dimension p, the group CP(K; G) of p-chains with coefficients in G was simply
the product G^. Later, when tensor products of arbitrary commutative groups
were defined,* CP(K; G) could be written G ® CP(K; Z), and the boundary
homomorphism was 1 ® bp; similar definitions could be given for relative
homology of a euclidean simplicial complex, for singular homology and, by
a passage to inverse limit, to Cech homology.

The decisive tool in Pontrjagin's paper was, of course, his famous discovery
of the duality between discrete and compact commutative groups based on

* This was done in 1938 by Whitney [511].
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Weyl's theory of linear representations of compact Lie groups and on the
recent discovery of Haar measure on all compact groups. His general bilinear
map UxV->Mofl931 was now specialized to the case in which M is the
(compact) torus group T = R/Z, U is discrete and V is the group Û =
Hom(U,T) of all characters of U, <u, v} = v(u), and V is given the topology
of simple convergence, for which it is compact. Pontrjagin's theorem [375]
states that the maps v i—» <u, i>> are all continuous characters of V, and that any
compact commutative group V has the form Û, where U is the discrete group
of all continuous characters of V.

When K is a finite euclidean simplicial complex and G is an arbitrary, at
most denumerable, discrete commutative group, one defines on the group of
p-chains with coefficients in the dual group G the product topology, which
immediately yields on Hp(K; G) a topology for which that group is compact
metric. But to define what we now call the Cech group Hp(X;G) for an
arbitrary compact metric space X, Pontrjagin used the Vietoris process, not
being aware of the notion of inverse limit,* and obtained HP(X;G) as a
compact group. His main theorem was the final version of Alexander's duality
theorem for the homology of R" — X with arbitrary coefficients, X being a
compact subspace of R". If G is an arbitrary denumerable discrete group,
the compact group Hp(X; G) is the Pontrjagin dual of the discrete group
H„_p-i(R" — X;G) for 1 ^ p ^ n — 1; the latter is defined as a direct limit, as
in Pontrjagin's paper of 1931, with G replacing Z/mZ; it may also be defined
as the homology of finite chains in the infinite cell complex obtained from a
triangulation of R" - X (chap. II, §6).

In his thesis of 1936 [443], Steenrod began by rounding off the theory of
Cech homology. He gave general definitions of inverse limits for topological
spaces as well as for groups, and he provedf that an inverse limit of compact
spaces is compact ([443], p. 671), that

(lim Gaf = lim G. (10)4— —"►
for an inverse system (GJ of compact groups, and that for an inverse system
(XJ of compact spaces the Cech homology is

H/,(limXa;G)=limHp(Xa;G) (11)
for any topological group G (p. 691). Using the Pontrjagin theory of locally
compact commutative groups, he finally observed that for a connected
compact commutative group A the first Cech homology group Hj(A;T) is
isomorphic (as a topological group) to A itself (p. 693).

In the same paper, Steenrod was led to modify the definition of the homo­

* In a short Comptes Rendus note [130], Chevalley pointed out that the concept of
inverse limit (at least for sequences) had already been defined by Herbrand in his
arithmetical study of infinite extensions of number fields.
f As observed by Eilenberg and Mac Lane ([177], p. 790) that proof is not quite
complete.
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logy groups Hp(K;G) for a euclidean simplicial complex K, when G is a
topological group (not necessarily discrete or compact). He pointed out that
the group Zp(K; G) of p-cycles is always closed in the group CP(K; G) of
p-chains equipped with the product topology, but the group Bp(K;G) of
p-boundaries needs not be closed. (It is closed, however, when G is compact
or discrete.) Steenrod therefore took as homology groups

Hp(K;G) = Zp(K;G)/Bp(K;G), (12)
which is thus always a Hausdorff topological group. Using this definition in
the Cech inverse limit process, new Cech homology groups Hp(X;G) are
obtained for a compact space X (coinciding with the usual groups when G is
discrete or compact). Furthermore, Steenrod showed that Hp(X; G) is then the
topological direct sum of two closed subgroups,* which only depend on G
and on the particular Cech group Hp(X;T); Cech pointed out to him that one
of these subgroups is isomorphic to the group Hom((Hp(X;T)) ,G), but the
precise structure of the other subgroup (which is the inverse limit of torsion
groups) could not at that time be determined, even if G is discrete or compact
(see§5D).

Following earlier ideas of Alexandroff and Lefschetz, Steenrod proposed in
1940, in a very original paper [444], a new definition of homology groups of
compact metric spaces. Let K be a denumerable infinite combinatorial complex
(chap. II, § 2), such that every simplex in K is a component of the boundary of
only a finite number of simplices of K (what one calls a locally finite, or star
finite, combinatorial complex1). For such a complex, Lefschetz had observed
that it was possible to define infinite chains and their boundaries: an infinite
p-chain of K with coefficients in a group G is an element z = (as)seK of the
product GK", where Kp is the set of p-simplices of K; the boundary bps of each
of these simplices being defined as usual, the boundary bpz is the family
(A)ieK ... where for each t e Kp_j, ß, is the sum of the coefficients of t in the
boundaries of the s e Kp, each multiplied by as; this is meaningful for locally
finite combinatorial complexes. Homology groups Hp(K;G) can therefore be
defined in the usual way, as can relative homology groups Hp(K, L; G) for a
subcomplex L of K; furthermore, if G is a topological group, the homology
groups Hp(K; G) may also be defined as above for finite simplicial complexes.

Lefschetz, in his definition of homology for compact subspaces of an RN
described above ([304], p. 327), had attached an infinite, locally finite
combinatorial complex to the inverse system of finite simplicial complexes he used,
by a process that can in fact be applied to any system (K„) of finite simplicial
complexes with simplicial maps nn: K„+1 -> K„. If K„ is a euclidean simplicial
complex contained in a finite-dimensional vector space E„ and if E is the direct
sum of the E„, the infinite complex K is obtained by joining each vertex x„+1

* Steenrod had thought that his proof extended to noncompact spaces, but his
argument was incorrect.

+ A typical example of such complexes is provided by a triangulation of an open subset
ofR".
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of K„+1 in E to its image n„(x„+1) e K„ by a line segment and adding to the
simplices of all the K„'s those obtained by a simplicial decomposition of each
of the polyhedra "joining" K„+1 to K„.* Steenrod considered this Lefschetz
complex K when the K„ and n„ constitute a "projection spectrum" of
Alexandroff for a space X (see above), and called it a "fundamental complex"
of X; it is always possible for the first complex K0 to have only one vertex,
and then the "geometric" definition of K shows that K is contractible to the
point K0; hence, the usual Hp(K; G) defined by finite cycles are all 0 for p ^ 1.
But Steenrod showed that the homology groups Hp(K;G) defined by infinite
cycles as above only depend on the topology of X and not on the "projection
spectrum" chosen,f and may therefore be written H^(X; G). Furthermore, he
considered in H^(K; G) the subgroup Hp(K; G) consisting of the homology
classes of the infinite cycles which are infinite sums of finite cycles/ and showed
that there is a natural isomorphism of the quotient Hp(K; G)/Hp(K; G) onto
the Cech homology group H^^G). When G is compact, H|,'(K;G) = 0;
hence, only Cech homology groups are obtained in that way. When X is a
compact subspace of R", there is a duality theorem for these new groups: if K'
is the infinite combinatorial complex defined by a triangulation of R" — X,
H,(X; G) is isomorphic to the group Hp(K'; G) defined by infinite chains of the
locally finite combinatorial complex K'.§

Finally, Steenrod applied his definition to the solenoids: for any infinite
sequence A = (a1,a2,...,an,...) of integers an ^ 2, the solenoid XA is defined
as the inverse limit lim G„, where G„ = T for every n, and the homo­
morphism 0n>n+1 : G„+1 -> G„ is multiplication by a„ in T. The compact group
XA is connected but not locally connected, and its Pontrjagin dual is the
subgroup of the additive group Q of the rationals generated by the products
(a1fl2...a„)"1. Steenrod then showed that the Cech group H!(XA;Z) = 0,
whereas H'Î(XA; Z) is isomorphic to ZN/M, where the subgroup M consists of
the infinite sequences (x„) such that the system of equations anyn+1 — yn = x„
has a solution in ZN; this group ZN/M has the power of the continuum.

* For a precise definition, order the vertices of the K„ in such a way that if xn+î ^ yn+i
in K„+1, then n„(x„+,) ^ n„(y„+l) in K„; then for each simplex

x'n°+l <---<xl„\i

of K„+1 introduce the simplices

{4+1, • • • , K\i. Xn(xl„\l ),..., Tl„(4\l )}

for 0 ^ k < q.
+ To prove this result, he gave another definition of Hp(X; G) based on a generalization
of singular simplices (chap. II, § 3).
i For such a sum £fc zk to have a meaning, for each m there must be an integer r such
that the zk of index k ^ r do not contain any of the simplices of the K, for/ < m, nor
any of the simplices "joining" them.
8 All the definitions of homology proposed in this § 2 are functorial (§ 6, E), in the same
sense as singular homology; i.e., to a continuous map u: X -> Y corresponds a homo­
morphism u„. of the homology of X into the homology of Y, with the usual properties.
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§3. Cohomology

In a compact n-dimensional combinatorial manifold M (chap. II, §4), the
Poincaré construction of the dual complex T* of a given triangulation T of
M provides in a natural way what we now call a dual basis of a basis (a'p) of
the vector space Hp(M; Q): if a'p is the homology class of a p-cycle of T and
b'n_p is the homology class of the dual of that cycle in T*, {b'„_p) is a basis of
H„_p(M; Q) such that (a'p. b{_p) = ôtj for all i, ;'. This could not, however, be
done on an arbitrary finite euclidean simplicial complex. Nevertheless, Hopf
[241] had succeeded in extending the fixed point formula that Lefschetz had
proved (by using the Poincaré construction) for combinatorial manifolds
(see Part 2, chap. Ill) to such general complexes. In order to try to explain
this surprising result, Lefschetz introduced, for an arbitrary finite euclidean
simplicial complex X, a substitute for the missing cycles of T*, which he called
pseudocycles [304]. He first embedded X as a subcomplex of a triangulation
T of some SN with large enough N, and considered the neighborhood U
of X in SN consisting of the simplices of T whose closures meet X. He
then observed that if (a'p) is again a basis of Hp(X;Q), which are classes
of cycles of the triangulation TnX, it was possible to find elements b^_p
of H„_p(SN, SN — U; Q) such that (ap. Oj(j_p) = ö;j and that b^-p is the class of
a relative cycle mod(SN — U), whose boundary does not meet X.

The Lefschetz pseudocycles are often considered to be the forerunners of
cohomology, but they lack an essential ingredient, the coboundary operator.
The motivations for the definition of cohomology as described by Alexander
in [17] and [19] are quite different. Since, on one hand, for an arbitrary
compact space X the Cech homology groups Hp(X; T) are compact, they have
discrete Pontrjagin duals, and it was quite natural to try to give a direct
definition of these groups even when no Poincaré or Alexander duality was
available. On the other hand, the de Rham theorems (chap. Ill, § 3) established
between the closed p-forms on a compact C1 manifold M, modulo exact
p-forms, and the homology classes of smooth p-cycles, a duality given by the
integral of a form over a chain, considered as a bilinear mapping.* This last
motivation is particularly apparent in the note [17] of 1935: starting from a
(finite or infinite) combinatorial complex K, and its group of (finite) p-chains
Sp(K;A) with coefficients in a discrete commutative group A, Alexander
considered the group SP(K; Â) of all functions defined on Sp(K; A) with values
in the dual Â of A; if SP(K; A) is identified with the direct sum A(Kp), where Kp
is the set of p-simplices of K, SP(K; Â) is the Pontrjagin dual ofthat direct sum,
the product ÂK*; for zp = Yjj01j(Jp (wnere the a3p are the p-simplices of K, and
oij e A, with a.j = 0 except for a finite number of indices), if z'p e SP(K; A) is such
that z'p{aJp) = ßj e Â, then

* Alexander does not mention de Rham's thesis.
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Alexander called this the "integral of zp over zp." The transposed homo­
morphism of bp: SP(K; A) -> Sp_1 (K; A) is a continuous homomorphism dp_! :
Sp_1 (K; Â) -> SP(K; Â), which Alexander called "derivative" and which is now
known as the coboundary operator, so that the relation

<bpZp,z;_!> = (z^dp^z'p^y

was considered by Alexander to be the analog of Stokes' theorem.
Alexander also pointed out in [17] that the definitions are similar when

A = Z and Â is replaced by R, the bilinear map being replaced by ordinary
multiplication. In [18], which is chiefly concerned with the cup-product (see
§4), he dropped the duality properties linking homology and cohomology,
and for any commutative ring A defined the A-module of p-cochains as the
set of all group homomorphisms SP(K; A) -> A.

The same definitions were given simultaneously and independently by
Kolmogoroff [282]. A natural problem was then to extend the concept of
cohomology from cell complexes to topological spaces. This was done by
Eilenberg [172] for the singular theory, who did not need any new concepts:
taking the Z-module SP(X; Z) of singular p-chains in a space X, he simply
defined the group of singular p-cochains SP(X; G) for an arbitrary commutative
group G as the group Hom(Sp(X;Z),G). The coboundary dp: SP(X; G) ->
Sp+1 (X; G) is defined by the formula

(dp/)(z) = /(bp+1z) (13)
for any (p + l)-chain zeSp+1(X;Z). The p-cochains / such that dpf = 0
are called p-cocycles, and the images Ap_xg of (p — l)-cochains are called
p-coboundaries. As dp o dp_j = 0, the group BP(X; G) of coboundaries
is contained in the group ZP(X;G) of p-cocycles. The quotient group
Z"(X; G)/B"(X; G) is the p-th cohomology group H"(X; G) of X with
coefficients in G. The relative singular cohomology groups HP(X, Y;G) are
similarly defined by replacing SP(X; Z) by Sp(X; Z)/Sp(Y; Z) (which is still a free
Z-module). Eilenberg also showed that any continuous map u: X -> X'
naturally defines a homomorphism ü: S*(X'; G) -> S'(X; G) of graded groups
by ù(f) = fo u for/e SP(X'; G); since this map commutes with coboundaries,
he deduced from it a homomorphism u* = H'(u): H'(X'; G) -> H'(X; G) of
graded cohomology groups.

If <p:G->G' is a homomorphism of commutative groups, the map
f\—xp of of is a homomorphism of SP(X;G) into SP(X;G'), and one has
q, o (dpf) = dp((p o/); hence, Z"(X; G) is mapped into Z"(X; G') and B"(X; G)
into B"(X; G'), so that a homomorphism </>„,: H'(X; G) -> H-(X; G') of graded
cohomology groups is defined.

Finally, regarding duality, Eilenberg only observed that the relations
established by Alexander between homology and cohomology of cell complexes
are also applicable to the chain complex K = S.(X) for any space X.

A p-cochain fe SP(X; G) on a Hausdorff space X has a compact support if
there is a compact set K c X such that f(z) = 0 for every p-chain z e SP(X; Z)
whose support does not meet K. The set Sf (X; G) of those cochains is a subgroup
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of S"(X; G), and d„ maps SC"(X; G) into Scp+1 (X; G), so that, as above, p-cocycles
and p-coboundaries with compact support can be defined, as can singular
cohomology groups with compact supports, written Hf (X; G).

Another type of cohomology could be based on the Alexandroff-Cech
process starting from nerves of finite open coverings °U of the space X
(§2). Instead of the homology groups of the finite combinatorial complexes
N(^), consider their cohomology groups HP(N(^);G) with coefficients in an
arbitrary commutative group G; this time they form a direct system, and their
direct limit is

H"(X; G) = lim H"(N(#); G), (14)
which by definition is the Cech cohomology group based on finite coverings.
It follows from Steenrod's thesis [443] that if X is a compact space and G a
discrete group, there is a natural isomorphism

ftp(X;ô)A(H'(X;G)f (15)
of the Pontrjagin dual of HP(X; G) onto the homology group of X with
coefficients in the compact dual G of G.

But Cech cohomology groups can also be defined based on arbitrary open
coverings °U of X; N(^) is then an infinite combinatorial complex that in
general is not locally finite. Nevertheless, for any infinite combinatorial
complex K, cohomology groups can (in contrast with homology) be defined based
on infinite cochains. Indeed, infinite p-cochains may be identified with elements
z = (as)seK of the product GK<>; but here the coboundary Apz can be defined
without additional assumptions on the infinite combinatorial complex K:

where yt is defined as follows for any t e Kp+1. If bp+1 £ = £s e,ss, with £s = + 1,
then yt = £sesas, and this sum is always finite. These cohomology groups are
in general distinct from the HP(X;G) defined above; their properties were
chiefly investigated by Dowker [145] and by Eilenberg and Steenrod [189]
in their book, in connection with their axiomatic approach; we shall postpone
a more detailed description of those papers to §6, A.

In his 1940 paper [444] Steenrod related the Cech cohomology group
HP(X; G) of a compact space to the "fundamental complex" K he had attached
to X; he proved that HP(X;G) is isomorphic to the cohomology group
HP+1(K; G) based on finite cochains of K.

Finally, in 1935, in a second note [18] published simultaneously with [17],
Alexander proposed yet another definition of cohomology in which he
considered only compact metric spaces; but later, Spanier, in his thesis
[438], generalized and simplified Alexander's definition, following an idea of
A. Wallace. In the Alexander-Spanier theory for an arbitrary topological
space X, the commutative group C(X;G) of all mappings of Xp+1 into G
(isomorphic to GXP+') is first considered for any commutative group G; in this
group the subgroup Cg(X; G) of all mappings / that vanish in a neighborhood



§§ 3,4A IV. The Various Homology and Cohomology Theories 81

depending on /) of the diagonal of Xp+1 is singled out. On C(X;G), a co­
boundary operator ôp: C(X; G) -> C+1(X; G), is defined by

p+i
àpf{x0,x1,...,xp+l)= X {-lff(x0,...,xk,...,xp+l), (16)

fc = 0

checking that ôp+1 o 5p = 0. Furthermore,

ôp(Cg(X;G))CCg+1(X;G);

hence, by passage to the quotients C"(X; G) = C(X; G)/Cg(X; G), a cobound­
ary operator

ÔP:CP(X;G)-»CP+1(X;G)

is again obtained. The corresponding cohomology groups HP(X;G) are
the Alexander-Spanier cohomology groups; relative cohomology groups
HP(X, A; G) can also be defined for any subspace A of X in a natural way.

An important property of the Alexander-Spanier cohomology is what is
called tautness in a paracompact space X. If A is a closed subset of X, the open
neighborhoods of A in X form an ordered set for the relation U => V, and the
natural maps H«(U; G) -> H«(V; G) define a direct system (H«(U; G)) of groups
over that ordered set. There is a natural homomorphism

limH<'(U;G)->H<'(A;G);

the tautness property is that this homomorphism is bijective (a property which
is not true for singular cohomology) ([440], p.316). Again, the results of
Spanier on these groups will be better understood in connection with the
axiomatic theory of cohomology (§6,B).*

§ 4. Products in Cohomology

A. The Cup Product

Alexander's and Kolmogoroff's definitions of cohomology were accompanied
by a result that came as a total surprise to the topologists assembled for the
Moscow conference in September 1935 ([250], p. 14); they showed (again
independently) that it was possible, for an arbitrary finite euclidean simplicial
complex K, to define bilinear mappings

H'(K;A)xH'(K;A)-»Hp+'(K;A) (17)
which, when A is a commutative ring, give on

H-(K;A) = 0H"(K;A)
p

* All definitions of cohomology are also functorial, but to a continuous map u: X -» Y
corresponds this time a homomorphism u* of the cohomology of Y into the
cohomology of X.
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a structure of graded associative ring. This was expected for the case when A
is a field and K is an orientable compact combinatorial manifold of dimension
n, for then Poincaré duality and the fact that HP(K;A) and Hp(K;A) are
vector spaces in duality over A [see below, § 5,D, formula (63)] give a natural
isomorphism

;-p:H'(K;A)SH.._p(K;A); (18)
the mapping (17) can then be deduced by these isomorphisms from the
intersection product of Lefschetz (chap. II, §4),

H„_p(K; A) x H„_„(K; A) - H„_p_,(K; A). (19)

What was completely unexpected was that the Alexander-Kolmogoroff
product (17) could be defined on an arbitrary finite simplicial complex K, where
Poincaré duality did not apply.

Alexander's [18] initial definition was not correct, and in [19] he adopted
a modified one suggested by Cech [123] and found independently by Whitney
[510], who also contributed the notation{a,b)^>a^b (20)
for the map (17), hence the name "cup product." Start with a definition of a
bilinear map for cochains

S"(K;A) x S9(K;A)-^SP+9{K;A), (21)
also written {f,g)i—> /-— g; put an arbitrary order on the vertices of the
triangulation of K; for a (p + fl)-simplex (x0,...,xp,xp+1,...,xp+q), take

(/-- 9){x0,...,xp+q) = f{x0,...,xp)g(xp,xp+u...,xp+q). (22)
Then

iP+q(f~g) = ipf~g + (-iYf~iqg, (23)
which implies that when / and g are cocycles the same is true for f~— g and
the cohomology class of /-— g only depends on the cohomology classes a of
/ and b of g, hence can be written a—b. Finally, these bilinear maps define a
structure of associative ring on H'(K; A) and^fl = (-lf»fl^b. (24)

These definitions were immediately extended by Eilenberg [172] to singular
cohomology of arbitrary spaces; if u: X -> Y is a continuous mapping, the
corresponding map u*; H'(Y; A) -> H'(X; A) is a ring homomorphism. Finally,
for any subspace A of X the relative cohomology group H'(X, A; A) is again
a ring for the restriction of the cup product.

Note that it is possible to define the cup product for more general coefficient
groups: suppose we have a bilinear map

q>: G x G' -> G'
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for three commutative groups G, G', G"; then we define a bilinear map

S"(K;G) x S«(K; G') -*• SP+«(X; G")

by replacing (22) with

(/-- y){x0,-■ ■,xp+q) = <Pif{x0,■■■,xp),g{x„,xp+u...,xp+q)).

From that we deduce as above a bilinear map

H"(K;G) x H«(K;G')->HP+''(K;G").

When X is an orientable n-dimensional combinatorial manifold (chap. II,
§ 4), the natural isomorphism jp of (18) gives a new definition of the intersection
products (19), which bypasses the difficult "general position" arguments of
Lefschetz (chap. II, §4). It is only necessary to reverse the arguments made
above and to define the intersection product zp.zq for zpeHp(X;A), zqe
H?(X; A), and p + q > n by

Zp-Zq = J2n-P-q(jn-P(zp)^- jn-qi2,,))- (25)
This explained a remarkable (and hitherto mysterious) result obtained by
Hopf in 1930 for intersection rings. If X and Y are two combinatorial
manifolds of same dimension n, and u: X -> Y a continuous mapping, simple
examples show that the linear map u„,: H.(X;Q) -> H.(Y;Q) is not in general
a ring homomorphism for the intersection rings. But by a clever use of
the graph of u in the product X x Y (inspired by Lefschetz's methods, see
Part 2, chap. Ill), Hopf was able to define in the opposite direction a ring
homomorphism <p: H.(Y;Q)-> H.(X;Q), which he called
"Umkehrhomomorphismus" [242]. From the relation (25) this follows immediately by taking

<p(zp)=jn-p{u*U;lp(zp))). (26)
The identification of Hopfs "Umkehrhomomorphismus" with (26) was

carried out by Freudenthal [203]. In another paper [202], he also showed
how to reduce to the cup product an operation defined for compact euclidean
cell complexes by Gordon (a student of Pontrjagin) [209]. Let X <= R" be
such a complex; Gordon considered two cycles u e Zp(R" — X), v e Z (R" — X)
with empty intersection. They may be considered as cycles in R", and as
such written u = bp+1x, v = bq+1y for chains x, y in R"; then the
"intersection product" x. y may be taken in the sense of Lefschetz; its boundary in
R" is u. y ± x. v, hence also a cycle in R" — X. Gordon showed that its
homology class only depends on those of u and v; hence, it might be taken as a
"product" of these classes and thus define a bilinear map

Hp(R" - X) x H,(R" - X) - Hp+q+l _„(R" - X). (27)
But the Alexander Pontrjagin duality

H/,(R"-X)~H"-p,(X)
implies that (27) can also be considered as a bilinear map
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Hn-p-1(X) x H"-'J-1(X) -> H2"-"-"-2(X) (28)
and Freudenthal proved that (28) is indeed the cup product.

B. The Functional Cup Product

In view of applications to homotopy theory Steenrod, in 1948 [448], defined
a "functional cup product" associated to a continuous map /: X' -> X. The
idea is to associate to cohomology classes w e HP(X), v e H*(X) a cohomology
class in HP+*~1(X'). If a, b are cocycles in the classes u, v, there is a (p — 1)­
cochain c in X' such that Ac = f(a), such that c-— f(b) is a (p + q — l)-cocycle
whose cohomology class in HP+*~1(X') would be associated to u and v. This
imposes restrictions on u and v. First we must have f*(u) = 0, so that f(a) is
a coboundary Ac. Then c~— f(b) should be a cocycle; however,

A(c^ f{b)) = (dc)~ f{b) = f(a)^f(b) = f{a~ b),

so one must also have u~— v = 0; if a— b = Aw, then (c^- f(b)) — f(w) is
a cocycle, but its cohomology class depends on the choice of c and w; altering
c changes it by an element of Hp~1(X')^/*(u), and altering w changes it by
an element of /*(Hp+"-1(X)). So, for each ceH'(X), Steenrod defined a
subgroup Kp(/, v) <= HP(X) consisting of the classes u such that

/*(u) = 0 and u— v=0.
Then he defined a subgroup

LP+ï-i (y; „) = /*(H"+»-1 (X)) + H""1 (X')— f*(v)

and obtained an element

u-^-fv eW+"-1{X')/Lp+"-1(f,v),

the functional cup product of u and u. Its main interest is when Kp{f, v) =
H"(X) and Lp+,J_1(/,r) = 0; we shall meet such cases later.

C. The Cap Product

Another bilinear mapping

Hp+„(X; A) x H"(X; A) -» H,(X; A) (29)
was introduced by Cech [123], and independently by Whitney [510], who
wrote it (a, u)i—>a-- u, and gave it the name "cap product." For a finite
euclidean simplicial complex K, start again with a bilinear map

Sp+,(K;A)xS'(K;A)-»S,(K;A)

defined, for a (p + fl)-simplex (x0,..., xp+q) and a p-cochain /, by

(Xq, . .., Xp + .j)'— J = J (X0,..., Xp)(Xp,..., Xp+q).
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Then
Mz~f) = (- WOW-/) - (z~dp/)),

from which it follows that, if z is a cycle and / is a cocycle, z ^— / is a cycle and
its homology class only depends on the homology class of z and the
cohomology class of/, hence the definition of (29). Check that for v e H*(K; A),

<a^— u, Vs) = <a, u-— v} (30)
(which shows that ai—>a^— u is the transposed map of vt-^-u^-v); if ce
Hp+?+r(X; A),

c^— (u~— v) = (c— u)^— v. (31)
For g = 0, c(a— u) = <a, u> (32)
where c: H0(K; A) -> A is the "augmentation" (cf. § 5, F) which to every 0-chain
Xj^jxj Wlth xj vertices of K and X} e A associates XjAy. Finally, for a
continuous map /: K -> L,

/*(a-/*(«)) = /*(a)-«- (33)
Again, these results were extended to singular homology and singular

cohomology by Eilenberg [172] in an obvious way.

§ 5. The Growth of Algebraic Machinery and the
Forerunners of Homological Algebra

Between 1940 and 1955 there was a gradual recognition that properties of
homology or cohomology of a space should be presented in two steps: first,
purely algebraic properties of differential graded modules (or "chain
complexes," see chap. II, §2), and then application of these properties to a particular
type of such modules related to the space under consideration; in particular,
it was only in this second step that differences between the behavior of
homology and cohomology (§4) would appear. This conscious process of
extracting algebraic theorems from the contents of topological theorems was
to lead to the birth of homological algebra at the end of this period,
accompanied by the very convenient language of categories and functors. We shall
review the main algebraic devices which emerged in that way.

A. Exact Sequences
In 1941, in a short announcement without proofs [257] concerned with
dimension theory, Hurewicz for the first time combined known homomor­
phisms in cohomology* in a sequence1

* Hurewicz does not mention explicitly the cohomology theory he is using.
f In [257], H«+1(B) is replaced erroneously by H*+1(A - B).
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W(A)C H«(B)^ H«+1(A - B) -^ H«+1(A)^ H«+1(B);

A is a locally compact space, B is a closed subset of A. The cohomology groups
are over Z; ;': B -> A is the natural injection, v maps the class of a cocycle in
A — B to its extension in A (not otherwise defined in the text). Finally, d is
defined as follows: if z is a q-cocycle in B, it can be considered as the restriction
of a fl-cochain x in A, and the coboundary dqx has a restriction to B equal to
0, hence can be considered as a (q + l)-cocycle in A — B; if z is the class of z
in H*(B), dz is the class of that (q + l)-cocycle in H«+1(A — B). Hurewicz's
essential remark was that in that sequence the image of each homomorphism
is exactly the kernel of the next one, a property later called exactness.

At the same time, independently, Eckmann [148] and Ehresmann and
Feldbau [166] each described relations between homotopy groups of a fiber
space, of its base and its fiber, which amounted to what later was called the
homotopy exact sequence of a fiber space (Part 3, chap. Ill, § 2,C) without using
arrows, but at that time nobody noted the relation between these results and
the sequence written by Hurewicz.

The next two appearances in homology theory of the notion of exact
sequence* occurred independently in 1945. The first was in the announcement
by Eilenberg and Steenrod [188] of their axiomatic theory of homology (see
§6,B), under the name of "natural system of groups and homomorphisms"

• • • - H,(X) - H,(X, A) - H,_, (A) - H,_, (X) - • • • - H0(X, A) - 0,

where X is an arbitrary topological space and A is a closed subset. The
homology was not specified, since this is an axiom that all theories of
homology must verify.

The second one was the central result in the first topological paper
published by H. Cartan [106]. He considered a locally compact space E, a closed
subset F ^ E in E, and the open complement E — F. To each locally compact
space X, he attached homology groups Tr(X) with coefficients in T = R/Z.
They are defined by considering the Alexandroff compactification X of X
(when X is not compact), which adds to X a single point a> "at infinity," and
P(X) is the Cech relative homology group Hr(X, co; T), which is compact; when
X is compact, P(X) is just the Cech homology group Hr(X;T). Another way
of defining Tr(X) is to apply the Cech inverse limit process, not to all open
coverings of X, but to coverings (Ua) for which each Ua is either relatively
compact or is the complement of a compact set. Now, if E is locally compact
and F ^ E is a closed subset of E, to the injection ;: F -> E corresponds a
homomorphism;^: P(F) -> P(E) in the usual way. But there is also a
homomorphism 0„,: P(E) -> rr(E — F); when neither F nor E — F is compact, g is

* In the 1944 paper [249] where Hopf (independently of Eilenberg and Mac Lane)
defined the homology of groups (Part 3, chap. V, § 1,B), he explicitly introduced free
resolutions for an A-module where A is an arbitrary (not necessarily commutative) ring,
but he did not use arrows.
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a continuous map of the compactification E u {ca} into the compactification
(E — F) u {ca} such that g(x) = x for x e E — F and g(x) = to for x e F; it is
defined similarly in the other cases. Finally Cartan showed that there exists a
homomorphism 8: P(E — F) -> rr~'(F) such that the sequence

• • • - rr(F) ^ r (E) ^ p(E - f) -^ r-1 (F) ^ rr_1 (E) - • • • (34)

is exact (although he neither used that term nor wrote arrows). His proofs
were first done for finite euclidean simplicial complexes and then passed to
the inverse limit.

Particularly interesting features in his paper are the properties he deduced
from the exact sequence (34), as a foretaste of its future power in topology. He
first proved two consequences of what was later called the Mayer-Vietoris
exact sequence (see § 6,B), and from them he deduced the possibility of defining
a cycle on E from the knowledge of its images on the open sets forming a base
for the topology of E (this may now be regarded as a special case of the Leray
spectral sequence of a covering; see § 7,B). The principal applications he had
in mind were the extensions of theorems known for combinatorial manifolds
to arbitrary C°-manifolds for which triangulations were not available in
general; we shall return in Part 2, chap. IV to that problem, for which Cartan
obtained the first substantial result in that 1945 paper, namely, the
generalization of the Jordan-Brouwer theorem.

The next step was taken in 1947 by Kelley and Pitcher [271]; to them is
due the name "exact sequence." They observed that this notion is meaningful
for arbitrary commutative groups and homomorphisms of groups and that
the previously considered exact sequences in homology and cohomology are
special cases of a purely algebraic result applying to chain complexes in the
sense of Mayer (chap. II, §2), i.e., sequences C. = {Cj)J>0 of commutative
groups, with boundary homomorphisms b,: C, -> C3-x such that b0 = 0 and
b/-i o bj, = 0 for ; 5= 1. They also needed the algebraic concept of
homomorphism f: C. -> C. of chain complexes (also called chain transformation): a
system (_/"•) of homomorphisms fy. C, -> C] such that _/"-_j o by = b, of. for the
boundary operators of C. and C.. This definition enabled them to deduce
homomorphisms Hj(f) = fjt: H-(C.) -> Hy(C.) for the homology groups. We
saw in chap. II that such homomorphisms had already been used in homology
theory in special contexts. The homology exact sequence is relative to a short
exact sequence of chain complexes

0 -> A -> B -> C -*• 0/. 9.
where f and g. are chain transformations, and exactness means that each
sequence

O-A^By-q-O
is exact. There exist then homomorphisms

311:HI1(Q-HI1_1(A.)



1. Simplicial Techniques and Homology

such that the (infinite) sequence of groups and homomorphisms

H„(A.) H„(B.) h„(o—^„^(A.; Ho(A.)-0H„(/J H„(3.) dn
is exact. The mapping dn is defined as follows. For any cycle z e C„, there is a
chain y e B„ such that z = gn(y), and 0 = b„z = ö'n-1(bny), hence b„y = /n_i(x)
where x e A„_(; x is a cycle and its class x in H„_.(A.) only depends on the
class z of z, hence dnz is taken equal to x.

Kelley and Pitcher also investigated the behavior of exact sequences under
direct or inverse limits. They showed that if (Aa, cpßa), (Ba, i/.^), (Ca, 6ßx) are
three direct systems of commutative groups such that for each a there are
homomorphisms

A, B„

forming an exact sequence and if for a ^ ß the diagram

is commutative, then the sequence

lim A„ > lim B„
lim u. lim v,

• lim C„

is exact, but the corresponding result for inverse limits does not hold in
general.

The chain complexes were generalized by Eilenberg and Steenrod in their
1952 book [189]. The limitation of the indices to integers ^ 0 is completely
unessential, and they may run through the set Z of all rational integers; among
these generalized chain complexes, the chain complexes are those for which
Cy = 0 for ; < 0. A simple change of notation then leads to the notion of
generalized cochain complex C
d,: CJ

(CJ), where CJ = C_j and the coboundary
CJ+1 is just b_j. The only thing that changes is the terminology: the

elements of CJ are called ;'-cochains, Ker d, is the group of ;'-cocycles, and
Imdy-! is the group of;'-coboundaries; finally, HJ(C) = Kerdj/Imdj.-! is the
;'th cohomology group of the generalized cochain complex; this is simply a
cochain complex if CJ = 0 for ;' < 0. Any notion or result relative to chain
complexes is therefore immediately transferred to cochain complexes.

An important special case of generalized chain complexes is the one in which
C. = (Cj) consists of vector spaces over a field k, and the boundary operators
by are linear maps of vector spaces. Then the dual vector spaces CJ =
Hom(C;, k) form a generalized cochain complex for the coboundaries

"j+i C;-CJ+1

transposed of the boundaries. If f, = (fj): C. -> C. is a chain transformation
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that consists of linear maps, the transposed maps 'fj = fJ: C* -> C* constitute
a cochain transformation '/: C" -> C, and the corresponding homomor­
phisms

HY/.):HJ(C-)->HJ(C)

are the transposed homomorphisms 'H-(/). If

0-.A ->B ->C ->0

is a short exact sequence of chain complexes over k,

0 -*• C > B- > A" -*• 0
is an exact sequence of cochain complexes, and the corresponding
cohomology exact sequence is

H"(C) H"(B-; H"(A") •H"+1(C)'H„(9.) * ' 'H„(/J * ' 'S„+1
The exact sequences in homology and cohomology naturally led to the

study of exact sequences of Z-modules (or more generally of R-modules for
any commutative ring R) independently of the theory of chain complexes.
Some useful lemmas were formulated, such as the famous "five lemma," which
assumes that in the commutative diagram of R-modules

Gj ► G2 ► G3 ► G4 ► G5

G\ C, G' g;
the two lines are exact; then (1) if ux is surjective, u2 and u4 injective, u3 is
injective; (2) if u5 is injective, u2 and u4 surjective, u3 is surjective. In particular,
if u1, u2, u4, u5 are bijective, so is u3; in that form it appears for the first time
in the Eilenberg-Steenrod book ([189], p. 16). Another one is the "snake
lemma": given a commutative diagram of R-modules

0

0

A

A'

B

B' C

0

0

where the two lines are exact, there exist canonically defined homomorphisms
making the sequence

0 -> Ker u -> Ker v -> Ker w -> Coker u -> Coker v -* Coker w ->• 0

exact ([113], p. 40).
Not only exact homology sequences but other parts of homology theory as

well were pushed back into the algebraic theory of chain complexes. For
instance, if a chain complex C. = (C;) is such that C, = 0 except for a finite
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number of indices, and the C,- are finitely generated Z-modules, the Euler­
Poincaré characteristic of C. is*

z(C.) = X(-l)Jrk(CJ). (35)
j

Kelley and Pitcher observed that if for such chain complexes there is an exact
sequence

0 -*• A. -*• B. -*• C. -*• 0, (36)
then

Z(B.) = Z(A.) + *(Q). (37)
Earlier [336] Mayer had noted that

Z(H.(C.)) = Z(C.) (38)
for the homology of Q. When C. is the complex of chains of a finite simplicial
complex this gives back the Euler Poincaré formula (4) of chap. I, § 3.

B. The Functors ® and Tor

In 1935 Cech inaugurated a new direction in homology theory [125], the
investigation of the way in which homology groups Hp(X; G) depend on the
group of coefficients G. He limited himself to the case in which X is a
denumerable locally finite combinatorial complex^ but in fact the treatment
is entirely algebraic, and consists of the study of the relations between H.(C.; Z)
and H.(C.; G) for a free chain complex C. and an arbitrary discrete
commutative group G

Cech's arguments and results were expressed in terms of generators of
modules and of linear relations among them. After tensor products of
arbitrary Z-modules had been defined by Whitney in 1938 [511], it became
possible to use this notion to obtain an intrinsic expression of Cech's theorems,
but the complete statement of those theorems in such terms does not seem to
have appeared in print before the Eilenberg-Steenrod book ([189], p. 161).
It is this formulation that we shall use to describe Cech's arguments, in order
to simplify the exposition.

In the free Z-module Cp of p-chains with coefficients in Z, the submodule
Zp of p-cycles is also free, as well as its submodule Bp of p-boundaries.
Furthermore, as the boundary map bp: Cp -> Zp_j has kernel Zp, the fact that
its image Bp_j is free implies that there is in Cp a free submodule Fp (not unique
in general) such that Cp = Zp © Fp. Since Cp is free, the G-module of p-chains
with coefficients in G is, by definition (§ 2), Cp ® G, so

* For a finitely generated Z-module M, the quotient M/T of M by its torsion sub­
module is free, and the rank rk(M) is the number of elements of a basis ofthat Z-module.
t Independently, Alexandroff and Hopf treated the same problem for finite complexes
in their book ([30], p. 233).
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Cp ® G = (Zp ® G) © (Fp ® G), (39)
since Zp and Fp are also free. However, the boundary map

bp ® 1 : Cp ® G -» Z,,.! ® G (40)
has a kernel (the group of p-cycles with coefficients in G) that contains Zp ® G
but may be larger, and is therefore written (Zp ® G) © Zp, where Zp is the
kernel of the restriction of bp ® 1 to Fp ® G. The image of Cp+1 ® G
by bp+1 ® 1 (the group of p-boundaries with coefficients in G) is contained
in Zp ® G. From the exact sequence defining the homology group Hp =
HP(C.;G)

Cp+1-—>Zp-Hp-0 (41)
Dp+l

the exactness of

Cp+1®G- >Zp®G-Hp®G-0 (42)
bp+1®l

follows, and

Hp(C.;G)^(Hp®G)©Zp. (43)
Finally, as Fp ® G is isomorphic with Bp j ® G, the exact sequence defining
Zpis

0 -» Zp -» Bp , ® G -» Tp.x ® G - H^ ® G -» 0. (44)

Although expressed in the language of generators and relations, this was
historically the first example of a general phenomenon that was noted by
Whitney when he defined the tensor product A ® B of two arbitrary Z­
modules. If a homomorphism /: A -> A" is surjective, the same is true of
f® 1 : A ® B -> A" ® B, but if the homomorphism g: A' -> A is injective,
the corresponding homomorphism 0®l:A'®B->A®Bis not necessarily
injective. However, it was only much later ([440], p. 225) that it was realized
that the kernel of g ® 1 only depends on B and on A" = A/g(A') (a fact that
Cech had proved in the special case he was studying); this kernel was then
written A" * B or Tor(A", B) and called the torsion product of A" and B, because
(as Cech also had noted) it only depends on the torsion submodules of A" and
B. Cech's result could then be written as an isomorphism

Hp(C.®G)^(Hp®G)@Tor(Hp_1,G) (45)
or as an exact sequence which splits

0 -» Hp ® G -» Hp(C. ® G) -» Tor(Hp_1, G) - 0, (46)

where the first homomorphism is deduced from the natural homomorphism

Ker(bp) ® G - Ker(bp ® 1).

Another important result concerning the dependence of H.(Q; G) on the
group G came from the following observation. If C. is a free chain complex and
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0 -> G' -> G -> G" -> 0

is an exact sequence of commutative groups, the corresponding sequence

0 -*• C. ® G' -*• C. ® G -*• C. ® G" -*• 0

is also exact and there is a corresponding homology exact sequence

•••-HP(C.;G')-HP(C.;G)-HP(C.;G")^HP_1(C.;G')--.

The connecting homomorphisms ß: Hp(C.;G")-> Hp_j(C.;G') are called
the Bockstein homomorphisms in homology; they were first considered by
Bockstein [53] for the exact sequence 0 -> Z -> Z -> Z/mZ -> 0, where ^ is
multiplication by m.

C. The Künneth Formula for Chain Complexes

We have seen that the homology of the product K' x K" of two finite cell
complexes with coefficients in Z is the homology of the free chain complex
S.(K' x K") defined by formula (24) of chap. II, § 5 with the boundary operator
defined by formula (26), loc. cit. Obviously this can again be transferred to a
purely algebraic operation. If C. and C" are any two chain complexes, consider
the chain complex C. = C. ® C", defined by

cr= © (c;®c;_p) (47)
0=Sp=gr

and by the boundary operator

Mzp ® z';_p) = bpZ; ® z;_p + ( - iyZp ® br_pZ;'_p; (48)

this formula shows first that br_j o br = 0, and then, if z'p and z"_p are cycles,
so is z'p ® z"_p, and if either z'p or z'r'_p is a boundary, z'p ® z^'_p is also a
boundary. This yields a natural homomorphism of graded Z-modules

H.(C.) ® H.(C.') -» H.(C. ® C.'). (49)
From general theorems of homological algebra given by H. Cartan and

Eilenberg ([113], p. 111) it follows that if C. and C" are free chain complexes,
the preceding homomorphism is inserted in a split exact sequence

0- © (Hp(C.)®Hr_p(C.'))-Hr(C:®C:')
0:gp=Sr

- © Tor(H,(Q),Hr_1_,(q'))-0 (50)
(Künneth-formula for chain complexes). A direct proof can be given as follows
([440], pp. 228-229): Consider chain complexes Z.' = (Z'j) and B.' = (B^) of
cycles and boundaries of C.' with boundaries equal to 0. There is then a short
exact sequence of chain complexes

0 -> Z.' -> C;' b" > B: -> 0 (51)
the first arrow being the natural injection. These chain complexes are free, so
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this gives the exact sequence

o->c;®z:->c;®c: x® •>c;®b:->o.
The corresponding homology exact sequence is therefore

• • • -» h,(c: ® zr> 4. h,(c: ® o - h,(c ® b:> 4. h,_» (c: ® z:>

(52)

It is easy to check that p is the surjective map

© (H/C.) ® Z;'_,) - © (H;(C.) ® H^Q'))
j J

and 5 is the map

© (h„_w(c.)®b;)- © (h^.^ooz;')

(53)

(54)

(55)

coming from the natural injections Bj' -> Zj'; by (46) the kernel of that homo­
morphism is ©0*..,*.<.-i Tor(H,-i-j(C.), H,(C")), hence the sequence (50).

D. The Functors Horn and Ext

The discovery of the role played by extensions of groups in homology did
not come from such a systematic search for "universal coefficients" as Cech's
paper on homology of infinite combinatorial complexes based on finite chains.
We saw in §4 that in his thesis of 1936 Steenrod had essentially tried to do
the same for Cech homology of compact metric spaces but had only partially
succeeded. In the same spirit, in the 1940 paper where he introduced the new
homology groups H^'(X; G), the variation of those groups when the coefficient
group G varies played an important part. It is precisely the description he had
given of the groups H'j'(2A; Z) for the solenoids, which started the
collaboration of Eilen berg and Mac Lane and their famous 1942 paper [177].

At that time Mac Lane was working on the group Ext(G, H) of extensions
of a commutative group G by another commutative group H: a commutative
group E is an extension of G by H if there is an exact sequence*

0
ß H-0. (56)

Two such extensions (E, a, ß) and (E', a', ß') are equivalent if there is an
isomorphism 9 : E 2; E' such that the diagram

0-G H->0 (57)

* One may define more generally an extension E of two not necessarily commutative
G, H, meaning that G is a normal subgroup of E, and H is isomorphic to the quotient
group E/G; they were studied in a particular case by I. Schur [418] and in general by
O. Schreier.
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is commutative. Given a section u: H -> E for ß, i.e., a map such that ß(u(h)) =
h for all h e H, then

u(h) + u(h') = u{h + h') + oi{f(h, h')), (58)
where / is a map of H x H into G (a "factor set"). The associativity and
commutativity of the group law in E impose on / the conditions

f(h, k) + f(h + k,l)= f(h, k + l) + f(k, I)
f(k,h) = f(h,k)

for h, k, I in H. Furthermore, if w': H -> E is another section of ß, then
u'(h) = u(h) + a(g(h)), (60)

where g is a map of H into G, and

(p(h,k) = g(h) + g(k)-g(h + k) (61)
belongs to the additive group Z(G, H) = Z of factor sets. To say that the factor
set/ belongs to the subgroup B(G, H) = B consisting of the special factor sets
(61) means that there is a section u: H -> E of ß that is a homomorphism,
hence, the sequence (56) splits, and the extension E, isomorphic to G © H, is
trivial.

Any extension (E, a, ß) thus determines a unique element of the factor group
Z/B. Conversely, for any fe Z the set Ef = {(g, h) e G x H} is a commutative
group for the group law (g1, h) + {g2, k) = {gl + g2 + f{h, k), h + k), and the
triple (Ef, a, ß), where a: G -> Ef is the natural injection and ß: Ef ->• H is the
second projection, is an extension of G by H; two factor sets fx, f2 give
equivalent extensions if and only if fx — f2 e B. In this way the set Ext(G, H) =
Z/B was given the structure of a commutative group. This group structure on
equivalence classes of extensions was discovered by R. Baer in 1934 ([37],
[38]).

Mac Lane computed the group Ext(Z,Tp) for the "p-adic solenoid" Tp [i.e.,
the solenoid corresponding to the set A = (p, p2,..., p",... ) for a prime number
p (§2)]; it is the Pontrjagin dual of the discrete additive group of the ring
Z[l/p]. Eilenberg noted that from Steenrod's description it followed that
Ext(Z,Tp) is isomorphic with the Steenrod group H'j(Tp;Z), and he and Mac
Lane set out to investigate thoroughly this unexpected coincidence. They first
found another definition of the group Ext(G, H). If H = F/R, where F is a free
commutative group, then 0->R->F->H->0isan extension corresponding
to a factor set f0 e Z(R, H). To each 6 e Hom(H, G) corresponds a factor set
fe = 0 °fo e Z(G, H), and if 6 can be extended to a homomorphism of F into
G, then/e e B(G,H). It is then easy to see that, if Hom(F|R, G) designates the
subgroup of Hom(R, G) consisting of restrictions to R of homomorphisms of
F into G, there is an isomorphism

Hom(R,G)/Hom(F|R,G) ~ Ext(G,H). (62)
The 1942 Eilenberg-Mac Lane paper is fairly long, because they considered

both homology and cohomology groups for compact metric spaces with all
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the definitions proposed by Cech and Steenrod for arbitrary groups of
coefficients, taking into account the peculiarities linked to the topology assigned
to these groups. Their two main results were:

1. For Cech cohomology groups, the complete description for a compact
metric space X and a discrete group G ([177], p. 823):

H«(X; G) =* (G ® H«(X; Z)) © Homcont(G, T«(X; Z)) (63)

where T«(X; Z) is the torsion subgroup of H*(X; Z), and Homcont means the
subgroup of Horn consisting of continuous homomorphisms.

2. For the Steenrod homology groups, there is a similar decomposition (for
discrete G) ([177], p. 824)

H;'(X; G) ^ Hom(H"-1 (X; Z), G) © Ext(G, H«(X; Z)), (64)

which in particular "explains" Mac Lane's observation for X = XA; then

HÏ(ZA;Z)~Ext(Z,ZA)

and the right side is isomorphic to ZA/Z, where ZA = lim„ Z/Za1a2 • • • a„.

In that paper, among other things, Eilenberg and Mac Lane observed that,
when working with an infinite combinatorial complex K, anything proved for
groups of infinite a-cochains C(K;G) = Hom(C,(K;Z),G) [where C,(K;Z)
is the group of finite a-chains] applies just as well to groups of infinite a-chains
C;(K;G) = Hom(C'"(K;Z),G) [where C«(K;Z) is the group of finite q­
cochains] ([177], p. 813). This meant that (just as Cech with his introduction
of Tor), they had to deal with a purely algebraic property: given a free chain
complex C. = (Cq) over Z, and the cochain complex C = (Hom(C„,G))„;>0
associated to it, the problem is to describe its cohomology group H"(C; G) in
terms of H„(Q; Z) = H„ and G. H"(C; G) = Z"/B", where Z" is the group of
«-cocycles and B" is the group of «-coboundaries, and by definition Z" is the
subgroup of Hom(C„, G) consisting of «-cochains that vanish in the group B„
of «-boundaries. As the group Z„ of «-cycles is a direct summand of C„, it is
possible to associate to each «-cocycle feZ" its restriction / to Z„, and as /
vanishes in B„, and every «-coboundary a e B" vanishes in Z„, / determines a
unique homomorphism of H„ = Z„/B„ into G. This thus defines a natural
homomorphism

ß: H"(C; G) - Hom(H„, G). (65)
This homomorphism is surjective because any homomorphism of Z„ into G
that vanishes in B„ is the restriction / of a homomorphism /: C„ -> G
vanishing in B„ (since Z„ is a direct summand of C„), i.e., an «-cocycle. To investigate
Ker ß, note that if there is an «-cocycle / such that / = 0, then / vanishes in
Z„ and can be written g o b„, where g e Hom(B„_1,G). However, two such
cocycles fx, f2 only give the same class in H"(C; G) if fx — f2 e B", and Ker ß
is the quotient of Hom(B„_j,G) by the subgroup of its elements g such that
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g o b„ is a restriction of an n-coboundary. This means that g is the restriction
of a homomorphism g0: C„_j -> G, or equivalently (since Z„_j => B„ j is a
direct summand of C„_, ), the restriction of a homomorphism g-! : Z„_j -> G.
Finally, by (62), as Z„_j is free,

Ker ß * Hom(B„_1,G)/Hom(Z„_1 IB..», G) 5. Ext(H„_1, G).

We thus obtain an exact sequence

0 - Ex^H.,^, G) - H"(C, G) - Hom(H„, G) - 0 (66)
and this sequence immediately splits: the choice of a supplement F„ to Z„ in
C„ determines a unique map Hom(Z„,G)-> Hom(C„,G) by assigning to a
homomorphism of Z„ into G its extension to C„ which vanishes in F„.

If C. is a free chain complex and
0 -*• G' -*• G -*• G" -*• 0

is an exact sequence of commutative groups, the corresponding sequence

0 -> Hom(C., G') -> Hom(C., G) -*• Hom(Q, G") -*• 0

is also exact; therefore there is a cohomology exact sequence

► H"(C; G') - H"(C; G) - H"(C; G") £ Hp+1 (C; G') -» • • •.

The connecting homomorphisms ß: Hp(C';G")-> HP+1(C';G') are again
called the Bockstein homomorphisms in cohomology.

E. The Birth of Categories and Functors

The work done by Eilen berg and Mac Lane on the role of the groups Ext(G, H)
in homology led them almost immediately afterward [178] to very general
considerations on various aspects of group theory that would ultimately bring
new points of view in many parts of mathematics and exert a deep influence
on subsequent work in algebra, algebraic topology, and algebraic geometry
in particular.

Perhaps the custom they had adopted of systematically using notations
such as Hom(G, H), Ext(G, H), G O H (their notation for the tensor product),
Ch(G) (dual group of G), Annih(L) [orthogonal in Ch(G) of a subgroup L of
G], etc., for the various groups they defined in their 1942 paper, suggested to
them that they were defining each time a kind of "function" which assigned a
commutative group to an arbitrary commutative group (or to a pair of such
groups) according to a fixed rule. Perhaps to avoid speaking of the
"paradoxical" "set of all commutative groups," they coined the word "functor" for
this kind of correspondence; of course their originality did not lie there, but
in their crucial observation that a "functor" acted not only on groups, but also
on homomorphisms of groups. To any homomorphism u:G1 -> G2 (resp.
c:H,-> H2), there corresponds a well-determined homomorphism

Hom(u, 1): Hom(G2, H) -> Hom^, H)
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[resp. Hom(l, v): Hom(G, U1 ) -> Hom(G, H,)]

defined by g i—> g o u (resp. /i—» u of).
In general, a covariant functor F: Gi—> F(G) associates to a homomorphism

u: Gj -> G2 a homomorphism F(u): F(Gj) -> F(G2), whereas a contravariant
functor associates to u a homomorphism F(u): F(G2) -> F(Gj). In addition,

F(l, F(G)> F(r o u) = F(v) o F(u) for covariant functors,
F(1g) = 1f(G)' F(d o u) = F(u) o F(d) for contravariant functors.

(67)

It is in this new concept that they found the answer to what they described as
their principal motivation: to give a precise formulation to the distinction
between "natural" and "unnatural" isomorphisms, the typical "unnatural"
isomorphisms being those between a finite dimensional vector space (resp. a
finite commutative group) and its dual vector space (resp. its Pontrjagin dual),
whereas there is a unique "natural" isomorphism of the space (resp. the group)
onto its second dual (resp. its second Pontrjagin dual).

As we have noted above (§ 2), that distinction was of very recent origin, since
until 1930 almost all mathematicians had been gleefully identifying vectors
and linear forms; we must credit Eilenberg and Mac Lane with their foresight
in guessing that such distinctions would become very significant in the
mathematics of later days. More generally, they defined a natural transformation Ç
of a functor F into a functor G: for each commutative group X, ç(X) is a
homomorphism F(X) -> G(X), such that for any homomorphism u: X -> Y,
there is a commutative diagram

F(X)
FM

ê(X)

G(X)
GM

F(Y)

ê(Y). (68)

G(Y)

If in addition £(X) is bijective for all X, then Ç is a natural equivalence. The
typical example is the natural transformation Ç such that

<J(X): X - Ch(Ch(X))

is the natural isomorphism of the Pontrjagin theory. They arrived at this
definition by observing that when mathematicians spoke vaguely of a
"natural" isomorphism, they had in mind the unexpressed idea that the
isomorphism could be defined generally for any group without using any
special property of the group.

In the 1945 paper in which they expanded their 1942 note [180] Eilenberg
and Mac Lane introduced the word "category" to designate a type of
mathematical object having a common structure, to which were compulsorily added
what was later called "morphisms" between these objects. They gave a large
number of examples of various categories and functors between categories. In
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particular, they showed that generalized chain complexes (with chain
transformations as morphisms) may be considered as forming a category, and
C. i—> Hj(C.) is a covariant functor from that category to the category of
commutative groups.

It was precisely for the category of chain complexes that in 1953 [186]
Eilen berg and Mac Lane gave the first application of their ideas which was
not what they themselves called "abstract nonsense" (purely verbal), namely,
the method of acyclic models, that later became a useful tool in algebraic
topology and homological algebra. (We shall discuss it below in section G.)

F. Chain Homotopies and Chain Equivalences

The homotopy operators of Lefschetz (chap. II, § 3) can be defined in a purely
algebraic way for chain complexes; this was done by Eilenberg in his paper
on singular homology [172] for free chain complexes, a restriction that is
irrelevant and was abandoned in the Eilenberg Steenrod book [189], Let
C. = (Cj) and C. = (Cj) be two generalized chain complexes, and let u. = (u})
and v. = (vj) be two chain transformations of C. into C.. A chain homotopy
between u. and v. is a sequence h. = (hj) of homomorphisms

hj\ Cj -> Cj+1

such that for all indices; e Z, and all x3 e Cj,

Vj{xj) - uj{xj) = bJ+l(hj(xj)) + hj-^bjXj).

From this it follows at once that for any cycle Zj, Vj(zj) — Mj(zj) is a
boundary, hence H.(u.) = H.(u.) for the homology homomorphisms deduced from u.
and v..

This leads to the concept of chain equivalence between two generalized chain
complexes Q, C.: it consists in two chain transformations/.: C. -> C'„ g.: C. ->
C. such that the composite chain transformations g. of: C. -> C.,f ° g.: C. ->
C. are, respectively, chain homotopic to the identity transformations of C. and
C.. When such transformations exist, the homology graded Z-modules H.(C.)
and H.(C.) are therefore isomorphic.

If C. = (Cj)J7,0 is a chain complex, by definition b0 = 0, hence 0-chains
are 0-cycles, and the sequence C, —* C0 -> H0(C.) -> 0 is exact. More

general

ally, an augmented chain complex C. = (Cj) is a generalized chain complex
with Cj = 0 for j' ^ — 2; it is usually written

•••-Cj-rCj_1---C1—»C0—»A-0, (69)
where £ is called the augmentation of the (unaugmented) chain complex C. =
(Cj);> 0 (ker £ only contains the group of 0-boundaries, but is not necessarily
equal to it); we write C. = (Q, £). The augmented complex (C., £) (or C. itself)
is called acyclic if the sequence (69) is exact, which means that Hj(C.) = 0 for
; ^ 1 and H0(C.) = A.

Augmented acyclic complexes (C.,e) with C. free were first introduced by
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Hopf in 1945 in connection with his concept of cohomology of groups (see
Part 3, chap. V, § 1,D). His main theorem concerned chain transformations
between two augmented complexes (C.,£), (C„e'), where C. is free and (C.,e')
is acyclic; then

1. For any given homomorphism cp: A -> A', there exist chain transformations
/.: C. -> Q such that the diagram

—>c

//

—>c

'1 —*

-j -r
fj-i

Q

■c,

b,
A

A'­

•0

(70)

•0

is commutative.
2. Any two chain transformations/., g, having property 1 are chain homotopic.

To define /. = (fj) and the chain homotopy h. = (h}) his method (which in
fact Hopf only applied when both complexes are free and acyclic) consisted in
using induction on; to define the/ and h}. Since the C, are free, it is enough
to define f and hj for each element e, of a basis of C,-.

As e' is surjective, take f0(e0) such that f:'(/0(eo)) = (/>(e(eo))- Then, if the /
are defined for i < ;' and

b^^.^b^.)) = fj-zibj^ibjej)) = 0,

the acyclicity of C. shows that fJ_1 (bjej) is a boundary and it is thus possible
to define /(e,) in such a way that bj(fj(ej)) = f-i {bjej).

Similarly, if g, is a second chain transformation such that e' ° g0 = cp o e,
then £'(0o(eo) —/o(eo)) = 0; hence, there is h0{e0) such that b!(h0(e0)) =
g0(e0) — f0{e0). Then, if the h, are defined for i < ;", such that

9j-i(ej-i) ~ fj-i(ej-i) = b/(Vi(cj-i)) + Vz^j-i^'j-\Kj-lh
then

hj(dj(ej) ~ fMj)) = gj-Abjej) - fj-Abjej) = b^h^A^ej))

and by acyclicity of C., hj(ej) may be defined such that

9j(ej) ~ X'(ej) = hj-Ahej) + h+Ah](ej))­

If C. and C. are ooth free and acyclic and <p: H0(C.) ->• H0(C.) is bijective, C.
and C. are then chain equivalent [in that case the isomorphisms Hp(C.) =
HP(C.) reduce to 0 = 0, but Hopf wanted to establish uniqueness (up to chain
equivalence) of free acyclic complexes with given initial module A (later called
free resolutions of A; see Part 3, chap. V, § 1)].

In his 1942 book ([308], p. 158) Lefschetz had already used an inductive
process similar to the preceding one in proofs of isomorphism of homology
modules defined by different means. He essentially used the fact that in the
chain complexes C. = (C,) he was considering each C, has a basis consisting
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of euclidean simplices or continuous images of such simplices that were
contractible as topological spaces and therefore had vanishing homology in
dimensions §= 1 (they were called acyclic carriers).

It is this topological method that Eilenberg and Mac Lane were able to
translate into purely algebraic terms in their "method of acyclic models,"
which later had many applications.

G. Acyclic Models and the Eilenberg-Zilber Theorem

It is probably clearer to start with the Eilenberg Zilber theorem, which was
one of the first applications of the method of acyclic models [190]. The
problem is the following: let X, Y be arbitrary topological spaces; to X, Y and
their product X x Y are associated the singular chain complexes S.(X), S.(Y),
and S.(X x Y) (§2); the tensor product S.(X)® S.(Y), which is again a chain
complex [formula (47)] can also be formed. The theorem is that there is a
chain equivalence between S.(X x Y) and S.(X) ® S.(Y), hence their homology
modules are isomorphic.

Each Z-module S„(X x Y) is free, having a basis formed of the pairs (f,g),
where /: A„ -> X and g: A„ -> Y are arbitrary continuous maps. Similarly,
Sp(X) ® S?(Y) is a free Z-module having as basis the tensor products u ® v,
where u: Ap -> X and v: Aq -> Y are arbitrary continuous maps. There
are canonical augmentations e: S0(X xY)-»Z and e': S0(X)® S0(Y)-> Z,
defined by e(x, y) = 1 and e'(x ® y) = 1 for every pair (x, y) e X x Y [where x
(resp. y) is identified with the map A0 -> X (resp. A0 -> Y) taking the value x
(resp. y)l

First define cp: Z-> Z as the identity. Let cp0(x,y) = x®y. Suppose the
maps

Vl>XiY: S,.(X x Y) - (S.(X) ® S.(Y))( = © (S„(X) ® Sk(Y))
h+k=i

have been defined, for i < ;', for every pair (X, Y) of spaces; assume that
they commute with the boundary homomorphisms, and that if a:X->X',
ß: Y -> Y' are any two continuous maps,

<Pt.x:r ° (S.(a, ß)) = (S.(a) ® S.(ß)) o <pijX>Y. (71)

As any element of Sj(X x Y) is a sum of basis elements written

S.(/,</)(lvlA>

it is only necessary to define <pJtA A (1A , 1A ), and <phX,\ W1'l be defined for all
spaces X, Y by (71). But for X = Y = A,, observe that Ay is contractible, and
it follows from the Kiinneth theorem for chain complexes that H?(S.(Aj) ®
S.(Aj)) = 0 for q ^ 1. We can therefore apply the Hopf procedure (described
in §5,F) to define <pj^.iA., and it is then easy to verify that (71) is still valid
when i is replaced by ;'; the existence of chain transformations of S.(X x Y)
into S.(X) ® S.(Y) is thus proved.

Similarly, to prove that any two such chain transformations are chain
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homotopic, assume that the homomorphisms hixY have been defined for i < ;'
and for every pair (X, Y) of spaces, and that

hux. Y. o (S.(a, ß)) = (S.(a) ® S.(jS)) ° huX,Y (72)

with the same notations as above. Then the Hopf procedure is applied to the
case X = Y = A,-, and hjXY is defined and satisfies (72).

In the opposite direction, if i//0(x ® y) = (x,y), the same arguments show
that the restriction of \p}jX>Y toeachSp(X)® S?(Y) must be defined for p + q =
;'. The basis elements of SP(X) ® S?(Y) are written (S.(u)® S»)(lAp ® lAg); it
is therefore enough to define the i/ojX,y f°r X = Ap, Y = Aq, and as Ap x Aq is
contractible, the Hopf procedure applies again for the definitions of the chain
transformation and of the chain homotopy.

To understand the theorem of acyclic models, we first express (71) and (72)
in functorial language: consider the category of pairs (X, Y) of topological
spaces, where the morphisms are the pairs (a, ß) of continuous maps; the maps
(X, Y) h-> S.(X x Y), (a, ß) h-> S.((a, ß)) define a functor G from that category to
the category of chain complexes, and the maps (X, Y) i—> S.(X) ® S.( Y), (a, ß) i—>
S.(a) ® S.(j?) another such functor G'; finally (71) and (72) mean that q>x Y =
(Vi.x, y) an(l nx, y — (ni,x, y) are natural transformations of G into G'.

To generalize, consider an arbitrary category C, and covariant functors G,
G' from C to the category of chain complexes; the role of the pairs (Ap, A,) is
played by a set W of objects of C called models; the functor G is called acyclic
if H„(G(M)) = 0 for q ^ 1 and for each object M e 951; G is free if, for each
q ^ 0, there is a family of objects {Mq'))i(ll belonging to 9JÎ and such that, for
any object X of C, the Z-module (G(X)L has a basis consisting of elements
G(/)(öfj), where g{ is an element of {G{Mqi)))q for some ie lq, and / runs
through the set of morphisms Mor(M£',X). [For the functor S.(X x Y) in the
Eilenberg Zilber theorem, the family (M^>) is the singular q-simplex (1A , 1A )
in the space A, x Ar For the functor S.(X) ® S.(Y), (M^) consists in all pairs
(Ah, Afc) for h + k = q, and gi is the tensor product lAh ® 1 Ak.]

The theorem of acyclic models then says that if G and G' are two functors
from C to the category of chain complexes, such that G is free and G' acyclic,
then any natural transformation of functors

£: H0 ° G -*• H0 o G'

is such that

aX)(H0(G(X))) = Ho(É(X)(G(X))),

where £: G -> G' is a natural transformation of functors; furthermore, any two
such natural transformations £, Ç for which £ = Ç are such that <^(X) and <^'(X)
are chain homotopic for all X. When both G and G' are free and acyclic (as
in the case of the Eilenberg-Zilber theorem), if H0(G(X)) -> H0(G'(X)) is an
isomorphism for all X in C, then the chain transformation G(X) -> G'(X) is a
chain equivalence.

As an example of substitution of the theorem of acyclic models for earlier
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similar arguments restricted to particular cases, consider the proof of the
isomorphism of the homology H.(K; Z) of a finite euclidean simplicial complex
K and the homology H.(K'; Z) of its "first derived" complex K'. It is immediate
to check that the chain complexes C.(K) and C.(K') of alternating chains are
both free and acyclic; to establish a chain equivalence between them, one has
only to define an isomorphism H0(C.(K)) ^ H0(C.(K')). First suppose K
connected; then any vertex of K may be joined to a particular vertex x0 by a
broken line consisting of edges of simplices of K; this proves that every vertex
is homologous to x0, hence H0(C.(K)) is the module generated by the class of
x0. The same is true for H0(C.(K')), and the isomorphism simply assigns to
the class of x0 in H0(C.(K)) the class of x0 in H0(C.(K')). If K is not connected,
the argument is repeated for each connected component.

The interest of this method is that it can be transferred to arbitrary
combinatorial complexes, by "mimicking" simplicial complexes, A combinatorial
complex K is connected if any vertex x can be "joined" to a fixed vertex x0 by
a sequence (x0, x1,..., xp), where xp = x, and any consecutive pair (xp xj+l ) is
a 1-simplex; if K is connected, H0(C.(K)) is again generated by the class of x0.
It is then necessary to prove that if K is connected, so is K'; a vertex of K' is
a simplex S of K, and there is a totally ordered set ({x}, S j,..,,Sp) of simplices
of K such that x is a vertex of K and Sp = S; as this ordered set is a simplex
of K', this shows S and {x}, vertices of K', may be "joined" by 1-simplices of
K'; one then similarly "joins" {x} and {x0} in K' using a chain of 1-simplices
of K joining x and x0. The end of the argument is then the same as above,
C.(K) and C.(K') being trivially free and acyclic; the extension to non­
connected complexes is easy.

H. Applications to Homology and Cohomology of Spaces:
Cross Products and Slant Products

Any result on homology or cohomology of chain complexes immediately
yields corresponding results for singular homology and cohomology. For
instance, if X is any space and A is a subspace of X, the chain complex
S.(X)/S.(A) is free; the "universal coefficient theorem" for homology of chain
complexes [formula (46)] gives, for any commutative group G, the split exact
sequence for singular homology

0 -» HP(X, A; Z) ® G -» HP(X, A; G) -» Tor(Hp_j (X, A; Z), G) -» 0 (73)

and the "universal coefficient theorem" for cohomology of chain complexes
[formula (66)] gives the split exact sequence for singular cohomology

0 - Ext(Hp_! (X, A; Z), G) - HP(X, A; G) - Hom(Hp(X, A; Z), G) - 0. (74)

If X and Y are arbitrary spaces, it follows from the Eilenberg-Zilber
theorem that there is a natural isomorphism of graded Z-modules

H.(X x Y; Z) ~ H.(S.(X) ® S.(Y)) (75)
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and the Künneth formula for chain complexes [formula (50)] gives a split
exact sequence

0-0 (Hp(X;Z)®Hr_p(Y;Z))^H,(Xx Y;Z)

- © Tor(H?(X;Z),Hr^^(Y;Z))-,0 (76)
(Künneth formula for singular homology). This gives rise to the definition,
for z e Hp(X; Z) and z e H?(Y; Z), of the homology cross product z x z e
Hp+,(X x Y; Z), as the image of z ® z by the first homomorphism of (76)
(Lefschetz [308], p. 173).

On the other hand, there is a cochain transformation of cochain complexes

Hom(S.(X), G) ® Hom(S.(Y), G') -> Hom(S.(X) ® S.(Y),G ® G') (77)

for any two commutative groups G, G'; the Eilenberg-Zilber chain
equivalence

S.(X x Y) - S.(X) ® S.(Y)

gives a cochain equivalence

Hom(S.(X) ® S.(Y), G ® G') -> Hom(S.(X x Y), G ® G') (78)

and, composing (77) and (78), a cochain transformation is obtained

Hom(S.(X),G)®Hom(S.(Y),G')->Hom(S.(X x Y),G®G')

that yields a functorial homomorphism of singular cohomology groups

H"(X; G) ® H«(Y; G') -> HP+"(X x Y; G ® G'). (79)

In particular, if the additive group of a commutative ring A is taken for G and
G', and the natural homomorphism A ®z A -> A is applied, then there arise
homomorphisms

H"(X; A) ® H«(Y; A) - HP+«(X x Y; A), (80)

and for u e HP(X; A) and v e H"(Y; A), the image of u ® v is written u x v, the
cohomology cross product of u and v.

For X = Y, this gives a new definition of the cup product, as first observed
by Lefschetz ([308], p. 190): the diagonal mapping ô: xi—>(x, x)ofXintoX x X,
yields for cohomology a homomorphism

c5*:H-(X x X; A) -> H*(X; A)

hence

u^v = ô*{u x v). (81)
The derivation of this equality is a good example of the method of acyclic

models: it can be applied to the free and acyclic functors S.(X) and S.(X) ®
S.(X), with respective models (Ap) and ((Ap, Aq)); the map xi—>x ® x of S0(X)
into S0(X) ® S0(X) can therefore be extended to a chain transformation
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S.(X)-S.(X)®S.(X), (82)
and any two such chain transformations are chain homotopic, hence yield the
same mapping H.(X; Z) -> H.(S.(X) ® S.(X)), from which, as above, functorial
homomorphisms can be deduced, independent of the choice of the chain
transformation (82),

H"(X; A) ® H«(X; A) -» HP+«(X; A). (83)
Now we can easily verify that we may take for (82) the map which to each
simplex (x0,...,xp) associates YjO<j<zp(xo>--->xj)® (-"j, • • •. xp). and then the
corresponding map (83) is just the cup product as defined by Cech and
Whitney (§4). But we may also define a chain transformation (82) as the
composite

S.(X) -^U S.(X x X) —^—» S.(X) ® S.(X),

where i is one of the Eilenberg-Zilber chain equivalences; then the map (83)
is given by the right-hand side of (81), hence our conclusion.

Still another type of "product" was introduced in 1953 by Steenrod [453]
in connection with his previous definition of "reduced powers" (Part 3, chap.
IV, §2,C). Again, it can first be defined for arbitrary free chain complexes C'„
C", and arbitrary commutative groups G, H. Consider an element u e
(Hom(C;® C",G))„ and an element c' eC'q® H, for an index q ^ n. Then
c' = Yjia'i ® hi, where ht e H and (<t-) is a basis of C'q; the (right) slant product
u/c' is then an element of (Hom(C;',G ® H))„-, defined by

{u/c')(x") = YJu{a[®x")®hi. (84)
i

The relation

iH-q{u/c') = (d„u/c') - (- ir-»(«/b,C) (85)
shows that the slant product u/c' of a cocycle u and a cycle c' is a cocycle, and
if in addition u is a coboundary or c' is a boundary, u/c' is a coboundary.
Therefore a (right) slant product

H"(C: ® C; G) x H„(C.; H) -» H"-«(C."; G ® H) (86)
is defined, and written (w, z) i—» w/z. This procedure favors the second factor
in the product C. ® C"; similarly, a "left" slant product may be defined. For
c" e C"q ® H, define c"\u by

(c"\M)(T') = ^M(T'®0f)®/lj (87)
if (a") is a basis of C'q and c" = ^f a" ® hh thus obtaining a (left) slant product
written (w, z) i—> z\ w

H"(C; ® C"; G) x H,(C"; H) -» H"~«(C:; G ® H). (88)
Using the Eilenberg-Zilber theorem, these definitions apply to the chain

complexes C. = S.(X), C" = S.(Y) of singular chains in two spaces X, Y, to give
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slant products

H"(X x Y;G) x H,(Y; H) - H"-«(X;G ® H),

H"(X x Y; G) x H,(X; H) -> H"""(Y; G ® H). (89)

§ 6. Identifications and Axiomatizations

The different definitions of homology and cohomology groups soon led to the
conviction that at least for some types of spaces they must yield isomorphic
groups. This was gradually proved for larger and larger classes of spaces, all
of them containing the class of finite euclidean simplicial complexes for which
homology had been defined in the first place (chap. II). Eilenberg and Steenrod
([188], [189]) discovered that this coincidence of homology theories on this
"minimal" class was due to the fact that they all shared common properties.
This led them to an axiomatic definition of homology and cohomology that
was later to acquire more importance with the introduction of "extraordinary"
cohomology theories (Part 3, chap. VII). In another direction, Leray [313]
was able, for locally compact spaces, to subsume all special processes used in
the definition of the cohomology theories under a general method; this was
the first germ of sheaf cohomology, which he introduced shortly afterward
(§7).

A. Comparison of Vietoris, Cech, and Alexander-Spanier Theories

In his 1942 book ([308], p. 273) Lefschetz defined, for a compact metric space
X, a natural isomorphism of the Cech homology groups on the Vietoris
homology groups. His idea was to consider, for each nonempty open set
U of X, a point cp(U)e U; if U0, Uj, ..., Up are open sets with nonempty
intersection [hence form a Cech p-simplex (§2)], the diameter of the set
{(p(U0),(p(U1 ),..., <p(Up)} is at most twice the supremum of the diameters of
the sets U,-. If iflln) is a sequence of finite open coverings of X such that ^„+1
is finer than aUn for each n, and the mesh of 1tn tends to 0, we have seen (§ 2)
that the Cech homology groups Hp(X; G), for any commutative group G, can
be defined as the inverse limits of the homology groups Hp(N(^„); G). Lefschetz
proved, in a rather complicated way,* that for every n, cp defines a simplicial
mapping cpn of N(^„) into the complex of Vietoris chains and that the
corresponding maps (</.„)„, for homology groups have an inverse limit that is an
isomorphism of the Cech homology H.(X; G) onto the Vietoris homology with
coefficients in G.+

* He does not seem to have taken into account the fact that in general <p is not injective.
+ In the same book, Lefschetz, a little later ([308], p. 285), shows that, for compact
metric spaces, there is also a natural isomorphism of the Cech cohomology onto the
Alexander cohomology, but his definition of the latter is not the same as the one used
by Spanier.
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In later years this identification was reconsidered in more general contexts.
First the definition of Vietoris homology was simultaneously extended to all
compact spaces by Spanier [438], and to all topological spaces by Hurewicz,
Dugundji, and Dowker [259], Consider an arbitrary (finite or infinite) open
covering % = (Ua) of a space X; this defines a combinatorial complex K#
consisting of the combinatorial simplices (finite sequences of points of X)
contained in one of the sets Ua. If °W is an open covering of X, finer than °1/,
then K<#. is a subcomplex of K^ and there is a natural chain transformation

C;'(K«.)-Cr(K«) (89)
between the corresponding chain complexes of ordered chains (with
coefficients in an arbitrary commutative group G) (chap. II, §2). The C"(K^)
therefore form an inverse system indexed by the directed set of all open
coverings of X; the homology graded groups H.(C"(K#)) also form an inverse
system, and by definition the inverse limit of that system of graded groups is
the graded generalized Vietoris homology of X with coefficients in G. When X
is a compact metric space, these groups (for G = Z or G = F2) are naturally
isomorphic to those initially defined by Vietoris (§2).

The interesting feature of that definition is that it immediately provided a
connection with the Alexander-Spanier cohomology (§3). Indeed, consider
the cochain complex (C(K#;G)) where C(K*;G) = Hom(C;(K*;Z),G),
which form a direct system; a cochain equivalence

C(X; G) - lim C(K«; G) (90)
can be defined between the Alexander-Spanier cochain complex (§ 3) and the
direct limit. First define for each p^Oa homomorphism

Ap:Cp(X;G)->limC',(K<ii.;G) (91)
in the following way: for any fe C(X; G) and any open covering % = (Ua) of
X, consider the restrictions /|U£+1, which are p-cochains of CP(K#;G); when
Ql varies, all these cochains have the same image in lim C(K^; G), which is
by definition kp(f). The homomorphism kp is surjective: if ù e lim C(K^; G),
there is a covering äU = (Ua) and an element u e C(K^; G) having ù as its
image in the direct limit; taking fe C(X; G) such that

(u(x0,xu...,xp) if(x0,x1,...,Xp)eUr1 for some a,
i(x0,...,xp)_|o otherwise,

then kp{f) = ü. Finally, the kernel of kp consists in the fe C(X; G) for which
there is a covering <% = (Ua) such that f{x0,x1,...,xp) = 0 for all systems
(x0,x1,...,xp) the elements of which are all in some Ua. This means (§3) that
fe Cg(X; G), and passage to the quotient in (91) yields the requested
isomorphism; it is easy to check that it commutes with the coboundary operator.

The introduction of the combinatorial complexes K# enabled Dowker, by
a very ingenious argument, to identify for an arbitrary topological space X
both the Vietoris and Cech homologies and the Alexander-Spanier and Cech
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cohomologies (based on arbitrary open coverings) [146]. He first proved a
general result concerning two arbitrary sets (with no topology) X, Y, and a
"relation" between X and Y, i.e., an arbitrary nonempty subset R of the
product X x Y. He defined combinatorial complexes Lx on X, MY on Y: the
p-simplices of Lx (resp. MY) are the sets {x0,xu...,xp}{resp.{y0,yu...,yp})
of p elements belonging to some subset R1 {y) for an y e Y [resp. to some
subset R(x) for an x e X]. Now consider the "first derived" combinatorial
complex M'y, and recall (chap. II, § 2) that the vertices of M'Y are the simplices
of MY; each one therefore is a subset a = {.Vo>.Vi.>--->.Vp} of some R(x), and a
mapping of the set of vertices of M'Y into the set of vertices of Lx is defined
by assigning to a an element x for which a <= R(x). There is therefore the
possibility of defining several such mappings, but it may be shown that all
these mappings are simplicial, and any two of them yield the same homo­
morphism H.(M'Y)-> H.(LX) in homology, or H'(Lx)-> H'(M'Y) in
cohomology (with any commutative group as group of coefficients). As there is a
natural isomorphism H.(MY) ^ H.(MY) [resp. H'(M'Y) Z H"(MY)] (§5,G),
this thus defines natural homomorphisms H.(MY) -> H.(LX) and H'(LX) ->
H"(MY). If the procedure is repeated, exchanging the roles of X and Y finally
establishes natural isomorphisms H.(LX) ^ H.(MY) and H'(LX) 2> H'(MY).

This general result can now be applied to the case in which X is a topological
space, and Y = °U = (Ua) is an open covering of X. The relation R is simply
x e Ua; therefore, MY is simply the nerve N(^) of °U (§2), whereas Lx is
the combinatorial complex K^ defined above. Applying Dowker's general
abstract theorem, and then taking inverse limits (on the directed set of open
coverings of X) for homology and direct limits for cohomology, one finally
obtains the natural isomorphisms announced above.

This result may easily be extended to relative homology and relative
cohomology. Instead of taking limits over the directed set of all open coverings
of X, one may also consider other directed sets of open coverings (for instance,
finite open coverings).

B. The Axiomatic Theory of Homology and Cohomology

The various homology and cohomology theories appear as complicated
machines, the end product of which is an assignment of a graded group to a
topological space, through a series of processes which look so arbitrary that
one wonders why they succeed at all. In a remarkable book [189] (announced
in [188]) Eilenberg and Steenrod endeavored to break through this maze of
unpleasant mathematics by adopting a totally different viewpoint,
concentrating on properties of these end products rather than on the various methods
devised to get them. This is the axiomatic theory of homology (and cohomology).

Their first original idea in the selection of their axioms was to think of the
assignment of homology groups (with given coefficients) to some kinds of
topological spaces as a covariant functor X i—» H.(X) from the category T of
topological spaces (or a subcategory 7" of T) to the category of graded
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commutative groups; in other words, to each morphism u\ X -> Y in J or 7"
(morphisms being arbitrary continuous maps for T, sometimes restricted
by additional conditions when 7" # T) must correspond a homomorphism
H.(u): H.(X) -> H.(Y) of graded commutative groups (§2),

Another noteworthy feature of the book is that they included relative
homology (resp, cohomology) by introducing the category Tx of pairs (X, A)
consisting of a space X and one of its subspaces A (when T is replaced
by a subcategory 7", some restrictions may be imposed on A), A morphism
f: (X, A) -> (Y, B) of 7\ is then a continuous map/: X -> Y such that/(A) <= B;
T is made a subcategory of Tx by identifying X with the pair (X, 0).

These basic notions allowed them to formulate, in addition to the
conditions (67) satisfied by all functors, their first axiom for homology, the exactness
axiom; it calls for the existence of a natural transformation d.\ H. -> H. (§ 5,E)
such that (a) d.(X,A) = {dq{X,A)Lj,0, where dq(X,A) is a homomorphism
H?(X, A) -> H?_! (A); (b) for any pair (X, A), the sequence

-»• H?(A) > H?(X) ► H?(X, A) ► Hg_! (A)-■■ —Ho(X,A)-»0 (92)
is exact, i being the injection A -> X and j being the injection (X, 0) -> (X, A);
one says (92) is the exacf homology sequence of the pair (X, A),

Three more properties are taken as axioms; two are quite familiar:

1. The homotopy axiom (the old idea that two cycles that can be "deformed
into one another" are homologous, cf. chap, I): iff and g are two homotopic
mappings (X, A) - (Y, B), then H.(/) = H.(g).

2. The dimension axiom stating that if X is reduced to a single point P
(sometimes written X = pt), H?(P) = 0 for q ^ 1; the group G = H0(P), which is
independent of the choice of P (up to isomorphism), is called the coefficient
group of the homology theory,

For any space X in T, the unique map /: X -> P defines a homomorphism
H0(/): H0(X) -> G; the kernel H0(X) of that map is called the reduced 0­
dimensional homology group of X; for any map g; X -> Y in T, H0(g) maps
H0(X) into H0(Y). In the homology sequence (92), H0(X) and H0(A) may be
replaced by fl0(X) and fl0(A), respectively, without disturbing the exactness
of the sequence,

The last axiom is essentially concerned with relative homology, and can be
traced back to Lefschetz's idea that for a euclidean simplicial complex K and
a subcomplex L, the homology of K modulo L depends only on the space
K — L (chap, II, §6), and therefore would not change if the simplices of L that
do not meet K — L were deleted from K and L. But nobody before Eilenberg
and Steenrod had given a general expression to that property, which they
named:

3. The excision axiom, saying that if an open set U is such that its closure
Ü in X is contained in the interior of a subset A of X, then the inclu­
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sion map j: (X — U, A — U)-> (X, A) yields an isomorphism H.(j)'­
H.(X - U, A - U) -> H.(X, A),

There are corresponding axioms for cohomology obtained by the usual
process of "reversing arrows"; we only formulate explicitly the exactness
axiom, which says that for every pair (X, A) the exact cohomology sequence is

► H«"1 (A) -> H«(X, A) -> H«(X) -> H«(A) ->■■■. (93)

The reduced 0-dimensional cohomology group fl°(X) is the cokernel of the
homomorphism G -> H°(X); the sequence (93) remains exact when H°(X) is
replaced by fl°(X) and H°(A) by H°(A).

By applying these axioms in a convenient way Eilenberg and Steenrod first
generalized the exact sequence (92) to the case of a triple (X, A, B), where
B c A c X and the maps i: (A, B) -»• (X, B) and ;': (X, B) -»• (X, A) are mor­
phisms of T1 ; there is then an exact sequence

... _> H,(A, B) -Ä H,(X. B) -Ä H,fX, A) —^— H,., (A, B) - ■ ■ •
(94)

where dq = H^j(j") o d?, j" being the injection A -> (A, B) and 5, being the
mapH,(X,A)-»H,_1(A)of(92).

The homotopy axiom leads to the notion of homotopically equivalent pairs
(X, A), (Y, B) such that there exist morphisms /: (X, A) -> (Y, B) and g: (Y, B) ->
(X, A) of J, for which g °f'\s homotopic to the identity of (X, A) and fo g is
homotopic to the identity of (Y, B); this implies that H.(/) and H.(fif) are
isomorphisms inverse to each other,

An example of homotopically equivalent pairs that frequently occurs is
when a pair (X', A') contained in (X, A) is a strong deformation retract of (X, A),
This means that there exists a homotopy h; X x I -> X such that h{x, 0) = x
for all x e X, h(x,l)eX' for x e X, and h(x, 1) e A' for x e A, and, finally,
h(x,t) = x for all x e X' and all tel (cf. Part 3, chap, II, §2,D). Then if
i: (X', A') -> (X, A) is the natural inclusion and r: (X, A) -> (X', A') is defined by
r(x) = h(x, 1), the two morphisms i and r define a homotopy equivalence
between (X, A) and (X', A'), For instance, if X is a finite euclidean simplicial
complex, then any subcomplex A of X is a strong deformation retract of some
neighborhood of A; any compact submanifold Y of a C° manifold X is a strong
deformation retract of a fundamental sequence of open neighborhoods of Y
inX.

The excision axiom introduces in a space X the notion of excisive couples
(Xj, X2) of subspaces of X by the condition that the morphism (X1,X1nX2)->
(Xj uX2,X2) induces an isomorphism of homology groups. The axiom says
that (A,X — U) is an excisive couple. For any excisive couple (Xl5X2) Eilen­
berg and Steenrod showed that the sequence

■■•-H,fX1,X1nX2)-H,pC,X2)-H,pC,X1uX2)
-»IV.fX.-X.nX^-»-" (95)
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is exact, The most important case is when X = X,uX2; there is then an exact
sequence

■•■-,H?(X1nX2)-,H,(X1)©H?(X2)-,H?(X)-,H?_1(X1nX2) -■■■,
(96)

very useful for computations of homology groups, called the Mayer-Vietoris
exact sequence, since from it one easily recovers the earlier results of Mayer
and Vietoris on simplicial complexes (chap, II, §2),

The remainder of Eilenberg and Steenrod's book is devoted to the
examination of the various homology and cohomology theories from the point of view
of their relation to the axioms, The result on which they put the greatest
emphasis is a uniqueness theorem. They considered the subcategory 7" of
triangulable pairs (X, A); this means that there is a finite triangulation T of X
in simplices such that A is a subcomplex of the finite simplicial complex (X, T)
(which of course implies that X is compact and A is closed in X). Then if H.
and HI are any two homology theories on 7" satisfying the axioms, for each
homomorphism cp: G -> G' of the coefficient groups there is a natural
transformation £; H. -> H. (§ 5,E) which coincides with cp in degree 0; in particular,
if cp is an isomorphism, the homomorphisms H?(X, A) -> H^(X, A) are bijective.
In other words, taking the identity for cp, for the category 7" of triangulable
pairs there is essentially only one homology theory with coefficients in G; it
may be called the simplicial homology, since the groups H?(X, A) can be
computed by the Lefschetz process (chap. II, §6).

To prove this result, their method was to consider, for a given homology
theory H. satisfying the axioms, with given coefficient group G, and a given
triangulation T of a triangulable pair (X, A), the closed subspaces X" of X,
where X" (the q-skeleton) is the union of the simplices of T of dimension ^q*;
the spaces X'uA are then subcomplexes of (X,T) and one can consider the
groups C (T, A) = H?(X* u A, X"-1 u A), These groups are made into a chain
complex by the boundary operator ô of the homology sequence (94) of the
triple (X'uA,X«^uA,r2uA), The main point is to show that C,(T,A)
may be naturally identified with C (T, A) ® G, where C (T, A) is the Z-module
of alternating chains (chap, II, §2) formed with the combinatorial simplices,
the vertices of which are vertices of simplices of T, none of which is in A.

The introduction of the group G in the structure of C,(T, A) is made possible
by the fact that, for the unit closed ball D„ in R" and its boundary S„_j in
the homology theory H., H,(Dn) = 0 for q # 0, H?(S„) = 0 if q # 0, n, and
H0(S„) = H„(S„) = G up to isomorphism; hence, by the exact sequence (94) of
triples,

H„(D„, S.., ) = 0 for q # n, H„(D„, S„^ ) = G;

this can be proved by the usual method (induction on n and decomposition
of S„ in two closed hemispheres), using the axioms exclusively. It remains

* This notation should not be confused with that of the product of q copies of X,



§ 6B IV. The Various Homology and Cohomology Theories 111

to show that H.(C.(T,A)) is naturally isomorphic to H.(X, A), which needs
repeated ingenious applications of the homology sequence (94) of well-chosen
triples.

Once this identification is made, the proof of the uniqueness theorem is
clear, since a homomorphism <p:G-*G' obviously defines a chain
transformation C.(T, A) -> C.(T, A).

The next item in Eilenberg and Steenrod's book is the investigation, for
arbitrary pairs (X, A), of the axioms for singular homology and cohomology
(note that X is not necessarily a Hausdorff space). The dimension axiom is
trivially verified, and the exactness of the homology sequence (92) is a special
case of the exact homology sequence for chain complexes (§ 5,A). The homo­
topy axiom is proved by establishing a chain equivalence

S.(X x I, A x I)~S.(X,A)
where I is the interval [0,1]; this is done with the help of a homotopy operator.
Later it was observed ([440], p. 174) that one could simply apply the method
of acyclic models (§ 5,G).

Finally, the proof of the excision axiom has to be done in two steps; the first
one establishes the invariance of singular homology under the process that
corresponds to barycentric subdivision (chap. I, § 3); it consists in defining an
endomorphism sd of S.(X; Z) in the following way. First, sd(l A ) is defined for
each p as the singular chain £; + <5;, where the <3,- are the linear bijections of
Ap on the p-simplices of the barycentric subdivision of Ap, and the signs are
suitably chosen; next, for any singular p-simplex a = Sp(f) o 1A , sd(<r) =
Sp(f) ° sd(lA ), and sd extends to S.(X;Z) by linearity. It is then proved that
there is a chain homotopy between sd and the identity. The second step
considers a more general situation than the one needed for the excision axiom.
For any open covering "Il = (Ux) of X, define a subchain complex Sf (X) of
S.(X), namely the one having as basis the singular simplices whose image is
contained in one of the U„. For any singular chain <x, there is an integer m
such that sdm(cr) e Sf (X); from this result and the first step of the proof, it
follows that S.(X) and Sf (X) are chain equivalent. The excision axiom is a
particular case of this result, corresponding to a covering by two open sets.
Examples show that for singular homology the assumptions made in the
excision axiom cannot be improved; the result may be false if it is only assumed
that the open set U is contained in A, but U is not contained in the interior
ofA([189],p. 268).

Again, all these properties are matched by corresponding ones for singular
cohomology.*

* One can, for a euclidean simplicial complex X with triangulation T, define an
isomorphism of its simplicial homology to its singular homology in the following way:
one orders the vertices of T, and to each p-simplex of T with vertices a0 < a± < • ■ ■ < ap,
one assigns the singular p-simplex, which is an affine map sending each vertex es of Ap
onto cij. This defines a chain transformation of the chain complex C,(T) of the
triangulation into the singular chain complex S.(X), and one proves it is a chain equivalence
(chap. II, §3).
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The end of Eilenberg and Steenrod's book is principally concerned with
Cech homology and cohomology, and it gives a systematic treatment of the
relations of these theories with the axioms; most of the results had previously
been proved by Dowker [145] and Spanier [438]. Following tech's original
definition (§§2 and 3), Dowker [145] studied Cech cohomology based on finite
open coverings, but he found that for noncompact spaces this gave
surprisingly pathological cohomology groups: for the real line the first Cech
cohomology group based on finite coverings is isomorphic to the quotient
C(R)/BC(R), where C(R) is the vector space of all continuous real functions
in R and BC(R) is the subspace of all bounded continuous functions; that
group has the cardinal of the continuum, a very unexpected property!* This
example shows that the homotopy axiom in particular certainly cannot be
verified for such a cohomology theory, since every continuous map R -* R is
homotopic to a constant map. This led Dowker to propose replacing finite
open coverings by arbitrary open coverings in the definition of Cech homology
and cohomology (§3), and in [145], he proved that, with this modification,
the Eilenberg- Steenrod axioms are verified for Cech cohomology of arbitrary
spaces and coefficient groups, but not for Cech homology.

The procedure Dowker followed was naturally suggested by the definition
of the Cech groups by a passage to the (direct or inverse) limit on homology
and cohomology of suitably defined pairs (KB) La) of infinite combinatorial
complexes. He first investigated whether the homology and cohomology
groups of these pairs (K^, La) satisfy the axioms, and then whether the axioms
are preserved by direct or inverse limits. This worked out smoothly for the
excision axiom, but for the homotopy axiom he had to use special coverings
of the product X x I, consisting of products U^ x Vf, where the U^ are open
in X and, for each k, (V,) is a conveniently chosen finite covering of I by open
intervals (the proof given by Eilen berg and Steenrod is an improvement of
Dowker's).

Finally, the exactness axiom is easily verified for each pair (K,,, Lx), and the
homology (resp. cohomology) sequence for (X, A) is the inverse (resp. direct)
limit of those of (Ka, La). Direct limits preserve exactness, but the same is not
true for inverse limits. Cech cohomology therefore satisfies all the axioms, but
there are examples of compact pairs (X, A) for which the exactness axiom is
not satisfied by Cech homology with coefficients in Z ([189], p. 265)f;
exactness still holds for compact pairs (X, A) when one takes coefficients in a field,
or compact coefficient groups and topologized (compact) homology groups;
it also holds for triangulable pairs and arbitrary coefficients.

An interesting property satisfied by Cech homology and cohomology is a
stronger form of the excision axiom: if (X, A) and (Y, B) are compact pairs, and
if/: (X, A) -> (Y, B) is a morphism such that the restriction of/ to X — A is a

* An "explanation" of this result is that the Cech cohomology of a locally compact
space, based on finite coverings, is isomorphic to the cohomology of its Stone-Cech
compactification ([189], p. 282).
+ As a consequence, this homology theory has not been much used.
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homeomorphism of X - A onto Y - B, then H.(/): H.(X, A) -> H.(Y,B) and
H'(/): H'(Y, B) -> H'(X, A) are isomorphisms (the ultimate form of Lefschetz's
idea of relative homology).

The isomorphism between Cech and Alexander-Spanier cohomology
(§6,A) implies that the latter also satisfies the Eilenberg-Steenrod axioms.
This had been proved directly for compact pairs by Spanier [438],

For locally compact spaces, Eilenberg and Steenrod also generalized the
definition of H. Cartan (§ 5,A) to arbitrary coefficients, and characterized it
axiomatically ([189], pp. 273-276).

C. Cohomology of Smooth* Manifolds

Let X be a compact space, Y be a closed subset of X, and suppose Y # X. Then,
for any open neighborhood V of Y in X,

Z"(X,V;G)<=Z?(X-Y;G)

since X — V is compact, and any p-cocycle that has value 0 for every singular
simplex with support contained in V obviously has compact support.
Similarly BP(X, V; G) c Bf(X — Y; G); hence, there is a natural homomorphism

H'(X,V;G)-»H?(X-Y;G).

Furthermore, Hf (X — Y; G) is the union of the images of these homomor­
phisms, for all open neighborhoods V of Y.

From these remarks, it is easily deduced that if there exists a fundamental
system of neighborhoods of Y such that Y is a strong deformation retract
(section B) of each of these neighborhoods, then there is a natural isomorphism

H"(X, Y; G) Z HC"(X - Y; G).

Using this isomorphism, under the same assumptions, the exact cohomology
sequence (93) can be written as

■•■->• HC"(X - Y; G) A H"(X; G) £ H"(Y; G) ^ HCP+1(X - Y; G) -► • • •. (97)

The map a associates to the class of a p-cocycle in X — Y with compact support
the class of that cocycle considered as a cocycle in X (taking the value 0 on
the singular simplices whose support does not meet a compact subset of
X-Y).

The preceding result is particularly valid when X is a smooth compact
manifold and Y is a closed submanifold, since Y is a strong deformation retract
of its tubular neighborhoods (chap. Ill, § 1). The use of Alexander-Spanier
cohomology allows a relaxation on the assumptions on the closed subspace
Y of a smooth compact manifold X: the exact sequence (97) is still valid for
any closed subspace Y of X provided the cohomology groups are taken in the
Alexander-Spanier sense. If X is orientable, Alexander duality (chap. II, § 6)
generalizes as follows: for any two closed sets A, B of X such that B <= A, there

* The word "smooth" is synonymous to C°°.
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is an isomorphism

H,(X - B,X - A;G) Z Hr*(A,B;G),
where the left-hand side is singular homology and the right-hand side is
Alexander-Spanier cohomology with compact supports ([440], pp. 318 and
342).

With the use of Borel-Moore homology and of concepts related to local
homological properties of spaces, still much more general results could be
obtained (Part 2, chap. IV, § 3).

In his book [393], de Rham showed that on a smooth manifold the
cohomology groups he had defined by means of differential forms and the homology
groups of currents are naturally isomorphic to singular cohomology and
homology groups with real coefficients. He introduced smooth singular sim­
plices in a smooth manifold X, which are restrictions to a standard simplex
Ap of a C° map of a neighborhood of Äp in X; they generate a subspace of
Sp(X;R), written S®(X;R), and the boundary operator bp maps S*(X;R) into
Sp3., (X; R) so that he could define homology vector spaces (over R) H™(X; R).
Each smooth p-simplex s: Ap -+ X defines a p-current s on X in the following
way: for every smooth p-form a, if *s(a) is the pull-back of the form a on Ap,
then ($,a.y = |A fs(a). From this definition a linear map Sp°(X;R)-+ <TP(X) is
derived, and next a linear map H*(X;R)-» Hp(X). De Rham proved that
this map is bijective, and that the obvious map Hp (X;R)~* Hp(X;R) is also
bijective. The proofs are long and intricate. De Rham bypassed the
triangulation of manifolds (chap. Ill, § 2) by reducing the proofs to the case in which
X is a bounded open subset of an RN. He took a simplicial (rectilinear)
triangulation S of X (chap. II, §6). To each p-simplex s ofthat triangulation
is naturally associated a p-current s on X, defined as above; de Rham first
proved that any p-current with compact support on X, which is a cycle, is
homologous to a linear combination of these currents associated to S. Next
he had to show that if a cycle in Z®(X;R) maps onto a boundary in Z'P(X),
then it is already a boundary belonging to Bp (X;R). He first proved that, by
subdivision of S and use of the Alexander construction (chap. II, § 3) he could
replace ZP(X; R) by the subspace LP(S; R) generated by the simplicial maps
of Ap on the p-simplices of S. Then he showed that if z e LP(S; R) is such that
z is the boundary of a (p + l)-current, z is also the boundary of the image of
a (p + l)-chain of LP+1(S;R), by an algebraic argument resting on the duality
of vector spaces and on lemmas on extension of a smooth differential form
into a euclidean simplex when it is only defined on a neighborhood of its
frontier ([516], p. 137). Finally, using a homotopy operator, he proved that if
zeLp(<5;R) is such that z is the boundary of a (p + l)-current w, with
weLp+1(®;R), then there is also a (p + l)-chain «eLp+1(S;R) such that
z = bp+1w.

From this result it is easily deduced, by duality, that there is a natural
isomorphism

H"(X)~H"(X;R)
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mapping the vector space HP(X) of classes of closed p-forms modulo exact
p-forms, onto the singular cohomology group HP(X; R).

D. Cubical Singular Homology and Cohomology

For some constructions, in particular in the work of Serre on the topology of
fibrations (Part 3, chap. IV, § 3,C), it was found convenient to modify the
definition of singular homology and cohomology by replacing the standard
simplices A„ by the standard cubes I" (with I = [0,1] in R) (1° being the origin
0 by convention). More precisely, for any topological space X, a singular cube
in X is a continuous map q: I" -> X. Let Q„(X; Z) be the free group generated
by the singular n-cubes in X and define Q.(X;Z) = (Q„(X;Z))„>0 as a chain
complex in the following way: for any singular n-cube q, take

hnq{xl,x2,...,xn)
n-l

= Z (-l)'(<l(Xl,--->Xi-UQ>Xi>--->Xn-l)- <?(X1,...,XJ_1, l.Xj,...^^!))
i = l

(each bracket is the difference between the values of q at corresponding
points z, z + e(, on the opposite faces of I" defined by x, = 0 and x( = 1).
It is easy to check that b„_! o b„ = 0. A singular n-cube q is called degenerate

xn-i>xn) — <7(Xi,• • • ,x„-i,.y„) for all values of Xj, ..., x„_j, x„, y„
in I. The degenerate n-cubes form a basis for a Z-submodule D„(X;Z) of
Q„(X;Z), and b„D„(X;Z) <= D„_j(X;Z), so that the quotients Q„(X;Z) =
Q„(X; Z)/D„(X; Z) are free Z-modules and form again a chain complex. Its
homology (resp. cohomology) is called the cubical (singular) homology (resp.
cohomology) of X with coefficients in Z.

The relations between singular homology and cubical homology are
deduced from the existence of a mapping 6:1" -> A„ defined by

(xu...,xn)\->{\ - Xj,Xj(1 - x2)....,x1x2---x„_1(l - x„),xlx2---x„). (98)

To each singular n-simplex s: A„ -> X corresponds a singular n-cube q = s ° 9,
and this defines a chain transformation S.(X;Z)-> Q.(X;Z). Eilenberg and
Mac Lane proved by the method of acyclic models that this is a chain
equivalence [186]. There is thus a natural isomorphism of the singular
homology of X onto its cubical homology.

E. Leray's 1945 Paper

During World War II Leray was a prisoner of war from 1940 to 1945. He
organized a university in his prison camp and himself gave a course on
algebraic topology, a field he had become interested in in connection with
his collaboration with Schauder on applications of degree theory of functional
analysis (Part 2, chap. VII). He became dissatisfied both with the methods
using triangulations and with those using inverse or direct limits. In 1942 he
published a series of four Notes in the Comptes rendus outlining a new and
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original way of defining and studying cohomology; he elaborated his method
in a long paper published in 1945 [313]. All methods used until then to define
the cohomology of a space X consisted in making geometric constructions in
X (triangulations, singular complexes, or coverings) and then deducing cochain
complexes from these constructions, the elements of these complexes (the
cochains) being functions defined in the sets thus constructed. Leray's idea was
to bypass completely the first leg of this process, and to start right away with
an "abstract" cochain complex C = (C)p>0 of A-modules (the ring A being
equal to Z, or Z/mZ, or Q), whose elements are not necessarily functions.

The link with the space X (which at first is an arbitrary topological space)
is provided by the notion of support. This is a map S which to each element
keC assigns a part S(/c) of X, subject to the following conditions:

S(0) = 0, S(/c - k') c S(k) u S(fc'), S(dfc) cr S(fc). (99)
However, these conditions were not written in that way in Leray's paper of
1945. There he assumed that the C were 0 except for a finite number of degrees
and that each C had a finite basis (ep,<l) over A; then he defined the map S
by considering its values S(ep'3) = \ep,a\, which he explicitly assumed to be
different from 0, taking for each p,

s(jLaae>A = \J\e>-'\ (100)
for all linear combinations with coefficients aa different from 0* Leray called
the pair (C',S) a concrete complex; the definition of S depends on the chosen
basis.+ Some operations (see below) may lead to a similar definition with some
of the sets \ep'"\ equal to the empty set; then the ep,a such that \ep,,l\ # 0 form
the basis of a subcomplex C" of C, and (C", S|C") is what, in 1947, Leray
(following H. Cartan's terminology) called the separated concrete complex
associated to (C, S).

To obtain a cohomology theory Leray needed two operations on his
"concrete complexes." One was the intersection E. C with a nonempty subset
E of X (corresponding to a passage from global to local properties): consider
the concrete complex (C*,SE), where SE(k) = EnS(fc); E.C is the separated
complex associated to (C',SE).

The other operation is called the "intersection" of two concrete complexes
(C, S) and (C'*,S'). Its "abstract" complex is just the usual tensor product
C ® C" (as defined in § 5,C), and

\e"-" ® e'q'f\ = |ep-t,|n|e'«''|; (101)

* To satisfy the condition S(dfe) <z S(fe), Leray imposed on the sets |ep-c'| to be such that
if de"-" = Y.ecP*eeP+Uß one must have \ep+l'p\ <= \e"-'\ for all pairs (a,/?) such that
cpß # 0.
Suppose C1 has only two elements e1A, e1,2 as basis; then Sfe1,1 + e1,2) =
|e1'1Me'-2|;but/'-1 =e1-1 + c1-2 and/1-2 = eU2 also form a basis with \ful\ =
le1-1! u le1-2! and |/»-2| = le1-2! and now Sfe1-1) = Sf/1-1 - f1-2) = le1-1! u le1-2!.
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the intersection C*. C" is the associated separated complex. Now C*. (C". C") =
(C. C"). C" and E. (C. C") = (E. C). (E. C") for any subset E of X. From the
point of view of cohomology, C". C may be identified with C*. C" by the
natural isomorphism

xp®x'q^(-\)<">x'q®xp. (102)
The central objects in Leray's theory are special (separated) "concrete

complexes" which he calls "couvertures."* They are the concrete complexes
satisfying three additional conditions: (1) the sets |ep'*| are closed in X; (2) for
each x e X the cohomology of the intersection x. C is such that H°(x. C") =. A
and Hp(x. C) = 0 for p > 0; (3) the element u = £a e0,01 is a cocycle called the
"unit cocycle" of C\

The ultimate goal of Leray's 1945 paper clearly was to define a cohomology
algebra H'(X) over A by using "couvertures," such that H'(X) ~ H'(C') (as
graded A-modules) for at least one "couverture" C*. The restrictions to finite
fixed bases for the C led him to a fairly complicated and ineffective way of
defining H'(X): he considered all "couvertures" C", of X, with their bases and
"unit cocycles" ua, and the direct sum U = 0aQ; he singled out the sub­
module V in that graded A-module generated by all elements z — ua.z for
z e U, a arbitrary; since ua has degree 0, V is a graded submodule of U, and
as dua = 0, d(ua. z) = ua. dz, so that d(V) c V; hence U/V is a cochain complex
over A, and by definition H'(X) is its cohomology. It has a structure of
anticommutative graded algebra over A: indeed, if zp e Cp, z'9 e CJ", then
uy.(zp.z'q) = (uy.z"),z'9 = z".(uy,z'9), and if z" and z'q are cocycles (resp.
coboundaries), the same is true for zp,z'q; finally z'q .zp = (— \)pqzp .z'q.

The most original result of Leray's paper was his use of what he called
"simple" normal spaces (now usually called "acyclic"), namely, those for which
H°(X) ~ A and HP(X) = 0 for p > 0. He first proved the homotopy axiom,
implying that a contractible compact space is simple. The proof relies on a
crucial lemma about "couvertures": if C* is a "couverture," C" is a "concrete
complex", and if for each k e C'\ H°(S(/c).C) =* A and H"(S(fc).C) = 0 for
p > 0, then H'(C". C) and H*(C") are isomorphic graded A-modules. This, and
the properties of normal spaces, enabled Leray to replace his unwieldy general
definition of H'(X), when X is normal, by restricting the "couvertures" C", to
a subfamily <D, such that: (1) the intersection of two "couvertures" of <D is still
in <D, and (2) there exist "couvertures" in <D with arbitrary small supports. His
next step consisted in proving that the cohomology of X x [0,1] is isomorphic
to H'(X) by a convenient use of a family <D, and from this the homotopy axiom
easily follows.

The new fundamental result was the consideration of "couvertures" C of a
compact space X such that all supports of elements of C are simple; then there
is a natural isomorphism H'(X) 2". H'(C'); in applications, the theorem is used
when the supports are all contractible.

* This terminology having rapidly disappeared, there is no need to translate it.
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As examples of "couvertures," Leray gave in his 1945 paper those deduced
from a finite closed covering M = (Fj)l<J<fi of a space X. Letting M be the
A-module @T=i Ac,- (isomorphic to AN), he defined the "abstract" complex C
by C = /\p+1 M, (p + l)-st exterior power of M, and took as a basis of
C the (p + 1)-vectors eH = eJo a eji a ••• a e} for all strictly increasing
sequences H : j0 <j1 < ••• <jpofp + 1 numbers in {1,2, ...,N}. Ifu = Yj=i ep
the coboundary in C is given by zi—>u a z; finally, if

S(eH)=FJonFJ.in---nFyp,

the "concrete complex" associated with the covering 3i is the separated
complex associated to (C, S). It is easily seen to be a "couverture" with u for unit
cocycle, but in general its cohomology is not 0 in degrees p > 0.

Leray also gave examples of "couvertures" that are not obtained from a
finite closed covering of X by the preceding construction. The most interesting
one gives (by application of the theorem on simple supports) the cohomology
of the sphere S„: each C for 0 ^ p ^ n has a basis of two elements ep'1, ep'2
with the coboundaries AepA = — Aep'2 = ep+1,1 + ep+u2 for p < n, and
de"1 = de"-2 = 0; the supports |ep,1| and \ep,2\ are, respectively, the
hemispheres of Sp defined by xp ^ 0 and xp ^ 0.

As we shall see in §7, in the Notes of 1946 in which he defined sheaf
cohomology and spectral sequences, Leray was still using the same notion of
"couverture" as in his 1945 paper. But in the lectures he gave in 1947 (from
which he published a survey without proofs in 1949, as a forerunner of his
long paper of 1950 [321]), he had apparently realized that this definition was
too restrictive and unduly bound to the choice of bases, and this led him to
more conceptual definitions. The main changes with respect to the 1945 paper
are: (1) the spaces under consideration are locally compact; (2) the "abstract"
complex C of A-modules is only subject to the condition of being without
torsion, but otherwise arbitrary; (3) the supports S(/c) are not defined with the
help of a basis, but are just closed sets satisfying (99). The "concrete complexes"
with arbitrarily small supports are replaced by the new notion of fine complex,
at which Leray and Cartan independently arrived at the same time; it
generalizes the notion of partition of unity to complexes in the following way: for any
finite open covering (U,-)1<(<B of the space X, where for each i, either 0( or
X — U; is compact (called a "proper" covering), there exist endomorphisms rt
of the A-module C\ such that r((Cp) <= C for all p ^ 0, and which satisfy the
conditions:

rt (k) + r2(k) + ■ ■ ■ + r„(k) = k for all k e C\ (103)
S(r,.(fc)) .= 0(0 S(fc) for 1 s? i s? n and all k e C. (104)

In this new context the definitions of the 1945 paper had to be modified.
The intersection E. C of a concrete complex C with a subset E of X has as
"abstract" complex the quotient CyC'x_E, where C'X_E is the subcomplex of C*
consisting of cochains with supports in X — E. The intersection of two con­
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crete complexes C, C", is now written C O C" and is defined as follows: for
each x e X, consider the natural homomorphism

fx:C®C'^x.C®x.C\
and for heC® C", define S(h) as the set of x e X such that fx{h) # 0; C" O C"
is then the separated complex associated to (C ® C", S); for k e C, k' e C",
k O k' is the element of C O C" image of k ® k'. "Couvertures" are defined
as before, except that the "unit cocycle" u is simply supposed to be an element
of C°, such that S(u) = X and H°(x. C) = A. (x. u) for x e X.

The fundamental lemma now concerns an arbitrary "couverture" C with
unit u, and a fine concrete complex K with compact supports. Then the map
/ci—>u O k of K into C O K' is an injective homomorphism of cochain
complexes, and the lemma says that the corresponding map H'(C O K') ->
H'(K') is bijective; it may be proved by the same technique of induction on
the degree (see [57]), although in 1947 Leray chose to prove it by an
application of spectral sequences. The lemma implies that if K' and K" are both fine
"couvertures" with compact supports, H'(K') and H'(K") are naturally
isomorphic, being both naturally isomorphic with H'(K' O K"). This of course
defines the cohomology H'(X) over A, up to isomorphism, as H'(K') for any
fine "couverture" with compact supports.

In his 1945 paper Leray had not tried to make any connection between his
theory and previous cohomology theories. In his 1947 lectures he showed that,
for a locally compact space X, the cochain complex C(X; A) = (CP(X; A))pS>0
defining the Alexander-Spanier cohomology (§3) could be given a structure
of "fine couverture." For any function fe C(X; A), a closed set S(/) in X can
be defined as consisting of the points x e X for which there exists a
fundamental system of neighborhoods (Vx) of x, such that / is not identically 0 in
Vf+1 for any A; then the separated complex associated to (C'(X;A), S)
is precisely C'(X;A), i.e., the cochain complex whose cohomology is the
Alexander-Spanier cohomology H'(X; A) (loc. cit.). The fact that C'(X;A) is
fine is seen by exhibiting, for any finite open covering (U;) of X (1 ^ i ^ n), at
first endomorphisms ri of C(X; A) satisfying (103) and (104), and then
observing that the ri map the subcomplex C0(X; A) into itself: for any fe C(X; A),
the r;(f) are explicitly defined by

(f{x0,xu...,xp) ifx0eU!,[0 otherwise,rl(J )(X0'Xl'- ■ ■ >Xp

and, for k > 1

rk(f)(xo,Xu---,xP) =
f{x0,...,xp) if x0 e 14 - (Uj u ■ • ■ u lL_j),0 otherwise.

The unit cocycle u of C'(X; A) is of course the class of the constant
function on X equal to 1. To check that C(X; A) is a "couverture," it is therefore
only necessary to compute the cohomology H'(x. C'(X; A)) for any x e X.
The definition of the coboundaries ôp [§ 3, formula (16)] first shows that if
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/eC°(X;A) is such that x.ô0f = 0, then / is the class of a function /:
X -> A, constant in a neighborhood of x, so that H°(x. C'(X; A)) = A. (x. u).
For p > 0, and fe C(X; A), define gx e C"1 (X; A) by gx(y0, y,,...., yp_,) =
f(x, y0,..., yp_ j ); then it is easy to see that if the class / of/ in x. C is a cocycle,
there exists a neighborhood V of x such that

(f -öpgx){y0,yu- ..,yp-uyP) = 0 for {y0,...,yp)e V+1

hence / is a coboundary.
To apply his uniqueness theorem to the Alexander Spanier cohomology

Leray had to limit himself to compact spaces, since only "couvertures" with
compact supports are admissible. A little later, however, Fary [192] showed
that all of Leray's arguments were still valid if the third property, defining
"couvertures," was weakened: it is enough to assume that, for each compact
subset Z of X, there exists a uz e C° such that, for every x e Z, H°(x. C) =
A.(x.uz) ("relative unit cocycle"). Then on a locally compact space X the
cohomology H'(C'), for all "fine couvertures" C* with compact supports, is
naturally isomorphic to the Alexander-Spanier cohomology with compact
supports H*(X; A) [i.e., the cohomology of the subcomplex Q(X;A) of the
cochain complex C'(X; A), consisting of the classes of the cochains fe C'(X; A)
with compact supports].

In his seminars on sheaf theory, which started in 1948 (§ 7), H. Cartan proved
in a similar way that on a C° differentiate manifold X, the de Rham cochain
complex C = (^P(X))P?0 (chap. Ill, §3) is a "fine couverture," if the usual
support is taken as support of a differential form; the fact that it is a fine
complex is proved by using a C* partition of unity, and the computation of
H'(x. C) uses the Poincaré lemma.

Finally, on an arbitrary locally compact space X, the complex of singular
cochains (§3) is also a "fine complex" in a natural way; it is not always a
"couverture," but this property is valid under additional hypotheses on X, for
instance the HLC condition (Part 2, chap. IV, §2).

§7. Sheaf Cohomology

A. Homology with Local Coefficients

In algebraic topology until 1935 the consideration of chains with coefficients
other than the integers had been limited to taking these coefficients in a fixed
commutative group (chap. IV, §2). During the next period, this point of view
was enlarged in several ways.

In 1935 Reidemeister wanted to study the homology of a covering space K
(Part 3, chap. I) of a finite euclidean simplicial complex K. If n: K -> K is the
projection, then replacing K by a convenient subdivision implies that, above
any simplex a of K, n~1(a) is a product D x a, where D is a discrete set
independent of a. This is apparently what led Reidemeister to consider K as
a simplicial complex whose simplices are {x} x a where x e D and a is a
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simplex of K; now D is given the structure of a commutative group, so that

({x} x a) + ({y} x a) = {x + y) x a.

The boundary operators in K must be defined; simple examples show that if
t is a fl-simplex of K contained in the frontier of a p-simplex a(q < p), {x} x t
will not in general be contained in the frontier of {x} x a (the "sheets" cross!);
the 0-simplexofK above tin the frontier of {x} x a will be of the form {x'} x t
for an x' e D that may be different from x. So, to each pair (a, t), where t is
contained in the frontier of a, is assigned a permutation y„ of D, and to preserve
the linearity of the boundary map, an automorphism of the group D must be
taken for y„. Then define the boundary operator bp in K as follows: if
V = Z?=o(-l)yTy,

bp({x} x c) = £ ({(- l)%(x)} x ty). (105)
j=o

In order that bp_! o bp = 0, the yax must be such that

7ff« = 7« ° 7t« (1°6)
when t is contained in the frontier of a and Ç is contained in the frontier of t
[386].

In 1942 [446] Steenrod, in his work on fibre bundles and obstructions (Part
3, chap. Ill, §2,E), considered homology (or cohomology) with local
coefficients from a more general viewpoint; the next year he returned to the subject
with more detail in a paper specially devoted to that concept [445]. Unlike
Reidemeister, instead of having a single group, he attaches a group G^. to each
point x of an arcwise connected space X; these groups are all isomorphic*; more
precisely, for every path <xyx: [0,1] -> X from x to y, there is given an
isomorphism <p{oLyx): Gx 2^ Gy, satisfying the following conditions: (1) if a"^ denotes
the path th-xxyx{l — t) from y to x, then cp{ayx) = {(p{a.yx))~l; (2) if azy v ayx
denotes the path from x to z, juxtaposition of <xyx and <xzy, then <p(aZJ, v ayx) =
<p{oLzy) a <p{oLyx); (3) if a. and ßyx are two paths from x to y, which are homo­
topic by a homotopy fixing x and y, then cp(ßyx) = (p(xyx). Such a family (G^.)
is called a local system of groups on X.

Now suppose the G^. are commutative groups. To any singular p-simplex
s: Ap -> X, associate the group G^. for x = s(l, 0,..., 0), which is simply written
Gs. A singular p-chain with coefficients in the local system {Gx) is a formal linear
combination z = Xs<ys. s, where the gs e Gs are 0 except for a finite number
of p-simplices s, and define on the set CP(X, (G^.)) of these p-chains a structure
of commutative group by the condition that gs. s + g's. s = (gs + g's).s,
addition being in Gs. To make the graded group C.(X, {Gx)) = (+)p CP(X, (Gx)) into
a chain complex, define the boundary of gs. s for any singular p-simplex s: As

* This condition may appear to be unduly restrictive, but it is for instance satisfied if
Gx is the fundamental group n^X, x).
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usual, let <jj (0 ^ j ^ p) be the map

(<?o,«S, ^-O'-^^o.'S, ^j-i.O,^ «Sp-,) (107)
of Äp_! into Äp; let ys = s(oy(l, 0,..., 0)), and let ay x be the image by s of a path
in Äp from the vertex (1,0,..., 0) of Ap to the image by at of the vertex (1,0,..., 0)
of Äp_!.* As Äp is simply connected, the isomorphism (p{xyx):Gs2>Gsoa.
does not depend on the choice of <xyx; then as boundary,

Because the Ap are simply connected, bp^obp = 0. This therefore defines the
singular homology H.(X; (Gx)) with coefficients in the local system (Gx).

The singular cohomology H'(X; (Gx)) with coefficients in {Gx) is defined in a
similar way: a singular p-cochain is a function / which, assigns a value f(s) in
Gs to every p-simplex s; they obviously form a commutative group for the
addition (/ + g)(s) = f(s) + g(s) for every singular p-simplex s. Here the
coboundary is defined by

dP-J(s) = £ (- l)J<p(*yjX)(f(s ° *,)) (109)

with the same notations as above, for every singular p-simplex s and every
(p — l)-cochain /. If the G^. have a structure of ring, the (p(xyx) being homo­
morphisms of rings, a natural structure of graded anticommutative ring on
H'(X,(GX)) arises in the usual way.

Let a be a point of X; for any loop aaa of origin and extremity a, <p{oLaa) is an
automorphism of G„ that only depends on the class a„ of aaa in the fundamental
group 7i j (X, a), and may thus be written %(«„); a„i—>• %(«„) is then a homo­
morphism of 7ij(X, a) in Aut(G„).

Conversely, given a commutative group G„ and a homomorphism

«VTt.pC.aJ-AutfG.,) (110)
there is a unique (up to isomorphism) local system (Gx) on X for which q>a is
obtained by the preceding construction. Construct the product G„ x r^ for
each x e X, where Tx is the set of all paths from a to x, then define an
equivalence relation

Rx:(ft«x.) = (0'.AJ (HI)
by the condition g' = <pa(ßXa v a;ta)(gf) [where the juxtaposition ß",,1 v axa
should really be replaced by its class in nt(X, a)]. If Gx = (Ga x r^-VR^, check
that the law

(Ö-', ßxa)(9, V-xa) = Wai*xa V ßxa){g'9), <*xa) (1 12)

* For; > 0, the path in Ap is reduced to a single point.
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is compatible with the relation R^., and defines on G^. a structure of
commutative group. Finally, for any path <xyx from x to y, define a map Ga x Tx->
G„ x I"; by

(ô'>O'-'-(0><V v O; (113)
it is compatible with the equivalence relations R^ and Ry, and, by passage to
quotients, it defines an isomorphism cp(oiyx) of G^. onto Gy, which establishes
(Gx) as a local system.

For this interpretation of local systems, formula (108) for the boundary is
written

p

kp({g,Xxa)-S) = X (-l);((%(av V <V V Uxa)(9)><*yja)-(S ° °j)\ (H4)
y=o

which has the same form as the boundary formula (105) of Reidemeister's
theory which it generalizes to singular homology*; (105) may be recovered by
the chain transformation of the chain complex of a triangulation into the
singular chain complex (§ 6,B and chap. II, § 3).

At the end of his paper Steenrod considered the possibility of using local
coefficients for Cech homology and cohomology. He realized that this is not
possible by his method if X is not locally simply connected; his proposal to
consider only coverings finer than a given one would have been suitable if he
added that this fixed covering should consist of simply connected sets. But a
good definition can only be given in the context of sheaf cohomology (§7,F).

B. The Concept of Sheaf

In May 1946 Leray published two Notes in the Comptes Rendus ([314],
[315]), in which he introduced for the first time the notions of sheaj\ of sheaf
cohomology, and of spectral sequence. In retrospect, it is difficult to exaggerate
the importance of these concepts, which very rapidly became not only
powerful tools in algebraic topology, but spread to many other parts of mathematics,
some of which seem very remote from topology, such as algebraic geometry,
number theory, and mathematical logic. These applications certainly went
far beyond the wildest dreams of the inventor of these notions, and they
undoubtedly rank at the same level in the history of mathematics as the
methods invented by Poincaré and Brouwer.

Leray's motivation is clearly expressed in the second Note. If X and Y are
topological spaces, and /: Y -> X is a continuous map, the general problem is
to relate the homology of X and the homology of Y, using properties of/. The
only case in which such a problem had been considered was when X and Y
are compact metric spaces: in his paper [475] of 1927 Vietoris had proved

* As a matter of fact, Steenrod assumed in most of his paper that X is triangulated,
and it was only at the end that he considered "continuous chains," i.e., singular chains
in the sense of Lefschetz (chap. II, § 3).
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(with his definition of homology) that if the homology modules H?(/^1(x))
are 0 for 1 ^ q ^ n and for every x e X, then / defines an isomorphism of
H?(Y) onto H?(X) for the same values of q. Using the fact that any
neighborhood of a fiber f~1(x0) contains a neighborhood that is a union of fibers
/ ~1 (z), he showed that any a-cycle in X is homologous to the image by / of a
fl-cycle of Y.*

It was therefore natural to look for a more general result by considering
the cohomology of each fiber f~1{x), and seeing if it was possible to
"reconstruct" the cohomology H*(Y) from the knowledge of H*(X) and of the
H*(/-1(x)) (a sweeping generalization of the "Künneth theorem"). To put it
otherwise, the question was how to use the information given by the
assignment, to a variable point x e X, of a Z-module J^(x) that is not subject to the
very stringent restrictions of Steenrod's "local systems." Le ray's originality lay
in his consideration, not of the "punctual" modules J^(x), but of a family #"(E)
of A-modules (or A-algebras) indexed by all closed sets E of X (in the 1946
Notes, X is supposed normal; in Leray's later work, X is locally compact). In
1946 he says that such a family is a normal sheaf (later, in 1947, a continuous
sheaf, and we shall merely say a sheaf) if:

LI. for each pair of closed sets E, => E2 in X, there is a homomorphism

PzlEl:&(El)-+&(E2) (115)
such that pEE is the identity of J^(E), and, if Ej => E2 => E3,

L2. for each z e #"(E), there is a closed neighborhood V of E in X, and a
z' e .-F(V) such that z = pEV(z');

L3. if />e2e.(z) = 0 for a ze ^(EJ, there is in the subspace Ej a closed
neighborhood W of E2 such that pElW(z) = 0.

The conditions L2 and L3 may also be expressed by saying that

J^(E) = limJ^(V)

for the direct system of closed neighborhoods V of E, ordered by inclusion.
Leray proved in his 1945 paper ([313], lemmas 22 and 23) that the cohomology
modules HP(E, A) = J^(E) satisfy these conditions. In his 1946 Notes he
pointed out that sheaves have some analogy with the "local systems" of
Steenrod,f but even if he only considered the "punctual" modules .f{x), the
gain in generality is tremendous: whereas in a local system (G^.) all the G^. are
isomorphic, there are "skyscraper sheaves" J"""(E) such that J"""(x) = 0 except
for one point x0}

* Leray does not mention Vietoris, and gives the result for cohomology instead
of homology.
t The analogy is not quite evident with Leray's definition of a sheaf; it is only in the
Cartan-Lazard definition that local systems become special cases of sheaves (see
below).
* One has only to take ^(E) = 0 is x0 $ E, J'fE) = M, a fixed A-module if x0 e E and
pE2El is the identity in M if x0 s E2 c: Ej.
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Of course this definition only proved its value when Leray showed how, by
the use of spectral sequences, he could give in many cases a solution to the
general problem mentioned at the beginning of this section. But before we
examine it we shall quickly see how Leray's initial definition of a sheaf was
transformed between 1950 and 1960.

His announcements, and the subsequent lectures he gave on the subject,
created quite a stir in the mathematical circles in Paris, particularly that of
H. Cartan and his graduate students ofthat period (most notably Koszul and
Serre). Between 1947 and 1951 these topics certainly were the occasions of
many exchanges and discussions but not much of this activity has been
preserved in publications.

In 1947 there was a Symposium on algebraic topology in Paris, sponsored
by the Centre National de la Recherche Scientifique, in which Leray gave a
short survey of his theory [318] and Cartan gave a paper on his own first
results on the same subject,* but before the Proceedings of that Symposium
were published in 1949 Cartan's conceptions on sheaves had changed, and he
withdrew the paper. During the academic year 1948-1949 Cartan started his
famous series of Seminars ([423] [426]), and half of the first one was devoted
to sheaf theory; again that half was not reproduced in the later edition
(available on a commercial basis) ofthat Seminar. Then in 1950 Leray's long
memoir appeared, with full details on sheaf cohomology and its applications
([321] and [322]). This was followed by the Cartan Seminar of 1950-1951,
in which he developed his new conceptions, and in 1951 by A. Borel's expository
lectures on Leray's theory [57].

As we shall see in more detail (§ 7,F) below, one of Leray's results was a
device for computing the cohomology of a space when the cohomology of
each subset of a suitable covering of the space is known (generalizing his
fundamental result of 1945 on "couvertures" with contractible supports). This
kind of result can be thought of as a "passage from local properties to global
properties." Now this kind of problem had already been attacked in another
part of mathematics, namely, the theory of meromorphic functions of several
complex variables. In 1883 Poincaré proved that a function of two complex
variables x, y, which is a quotient of two functions holomorphic in a sufficiently
small neighborhood around each point (x0, y0) e C2, is in fact a quotient of two
functions holomorphic in the whole space C2. In 1895 Cousin generalized
Poincare's theorem to some types of open subsets of C", and in so doing he
introduced new problems of "passage from local to global." These problems
are of a degree of difficulty far greater than the trivial one of defining a function
by its restrictions to the sets of a covering, for the objects to be defined globally
are classes of functions, for instance classes of the type / + H, where / is a
meromorphic function and H is the set of all holomorphic functions in a given

* In the Proceedings of that Symposium, Leray and Cartan published a joint paper
on applications of sheaf cohomology to the actions of groups on topological spaces
[114].
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open set. After 1934 the work of H. Cartan and Oka on functions of several
complex variables was centered on such problems, which had been neglected
after Cousin. It is certainly more than a coincidence that in Cartan's paper of
1945 [106] on homology (§5,A) he proved typical theorems of "passage from
local to global" for homology groups J^(U) = H„(U,T) of open subsets U of
a locally compact space of dimension* <n:

Fl. If U is a union of open subsets \Jh and s', s" are two elements of ,¥i}S)
having same images in each U;, then s' = s".

F2. If U is a union of open subsets Uj, and the sf e J^Uj) are such that, for
each pair (i,j) for which Uj n U,- # 0, st and sj have the same image in
J^Uj n Uy), then there is an s e J^(U) having image s( in each ^(U,).

However, both in that paper and in his work on ideals of holomorphic
functions Cartan needed modules attached to open subsets. He was therefore
led to modify Leray's definition of a sheaf by considering families Ui—> J^(U)
assigning an A-module to each open subset U of a space X together with
A-homomorphismspvu: J^(U) -> J^(V) for pairs U => V of open sets, suchthat
pvv = Id. and pv/v = PwvPvu for U => V => W. These families later became
known as presheaves. For points x e X, the stalks J^(x) are defined as

J^(x) = limJ^(U), (116)
where the direct limit is over the directed set (by the relation =>) of open
neighborhoods of x in X; if one calls sections over U of the presheaf J"7 the
elements of J^(U), the elements of .'Fix) are the germs of sections of J5" at the
point x.

For each section s e J"""(U) and each x e U let sx = px,v(s) be the germ of s
at the point x, pxV: J^(U)-> J^(x) being the canonical map into the direct
limit; and associate to s the map s:x\-^>sx (117)
of U into the disjoint union JJ^u-^M °f the fibers J^(x) for x e U. Let
#(U) be the subset of \JxsV^{x), image of J^U) by the map si—>s; it is
again an A-module (s + s' being the map xhSj + s'x). Furthermore, for an
open set V <= U and a point x e V, pxV = px,vpvv, hence sx = (pvv(s))x. Let
pvu be the map of #(U) into #(V) defined byf Sh-y(pvv(s))~; for these maps
the family Ui—>#(U) is again a presheaf. But in general the maps st-^-s of
J^(U) into #(U) are not bijective. Indeed, it is easily verified that §• satisfies
the conditions Fl and F2 above; it is the presheaves having that property that
are the sheaves in Cartan's terminology,* and #" is the sheaf associated with

* Recall that, although X i—> P(X) is a covarlant functor, for locally compact spaces X,
there is a natural homomorphism r'fX) -> F^U) for any open subset U of X.
t This definition is meaningful, for if px,v(s) — px,v(s') for two sections, there is a
neighborhood WcVcUofx such that PwV(s) = Pwu(s').
* For an example of a presheaf & that is not a sheaf, take X = R, and ^(U) equal to
the R-vector space of all bounded continuous functions in U; then #(U) is the vector
space of all functions continuous in U, bounded or not ([57], p. V-3).
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the presheaf J"7; the maps J"""(U) -> #(U) are bijective if and only if J5" is a sheaf.
This definition of sheaves is the first one given in Godement's book [208];

it was later universally adopted, chiefly through the influence of Grothendieck.
But in his 1950-1951 Seminar, on a suggestion of M. Lazard, Cartan adopted
an equivalent definition based on topological considerations. Let ^ be a
topological space and p: .¥ -> X be a surjective continuous map that is a local
homeomorphism, i.e., each z e J5" has an open neighborhood V in J5" such that
the restriction p|V; V -> X is a homeomorphism of V onto an open subset of
X. This is by definition a sheaf of sets over X; a section of .¥ over an open
subset U of X is a continuous map s: U -> J^ such that p(s(x)) = x for x e U;
when, for each x e X, p"1 (x) has a structure of A-module (resp. A-algebra) such
that the laws of composition are continuous for the topology induced on
p"'(x), .f is a sheaf of A-modules (resp. A-algebras) over X. If, for this
definition, for each open subset U of X, #"(U) is defined as p-1(U), it follows
immediately that Ui—> J^U) is a sheaf according to the previous definition.
Conversely, if U i—> J^U) is a sheaf over X, the set 3? is the disjoint union of
the J^(x) for x e X, and the topology on J5" is defined as the coarsest one such
that for each open subset U of X the s e 3F{\J) are continuous.

From this "topological" definition it follows at once that if two sections s,
s' belonging to J"""(U) coincide at a point x e U, they also coincide in an open
neighborhood of x in U. In particular, if SF is a sheaf of A-modules, the map
x i—> 0;,. is a section of .¥ over X, written 0; for any section s e J^(U), the set of
points x e U such that sx # 0^. is closed in U; it is called the support of s.

The usual algebraic notions for modules (resp. algebras)—submodule (resp.
subalgebra, ideal), quotient module (resp. quotient algebra), sum and
intersection of submodules, direct sum of modules, graded module, homomor­
phism, kernel and image of a homomorphism, exact sequence of modules,
module of homomorphisms, tensor product, and direct limit—are
immediately extended to presheaves. A subpresheaf <S of a presheaf .f is such that,
for each open subset U of X, ^(U) is a submodule of J^(U), and for an open
set V c U, the diagram

0(U) > &(\J)

P\v P\v

<${V) > J^(V)

commutes. But when applied to sheaves, these algebraic processes may yield
presheaves that are not sheaves. If ^ is a subsheaf of a sheaf of modules J*"",
Uh-j^fUJ/^U) is not in general a sheaf; the quotient sheaf ^/'S is defined
as the sheaf associated with that presheaf; similarly for the other definitions.

If U i—> (9V is a presheaf of A-algebras, then (P-Modules, their
homomorphisms, presheaves of homomorphisms, and tensor products are defined in
the same way.

To each A-module M there corresponds a constant sheaf: in the "topo­
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logical" conception it is the product M x X, where M is given the discrete
topology [so that M is a trivial covering space (Part 3, chap. I, § 2) of X], and
p is the second projection (note that if U <= X is not connected, sections of
that sheaf over U are only locally constant maps U -> M). More generally, any
covering space of X may be taken; if X is arcwise connected and .¥ is
connected, this gives for the system of stalks {^(x))xsX a local system in the
sense of Steenrod (§ 7,A).

Finally, sections of a sheaf J^ can be defined over any subset S of X; here
the topological definition is simplest, a section s over S being a continuous
map s: S -> ■¥ such that p(s(x)) = x for all x e S. If X is paracompact and S is
closed in X, or if X is Hausdorff and S has a fundamental system of para­
compact neighborhoods, then

,^(S) = lim ,<F(U) (118)
for the set J"""(S) of sections over S, the direct limit being taken over the directed
set of open neighborhoods of S. This shows that S i—» J^(S) is then a sheaf in
the sense of Leray.

C. Sheaf Cohomology

In his 1946 Notes Leray considered, over a space X, a sheaf J5" (in his sense)
of A-modules or A-algebras (apparently the ring A of scalars is arbitrary). He
defined the cohomology of X with coefficients in ■'F by a direct generalization
of his definitions in his 1945 paper (§6,D); more precisely, he defined the
cohomology of a "couverture" C" = (C) of X with coefficients in 8F. As we
mentioned in §6,D, at that time he still assumed that each C has a finite
A-basis (epa), and he considered "linear combinations" Xasaepa, where the
sa are not scalars but sections of J"-": each sa is an element of ,5* (E) for a closed
set E containing the support |ep'a|; with the condition that if E' => E => |epa|
is another closed set, saLep,x = (/>EE'(sa))e'''a f°r au sa e i^(E'). The coboundary
is defined by

«"pfev^Z^/'" (119)
Leray then stated without any further detail that provided the space X is
normal, his results of 1945 would carry over without difficulty.

In his 1947 survey [318] Leray was more explicit; as we have seen (§6,D),
he limited himself to a locally compact space X, and considered a fine
"couverture" C with compact supports. First he gave a precise definition of what should
be meant in that case by the sums £asaep'a of his 1946 Notes. In order to do
this, he defined a "concrete complex" C" O &, the needed generalization of
the "intersection" C". C" of his 1945 paper. In defining "linear combinations"
Xa K O sx for kx e C, sx e J^(Ea), and S(/ca) <= Ea he followed the same pattern
Whitney had in his definition of tensor products [511]: he first considered the
module of formal linear combinations of the pairs (k,s) for all k e C, and all
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5 e J^(E) such that S(/c) <= E, and then took the quotient of that module by
the submodule generated by the usual elements

{k + k', s) - (k, s) - {k', s), (k,s + s') - (k, s) - {k, s'),

(Àk, s) — Â{k, s), k(k, s) — (k, As)

for X e A as well as by the elements

(k,s)-(k,pEE.(s))
for closed sets E' => E => S(/c). This gives an "abstract complex",* and the
support of the image of £a (/ca, sa) in that complex is defined as the set of x e X
such that £a (x. kx) ® (sa(x)) # 0; finally the corresponding separated complex
is by definition C" O ^; it is again a "fine couverture" with compact supports.

The fundamental lemma on fine "couvertures" (§ 6,D) shows that, for two
fine "couvertures" C\ C", the graded modules H*(C* O &) and H'(C" O 2F)
are naturally isomorphic, since both are isomorphic to H'((C O C") O ^)',
this defines (up to isomorphism) the cohomology H'(X; J*"") ofX with coefficients
in3P.

A. Borel, in the second edition of his lectures [57], showed how this proof
could be adopted to the Cartan- Lazard definition of sheaves. To any
"concrete complex" K' = (Kp) in Leray's sense is associated a Cartan-Lazard
graded sheaf of A-modules Jf' = (Jt~p). In the notation of [57] the space of
Jf is the disjoint union of the x. K' for x e X. Borel defined a neighborhood
of u for any u e x. K' by considering a point y e X and the set of elements y. k,
where k varies over the set of all elements of K' such that u = x. k; the set of
all these neighborhoods, when y varies in X, is a fundamental system of
neighborhoods of u.

Cartan, on the other hand, defined a fine graded sheaf 3?' = (J^,) over X in
the same way as a fine complex (§ 6,D): for each open locally finite covering
(Uj) of X, there must be endomorphisms r; of .¥' such that r;(3Fp) a !FP for all
p, rt(sx) = 0 if sx e &"(x) and x <£ Ü;, and finally £; r; = Id.. Then, if K' is a
fine "couverture," the corresponding sheaf Jt' is fine, and for any Cartan­
Lazard sheaf J^, K' O & can be naturally identified with the cochain complex
of sections of Jf" ® J*7 over X with compact supports.

Cartan's conceptions on sheaf cohomology in his 1950-1951 Seminar
differed from the preceding ones on the following points: (1) the space X is an
arbitrary topological space; (2) several types of cohomology on X are
introduced (to accommodate for instance both de Rham cohomologies H'(X) and
H'(X) defined in chap. Ill, §3, or both the Alexander Spanier cohomology
and the Alexander-Spanier cohomology with compact supports (§6,D)); (3)
homological algebra and the functorial language were used to a much greater
extent. These conceptions were later presented in a more systematic way, with
some simplifications, improvements, and shorter proofs, in Godement's book
[208], which we will follow for the sake of simplicity (see also [235]).

* The coboundary of the image of (k, s) is the image of (d/c, s).
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A family of supports in a topological space X is a set <D of closed subsets of
X such that:

<D1. The union of two sets belonging to <D belongs to <D.
<I>2. Any closed subset of a set belonging to <D belongs to <D.

In what follows we only consider sheaves of commutative groups; for such a
sheaf ßF over X, we write T{JF) for the group ,^(X) of sections of ßF over the
whole space X, and r^J"7) for the subgroup of Y(fF) consisting of sections
with supports belonging to <D.

The main construction by which Cartan defined cohomology consists in
considering the presheaf Sf° = (i?°(X;,^") defined by taking, for each open
subset U of X

if°(U) = f] ßF(x) (120)
Jell

[i.e. all maps s: x i—» sx (continuous or not) for x e U and sx e ßF{x)\; the map
pvv: if°(U) -> if °(V) that defines the presheaf is such that pvv(s) is the
ordinary restriction s\ V. It is easy to check that if0 is a sheaf of commutative
groups, and that J^U) is a subgroup of i?°(U) for all open subsets U of X, so
that this defines an injective homomorphism j: .W -> ¥°.

Next he iterated that construction to form a resolution of sheaves in the
sense of homological algebra ([119] and [215]):

^■{X;^y. Q^ßF—]-^y° d° .if1 d' ) if2 ->•••; (121)
if1 is defined as (€°{X;y°lJ{ßF)), and d0 is the composite map Ä"0 ->
&°lj{&) -> &' ; in general iffc is <?0(X; if^'/d^, (if^2)), and dt is the
composite map

if^1 -> i^/d^i^2) -> Ä"1;
(121) is called the canonical resolution of ' ßF'. From (121) is deduced a cochain
complex of Z-modules

Ci(X; ^): o -> r„(^) - r„(js?°) - r^1 )->•••

and the cohomology H'(Ci(X; ßF)) is by definition the cohomology H^.(X; J*"")
o/ X with supports in <D and coefficients in SF. It is a covariant functor from
the category of sheaves of commutative groups over X, to the category of
commutative groups. We will postpone to § 7,E the investigation of the
relation of H"j,(X; 3F) with the usual cohomology theories when ßF is a constant
sheaf. When <D is the family of all closed subsets of X, one writes H'(X; 3F)
instead of Hi(X;.^).

This sheaf cohomology has the three additional properties:

I. From the definition it follows that there is a natural isomorphism

r„(^)2iH°pC;^). (122)
II. For any exact sequence of sheaves

0 -»• ßF' -»• ßF -> J^" -> 0 (123)
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the sequence of cochain complexes

0 -> Ci(X; F') - Ci(X;^) - Q,(X;^") - 0 (124)
is also exact; the exact sequence of sheaf cohomology is then

••->HS,(X;J?')->HS(X;^)->HS(X;^")^HS+,(X;^')^---. (125)

Furthermore, for a commutative diagram of sheaves
0 > ,'¥' > !F > !F" > 0

0 > <S' > <$ > <8" > 0
with exact lines, the diagrams

H£(X; .¥") —^—> H§,+1 (X; &')

(126)

HJ(X;*r)—^H£+,(X'^')
0

are commutative.
III. A sheaf J*"" over X is flabby if, for each open subset U of X, the map

Ajx' J^X) -> #~(U) is surjective (in other words, each section of J^ over U
is the image of a section of .¥ over X). For any flably sheaf 3F

H2,(X; J""") = 0 for all n $:1. (127)
This follows from the fact that the sheaves 3" of (121) are always flabby
and that for any exact sequence of flabby sheaves

O-»^0-^1 ->^2 ->•••

the sequence of complexes

0 -> Q,(^°) - Q,^1 ) -» Q,(^2)
is also exact.

It is easy to show that properties I, II, and III characterize the functor
J"71—> H"j,(X; J"7) (for given X and <D) up to isomorphism. For any sheaf .W over
X and any subset E of X, the sheaf SF | E induced by J"7 over E is defined in the
simplest way by taking the topological definition, the space #~| E being simply
the subspace p^1 (E) of JF.

Suppose E is locally closed in X; then, if ^ is a sheaf over E, there is a unique
sheaf %x over X such that ^X|E = <S and ^X|(X - E) = 0; if !F is a sheaf
over X, there is a unique sheaf J"^ over E such that (J^E)X|E = J"""|E and
(J^KX - E) = 0; in general (J^E)X is not a subsheaf of !F, but this property
holds if E is open in X.

When E is closed in X, (J^E)X(U) = J^(E n U) for all open subsets U of X,
and there is an exact sequence of sheaves over X
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0 - (JVe)X -> & -» ('^e)X -» 0 (128)
from which, using (125), there follows an exact cohomology sequence

• • • - HJ(X; (JVE)X) - HJ(X; ^) - HJfX; (.FE)X) - H^1 (X; (JVE)X)
(129)

For any subset E of X and any sheaf c8 over X such that #|(X — E) = 0,
there is a natural chain equivalence of complexes of sheaves

<#'(X;%)\EZW(<g\E). (130)
When E is closed (130) yields an isomorphism*

Hi(X;S)^Hi|E(E;S|E)

where <D|E is the set of all subsets S e <D contained in E. In the sequence (129)
Hi(X;(^E)x) can therefore be replaced by Hi|E(E; &\E).

Suppose that, in addition to <D1 and <D2, <I> satisfies the two conditions:

<D3. The sets belonging to <D are paracompact.
<D4. For each S e <D, there is a closed neighborhood V of S belonging to <D.

A family <D of supports satisfying <D3 and <D4 is called a paracompactifying
family.

Then, when E is closed, there is a natural isomorphism

Hi|(X_E)(X - E;S|(X - E)) S Hi(X;(^x_E)x)

so that, in that case, the exact sequence of cohomology (129) becomes

• • • - HJ|(X_E)(X - E; .FlfX - E)) - HJ(X;^) - Hl,E(E;^|E)
-Hitix_E)pC-E;^|fX-E))--. (131)

This sequence is in particular valid when X is locally compact and paracompact
and <D is the family of all closed subsets of X, or of all compact subsets of X.

D. Spectral Sequences

The most original and striking part of Leray's 1946 Notes is undoubtedly his
investigation of the problem of the cohomological study of a continuous map
by means of constructions that led to spectral sequences, and for which I do
not think there was the slightest precursor.

In the first Note he observed that for any normal space X and ring A
(presumably one of the rings of coefficients of his 1945 paper), he could define
the q-th cohomology sheaf J*f* (X; A) of X for any integer q "> 0 with coefficients
in A by the condition that for any closed subset E of X

Jf« (X;A)(E) = H«(E; A).f (132)

* There is a similar result of Leray in [321], p. 82.
+ The cohomology groups H"(E; A) are those defined in his 1945 paper [313].
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On the other hand, for two normal spaces X, Y, a closed continuous map
/: X -> Y and any sheafs (in his sense) over X, Leray defined the direct image
f*(^) as a sheaf over Y such that for any closed subset E of Y

/,(^)(E) = ^(r1(E)).* (133)
As he had also defined the cohomology of Y with coefficients in a sheaf of

A-modules, he put all these notions together and for any pair of integers p > 0,
q ^ 0 he introduced the cohomology A-modules

Pf-« = H'(Y;/„(jr«pC;A))). (134)
These were already completely new ideas but what followed (in the second

Note) was even more extraordinary. Leray asserted that for each q ^ 0 there
is, in the A-module H"° = H*(X; A), a sequence of submodules

0 = H"-,"J+1 c H0'« c H1""1 <=•••<= H«-1'1 c H«-° (135)

and for each pair (p, q), a sequence of submodules of Pf"

0 = Q5-« <= Qf <•<=••• <= QJl«, <= PSA <= P™ <=•••<= Pf■" (136)

linked by exact sequences of homomorphisms

0 -> Q™ -> P™ _[!!_, Hp.ï/Hp+i.ï-i _> o (137)
and, for each r such that 1 ^ r ^ q

0 -> Pr"+« -> P?'« J^l^ QP + r + 1,,-yQp + , + l.<,-r _„ Q (138)

He also gave a very cryptic and incomplete sketch of the definitions of these
objects in terms of "couvertures" of X and Y, with the definitions and notations
of his 1945 paper. The remarkable thing about these results is that once the
Pf-" and Af" are known, the successive quotients of the sequence (135) are
also known, which is a major step toward understanding the relations
established by/between the cohomologies of X and Y [when A is a field, the vector
spaces HP(X; A) are entirely determined once the quotients H''"'/H''+1"^1 are
known].

It was no mean performance by Koszul, one year after Leray's
announcements ([284], [285]), to discern the algebraic pattern hidden behind this maze
of formulas, and to describe it so clearly that Leray immediately adopted it
in his 1947 survey and in his large memoirs of 1950. As he never published
proofs of his 1946 Notes in the formulation he had given them, we shall first
describe the technique introduced by Koszul and its refinements.

Koszul's starting point was the notion of a differential A-module, i.e., a pair
(M, d) (most of the time simply written M) consisting of an A-module M and
an endomorphism d of M (the "differential") such that d o d = 0.f For such a

* The condition that / is closed is needed to ensure that for ye Y, the inverse images
of neighborhoods of y form a fundamental system of neighborhoods of f~l (y).
f Following Leray, Koszul supposed that there is in addition on M an algebra
structure for which d is a derivation.
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module, the submodule Z [or Z(M)] of cocycles is the kernel of d, the
submodule B [or B(M)] of coboundaries is the image of d, and the cohomology
module H [or H(M)] is the quotient Z/B. The generalized cochain complexes
of Eilenberg-Mac Lane (§5,A) are the graded differential modules E'=
0p6z Ep with the condition d(Ep) <= Ep+1. This can be generalized to graded
differential modules with the condition d(Ep) <= Ep+r for an integer r ^ 1 (d is
then a differential of degree r); the module H(E') is then graded by the
submodules

H"(E-) = Ker(4,)/Im(^_r) with^ = rf|Ep. (139)

The essential notion of Koszul's Notes (following a suggestion of Cartan)
is not the graded differential module but the filtered differential module M,
defined by a sequence (F"(M))pe z such that Fp+1 (M) <= F"(M) and d(F"(M)) <=
FP(M) for all p e Z. Writing for short Mp = FP(M), there are corresponding
filtrations Z" = M" n Z and B" = M" n B on Z and B, with B" <= Z". The
image of Zp in H = Z/B is immediately seen to be

F"H(M) = Zp/B" (140)
and these submodules define a filtration on H(M).

In most applications, f]pezFP(M) = 0, so that the elements of FP(M) may
be intuitively thought of as "more and more negligible" as p tends to +oo; an
element z e Mp should thus be considered "almost a cocycle" if dz e Mp+r for
some large r. This leads to the idea that the set ZP of the elements z e Mp such
that dz e Mp+r should be considered an "approximation" of the set Zp of
p-cocycles. From the inclusion Mp+1 <= Mp it follows that Zpt\ <= ZP, and
from the relation dod = 0 that Br"_! = dZp^~r <= Zp, leading by (139) to the
quotients

*Z = Z>IÇL>ïl + Wr_l). (141)
Now, there are the inclusions

0 = Bg<= Bf <=•••<= Bf <= Bf+1 <=•••<= B"<=Zp<= •••cZf+1 <=Z?c ••• cZf <=Zg = M", (142)
in particular Z^+1 <= Zpt\, and from the comparison of formulas (140) and
(141) E^ can be considered an "approximation" to

E£ = F"H(M)/F',+ 1H(M) = ZP/(ZP+1 + B").

From these definitions, it follows that the differential d of M applies ZP into
ZP+r, and Br"_! + Zpt\ into B^r, defining a homomorphism

dr:Epr->EP+r for all p, (143)
and as d2 = 0, dr2 = 0, so that dr is a differential of degree r in the graded
module

E; = 0 EP, also written E;(M). (144)
p eZ
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An easy computation shows that, for that differential,

H'(E;) = E?+1 for all p,

or equivalently h-(e;) = e;+1. (145)
For any filtered module N, the graded module

gr'(N)= 0 F"(N)/F"+1(N)

is associated with the filtration F. The graded modules E' may thus be
considered as "approximations" to the graded module

gr"(H(M))= 0 FpH(M)/Fp+1H(M). (146)

When the filtration [F"(M)] is finite, i.e., F"(M) = M for p < u and F"(M) = 0
for p > v, E' = gr'(H(M)) exactly for r ^ v — u, so the determination of the
gr'(M) ( = E' for r < u — v) and of the dr for u — v < r ^ v — u gives the actual
computation of gr'H(M).

In general, the sequence (E') of graded modules is called the spectral
sequence of the filtered differential module (M, F), and the graded module
gr'H(M) is its abutment.

In many cases, one starts from a graded differential module

M* = 0 M, with d(Mq) <= M,+ 1

and the grading is compatible with the filtration F, i.e.,

F"(M-) = 0 M, n F"(M-); (147)
then M" is a filtered generalized cochain complex. Write

Z« = Z?nMp+,, B«=BfnM,+, (148)
so that Z? = 0, Zf, BP = 0, BP«, and, for each pair (p, q),

0 = Bg« c Bf <=•••<= Bf c BfJi <=•••<= Z?ïi c Z?« <=•••<= Zf c Zg«

= M*nMp+„.

Furthermore, Bf?i <= ZP", Zpll-"~l <= Z?«, and therefore

Em = zprql{ZpTll'>-1 + Bplt) (149)
can be defined.* For an element of EPq, p is often called the filtering degree, q
is the complementary degree, and p + q is the fora/ degree; now

(ir(Ef«) c EP+r-"-r+1 (150)

* In the case considered in Leray's Note [315], the term Ef is equal to P^"/Q^Lq2 with
the notations of (136) [285].
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and in E'+1, identified to H'(E'), the elements of E{"?j are the cohomology
classes of cocycles of Ef. The filtration of the cohomology module H'(M') =
0? H"(M') is compatible with the grading, each H*(M') being filtered by

F"H"(M-) = H"(M-)n F"H-(M-)

and the E^* are "approximations" of the modules

Eg" = FPHP+«(M')/FP+1H',+<'(M-). (151)
After Koszul's Note, many expositions of the theory were soon given from

different points of view ([113], [335], [429]); a particularly thorough study is
in the book by Cartan and Eilenberg. Spectral sequences yield important
natural homomorphisms in special cases. If FP(M') = M' for p ^ 0 [or equi­
valently F°(M') = M'], there are natural homomorphisms

H"(M") -> E°" forr^l, (152)
and if M„ n FP(M') = 0 for p > n, there are natural surjective homomorphisms

E"r-° -> E|.;° forr^2 (153)
and the group F',H"(M-)/F',+1H"(M-) is then the direct limit of the E"r'° for
these homomorphisms; this implies the existence of natural homomorphisms

E"2'° -> H"(M"). (154)
The homomorphisms (152) and (154) are called edge homomorphisms. If both
conditions F°(M') = M' and M„ n FP(M') = 0 for p > n are satisfied, there is
also a natural exact sequence of terms of low degree

0 -> E2'° -> H^M") -> E^1 d* > Ei° -> H2(M"). (155)

An important example of the application of spectral sequences is given by
the double generalized cochain complexes studied in [113]: they are direct sums

M" = 0 M"«
(p,</)eZxZ

of submodules, equipped with two "partial differentials," endomorphisms d1,
d2 such that d^W") <= Mp+U", d2{Mt"1) <= MM+1, d\ = d\ = d,d2 + d2d1 =
0. These relations allow a definition of an ordinary generalized cochain
complex (M", d), where Mr= 0 W" (156)

p+q = r

and the "total differential" d is defined by

dlM"" = dt\MM + d2\Mp".

On the other hand, d1 and d2 may also be considered as ordinary differentials
in the generalized cochain complexes

(M;,d,) with M; = 0 Mf, Mf = 0 M"", ^(Mf) <= Mf+1,

(M;„d2) with M;, = 0 MJl, MJl = 0 M», d2(MJl) <= MJ+1,(feZ pe Z
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to which correspond cohomology modules

Hi(M-) = 0 Hf (Mi), H;,(M;,) = © HJl(MJ,).peZ qeZ
But MJ may be considered as the direct sum of generalized cochain complexes

(Mîi'.di) with MJi« = 0 M"«
peZ

and d2 as a cochain transformation M'j«-> M'j"+1, which yields homomor­
phisms d* in cohomology, defining a generalized cochain complex

Hf (m;,): • • • -> Hp(M;i") à* > h^m;^1) -> • • • (157)

and similarly MJ, is the direct sum of generalized cochain complexes

Hfi(M;): ► H«(Mf) —U H"(Mf+1-) ->•••. (158)
Finally, on (M", d), there are two ftitrations compatible with the grading ( 156),
namely,

F,"(M-) = 0 M[, Ffi(M-) = 0 Mf,. (159)r^p op
They give rise to two spectral sequences written, respectively, (If") and (Hf•");
computations show that

15« = Hf(HJl(M;)), Ilf = HJl(Hf(M;,)). (160)
Another method of definition for spectral sequences has been proposed by

Massey [335]. It is based on the notion of exact couple: this is a pair of modules
(A, C), equipped with three homomorphisms

A —^—► Ah\ /g (161)
such that

Im/=Keröf, \mg = Kerh, Im h = Ker/. (162)
Then d = g o h: C->C is such that d2 = 0, so that {C,d) is a differential
module.
Let C = H(C) its homology, and A' = Im/ = Ker#. Then h(Z(Q) <= A',
h(B(Q) c A', so that h induces a homomorphism h': C = Z(C)/B(C) -»• A'. If
/': A' -> A' is the restriction of f, there exists a well-determined
homomorphism g': A' -> C, such that

A > A*\ Jg' (163)
C
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is again an exact couple, called the derived couple of (161). The construction
may be iterated, and starting from bigraded modules A, C and homogeneous
homomorphisms /, g, h, it can be shown that the sequence (C(n>, d(n)) of
differential modules obtained in this way is the sequence (E') of terms of a
spectral sequence.

E. Applications of Spectral Sequences to Sheaf Cohomology

We first return to the genesis of spectral sequences in Leray's 1946 Notes; the
sequences he defined to study the cohomology of a closed continuous map are
not spectral sequences in the sense of Koszul, but the ideas behind their
definition are unmistakably the same, namely computing the quotients of the
sequence (135) by a construction of modules "approximating" them. In his
1945 paper (§6,D) Leray had already defined the inverse image f~l(JJ) of a
"concrete complex" L' on a space Y by a closed continuous map /: X -> Y;
he considered the same "abstract complex" as the one underlying L', but to
each / e L' he associated a support in X, the inverse image /-1(S(/)). This
defines a "concrete complex" on X, and the separated complex associated to
it is f~l (L') by definition*; its main property (which Leray only proved in his
1947 survey [318]) is that, if L' is a fine "couverture" on Y, and K' a fine
"couverture" on X, then C" = /-1(L") O K" is again a fine "couverture" on X,
and therefore can be used to compute the cohomology H'(X). By definition^

C+» = 0/-1(L«+m)OKp"m (164)
m

and the coboundary of C is obtained by using both coboundaries of L' and
K' [§5, formula (48)] {in contrast with the coboundary of L' O & when .¥
is a sheaf on Y [formula (119)]}.

Leray's idea was to compare the modules Pf"7 and HP+«(X). If J"'"'' =
f*(J^p(^-', A)), an element of Pf-" is the cohomology class cl(z) of a cocycle
zeL'O i^"; by definition,

a

where .«a e L« and u"-x = v"'x ./^{Sil"-*)) is a cocycle in K"./~1(S(/"'a)). As
there is a natural map L' -> /""'(L"), Leray could associate to z the cochain in
/"'(LOOK'

a

Since £aup'adp(.*'a) = 0 and upa is a cocycle, the coboundary dp+qw in

* This definition obviously was at the origin of Leray's definition of the "direct image"
of a sheaf [formula (133)].
f The module f-l(\J+m) O Kp~m is the image in f~l(V) O K" of the tensor product
/■~'(L'.+m)®Kp~m.
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/-1(L") O K" is a linear combination of terms of the form

t,'p-t.i»y—i(/'»+t+i.iJj for integers t ^ 0. (165)
The same, of course, is true for any cochain in

©/-»(L'-^OK'-'. (166)
Leray then defined P?-q for r > 2 as the submodule of Pf" consisting of the
elements cl(z) such that, when adding to z a suitable cochain of (166), all
elements (165) in the coboundary dp+qz' of the cochain z' thus obtained are
such that t > r. The submodule Qj"~r"+r+1 then consists of the cohomology
classes of the elements

y y'p-r.ßl'q + r + l.ß
ß

of L«+r+1 O irP~r corresponding to the elements

V V'P-r-lf-l<l'<I + r + l.ß\
ß

in dp+qz'. When r = p + 1, dp+qz' = 0, and cl(z') can therefore be identified
with an element of HP+*(X), linking the sequences (139) and (136).

As mentioned above, Leray never published a detailed description of the
preceding constructions outlined in his 1946 Notes, but adopted the Koszul
presentation; he put on C" the filtration defined by

F'C=©r'(L')OK' (167)
j>p

and considered the corresponding spectral sequence. This meant working with
cochains instead of cohomology classes, certainly a substantial simplification.
Most of the results Leray proved in this manner in his 1950 paper [321] had
already been announced in the 1946 Notes, however, showing that he had
obtained them by the earlier technique outlined in these Notes.

We shall describe these results of Leray (with the exception of those on
fibrations, which we postpone to Part 3, chap. IV) in the generalized form they
took within the context of Cartan's theory, using the improvements and
simplifications due to Cartan and Godement.

A basic result is a method for computing the cohomology H^(X; !F) by more
easily applicable techniques than the one used in its definition in § 7,D). Let

J?": 0 - J2-0-^ J2-1 -^J2-2--- (168)
be a cochain complex of sheaves. Associate to it the double complex of modules

K"= 0 CS(X;JS?«)
PSsO.i/SsO

where the first differential

^c^x^-o-crMx;^")
is the differential of the cochain complex Q,(X; J"7) for !F = if" [formula
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(122)]; the second differential

d2:C%{X;£e«)^C%(X;2">+l)

is deduced by functoriality from the map (— l)pöq: i?" -> if"+1. The
conditions d\ = 0, d2 = 0, d1d2 + d2d1 =0 are easily checked, and two spectral
sequences are obtained, for which the computation of the terms E2 gives

V2" = H£(X;jf (if)) (169)
where M"(if') is the cohomology of the complex of sheaves if', and

Um = H"(Hä,(X; if')) (170)
where H&(X; £f") is the cochain complex of modules (Hä,(X;ifs))s;>0, with the
differential ö* deduced by functoriality from <5S: Jjfs -> Jjfs+1. The abutment of
the first spectral sequence is the graded module associated to a filtration of
H-(r„(jsr)).

From these results and the properties of spectral sequences it follows in
particular that if if is a resolution of the sheaf 3F, for which

H"(Hä(X; if •)) = 0 foro 1 and p > 0, (171)
there is a natural isomorphism of graded modules

H-(r„(JSr))^HipC;^)

generalizing the definition of sheaf cohomology by means of the canonical
resolution (§ 7,C).

This property can in particular be applied to compare the sheaf cohomology
with coefficients in a constant sheaf se associated to the constant presheaf
Ui-»A, where A is any ring, with other usual cohomology theories. We have
seen (§7,C) that to the "concrete complex" of Alexander-Spanier cochains
over the ring A (§ 6,D) is canonically associated a cochain complex of sheaves,
which is a resolution {&') of the constant sheaf se and consists of fine sheaves;
but then H&(X; ï£s) = 0 for all s ^ 0 and q > 1 if the family <D is para­
compactifying; therefore, for such a family condition (171) is satisfied and
H"j,(X; se) is naturally isomorphic to the Alexander-Spanier cohomology with
coefficients in A and supports in <D. Similarly, on a C° manifold X, the germs
of p-forms constitute a fine sheaf Qp, hence the cohomology H'(X; Q') [resp.
Hi(X;Q'), where <D is the family of compact subsets] is naturally isomorphic
to the de Rham cohomology H'(X; R) [resp. H;(X; R)] (chap. Ill, § 3).

When J5" is a sheaf of algebras over a commutative ring A, the cohomology
H'(X; J*"") inherits a structure of algebra over A, and that structure was always
prominent in Leray's papers. More generally, products similar to those defined
in cohomology with coefficients in a ring (§4) can be defined in sheaf
cohomology. If J"7 and ^ are two sheaves of A-modules over X, it is possible to
define "cup-products" as linear maps

HJ(X; JF) ®A H^(X; <S) -» H&+"(X; .¥ ® 9)
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where 0 = Onf; these constructions were developed in Cartan's seminar
and in Godement's book [208].

In Cartan's theory Leray's results on the cohomology of a continuous map
/: X -> Y take the following form: if .¥ is a sheaf over X, the cohomology
group H"(/^1(U); J^) may be associated to any open set U in Y, and it is
immediately seen that U i-> H^/"-1 (U); J5") is a presheaf. Let Jtq{f; .¥) be the
associated sheaf on Y. There is then a spectral sequence (often called the Leray
spectral sequence off) having as E2 terms

E5* = H'(Y;jr«(/;.F))>

the abutment of which is the bigraded group derived from a filtration on the
graded group H'(X; J"-"); it can be generalized to the case of cohomology with
supports in a family of subsets.

When X and Y are locally compact and / is a proper map, ^q{f',^){y) is
isomorphic to H"(f~l(y); J"-"), which justifies the notation. In particular, if, for
each j/eYandU^m, ^(/"»(y); A) = 0 and H°(/_1(.v); A) ^ A, there
are natural isomorphisms Hj(Y; A) ~ HJ(X; A) for 0 < ; < m; this generalizes
the Vietoris theorem mentioned above (§ 7,B) for compact metric spaces [475],
extended by Begle to all compact spaces [47],

F. Coverings and Sheaf Cohomology

Let 9K = (M;);eI be an arbitrary open covering of a space X; we have seen in
§ 6,B how Dowker associated to any commutative group G the cohomology
groups HP(N(9JÎ);G) of the nerve N(9JÎ) with coefficients in G. This
construction can be generalized by substituting for G a presheaf 'S of commutative
groups over X: for each combinatorial simplex s — (Mio, M;.,.. .,M; ) of
N(9W), let Ms = M;o n M,.. n • • • n M, , which by definition is not empty. A
p-cochain of N(9JÎ) with coefficients in <S is a map / which, to each p-simplex
s e N(9W), associates an element f{s) of 0(MS); if, for a (p + l)-simplex of N(9M),

t = (Mi0,Mil,...,Mlj>M),

tt = (M,.o>...>Mit.i>Mlt+l>...,MJp+i) forO^/c^p+1
the coboundary operator is given by

(dp/)(t)= I (-I^m, (/(t*))e«(M,) (172)
thus defining a cochain complex of modules, written C'(9JÎ; #) for short, hence
a graded cohomology module H*(ÎR;^); both C(SR;0) and H*(S[R;^) are
covariant functors of 'S.

One can also define a cochain complex Q,(9J?; 'S) for any family of supports
<D: a p-cochain / in that complex is restricted by the condition that there is a
set T e <D such that f(s)x = 0 in <SX for all points x^TnM,.

The definition of C(9M;^) only uses the groups ^(Ms) and not all groups
#(U) for arbitrary open sets U; therefore, C(SR; 'S) and H'(9JÎ; ^) can still be
defined when 'S is what one calls a system of coefficients on N(9JÎ): this means



142 1. Simplicial Techniques and Homology

a map si—>^(s) which associates a module to each simplex s of N(9JÎ), with
restriction homomorphisms pts: ^(s) -> 'Sit) when s <= t (hence Mt <= Ms), with
the usual condition pus = pm o pts for s <= t a u. Now let U be any open subset
of X; 9JÎ n U = (M, n U)ieI is then an open covering of U, and the cochain
complex C'ÇOOl n U; 'S) for a presheaf 'S over X can be defined; furthermore, if
V c U is another open set, there is a cochain transformation

C(9Jl nU;«)-> C(9Jl n V;0)

which defines Ui—>C"(9MnU;'^) as a cochain complex of presheaves
(^P(ÎR;^))P>0. When ^ is a shea/, the #"(501;0) are also sheaves, and they
constitute a resolution of #

<r(9Jl;0): 0 -> 0 -><?0(9JÎ;0) -> -?1 (9JÎ;0) -*••••.

When ^ is a sheaf, all the preceding constructions and results are still valid
when 9JÎ is a closed locally finite covering of X.

When 'S is a shea/", one can therefore consider either the double complex
C'(X;^'(^;^)) when 9JÎ is a closed locally finite covering, or the double
complex C'(9JÎ; if') when 9JÎ is an open covering and ST is the canonical
resolution (§ 7,C) of G; in both cases, one gets natural homomorphisms

H"(9Jl;^)->H"(X;^) (173)
and a spectral sequence abutting to the bigraded module associated to a
filtration of H'(X; 'S), and having as E2 terms

Ep2" = H"(9Jl; Jf« ('S)). (174)
For closed locally finite coverings, this is an extension to general spaces of

a theorem of Leray: when H«(MS; 'S) = 0 for q ^ 1 and for all simplices
s e N(9JÎ), the homomorphism (173) is bijective; this generalizes the result of
Leray's 1945 paper on "couvertures" with simple supports (§6,D),

If 91 is an open covering finer than 9JÎ, one can define a simplicial mapping
of the nerves: N(9l) -> N(9M), from which one can deduce a cochain
transformation Q,(9JÎ; 'S) -> 0,(91; 'S) for any presheaf 'S, in the same manner
as for a group G (§ 3). The corresponding homomorphism H|])(9JÎ; 'S) ->
H|])(9l; ^) again does not depend on the choice of the simplicial mapping
N(9l) -> N(9JÎ). It is therefore possible to define the Cech cohomology ofX with
coefficients in the presheaf 'S and supports in <D

fii(X;S) = limHi(9W;S) (175)
the direct limit being taken on the directed set of all open coverings 9JÎ of X.
To any exact sequence of presheaves

0 -> <§' -> 'S -> 0" -> 0

corresponds a Cech cohomology exact sequence

• • • - fljfX; S') - fti(X; S) - HS,(X; ST) - H^1 (X; 'S') - • • •.
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For a sheaf (ê, there is a natural homomorphism
fii(X;S)-»Hi(X;S) (176)

and a spectral sequence abutting on the bigraded module associated to a
filtration of H^.(X; ^), and having as E2 terms

Ep2" = H&(X;jf(^)). (177)
If <S> is also a paracompactifying family, then the natural map (176) is bijective.
If J^ is a presheaf and # is the associated sheaf (§7,B)), then, if <D is a

paracompactifying family, the natural homomorphism

H^X^-H^X;.^)
is bijective.

When se is the constant presheaf Ui—> A, H^X;^) is identical with the
usual Cech cohomology group H^(X; A).

G. Borel-Moore Homology

We have seen that Cech cohomology [or equivalently Alexander-Spanier
cohomology (§ 6, A)] is well behaved for any space and any group of coefficients
(§6,B), whereas Cech homology can only be used in special cases, such as
compact spaces with compact coefficient groups (§ 6,B). Cohomology starts
with application of a "duality" functor Hom(., L) to chain complexes; we may
wonder if the application of the functor Hom(., L) to cochain complexes might
not lead to a better homology theory, a kind of "bidual" of the classical ones.

This was apparently first attempted in 1957 [62] by A. Borel, who limited
himself to locally compact spaces and coefficients in a principal ideal ring L
(although his most important results concern the case in which L is a field).
His main purpose was to build up a homology theory with which he could
obtain a "Poincaré duality" for more general spaces than either the C°
manifolds considered by Cartan around 1948-1950 or the compact
"generalized manifolds" studied since 1934 by Cech, Lefschetz, Wilder, and Begle, who
also limited themselves to coefficients in a field (see Part 2, chap. IV, §3).
In this first paper Borel took as "dual" of a L-module M the L-module
Hom(M,L); although he used sheaf cohomology to some extent he did not
study in detail the general properties of the homology theory he described,
his investigations being mainly limited to "generalized manifolds."

Two years later, in a joint paper with J.C. Moore [66], Borel returned to
the problem from a different angle. They still only considered locally compact
spaces, but they changed the notion of "duality" for modules, which enabled
them to take any Dedekind ring as a ring of coefficients (the applications were
still mainly concerned with principal ideal rings). Their new approach used
sheaves to a much greater extent, but their main innovation was to apply the
notion of an injective module.

This was first introduced by R. Baer in 1940 [39], and given prominence in
the Cartan Eilen berg book on homological algebra [113]. For any ring A, a
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A-module I is called injective if, for any A-module M and any submodule M'
of M, any homomorphism M' -> I is the restriction of a homomorphism
M -> I; when A = Z, by transfinite induction the quotient Q/Z is injective.
The main properties of injective modules are:

1. Any exact sequence 0 -> I -> M -> M" -> 0 where I is injective is split.
2. Any A-module M is isomorphic to a submodule of an injective module.

This injective module can be made to depend functorially on M. First, if
A = Z, the free Z-module

F(M) = Z(M*>

has as basis the elements #0 of M. There is a natural exact sequence of
Z-modules

0 -> R(M) -> F(M) -> M -> 0

and R(M) is naturally embeddedjn F(M)_®ZQ; if M = (F(M)®ZQ)/R(M),
there is a natural injection M -> M, and M is an injective Z-module.

Now if A is arbitrary and M is a A-module, first consider M as a Z-module,
and take the corresponding injective Z-module M. Then one has the exact
sequence of A-modules

0 -> Homz(A, M) -> Homz(A, M);

as a A-module, M is naturally identified with Homz(A, M) and I(M) =
Homz(A, M) is an injective A-module, which depends functorially on M.

This definition of injective modules can be transferred to the definition of
injective sheaves of A-modules: a sheaf J is injective if for any sheaf if and
any subsheaf if', any homomorphism of sheaves if ' -> J is the restriction of
a homomorphism if ->,/; an injective sheaf is flabby (§ 7,C).

Again, any sheaf J5" is functorially isomorphic to a subsheaf of an injective
sheaf .f°{!F), which is defined as the presheaf

«II

where I (J^) is the injective module associated to the stalk 3FX, as defined above.
Then the same method used in §7,C leading to the canonical resolution
r£'{X;.^) of a sheaf êF [§7,C, formula (121)], can be applied by merely
replacing ^(X; J"7) by J°°(^F); this yields a canonical injective resolution of J5"

J\êP): 0 -> J"7 -> ./°(J^) -> J^1^) ~> • ' ' (178)
which can be used to compute the cohomology HJ^X; J"7), since the injective
sheaves Jp{^) are flabby (§ 7,E).

After these preliminaries, the first step in the definition of the Borel Moore
homology is purely algebraic. L is a Dedekind ring, K is its field of fractions;
then K/L is an injective L-module. To a cochain complex M' = (Mr)r>0 of
L-modules, is associated a generalized chain complex D.(M') = (Dr(M'))r>_!
defined in the following way: Dr(M') is the set of homomorphisms/of M' into
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the direct sum K © (K/L) such that

/(Mr)<=K, /(Mr+1)<=K/L, /(Ms) = 0 fors#r,r+l.
If <p: K -> K/L is the natural map, the boundary operator br: Dr(M') ->
Dr_!(M") is given by

(br/)(x) = (- ir+7(dr-ix) for x e M'"1,

(br/)(x) = <p(f(x)) + (- l)r+1/(drx) for x e M',

(br/)(x) = 0 forxeMs, s^r-l,r.
The next step is to associate to a cochain complex of sheaves (of L-modules)

J"7' the cochain complex of L-modules rc(.W), consisting of sections of J"7'
over X with compact supports. Then, using the definition of D.(M') for a
cochain complex of L-modules given above, a generalized chain complex of
sheaves 3),(ßF') is defined by taking the sheaves associated to the presheaves

Uh-D.(rc(^|U)).

If in particular the cochain complex ./"(L), canonical injective resolution of
the constant sheaf L [formula (178)], is taken for J"7, then one defines

%.(X;L) = @.(jr(L)).

For any family <D of supports in X,

CS.fX;L) = r„(*H.pC;L))

is therefore a generalized chain complex of L-modules; finally its homology
group

H*(X;L) = H„(CS.(X;L)) (179)
is by definition the Bor el- Moore n-dimensional homology group of X with
coefficients in L and supports in <P. When <D is the family of all closed sets (resp.
all compact subsets), one simply writes H„(X; L) [resp. H£(X; L)].

Thejustification for this involved definition is that Borel Moore homology
has almost all the good properties that can be expected. If/: X -> Y is a proper
map of locally compact spaces, there is for every n a natural homomorphism

/„:H„(X;L)-H„(Y;L). (180)
Similarly, for any continuous map /: X -> Y, there is for every n a natural
homomorphism

/„:H^(X;L)-,H^(Y;L); (181)
furthermore, if/ and g are homotopic, /„ = gn for each n.

For a locally closed subspace A of a locally compact space X, relative Borel­
Moore homology H.(X, A; L) can be defined, satisfying the usual exact sequence
and the excision theorem [87]. If A is closed, H'(X, A;L) is naturally
isomorphic to H.(X - A; L).
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For any closed subspace F of X, the natural injection i: F -> X yields a
natural homomorphism in: H„(F;L) -> H„(X;L); but, if U = X — F, there is
also a natural homomorphism

;„:H„(X;L)-H„(U;L) (182)
which is defined by considering the restrictions to U of the sections of the sheaf
^.(X; L). Moreover, there is an exact homology sequence

•••->H?(F;L)-^H,(X;L)^^H?(U;L)-,H?_1(F;L)-,--- (183)
There is also the expected split exact sequence linking homology to sheaf

cohomology with compact supports [see § 5H, formula (74)]

0 -> Ext(H?+1(X; L), L) -> Hp(X; L) -> Hom(H?(X; L), L) -> 0. (184)

Finally, there is a kind of Künneth exact sequence, in which homology and
cohomology are mixed:

0 - ® Ext(HJfX), H,(Y)) - Hp(X x Y) -» © Hom(H^(X), H,(Y)) - 0r+s=p+l r+s=p
(185)

(all coefficients in L). However, there are examples ([87], p. 235) of locally
compact spaces X, Y, for which H1 (X x Y; Z) # 0, H0(X; Z) ® Ht (Y; Z) = 0,
and Tor(H0(X;Z), H0(Y;Z)) = 0, so that the usual Künneth sequence [§5H,
formula (76)] is invalid for Borel-Moore homology.

When X is a compact space, and m is a maximal ideal in L, H.(X; L/m) is
the Cech homology H.(X; L/m). When X is a compact metric space, the groups
H„(X; L) are the Steenrod groups H;'(X; L) (§2).

From the fact that Dr(M') is defined for r = — 1 and #0 in general, it is
possible that H_j(X; L) # 0 although no such example is known. It has been
proved that if X is locally connected, H^(X; L) = 0 ([66], p. 151); this is also
true if X is metric and separable ([87], p. 185).

Another feature of Borel-Moore homology is that in general there is no
relation between Borel-Moore homology groups of the same space but with
two different coefficient rings.

Finally, for any sheaf 3F of L-modules over X, it is possible to define Borel­
Moore homology with supports in <D and coefficients in .¥: consider the
graded sheaf

<?h.(X;J^ = ^®<?h.(X;L)

and the generalized chain complex of L-modules

C*.(X;^) = ra)(^H.(X;^)).

The Borel-Moore homology with supports in <D and coefficients in J^ is the
homology

H?(X;.F) = H.(CS.(X;.F)).

If <D is paracompactifying and 0 -> J*""' -> J"7 -> J*""" -> 0 is an exact sequence of
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sheaves of L-modules over X, there is an exact homomology sequence

• • • - H*(X; &') - H*(X; ^) - H?(X; <F») - H?., (X; ^') - • • •.

§ 8. Homological Algebra and Category Theory

A. Homological Algebra

Sheaf theory and spectral sequences spurred new developments in
homological algebra and the theory of categories after 1950. To the first functors of
commutative groups or modules Eilenberg and Mac Lane (§5,E) gave as
examples, they soon added many more, as did Hopf, Cartan, Hochschild,
Chevalley, E. Artin, and Tate, some of whom were motivated by algebraic
topology, others by purely algebraic theories (associative algebras, finite
groups, Lie algebras).

In their book on homological algebra (a name which they introduced)
published in 1956 [113], Cartan and Eilenberg made a thorough study of these
methods and results, to which they added many of their own. The most
prominent concepts, which dominate the book and allow a unified
presentation of all the examples mentioned above, are the projective and injective
modules and the derived functors.

Projective modules are generalizations of free modules. A projective A­
module* is a submodule of a free A-module that is a direct summand. For any
A-module M and any quotient module M" of M, any homomorphism /: P ->
M", where P is a projective A-module, can be "lifted" to a homomorphism
g: P -> M, i.e., one has f = n ° g, where n: M -> M" is the natural
homomorphism. When P is projective, any exact sequence

0-»M'-»M-»P-»0

splits (a trivial result when P is free).
We have seen (§ 5,F) how free resolutions of a A-module had been

introduced by Hopf in 1945 as exact chain complexes

(Q, c): •••-» C, -» C,_! -»•••-» Q -» C0 -^ A -» 0 (186)

where the C, are free; as any A-module is a quotient of a free module, such
resolutions exist for any A-module A. The two fundamental properties proved
by Hopf for these resolutions (§ 5,F) are still valid when the Cy are merely
projective A-modules, in which case (186) is called a projective resolution of A.

Cartan and Eilenberg observed that the way Hopf used the free resolutions
to define the homology of groups (Part 3, chap. V, § 1,D) could be used for all
additive covariant functors T: Modx -> Ab from the category ModK of A­

* For simplicity's sake, we assume that A is commutative, but Cartan and Eilenberg
also considered left or right modules over a noncommutative ring, as well as bimodules
over two such rings.
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modules to the category Ab of commutative groups: for any pair of homo­
morphisms u: A -> B, u': A -> B of A-modules

T(u + u') = T(u) + T(u')

for the corresponding homomorphisms of commutative groups T(A) -> T(B).
If (186) is any projective resolution of A, a chain complex of commutative
groups can be deduced from the complex (186):

T(C.): ■ • • - T(Q) - T(Cy_, ) - ■ ■ • - T(C, ) - T(C0) - 0 (187)

and the corresponding homology groups H„(T(C.)) are independent of the
chosen projective resolution (Q, e), up to isomorphism; if

L„T(A) = H„(T(C.)) (188)
then L„T: ModK -> Ab is a functor that Cartan and Eilenberg call the n-th left
derived functor of T. When T(A) = B ® A A for a fixed A-module B, L„T(A) is
written Tor*(B, A); Tor^(B, A) is just the functor Tor(B, A) defined in § 5,B.

For any exact sequence of A-modules
0-»A-»B-»C-»0

there is an exact homology sequence of left derived functors

■■•-L.+1T(Q-L.T(A)-L.T(B)-L.T(Q--. (189)
The properties of injective modules (§7,G) led Cartan and Eilenberg to

introduce, in a similar way, injective resolutions of a A-module A: they are
exact cochain complexes

(C, £): 0 - A A C° - C1 - • • • - CJ -> Cy+1 - • • • (190)

where the CJ are injective A-modules; again, such resolutions exist for any
A-module A. For any covariant additive functor T: ModA -> Ab, a cochain
complex of commutative groups can be deduced from (190)

T(C): 0 -> T(C°) -*• T(C* ) ->■•■-> T(Cy) -*• T(Cy+1 ) -> ■ • • (191)

and the corresponding cohomology groups H"(T(C')) again only depend on
A up to isomorphism; writing

R"T(A) = H"(T(C)), (192)
Cartan and Eilenberg called the functor R"T: ModA-> Ab the n-th right
derived functor of T. When T(A) = HomA(B, A) for a fixed A-module B,
R"T(A) is written ExtA(B, A); ExtA(B, A) is just the functor Ext(B, A) defined
in§5,D).

For any exact sequence of A-modules

0-»A-»B-»C-»0

there is an exact cohomology sequence of right derived functors

► R"T(A) -> R"T(B) -> R"T(C) -*• R"+1T(A) ->•■•. (193)
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Although Cartan and Eilenberg only considered the category of A-modules
over an arbitrary ring A, topologists used categorical concepts in other
contexts, as we have already seen for homology theories by Eilenberg and
Steenrod (§6,B), and as we shall also see later in the emerging theory of
homotopy (Part 3, chap. II). At the end of the 1950s categorical notions also
became one of the main tools in Grothendieck's recasting of algebraic
geometry into the new frame of the theory of schemes. In all these applications it
was soon realized that it was necessary to make frequent use of properties and
constructions applicable to all categories, which had not been mentioned by
Eilenberg and Mac Lane. Their proofs are invariably trivial; we shall review
those which are linked to three of the most conspicuous themes in the
applications of the theory of categories: dual categories, representable functors, and
abelian categories.

B. Dual Categories

In a Note of 1948, developed in 1950 [353], Mac Lane explicitly remarked
that many notions in group theory naturally come in pairs; moreover, when
they could be expressed by conditions on diagrams of homomorphisms, they
could be deduced from one another by "reversing the arrows." The simplest
example is the pair consisting of injective homomorphisms, expressed by the
exactness of the sequence

0 -> M' -> M,

and surjective homomorphisms, expressed by the exactness of the sequence

0 <- M" <- M.

Another example given by Mac Lane is the pair of notions direct product
and free product in group theory. The direct product D = G x H of two
groups and its projections p1 : D -> G, p2: D -> H are such that for any group
X and any pair of homomorphisms u: X -> G, v: X -> H, there is a unique
homomorphism w. X -> D for which the diagram

G

(194)

H

becomes commutative. Similarly, Mac Lane observed that the free product*

* To define G * H, consider the monoid M consisting in words of any length whose
elements are either in G or in H, the composition law (w, w')t-*ww' being
juxtaposition. An equivalence relation R is defined in M by taking as equivalent two words w1,
w2 such that in one of them there are two consecutive elements that belong both to G
or both to H; one replaces them by their product in G (resp. H) to obtain the other
word. Then G * H is the quotient M/R.
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F = G * H and its injections i1 : G -> F, i2: H -> F are such that for any group
X and any pair of homomorphisms u: G -> X, v. H -> X, there is a unique
homomorphism w: F -> X for which the diagram

♦ X (195)

becomes commutative, and clearly the diagrams (194) and (195) are deduced,
from one another by "reversal of the arrows."

Mac Lane also thought of the pair of notions consisting in injective A­
modules and free A-modules. Injective modules I can be defined by the
property that, given a diagram of homomorphisms

0

I

f

-> M'

(196)

-+ M

where the line is exact, there exists a homomorphism g: M -> I for which the
diagram

0

becomes commutative. For a free A-module F, for a diagram (with exact line)
obtained from (196) by reversal of arrows

0

f

M

(197)

M

there exists similarly a homomorphism h: F -> M for which the diagram

F­

h

becomes commutative. However that property does not characterize free
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A-modules but projective A-modules, not yet defined in 1948; but Mac Lane
limited himself to the case A = Z, where projective modules are free.

In 1955 [215] Grothendieck found a general principle underlying these
observations, the fact that all categories can be considered as coming in "dual
pairs" (or "opposite pairs"). Indeed, for any category C, let Morc(X, Y) be the
set of morphisms X -> Y in C, for any two objects X, Y of C. The dual category
C° has the same objects as C, but for any two such objects X, Y,

MorCo(X, Y) = Morc(Y,X) (198)
and the composition law

MorCo(X,Y) x MorCo(Y,Z)-MorCo(X,Z)

is (u, u)i—»uü; it can immediately be seen that C° is a category and that
(C°)° = C.

One of the obvious consequences ofthat definition is that there is no longer
any need to distinguish covariant and contravariant functors: a contravariant
functor C -> C is the same thing as a (covariant) functor C° -> C (or C -> C'°).
More generally, to any notion or property concerning a category C is "paired"
another ("dual" to the first) for the same category C, obtained by applying the
primitive one to C°.

In the same paper [215], although it was chiefly oriented toward abelian
categories, Grothendieck completed the vocabulary of the theory of
categories, already partly laid down by Eilenberg and Mac Lane (§ 5,E). A
subcategory C of a category C is such that objects of C are some objects of C,
for any two objects X', Y' of C", Morc.(X', Y') c Morc(X, Y), for any three
objects X', Y', Z' of C", the composition map

Morc(X',Y') x Morc(Y',Z')-»Morc(X'.Z')

is the restriction of the composition map in C, and finally the identity lx. for
an object of C is the same in C and in C. A subcategory C of C is called full
if, for each pair of objects X', Y' of C", Morc-(X', Y') = Morc(X', Y'); an
example is given by the category Ab of commutative groups, which is a full
subcategory of the category Gr of groups.

A functor F; C1 -> C2 is called faithful (resp. fully faithful) if, for any pair
X, Y of objects of C1, the map u i-> F(u) of MorCi (X, Y) into MorCz(F(X), F(Y))
is injective (resp. bijective). When F is fully faithful, F(C\) is a full subcategory
of C2; if, in addition, for any object X2 of C2 there is an object Xj of Cl and
an isomorphism F(Xj) 2J X2, F is called an equivalence of categories. In the
category Vectk of finite dimensional vector spaces over a field k, the full
subcategory consisting of the vector spaces k" (for n ^ 0) is equivalent to Vectk.

C. Representable Functors

Before category theory was invented it had been noted in some parts of
mathematics that from some privileged objects, often called "universal," one
could construct all objects of the same kind. The oldest example is probably
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the universal covering manifold X of a connected C" manifold X, defined by
Poincaré when X is a surface (Part 3, chap. I, § 1). Let p: X -> X be the natural
projection, x0 be a point of X, and x0 = p(x0); consider a simply connected C°
manifold Y, a point y0 e Y, andaCœ map/: Y ->X such that f{y0) = x0; there
is then a unique C° map /: Y -> X such that f{y0) = *o and f = P °f
In other words, all Cm maps of simply connected manifolds into connected
manifolds are known once the C°° maps of simply connected manifolds into
simply connected manifolds are known.

In his Note of 1948 [333] Mac Lane made a similar observation on a much
more elementary concept, the product G x H of two groups: the diagram (194)
shows that for each pair (u, v) of homomorphisms of groups X -> G, X -> H
there is a unique homomorphism w: X -> G x H such that u = p, o w, v =
p2 ° w.

Analogous remarks were made between 1955 and 1965 by several
mathematicians (Yoneda, Freyd) and were finally systematized under the general
idea of representable functors, which became one of the main tools Grothen­
dieck used in his theory of schemes.

The starting point is the consideration, for any category C and any object
X of C, of the contravariant functor

Äx: C° -> Set

into the category of sets, defined as follows: for any object Y of C,

Äx(Y) = Morc(Y,X) (199)
and for any morphism u e Morc(Y, Z),

Äx(u): Morc(Z, X) -»• Morc(Y, X) is the map v i-> vu. (200)

For any morphism w: X -> X' of C, there is a natural transformation [§ 5,E,
formula (68)] of functors h„: hx -> hx, defined by taking, for any object Y of
C, the map

Äw(Y):Morc(Y,X)->Morc(Y,X') such that h„(Y)(v) = wv. (201)

When h„(Y) is infective for all objects Y of C, the morphism w: X -> X' is
called a monomorphism.

If F: C° -> 5e? is now any contravariant functor and x is any element of the
set F(X), a natural transformation of functors

A.: *x - F

is defined as follows: for any v e Morc(Y, X), F(v) is a map F(X) ->• F(Y), and
the map

/L(Y): Morc(Y, X) -» F(Y) is such that /L(Y)(e) = (F(e))(x). (202)

Functors of type Ax are much easier to handle than general functors; it is
therefore very useful to know that for a functor F: C° -> Set there is an object
X of C and an element x e F(X) such that ßx is an isomorphism of functors.
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Then F is called representable, and the pair (X, x) (or simply X) represents F. If
another pair (X', x') also represents F, there is a unique isomorphism w: X 2J X'
such that x = F(w)(x').

To subsume Mac Lane's remark on the product of two groups under this
general concept it is enough to consider, for two objects X, Y of a category C,
the functor F: C° -> Set defined as follows:

F(T) = Mor(T,X) x Mor(T,Y)

for any object T of C, and for any morphism v. T -> T', the map

F(e): F(T') -» F(T) such that F(v)(f',g') = {f'v,g'v).

To say that this functor is representable means that there is an object Z of
C and a pair (pl, p2) e Mor(Z, X) x Mor(Z, Y) such that v i—» (p, v, p2 v) is an
isomorphism of functors

Mor(T,Z)^Mor(T,X) x Mor(T,Y).

When F is representable, the object Z is called the (categorical) product of X
and Y and is usually written X x Y, In the categories Set, Gr, Ab, ModK,
products exist for all pairs (X, Y); this is also true in the category of
commutative rings with unit element (morphisms being ring homomorphisms sending
unit element to unit element), but it is not true for the full subcategory of fields,
since the ring X x Y, product of two fields, is never a field.

Another even simpler example is given by the "final" functor F: C° -> Set,
defined by F(X) = {a}, F(u) = l{aj for any object X of C and any ue
Morc(X, Y) ({a} being any singleton). Saying F is representable means that
there exists an object e of C such that Morc(Y, e) has only one element for all
objects Y of C; e is then called a final object of C, and any two of them are
uniquely isomorphic. For the category Gr the one element group is a final
object, but again the category of fields has no final object.

A last example, important in the applications, is the notion of kernel of two
morphisms u,, u2 in the same set Morc(X,Y) (Freyd). First consider the
category Set: if E, F is a pair of sets, and/, : E -> F,f2: E -> F are two arbitrary
maps, the kernel (or set of coincidences) of the pair (/, ,f2) is the subset
N = Ker(/, ,f2) consisting of the elements x e E such that /, (x) = f2(x); then
the diagram of maps

AM >E jFj h
(where; is injective) is exact if j(M) = Ker(/,,f2).

Now return to an arbitrary category C and to the pair of morphisms (u,, u2).
Define a functor F: C° -> Set by taking, for any object T of C,

F(T) = Ker(ÄUi(T),ÄU2(T))

[formula (201)], and for a morphism v: T -> T', F(v) equal to the restriction
to F(T') of the map hx(v) [formula (200)]. Saying that F is representable means
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there exists a pair (N, j) consisting of an object N of C and a monomorphism
;': N -> X, such that the diagram of maps

A», CD

Morc(T, N) ——♦ Morc(T, X) ► Morc(T, Y)hAT> A„2(T)
is exact for all objects T of C; N is called the kernel of the pair of morphisms
(uuu2) and written Ker(u,,u2); the diagram of morphisms

».N —->X > Y1 »2
is called exact.

The "dual" process (§8,B) applied to the preceding notions yields new
notions for any category C:

1. A monomorphism in C° is called an epimorphism in C: it is a morphism
w: X -> X' such that, for any object Y of C, the map u i—> vw of Morc(X', Y)
into Morc(X, Y) is injective.

2. If C° has a final object e, e is called an initial object of C; all these objects
are uniquely isomorphic to each other, and are such that Morc(e,X) has
only one element for all objects X of C. In the category Set, 0 is an initial
object. Let Algk be the category of algebras (with unit element) over a field
k (morphisms being /c-algebra homomorphisms sending unit element on
unit element); it has an initial element equal to k.

3. If for two objects X, Y of C their product inC° exists, it is a triplet written
(X]JY,j,,;2). The object X]jY is called the (categorical) sum of X
and Y, and ;',: X -> X]J Y, j2: Y ->X]J Y are morphisms such that ui—»
(ty,, vj2) defines an isomorphism of functors

Morc(X]jY,T)^Morc(X,T) x Morc-(Y,T).

Mac Lane's observation concerning the free product of groups can be
expressed by saying that in the category Gr, the "sum" of any two objects
X, Y exists and is the free product X * Y. In the category Algk of /c-algebras,
the "sum" is the tensor product X ®k Y, equipped with the two natural
injective homomorphismsj,:xi—>x® l,_/2: _yi—»• 1 ® y.

4. If kernels exist in C°, they are called cokernels in C. For two morphisms u,,
u2 in Morc(X,Y), the cokernel K = Coker(u,,u2) is an object of C,
equipped with an epimorphism p: Y -> K, such that the diagram of maps

Morc(K, T) ——r Morc(Y, T) ► Morc(X, T)■VT) a;.(t)
for any object T of Cis exact [for v e Morc(U, V), h'v(T) is the map w i—> wv of
Morc(V,T) into Morc(U,T)]. The diagram of morphisms

x ; y >k
p

is called exact.
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In 1959 Kan published a remarkable observation, similar to the one made
by Mac Lane in 1948. Not only categories, but also many functors, he said
naturally come in pairs, by another kind of "duality" that until then was only
known in special cases [270], This is the concept of adjoint functors: if C, C
are two categories and F: C -> C" is a functor, then F has a right adjoint
pad. c" -> C (resp. a left adjoint adF: C -> C) if there is an isomorphism of
bifunctors*

Morc(T,Fad(X')) Z Morc(F(T),X')

[resp.

Morc(adF(X'), T) Z, Morc,(X', F(T))].

If Fad (resp. adF) exists/ ad(Fad) (resp. (adF)ad) exists and is equal to F.
For C = C = ModA, where A is a commutative ring, adjoint functors had

appeared in linear algebra: for any A-module E and the functor F: X i—>
E ® A X, the functor Y i—> HomA(E, Y) is equal to a right adjoint Fad of F, as
follows from the classical isomorphism

HomA(E ®A X, Y) 2> HomA(X, HomA(E, Y)).

A much less obvious example given by Kan is the forgetful functor F: Gr ->
Set, which assigns to a group (resp. a homomorphism of groups) that group
considered as a set (resp. the homomorphism considered as a map); it has a
right adjoint Fad which, to a set T (resp. a map T -> T') assigns the free group
L(T) generated by T [resp. the homomorphism L(T) -> L(T') which on T
coincides with the given map],

Kan's paper showed that there are many other examples of adjoint functors
in algebra and in topology.

D. Abelian Categories

A little earlier than Grothendieck, Buchsbaum [95] enlarged Mac Lane's
remarks of 1948 1950 and arrived at the idea of abelian categories, at least
for some types of categories. He was motivated by the striking way in which
Cartan and Eilenberg formulated a large number of their theorems [113]: they
came in "double entry," so to speak, a statement for right derived functors
being immediately followed by a corresponding one for left derived functors,
or vice versa, the proof of the second statement being most often left to the
reader. Buchsbaum realized that these pairs of statements were in fact that

* The product C x C of two categories has as objects the pairs (X, X') of an object X
of Cand an object X' of C; morphisms are pairs of morphisms (u, «') that are composed
componentwise. A bifunctor is a functor from a product C x C to another category.
f The existence of Fad is equivalent to the fact that for any object X' of C, the functor

hx, o F: C° -> Set

is representable.
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same statement applied in succession to the category ModK and to its dual,
and he extended the concept of dual categories to more general ones, which
he called "exact," and which (as well as the "bicategories" defined earlier by
Mac Lane) were special cases of the abelian categories defined by Grothendieck
in [215],

He first considered a more general kind, the additive categories, satisfying
the following three conditions:

1. For each pair of objects X, Y of C, Morc(X, Y) is equipped with a structure
of commutative group, such that, for all morphisms u: Z -> X, v: Z -> Y, and
all pairs of morphisms (/, g) of Morc(X, Y),

(/ + 9)u = fu + gu, v{f + g) = vf + vg.

2. Chas a final object A, for which Morc(A, A) = {0}; it is also an initial object,
usually written 0.

3. Products X x Y are defined for every pair X, Y of objects of C; this implies
that the sum X \\ Y also exists and is naturally isomorphic to X x Y.

Abelian categories are additive categories satisfying two additional axioms:

4. For each morphism /: X -> Y, the pair (/, 0) has both a kernel N and a
cokernel K (§ 8,C). In other words, there is an exact diagram of morphisms

fN ► X ; Y ► K,J 0 P
where ;' is a monomorphism and p is an epimorphism. One writes
j = Ker(/), p = Coker(/), and also, if no confusion arises, N = Ker(/) and
K = Coker(/).

5. Every monomorphism can be written Ker(/) for some morphism /, and
every epimorphism can be written Coker(gr) for some morphism g.

It can then be shown that in an abelian category, every morphism /: X -> Y
can be naturally factorized as

Coker(Ker(/)) Ker(Coker(/))

(a classical property in ModK which Mac Lane had taken as an axiom in his
1950 paper); I is called the image of / and written Im(/). A sequence of
morphisms X -> Y A Z is called exact when Im(/) = Ker(gr); for a
monomorphism;': N -> X the sequence 0 -> N -4 X is exact, and for an epimorphism

p: X -> K the sequence X A K -> 0 is exact.
The typical abelian category is ModA, and almost all notions and

constructions concerning A-modules [for instance injective modules, projective
modules (§8,A)), spectral sequences (§7,D)] carry over to all abelian
categories. Another example of abelian categories is the category of sheaves of
A-modules over a topological space (the study of which was the main
motivation of Grothendieck). However in an abelian category C it is not always
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true that for an object X of C, there is a monomorphism of X into an injective
object (resp. an epimorphism of a projective object onto X); when that
property is true for any object X, one says C has enough injective (resp. enough
projective) objects. For instance, the category of sheaves of A-modules over a
space has enough injective objects (§7,G), but not enough projective objects
in general. When an abelian category has enough injective (resp. projective)
objects, one can transfer to that category the definition of right (resp. left)
derived functors and all the corresponding results of Cartan-Eilenberg for
ModK still hold.

An example of an additive category which is not an abelian category is given
by the category whose objects are topological commutative groups, and the
morphisms continuous homomorphisms.



Introduction

I have gathered in Part 2 various results linked to homology which do not
use homotopy theory; most of them were discovered prior to its creation. I
think it is better to dissociate them from the foundational material described
in Part 1, where they would have digressed from the main themes.

I) Westart with the epoch-making results of Brouwer in 1910-1912, which
may rightly be called the first proofs in algebraic topology, since Poincaré's
papers can only be considered as blueprints for theorems to come. However,
nobody understands why Brouwer never mentioned these papers, nor tried
to apply his fundamental discovery of simplicial approximation to bring to
life the theorems guessed by Poincare (as Alexander did a little later).

Instead, he used his discovery to define rigorously the concept of degree of
a continuous map, and then proceeded, mostly by fantastically complicated
constructions, relying exclusively on that notion, to prove the celebrated
"Brouwer theorems".

Most of these have become fairly simple consequences of homology theory.
We first take the degree. Let M, M' be two smooth connected compact
oriented manifolds having the same dimension n; let \in, p!n be their fundamental
classes. Then for any continuous map /: M -> M', the map

/*:H„(M;Z)-H„(M';Z)

is entirely determined by /„.(^„) = c.\n!n, where c e Z; the integer c is the
degree of /, written deg(/). When / is not surjective, c — 0. When / is
C°° and surjective there exist points y e M' such that f~1(y) is a finite set
{xj,x2,...,xr}, and furthermore, for each;', fis a local homeomorphism of
an open neighborhood V, of \s onto an open neighborhood W, of y. Let e; = 1
if f\ Y/ preserves orientation, e} = — 1 if it reverses orientation; then deg(/) =
X/=i £/• When / is merely continuous however, it may happen that all fibers
f~l{y) have the power of the continuum, even for M = M' = Sjî nobody
before Brouwer had seen how to circumvent this obstacle.

The first result Brouwer proved using the degree of a map is the ""invariance
of dimension", the fact (first conjectured by Dedekind) that there cannot exist
a homeomorphism /: Rm -> R" when m # n. This is immediate via homology

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-46,
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theory, since / would extend to a homeomorphism /: Sm -» S„, and these i wo
spaces have différent homology groups.

The Jordan Brouwcr Theorem states that if X is a subset of R" homeomorphic
to S„.,. then R" - Z has exactly two connected components. If a
homeomorphism /: S„.., ^1 can be extended to a homeomorphism of the closed ball
D„ onto a subspacc t. of R" (which is not always possible), that subspacc is
the closure of the bounded component of R': - X. These statements easily
follow from the computation of H.(R" - X) and H.iR" — F); this can be done
directly or by application of Alexander duality. An elementary corollary of
these results is "'invariance of domain": if/: U -+ R" is a continuous injeclive
map, where U is an open subset of R", then /(U) is open in R".

Ill The number n is thu.s a topological invariant of the space H" and of its
open subsets, but its definition involves constructions which have nothing to
do with topology. Already in 1903 Poincaré had suggested a purely topological
definition of an integer which should be called ''the dimension" of X for any
space X; in 1911 Lebesguc proposed another definition based on very different
construe; ions, Brouwcr (using as usual the notion of degree)'.vas able to prove
thai both definitions give the expected number n for R".

The concept, of dimension for larger and larger categories of spaces was
much studied between 1920 and 1940, but its links with homology are tenuous:
the cube [(), 1 ]" has dimension n. but it is coniractible for every n, hence, for
all homology theories it has the homology of a point. On the other hand,
there are compact subspaces X of R" which have singular homology groups
H„,(X' # 0 for infinitely many integers ....

Ï11) One of the most straightforward applications of the concept of degree
found by Brouwer concerns the continuous maps/of the sphere S,, (rcsp. the
closed bali D„t into itself; he showed thai, for deg(/| •/-. f— l)"'1 (resp. for
any /') there is in S„ (resp. D„) a fixed point x for /, i.e.. fix) ~~ x. Both of the
theorems are consequences of the invariance of the degree under homo­
topy. If /: S„ --» S,. is such that fix) # x for all. x t: S,„ ./" is homolopic to
the antipode map s: x ;- -♦ ■-.<. and degisi -= {■■■■ Î)"'". Similarly if/: I>„ -+ Dr
is such that f(x) ■£ x ihr all x & D„, the map g: S,...) -»S,.., given by
äiy)--(fiy)-'-y).!Vif(y)~~y1-) 's everywhere defined and continuous: the
assumption shows that on one hand, a is nomotopic to the constant map
y>-* f(0)/\J(0)\, and on the other hand it is also homolopic to the antipode
map of degree ( - ■ 1}"; this contradiclion proves Brouwers fixed point theorem.

This result by Brouwcr almost immediately found applications to
generalizations of classical theorems. For instance, if a merely continuons map
/': C -► C is such thai </(z)| < \zf for large is;, the équation zk t- fiz) ■- 0 has
a solution in C, a generalization of the "fundamental theorem of algebra".

IV) Of coarse, for an arbitrary compact space X and a continuous map
./': X -» X, the existence of fixed points for / depends on / (the case X ■--- D„
being exceptional!. This fact was given a remarkable expression in the L.efsäwtz
formula, first proved for compact smooth manifolds by Lefschet/. and
generalized by H. Hopf. For any n-dimensional simplicial complex X, define the
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Lefschetz number

A(/)= I (-iyTr((/,)p). (1)
Hopf proved that if / has no fixed point, A(/) = 0.

If X is a C° manifold and / has only a finite number of fixed points, it is
possible to assign to each of these points a an integer j(a) e Z called its index,
and one has the Hopf formulaA(/)= I j(a). (2)

aeFix(/)

The number j(a) is defined by considering a homeomorphism h of an open
neighborhood of a onto an open neighborhood of 0 in R" with h(a) = 0. Then
for small enough p > 0, g = h o/o h~l is defined for |x| < p, and j(a) is the
degree of the map xt-*g(x)/\g{x)\ of the sphere |x| = p into SB_j.

Closely related to (2) is Hopfs index theorem for vector fields. Let M be a
compact C1 manifold and ZaC1 vector field on M; it is assumed that there
are only a. finite numbers of points a e M for which Z(a) = 0 ("singular points"
of the field). Write tt-*Fz(x, t) the solution of the differential equation v'(t) =
Z(v(t)) defined in a neighborhood of 0 in R and such that t;(0) = x e M; then,
for t small enough, the fixed points of the map xt-+Fz(x, t) are exactly the
singular points of Z; by definition the index of the singular point a of Z is the
index 7(a) of that map. It follows from (2) that the sum YjJ(a) extended to all
singular points of Z is the Euler-Poincaré characteristic #(M). This result is
also true for merely continuous vector fields on M, since they may be
approximated by C1 fields. That theorem had been proved in 1911 by Brouwer for
M = S„ using an earlier definition of the index of a vector field which had been
introduced for M = S2 by Poincaré in 1881.

V) It was early realized that global topological properties for a space (such
as compactness or connectedness) give very little information on the structure
of the space; much more is known from the corresponding localized properties.
Similarly the knowledge of homology groups does not say much about a
space; contractible spaces (such as cones) all have the homology of a point.
Around 1930 topologists began to study, with the help of homological
notions, properties of a space "around a point x", for instance the groups
Hp(X, X — {x}) of relative homology. R. Wilder was the most active
protagonist in these studies; he showed conclusively how properties of subsets of
R2 investigated since Schoenflies by "point-set topologists" could be greatly
generalized and better understood with the help of "local" homological
notions. The best results have been obtained in connection with Borel-Moore
homology; in particular, it has provided a purely topological definition of
spaces for which the duality theorems of Poincaré and Alexander are valid.

VI) With the beginning in 1925 of the global theory of Lie groups the
determination of their topological invariants came to the fore. The study of
the De Rham cohomology of these groups was inaugurated by Elie Cartan.
He proved that a connected Lie group is diffeomorphic to the product of a
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compact Lie group and a space R", so that the problem is reduced to the
topology of compact Lie groups; passage to the universal covering group then
shows that it is enough to know the cohomology of the simple* compact Lie
groups. Around 1935 the cohomology algebra H'(G;R) was determined by
several authors for the four classical groups; E, Cartan observed that in all
these cases H*(G; R) is isomorphic to the cohomology algebra of a product of
/ odd dimensional spheres

Sri x Sr2 x • • • x Sri (/ being the rank of G). (3)
This coincidence was "explained" by Hopf in 1939 using the functoriality of
cohomology. For a topological group G, let m: G x G -»• G be the
multiplication; it determines a homomorphism of A-algebras

m*:H-(G;A)^H-(G x G;A)

preserving the graduation. When A is a field, the Kiinneth formula shows that
m* can be considered as a homomorphism

m*: H'(G; A) -+ H'(G; A) g®A H'(G; A)

and it is easily seen that for z e H"(G; A),

m*(z) = l®z+z®l + X xi®yj (4)
i+)=n

i>0,i>0

where X; e H'(G; A), y} e W(G; A).
Hopf then more generally considered the purely algebraic problem which

consists in describing the structure of an anticommutative graded algebra A
over a field A, for which there is a homomorphism

c: A-<-Ag®AA

preserving the graduation and satisfying (4); these are now called Hopf
algebras. He showed that if the field A has characteristic 0, there is a vector sub­
space EcA, generated by elements e1,..., em of odd degrees, such that A is
isomorphic to the exterior algebra /\ E. In particular this proves that H'(G; R)
is isomorphic to the cohomology algebra of a product (3) for all simple
compact Lie groups (not only the classical ones). More generally, H'(M; A) is
a Hopf algebra not only for topological groups, but also for all spaces M for
which there exists a continuous map m: M x M -»• M and an element e e M
such that both xi-*m(e,x) and xt-+m(x, e) are homotopic to the identity 1M;
they are now called H-spaces, and have been the subject of many studies in
recent years.

VII) Beginning with Cayley, Klein, and Poincaré, mathematicians did not
hesitate to "glue" together spaces along subspaces, or to interpret as a "point"

* A Lie group G is called simple (or, better, quasi-simple) if it contains no nontrivial
closed normal subgroup.
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somewhere a family of curves or surfaces, considered as "equivalent" under
some relation. All this was done in a purely "intuitive" way. It took a long
time during the first third of the twentieth century to subsume these
constructions and many others under the general notion of quotient space of a
topological space by an equivalence relation. I thought it might be useful to bring
together the very imaginative examples of that construction in algebraic and
differential topology, and to describe how the homology of these new spaces
is related to the homology of the spaces used in their construction.

The most influential of these constructions have been mapping cylinders and
CW-complexes, both due to J.H.C. Whitehead. His main objectives in
introducing them concerned homotopy theory, as we show in Part 3. But the notion
of CW-complex has given topologists a generalization of Poincaré's cell
complexes which is a far more flexible and versatile tool. In particular it has
provided easy computations of the homology of important homogeneous
spaces, such as grassmannians and Stiefel manifolds. It also yields a simpler
presentation of the remarkable relations discovered by Marston Morse
between the Betti numbers of a smooth manifold X and the critical points of a
smooth function defined in X.

VIII) The last chapter of Part 2 is devoted to the early applications of
homology to other parts of mathematics.

It can be surmised that when Poincaré began in 1895 to form "linear
combinations of varieties" in order to define homology he might have been
inspired by the "linear systems of curves on a surface" used by the algebraic
geometers of his time. At any rate, he never ceased to be keenly interested in
the way E, Picard started to apply homology to algebraic surfaces, and he
himself wrote several papers on such applications. After 1905 Picard's and
Poincaré's ideas were expanded and generalized by Severi and above all by
Lefschetz, who obtained remarkable relations between Betti numbers of
complex projective algebraic varieties of any dimension and their purely algebraic
invariants. After De Rham's theorem was proved, Hodge used it to extend to
smooth algebraic varieties of any dimension the analytic methods Riemann
had pioneered for algebraic curves; this put Lefschetz's results in a more
natural context and provided new topological properties for complex
manifolds.

Another part of mathematics where homology found fruitful applications
is functional analysis. Many functional equations can be written

F(u) = u

where u belongs to some function space Q and F is an operator, i.e., a map of
Q into itself. Hence one may prove the existence of a solution of a functional
equation by applying general theorems on fixed points of operators in a
function space; in fact the Liouville-Picard "method of successive
approximations" is just an elementary example ofthat idea.

The Brouwer fixed point theorem provided new possibilities of such
applications, first by G.D. Birkhoff and O. Kellogg in 1922, followed by several
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papers of J. Schauder. The space £1 is a convex subset of a Banach space, and
must satisfy compactness properties for suitable topologies on that space. The
proof consists in approximating £î by a finite dimensional convex simplicial
complex K„ and simultaneously approximating F by a simplicial map F„:
K„ -»• K„; Brouwer's fixed point theorem is then applied to K„ and Fn, yielding
the existence in £1 of a sequence (a„) for which F„(a„) = a„; it has a limit which
is a fixed point of F.

For more particular maps xt-*x — u(x), where u maps bounded sets into
relatively compact ones, it is possible to go further and to generalize Brouwer's
degree as well. This was done in 1934 in a famous paper by Leray and
Schauder. It yielded, for some partial differential equations, existence theorems
which looked beyond reach.

But the most remarkable application of homology theory during the period
1920-1940 is what M. Morse called the "Calculus of variations in the large".
On a complete n-dimensional smooth Riemannian manifold M, he considered
two points p, q and the set Q = £Î(M, p, q) of piecewise smooth continuous
paths joining p and q. The set Q can be equipped with a distance for which it
is a metric space, infinite dimensional if n ^ 2; the length L(y) of any path
y e CI is continuous for that topology. Let Qc be the subspace consisting of all
y e £1 such that L(y) ^ c; by a skillful combination of differential geometry and
topology, Morse was able to prove that Qc has the same homology as a
compact smooth manifold B with boundary, provided q is not conjugate to p
along any geodesic y e £lc (the set of these points q is dense in M). Furthermore,
there is only a finite number of geodesies y e Qc, and the knowledge of the
points conjugate to p along those geodesies gives information on the Betti
numbers of B, t;ia the Morse relations involving the critical points of a smooth
function.



Chapter I

The Concept of Degree

§ 1. The Work of Brouwer

L.E.J, Brouwer (1881-1966) had started his career with papers on geometry
and mechanics, but by 1909 he had shifted his interests to parts of mathematics
far less popular at that time, and in which he was entirely self-taught. He first
tackled Hubert's famous "5th problem" and showed that all C° groups of
transformations of the real line are in fact Lie groups. This work, and attempts
to extend it to transformation groups of R2, led him to study what was known
at the time about the topology of the plane. This had started with Cantor's
theory of sets, and was closely linked to the general study of functions of real
variables and of their often surprising properties; the results that had attracted
the most attention were the Jordan theorem on the domains limited by a
simple closed curve (1893), and the Peano "curve" filling a square (1890),
leading to the investigation of the various meanings that could be given to
the word "curve," The papers published by Schoenflies around 1900 were
devoted to such questions (see chap. IV, § 3), and Brouwer thought he could
use their results for his own purposes. He soon discovered that many of them
were either incorrect or insufficiently proved, and in 1910 he published a paper
([89], pp. 352-366) containing many counterexamples. The most unexpected
of these immediately brought international recognition to Brouwer: it was an
example of an "indecomposable" compact connected set in the plane (one
which cannot be written as the union of two proper compact connected
subsets), which has the extraordinary property that it is the frontier of three
connected components of the complement of the set (p, 359).

From these early papers it would have been difficult to foresee the
breakthrough accomplished by Brouwer in the years 1910-1912, owing to a
complete change of outlook and a remarkably skillful use of the new concept
simplicial approximation that he introduced (see Part 1, chap, II, § 2), In a rapid
succession of papers published in less than two years, the "Brouwer theorems"
(as they are still called) made him famous overnight. They solved a whole
batch of problems on n-dimensional spaces for arbitrary n that had looked
intractable to the previous generation: invariance of dimension of open sets
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in R", invariance of domain, extension of the Jordan curve theorem, existence
of fixed points of continuous mappings, singularities of vector fields, and,
finally, based on ideas of Poincaré and Lebesgue, a definition of the notion of
dimension for arbitrary compact metric spaces.

In retrospect, it therefore seems legitimate to consider Brouwer as the
cofounder, with Poincaré, of simplicial topology. More precisely, it may be
said that Poincaré defined the objects of that discipline, but it is Brouwer who
imagined methods by which theorems about these objects could be proved,
something Poincaré had been unable to do.

It is all the more surprising then that Brouwer did not attempt to use his
techniques in order to put Poincaré's "theorems" in simplicial homology on
less shaky foundations [we recall that this was only done by Alexander in
1915-1922, using Brouwer's simplicial approximation (Part 1, chap. II, §3)].
Brouwer did not publish any important paper on topology after 1913,
devoting the major part of his career to an intuitionist reconstruction of
mathematics. But even in his 1911-1912 papers his attitude toward the concepts of
simplicial homology is puzzling. He freely used the notion of triangulation for
what he called "n-dimensional manifolds," meaning a finite or locally finite
simplicial complex X, such that for every vertex there is a homeomorphism
of its star in X onto the star of the origin of R" in a rectilinear triangulation
of a compact neighborhood of 0, mapping simplices onto simplices.* Brouwer
never referred to anybody for such a definition, nor for the concept of
barycentric subdivision; although in [89], pp. 455-456 he gave detailed proofs of the
existence of barycentric coordinates, and carefully defined orientable
"manifolds," it seems that he thought he was dealing with well-known notions for
which he did not need any reference. As he had never used them before 1911,
it is of course possible that he reinvented them independently; but even so it
is very unlikely that nobody should have pointed out to him that there already
existed a sizable body of knowledge in these matters, summarized for instance
in the Dehn-Heegaard Enzyklopädie article [138],

At any rate, Brouwer never showed any interest for homological concepts
in his "n-dimensional manifolds." The only paper of his having some
connection with Betti numbers is the last one published in the years 1911-1912 ([89],
pp. 523-526), but it is sharply different from the others. It deals with what we
now would call a very special case of Lefschetz's extension of Alexander
duality (Part 1, chap. IV, § 2): namely, to prove that for any connected compact
subspaceXofR2, the number of components of R2 - X does not change when
X is replaced by another compact subspace of R2 homeomorphic to X. One
would expect to see Brouwer using his trusted simplicial methods (as Lefschetz
will do in [301]), but there is nothing of the kind. His topological notions

* These complexes are not as general as the "combinatorial manifolds" defined by
Alexander and Lefschetz (Part 1, chap. II, §4); for an example of a four-dimensional
combinatorial manifold which is not a "four-dimensional manifold" in the sense of
Brouwer, see [421], p. 241.
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seem to be directly lifted from Riemann: it is asserted that in the plane an
"(h + l)-fach zusammenhängendes Gebiet" contains h "closed simple cuves"
Cj such that any other"closed curve" may be derived by deformation from a
finite number of the Cj (p. 523); certainly no such theorem had been proved
in 1912.* The whole paper is written in that style, extremely sketchy and
unconvincing, with many steps in the proof merely outlined without any detail.+
Of course, the paper is not entirely without value, and Vietoris could find the
germ of his homology theory (Part 1, chap. IV, §2) in Brouwer's attempts to
characterize the number of connected components of R2 - X by sequences of
chains of points of X.* Unfortunately, it must be admitted that this paper
represents the extreme case of Brouwer's gradual tendency to revert to the
"intuitive" style of his predecessors, in contrast with the high level of rigor
that he had achieved in his first papers of 1911. We shall have opportunities
to witness this regression when we examine his proof of the Jordan-Brouwer
theorem in chapter II.

§2. The Brouwer Degree

It is quite remarkable that Brouwer proved all his big theorems by a skillful
(and sometimes quite tortuous) use of a single concept he discovered and
studied in the first days of 1910, the degree of a map ( [89], p. 419). That concept
was not completely new, but it had only appeared in very special cases, and
not always under the form of Brouwer's definition. The example quoted in
[89], p. 462, is the map RofS2 = Cu{oo} onto itself, defined as the
continuous extension of a rational function zi-»P(z)/Q(z) of algebraic degree n
(the highest degree of the polynomials without common factor P, Q). Then n
is the number of solutions p of the equation R(p) = q for a given q e S2 distinct
from a finite number of "critical values" of R.

Another example is the "winding number" of a path around a point in the
Cauchy theory of integration along curves in C: if Ct-+(p(0 is a piecewise C1
map of the unit circle U: |C! = 1 into C, the winding number of (p around a
point a £ <p(U) is the integer

2ni
ViOdt ^ (l)

ufl»(0

* A standard proof would consist in taking an infinite simplicial triangulation of
R2 — X and use Alexander's deformation methods to reduce the "curves" to paths
consisting of edges of the simplices of the triangulation ([421], p. 164); nobody except
Brouwer himself could have done that at that time, but he did not do it.
f On p. 524, one might interpret what is said in § 2 as implying the fact that when one
replaces X by the set X£ of points at a distance < e from X, the number of connected
components of R2 — X£ is the same as the number of components of R2 — X when e
is small enough, which is false.
i In 1927, Alexandroff showed how one may give an entirely correct proof of Brouwer's
result by using similar arguments [23],



170 2. The First Applications of Simplicial Methods and of Homology

which enters in Cauchy's formula for a function / holomorphic in the disk
|zKl:

j(a)f(a) = —\ — . (2)
2m Ju (pit,) - a

Intuitively j(a) is "the algebraic number of times q>(U) turns around the point
a," and simple cases of maps <p lead to the following evaluation of/'(a): take a
half line D of origin a, and suppose it cuts <p(U) transversely in finitely many
points; then j(a) is the difference between the number of these points where
the argument of <p(£) is increasing and the number of points where it is
decreasing.

Brouwer does not mention the winding number, but there is a variant of
that notion with which he was familiar, the index at a point a of a piecewise
C1 vector field x (-» t;(x) in the plane having only isolated zeroes; this had been
defined by Poincaré in 1881 in a particular case, and Brouwer had used it in
a paper in 1910 ([89], p. 316) (see chap. Ill, §3). Suppose v does not vanish
for x # a in a neighborhood of a; then to each point x of a small circle y of
center a, assign the unit vector v(x)/\v(x)\; this may be considered as a map of
the unit circle U into itself, and its winding number around 0 is constant when
the radius of y tends to 0; by definition that constant value is the index of v at
the point a.

Generalizing such notions to arbitrary dimensions must have appeared
intractable, because of the pathological properties continuous maps may
possess (think of the Peano curve!). Nevertheless, this is what Brouwer achieved
with his idea of simplicial approximation. We shall describe in some detail
(with slight complements and modificatons for the sake of clarity) the
fundamental ideas of his proof, in order to put in evidence the two features that
characterize almost all his proofs of 1911-1912: a remarkable originality and
a great complexity.

Given are two compact, connected, oriented n-dimensional "manifolds" (in
Brouwer's sense) M, M', with triangulations T, T'. For simplicity we may
assume that M and M' are euclidean simplicial complexes* with no loss of
generality (see Part 1, chap. II, §2), although Brouwer did not make that
assumption.

First step. Let £ be smaller than the diameter of any n-simplex of T'; let S0
be the set of vertices of T, and y0 be a map of S0 into M' such that for any
n-simplex of T, the diameter of the image by y0 of the set of its vertices is < e/2.
For any n-simplex s of T such that the images of its vertices by y0 are all
contained in the interior of an n-simplex E of T, we define y as the affine map
of s into E coinciding with y0 at the vertices of s; we shall say that y is a piece­
wise affine map. We first suppose that for any n-simplex s of T where y is
defined, y(s) is nondegenerate.

* Euclidean simplices for Brouwer are always closed.
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Let E be any «-simplex of T', and let J be the homothetic of E with respect
to the barycenter of E, in such a ratio 1 — a that the distance of J to the
boundary of E is > e. Let £1 be the set of interior points of J that do not belong
totheimageunderyofanyp-simplexofTforp < n — 2; it immediately follows
that £1 is an open connected set.

For any point P in £1 that does not belong to the image by y of any
(n — l)-simplex of T, let p > 0 (resp. q > 0) be the number of n-simplices of T
where y is defined, such that y preserves (resp. reverses) orientation in it (they
are respectively called positive and negative simplices) and such that P is in
the image of that simplex by y. The crucial property is that the number p — q
is independent of P in £1.

To prove this Brouwer considered two points P1; P2 in £1, joined by a
polygonal arc L in £1, and he let P vary on L from P, to P2. The number p - q
might only vary when P crosses the image by y of an (n - l)-simplex t of T.
But by assumption t is the face of exactly two n-simplices s', s" of T, and the
assumption on }'0, together with the fact that P is in the interior of J, show
that y is defined in both s' and s", and that y(s') and y(s") are in the interior
of E. Then when L crosses y(t) at the point Q either p and q increase by the
same amount, or both decrease by the same amount [Q might of course
belong to the images of several (n - l)-simplices of T].

Before going further it is necessary to get rid of the hypothesis that the
images y(s) are nondegenerate. Suppose then that ß0: S0 -»• M' satisfies the
same conditions as y0 above, except that the ß(s) may be degenerate; however
if P e J is in an image ß(s) without being in the image by ß of any (n — 1)­
simplex of T, then ß(s) certainly is nondegenerate; the numbers p and q are
therefore still defined. To show that p - q is again independent of P in £1,
Brouwer argued by contradiction: ß may be arbitrarily approximated by a
map y for which the y(s) are nondegenerate; if for two points P,, P2 in J, not
in the image by ß of an (n - l)-simplex of T, the values of pj - q1 and p2 - q2
were different, Pj and P2 would not belong to the image by y of an (n - 1)­
simplex of T if y is close enough to ß, and the values ofpj - q, (resp. p2 - q2)
for ß and y would be the same, bringing the desired contradiction.

Brouwer added to this a very useful interpretation of the number c(ß,E\
the constant value of p — q: take the sum S(J) of the (euclidean) volumes of
all intersections of J with the images by ß of the n-simplices contained in E,
each volume being affected with the sign + for positive simplices or the sign
- for the negative ones; this sum is equal to c(ß, E). vol(J).*

Second step. Prove that the number c(ß, E) is independent of the choice of
the simplex E in the triangulation T'. Using the fact that M' is connected and
oriented, consider only two such n-simplices Et, E2 having as common face
a (n — l)-simplex F. The idea is to "straighten" the union Ej uE2, by
considering a homeomorphism (p of that union onto a "double pyramid" E' =

* The introduction of the volume of J is not at all artificial; see below, formula (7).
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E'j u E'2, union of two rectilinear, n-simplices E'j, E'2 in R", having a common
face F'; <p is such that its restrictions to Ej and E2 are affine maps respectively
onto E'j and E'2. If J' is the homothetic of E' with respect to the barycenter of
¥', with ratio 1 — (1 — l/n)a, then J' contains the images i\ and J'2 of J1 and
J2 by (p. The map <p o ß can now be extended to the n-simplices of T such that
the images by <p o ß0 of its vertices are all contained in the interior of E'. The
argument of the first step may then be repeated, replacing ß by that extension
ß' of <p o /}, and J by J'; as ß' coincides with <p o ß on the n-simplices s whose
image by ß are in the interior of Ej or the interior of E2, this proves that
c(ß, Ej) = c(ß, E2); one may thus write c(ß) instead of c(ß, E).

Third step. The triangulations T and T' being given, a: M -»• M' is now an
arbitrary continuous map. For any £ > 0, it is then possible to replace T by a
simplicial subdivision T£ such that the map ßl of the set of vertices of T£ into
M', which coincides with a on these vertices, satisfies the conditions
enumerated in the first step, so that the number c(ße) is defined. It remains to prove
that this number is independent of T£ when £ tends to 0. If Tl5 T2 are any two
of the subdivisions T£, ß1, ß2 the corresponding maps ß", one first considers
the case in which T2 is a subdivision of T1; there is then a homotopy ßt between
the maps ß1 and ß2 in each n-simplex of T1 in which ßi is defined, and the
corresponding number Z,(J) varies continuously with t, hence c(ßt) also, which
shows that c(ßl) = c(ß2). Finally, if Tt and T2 are arbitrary subdivisions of
T, one considers a common subdivision T3 of Tj and T2.

This therefore defines unambiguously the degree deg(a) as the common
value of the c(ß"). Its fundamental property, which Brouwer proved
immediately after the definition, is its invariance under homotopy: for this, one
considers two homotopic maps a1? a2, and the corresponding approximations ßx,
ß2 for which the subdivision T£ is the same: it is then possible to interpolate
between ß1 and ß2 a finite number of similar piecewise affine maps, such that
any two consecutive ones differ only at one vertex of T£, and are arbitrarily
close to one another; this implies that they have the same degree.

Brouwer also observed that, by the same arguments, when M is compact,
connected, and oriented, but M' is compact, connected, and not orientable, or
when M' is not compact, the degree is always 0.

An examination of the preceding proof shows that, whereas one has to
assume that M' is connected this is not necessary for M: if My (1 ^ j < k) are
the connected components of M, deg(a) is the sum of the degrees deg(a|My)
of the restrictions of a to the My. This additivity property of the degree even
holds when the My are n-dimensional manifolds (resp. pseudomanifolds, see
§ 3,A) having nonempty intersections that are unions of n-simplices of each
My in which they are contained, for instance if the My are pseudomanifolds
that are parts of boundaries of (n + l)-dimensional pseudomanifolds with
boundaries. Brouwer did not mention this, but he uses it implicitly later.

Finally Brouwer conjectured in a footnote ([89], p. 463) that the degree is
independent of the triangulations chosen on M and M'. A little later ([89],
pp. 504-506) he was able to prove that conjecture as a consequence of the
multiplicative property of the degree: if M, M', M" are three compact, con­
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nected, oriented «-manifolds (in Brouwer's sense), with triangulations T, T',
T", and a: M -»• M', a': M' -»• M" two continuous maps, then

deg(a'o a) = deg(a')deg(a). (3)
His sketched proof consists, after suitable subdivisions of T and T, in
considering piecewise affine approximations ß and ß' of a and a', for which
deg(a) = c(/.)anddeg(a') = c(ß'); the approximation ß' o ß(which is piecewise
affine) can be used to define deg(a' o a), and it is therefore enough to prove the
relation

c(ß' o ß) = c(ß')c(ß). (4)
To compute c(ß'), consider an «-simplex E" of T", and the corresponding

homothetic «-simplex J"; let P" be a point of J", not in the image of any
(« - l)-simplex of T'; let E\,..., E'p-(resp. E'p.+l,...,E'p.+q.)be the «-simplices
of T' for which P" is the image by ß' of one of their interior points, and for
which ß' preserves (resp. reverses) orientation. It is then possible to subdivide
T and to choose the homothetic simplices J| of the Ej in such a way that P"
does not belong to the images by ß' of any of the E' — J'. Then, for each i, P"
is the image by ß' of a point P| of i'h and there is a neighborhood of PJ in J|
that contains a point which is in the interior of the images by ß of p, (resp. q,)
«-simplices of T for which ß preserves (resp. reverses) orientation. The recipe
for the computation ofc(ß' o ß) therefore gives the number

P' P'+q' P' P' + Cl'
Z Pi + Z <z. - Z <z. - X p.; (5)i = l i=p' + l i = l i=p'+l

since all the pi - q, are equal to c(ß) and c(ß') = p' — q', this proves (4).
Once the multiplicative property (3) is proved, consider two different

triangulations T'j, T'2 of M' and a continuous map a: M -»• M', and write a =
£ o a, where £ is the identity map of M'. Let deg.(a), deg2(a) be the degrees of
a computed with respect to T and T'j and with respect to T and T'2; then
deg2(a) = deg12(£)deg!(a), where deg12(£) is the degree of £ computed with
respect to the triangulations T\ and T'2; it follows at once from the definition
that deg12(£) = 1. A similar argument proves the independence on the
triangulation of M.

Another multiplicative property, later used by topologists but not
mentioned by Brouwer, is that if /: M -»• N, /' = M' -»• N' are two continuous
maps, where M and N (resp. M' and N') are "manifolds" of the same dimension,
then for the map / x /': M x M' -»• N x N',

deg(/x/') = deg(/).deg(/').

§ 3. Later Improvements and Variations

A. Homological Interpretation of the Degree

As soon as homology was conceived as a theory of homology groups, and the
invariance theorem for finite simplicial complexes was proved (Part 1, chap.
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II, § 3), it was possible to define the Brouwer degree in a much simpler way.
First an examination of Brouwer's proofs shows that they are still valid for
more general simplicial complexes, which Brouwer himself defined a little
later ([89], p. 477), the closed connected pseudomanifolds (or simply pseudo­
manifolds). These are defined as being homeomorphic to a finite euclidean
simplicial complex X, such that:

1. X is the union of its n-dimensional (closed) simplices;
2. X is connected;
3. any (n - l)-dimensional simplex of X is exactly a face of two n-dimensional

simplices.

[Replacing "two" by "one or two" in point 3 gives the more general
notion of "pseudomanifold-with-boundary" (cf. Part 3, chap. VII, § 1,H), the
"boundary" being the union of the (n — l)-simplices that are a face of only one
n-simplex.] The pseudomanifolds of course include the Brouwer "n-manifolds"
as well as the "combinatorial n-manifolds" of Alexander and Lefschetz as
special cases (Part 1, chap. II, §4).* Orientation being defined as usual, it
follows at once from the definitions that for an n-dimensional compact pseudo­
manifold M there are no n-cycles other than 0 if M is not orientable; if M is
oriented the n-cycles are exactly the multiples, by an arbitrary (positive or
negative) integer, of the sum of all positively oriented n-simplices, called
the fundamental n-cycle. Hence, H„(M; Z) = 0 if M is not orientable and
H„(M; Z) ca Z if M is oriented, the class [M] of the fundamental n-cycle being
a basis of the Z-module H„(M; Z); it is called the homology fundamental class
of M (cf. chap. IV, § 3,A).

If M and M' are now compact connected n-dimensional oriented
pseudomanifolds, and /: M -»• M' a continuous map, then

/•([M]) = c[M']

for the corresponding homomorphism /„ (Part 1, chap. II, § 3), and the integer
c is the Brouwer degree of /. This follows from the Alexander construction
(Part 1, chap. II, § 3) of a simplicial approximation g off which is homotopic
to /, and from Brouwer's definition of deg(gr) given in § 2; that interpretation
of the degree seems to have been given for the first time by Hopf in 1930 [242],
All this extends to the case in which M is not connected, but its connected
components are compact oriented pseudomanifolds; M is still called a pseudo­
manifold if no confusion arises.

One can of course replace Z by F2 for the coefficients of homology modules,
and then one has the definition of the degree modulo 2, which also applies to
nonorientable compact pseudomanifolds; in the definition of §2, one has to
replace the difference p — q by the class mod. 2 of the number of n-simplices
whose images contain a point P in Q.

* It is easy to give examples of pseudomanifolds that are not "manifolds" in the sense
of Brouwer, for instance the unreduced suspension (chap. V, §2,C) of an (n — 1)­
dimensional smooth manifold that is not a homology sphere.
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We note in passing that for an oriented compact combinatorial manifold
(Part 1, chap. II, §4), Poincaré duality can be expressed in the following way
([440], p. 305): the cap product (Part 1, chap. IV, §4)

zh-+z^ [M]

is an isomorphism of the Z-module H*(M; Z) onto H„^(M; Z) for 0 ^ q ^ n.
There is a similar result for nonorientable combinatorial manifolds, [M] being
then the class of the sum of all n-simplices, in H„(M; F2). When M is a compact
oriented C°° manifold, the class [M] can be identified to the homology class,
in the n-th homology vector space HJ,(M) over R based on the currents, of the
current equal to the constant function 1 on M (Part 1, chap. Ill, §3). Then if
M is connected, the dual basis of [M] in the de Rham cohomology vector
space H"(M) is the class ej (called cohomology fundamental class, or
orientation class of M) of an n-form monM such that jM to = 1. If M, M' are compact,
connected, oriented C°° n-manifolds, and /: M -> M' a C°° map,

/*(<&) = deg(/).e*; (6)
equivalently, for any n-form a>' on M', its pullback 'f(ca') on M is such that

!/•(<*>') = deg(/).
M

to'. (7)
M'

A simple application of Sard's theorem (Part 1, chap. Ill, § 1) in that case
yields a definition of deg(/) similar to Brouwer's: there exist points y e M'
such that:

(P) f~l{y) is a finite set {x1,x2,...,xr} in M, and for each index k there is
an open neighborhood Vt of xk such that the Vt are disjoint and the restriction
of/ to each Vt is a homeomorphism of Vt onto an open neighborhood of y.

Then

deg(/) = £ e(xk), (8)
where e(xk) = 1 if the restriction of/to Vt preserves orientation, and e(xk) =
— 1 if it reverses orientation.

All this, of course, can be proved without any triangulation of M and M'
(using, for instance, de Rham's cohomology); if one uses C1 triangulations
(Part 1, chap. Ill, § 2), formula (8) shows again that the definition coincides
with Brouwer's.

B. Order of a Point with Respect to a Hypersurface; the Kronecker
Integral and the Index of a Vector Field

Many applications of the degree are relative to the cases in which M or M' is
equal to the sphere S„. If M = M' = St, a continuous map/: Sj -»Sj can be
written eith-*e"l'm, where t e R, and \ji: R -»• R is continuous and ij/(t + 2n) =
\}i{t) + Inn for some ne Z. Then deg(/) = n, the "windingnumber" of/(§2).
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More generally, let X be a compact, connected, oriented (n - l)-dimensional
C° manifold, and let /: X -> R" - {0} be a C° map. Let p: R" - {0} -> Sn.t
be the projection xh-»x/|x|; then p°/ is a C°° map of X into Sn_1? and
deg(p o /) (for S„_! oriented toward the exterior) is called the order of 0 with
respect to the "hypersurface" f(X) (or with respect to /). It can be computed,
using (7), by the Kronecker integral

deg(p°/) = i- [ '/(T(n)), (9)
where £î„ is the measure of SB_j, and, for z = (^1,...,^n) in R" - {0} and
r(z) = ((Ç1)2 + ■■■ + (£")2)1/2, T(n) is the (n - l)-form on R" - {0}, invariant by
rotations:

-i-fC-^^A-A^A-A^-. (10)
r \z) }=0

For n = 1, this of course gives back the Cauchy integral (1) for j(0). For
arbitrary n, Hadamard proposed in (1910) [217] the integral (9) as a definition
of the order. The integral (9) had been introduced for X c R", by Kronecker
[288] in order to study the roots of an equation f(x) = 0 in an open bounded
subset U of R", / being a C00 map of Ü into R". The frontier X of Ü is supposed
to be a smooth hypersurface, and it is assumed that/(x) # 0 in X; finally 0 is
supposed to be a regular value for /, so that 0 has the property (P) (§ 3,A).
Then Stokes' formula shows that if/-1(0) = {x1,x2,...,xl.} in U,

deg(po(/|X)) = (-ir t «***)• (H)
If this degree is # 0, this proves the existence of at least one root of/(x) = 0
in U; if in addition all the e(xk) have the same sign, the absolute value of
deg(p o (/|X)) gives the number of these roots.

As defined above (§2), the Poincaré index at a point a of a vector field v in
R2, having only isolated singularities, is the order of 0 with respect to the
restriction of v to a small circle of center a; its generalization to a notion of
index for a continuous vector field with only isolated singularities in R" (or in
a C" manifold) is therefore obvious.

C. Linking Coefficients

Another intuitive geometric notion in R3 was, for two Jordan curves Cl5 C2
without common points, the "number of times Cj turns around C2," and
Gauss had already introduced an integral that he considered expressed that
number [206]. In 1912 ([89], pp. 511-520) Brouwer generalized that notion
to the situation of two compact, connected, oriented pseudomanifolds M, N
in R", with empty intersection, M having dimension d < n — 1 and N
dimension n — d — 1; M x N is then a compact connected pseudomanifold (for a
simplicial subdivision of the product of two simplices), on which the orien­



§3C I. The Concept of Degree 177

tation is the product of the orientation of M by the orientation of N. Then
/: (x,y)h-*x - y is a continuous map of M x N into R" - {0}, and the order
of 0 with respect to / is defined; that integer lk(M, N) is what Brouwer called
the "looping coefficient" of M and N (the name has now been changed to
linking coefficient); lk(N, M) = (_!)«<+-■>(«-<<> lk(M, N), and when M and N are
C° manifolds, lk(M, N) can be computed by a Kronecker integral (9), which
reduces to Gauss' integral for n = 3 and d = 1 [328]. Here again M may
be replaced by a disjoint union of pseudomanifolds My; then lk(M, N) =
I;lk(M„N).

It is likely that Brouwer had already thought of that definition when he
defined the degree of a map. But in the Comptes Rendus Note that Lebesgue
published about the invariance of dimension in March 1911 (chap. II, § 3) he
used another concept of "linked" manifolds ("variétés enlacées").
Approximating M and N by "polygonal varieties" M', N', he said that M and N were
"enlacées" if, when N' is deformed continuously to a single point not on M',
the moving variety "crosses" M' an odd number of times. In his 1912 paper
Brouwer took up this idea and generalized it to the linking number of oriented
manifolds: for nonoriented ones, if the "linking number mod. 2" is defined as
above but starting from the degree mod. 2, Lebesgue's definition amounts to
saying that the linking number mod. 2 is # 0.

Brouwer first observed that if the injections M -»• R", N -»• R" are replaced
by sufficiently close piecewise affine maps g, h (not necessarily injective),
lk(M, N) is still equal to the degree of (x, y) t-* g(x) - h(y). Next he supposed
that there exists an (n — d)-dimensional connected orientable pseudomanifold
S with boundary, h(N) being its boundary. Taking arbitrarily small
modifications of g, assume that no p-simplex of g(M) intersects a q-simplex of S if
p + q < n — 1 ("general position"); then the intersection of S and g(M) consists
of a finite number of points, each of which is the intersection of a d-simplex
of g(M) and a (n — d)-simplex of S, affected with the number + 1 obtained by
the rule formulated by Poincaré (Part 1, chap. I, §2). What is to be proved is
that the sum of these numbers is equal to lk(M, N) for suitable orientations of
M and N.

The proof consists in first translating g(M) by a large vector v such that S
and g(M) + v are contained in two balls with no common point, in which case
both numbers to be compared are zero. Then consider the sets g(M) + At;
where A varies from 0 to 1; by a "general" choice oft;, these two numbers may
only change when A crosses a value A0 such that a (d — l)-simplex of g(M) +
A0v meets S, or a d-simplex of g(M) + X0v meets an (n — d — l)-simplex of S.
Because g(M) is a pseudomanifold and S is a pseudomanifold-with-boundary,
there is no change at all in the first case, nor in the second unless the
(n — d — l)-simplex of S is contained in h(N); but then, on crossing the value
A0, both lk(g(M) + At', h(N)) and the sum of the signed intersection numbers
of S and g(M) + Xv change by the same amount.

This second definition of linking coefficients only uses intersection numbers,
and it can be generalized to define lk(A, B) when A and B are two chains with
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no common points, of dimensions k and n — k in a connected oriented
combinatorial manifold X of dimension n, which are both boundaries in the
complex X. As A is the boundary of a (k + l)-chain C, and the simplices of B
do not meet the simplices in the frontier of C, the intersection number (C. B)
is defined (Part 1, chap. II, §4) and by definition it is the linking number
lk(A, B). As B is a boundary, this number does not depend on the choice of
the (k + l)-chain C with boundary A.

If a A and ßB are boundaries for two integers a, ß, a linking number lk(A, B)
can still be defined as equal to l/a/.lk(aA,/3B). This rational number, taken
modulo 1, then only depends on the homology classes of A and B in H.(X; Z);
in particular the self-linking number lk(A, A) can be defined in Q/Z when
n = 2k + 1 ([421], pp. 277-279). It is by means of this invariant, applied to
a 1-cycle, that Alexander proved that the lens spaces L(5,1) and L(5,2) are
not homeomorphic, for he showed that this self-linking number has the form
± v2q/p mod. 1, and therefore L(p, q) and L(p, q') can only be homeomorphic
if q' = + v2q (mod. p) for some integer v ([421], p. 279).

D. Localization of the Degree

The Brouwer concept of the degree is a global notion; it may be refined by
localizing it on M or on M'. We postpone to chap. IV, § 1,B, the localization
on M. Regarding localization on M', in its simplest form, take M' = R", M
being a bounded open subset of R"; for a continuous map /: M -»• R" and a
point p e R" - /(Fr(M)), we want to define an integer d(f, M, p) e Z such that:

1. if a homotopy F: M x [0,1] -»• R" is such that p does not belong to the
image of the frontier Fr(M) by any partial map x h-» F(x, t), then the number
d(¥(.,t), M,p) is constant;

2. if property (P) (see § 3,A) holds for / at the point p, then

d(f,M,p)= t e(xt). (12)
The proof of existence of this "degree off relative to M and p" can be done

by elementary analysis, considering first C1 functions and using Sard's
theorem, and then approximating any continuous map / by C1 maps (see, e.g.,
[328]). In [239] Hopf tackled continuous maps directly, but he had to use his
rather deep theorem characterizing homotopy classes of maps in an S„ by their
degree (Part 3, chap. II, § 1). Much later [324], Leray observed that d(f, M,p)
can be defined by much more elementary means. R" is an open set in S„; using
the Tietze-Urysohn theorem, it is possible to extend /: M -»• R" to a
continuous map F: S„ -* S„ such that p <£ F(S„ - M); then one defines d(f, M, p) =
deg(F), this number being independent of the choice of the extension F.

It is easy to deduce most of the properties of d(f, M,p) from the properties
of the degree; the most useful one is that the relation d(f M, p) # 0 implies
the existence of at least one point q e M such that f(q) = p. It can also be
shown that the function p t-* d(f M, p) is constant in every connected com­
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ponent A of the (open) complement in R" of /(Fr(M)), and so d(f M, A) is the
common value of d(f M,p) in A. Now, one has the remarkable multiplication
theorem of Leray [324]: let V be a bounded open set in R" containing f(M),
and let Af be the connected components of the open set V - /(Fr(M)) (there
may be infinitely many); then, for any continuous map g: V -»• R" such that
p^0(/(Fr(M))uff(Fr(V)),

d{gof,M,p) = Yid(g,Ai,p)d(f,M,Al) (13)
i

[if V — /(Fr(M)) has infinitely many connected components A,-, it may be
shown that the right-hand side of (13) has only finitely many terms not 0]. In
particular, if M is connected, and / is a homeomorphism of M onto an open
subset M' of R", then d(f, M, M') = ± 1.*

Finally this reduction of the localized degree to a suitable global degree
enables one to apply to the computation of d(f M, p) the simplicial method
of §2, using triangulations of S„. If U is an open connected subset contained
in S„ - /(Fr(M)), then

d(fM,lT) = d(ff-1(U),U) (14)
by computing the corresponding degree deg(F) using a simplex of the
triangulation contained in U.f

In 1928 Hopf was able to generalize the definition of d(f, M,p) when M is
an open relatively compact subset of any C° manifold and / is a continuous
map of M into a C° manifold M'. As it is not possible to use triangulations
here, Hopfs idea was to mimick Brouwer's method of approximation by
"simpler" maps; piecewise affine maps were unavailable and Hopf replaced
them by maps g satisfying property (P) above (§ 3,A). In the statement of that
property the neighborhoods Vt may be chosen homeomorphic to open balls
in R", and the properties of the localized degree relative to such an open set
also give the definition d(g, M,p) in that situation; d(g, M,p) does not depend
on the choice of the approximation g of/, hence the definition of d(f, M,p),
with properties similar to when M is an open bounded subset of R" and
M' = R". In particular, if M and M' are any two compact, connected, oriented
C° manifolds, all the numbers d(f, M,p) are equal, extending the definition of
deg(_f) without postulating the existence of triangulations. In these definitions,
however, Hopf again had to use his theorem on homotopy classes. Another
more elementary proof of the existence of the degree for C° manifolds was
published in the same number of Mathematische Annalen by W. Wilson, a
student of Brouwer [519],

Even before defining the degree in general, Brouwer, in his very first paper

* This is mentioned by Brouwer in a footnote of his second paper on the Jordan­
Brouwer theorem ([89], p. 502).
f This is an interpretation of Brouwer's argument in his second proof of invariance of
domain ([89], pp. 509-510).
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of the 1911-1912 series ([89] pp. 430-434), in which he proved the invariance
of dimension, used, as his main lemma, a property of the localized degree
d(f, K,p) in a particular case: K is the cube [— 1,1]", / is a continuous map
of K into R" such that \f(x) - x\ < \, and p belongs to [-|,|]n. By exactly
the same argument of approximation by piecewise affine maps developed in
([89] pp. 454-472), and using the fact that / is homotopic to the identity in
K, he showed that d(f,K,p) # 0, hence/(K) contains [-i,|]n.

§ 4. Applications of the Degree

As was said above, almost all properties used by Brouwer in his papers of
1911-1913 are proved by using the degree, as we shall see in the next
chapters. The notion of degree was also found to yield simple proofs of classical
theorems and establishing new ones in differential geometry. We shall give
here some simple examples.

Suppose / and g are two continuous maps of Sn-t into R" - {0}, such that
for any point z e SB_l5 the point 0 is not on the segment joining f(z) and g(z)
in R". Then (z, t)\-*tf(z) + (1 - t)g{z), mapping Sn-t x [0,1] into R" - {0}, is
a homotopy between/and g, hence the orders of 0 with respect to/(S„_!) and
g(S„-1) are the same (Poincaré-Bohl theorem). In particular, this is the case
if, in S„_!, f(z) # 0 and \g(z) — f(z)\ < \f(z)\ (a very useful property for n = 2,
called Rouché's theorem in the theory of analytic functions of a complex
variable). This, for instance, shows that in C an equation

zk + f(z) = 0 (k integer > 0), (15)
where / is continuous in C, and \f(z)\ < \z\k for large \z\, has at least one root,
since the order of 0 with respect to the images of a large circle \z\ = R by the
maps z\-*zk and z\-*zk + f(z) are equal. This contains the "fundamental
theorem of algebra" as a special case; the result can easily be extended when
C is replaced by the algebra of quaternions or of octonions ([189], pp.
308-310).

In 1933 Borsuk proved interesting results on odd continuous maps f:
S„ -»• S„, i.e., such that f(-z) = -f(z) for all z e S„; he showed that deg(/) is
then an odd integer. Suppose for simplicity that / is C°°; there is then an
elementary proof of that theorem by induction on n (see [30], pp. 484-485).
Using Sard's theorem and applying a rotation, in Rn+1, one may assume
en+i ^/(S„-i) and f~l(en+l) is a finite set of S„; it is necessary to prove that
it has an odd number of points. Let q: S„ -»• R" be the orthogonal projection
on a diametral hyperplane, and p: R" - {0} -»• S„_! be the map xt—>x/|x|. The
composite map p o q o (/|SB_j) is then defined in S^; it is an odd map, and
by the induction hypothesis it has an odd degree. If D+ is the hemisphere
defined in S„ by the inequality xn+1 "*? 0, having S„_! as boundary, this implies
that the sum of the number of points of D+ n/_1(en+1) and of the number of
points of D+ rif~1(-en+1) is odd. But since / is odd, D+ n/"1(-en+1)
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has as many points as (-D+)n/~1(en+1), and as S„ = D+ u(-D+) and
f~1(en+i) n S„_! = 0, this ends the proof.

An obvious consequence is that, when n continuous real functions f}
(1 <;' < n) are odd, they have at least one common zero on S„. Applying this
to fj(z) = gj(z) — gj( — z), where now the gt are arbitrary real continuous
functions in S„, shows that there is at least one point z e S„ such that gj( — z) =
gj(z) for 1 < j < n (theorem of Borsuk-Ulam).



Chapter II

Dimension Theory and
Separation Theorems

§ 1. The Invariance of Dimension

Before 1870 mathematicians only dealt with those subsets X of an RN that
could (at least locally) be "parametrized" by (usually C1) injective maps into
X of open subsets of some R". It was tacitly assumed that the position of a
point in R" could only be completely determined by a system of n real numbers.
The discovery by Cantor in 1877 of a bijection of R onto R", for any n, came
as a complete surprise and seemed to threaten the bases of analysis. Cantor's
map was wildly discontinuous, but the discovery of the Peano curve (1890)
showed that there existed continuous (although not injective) maps of R onto
R". The only hope that remained of salvaging the classical notion of dimension
was the one expressed by Dedekind as soon as Cantor had communicated his
theorem to him: there should not exist bicontinuous bijections of Rm onto R"
for m^n. This was elementary for m = 1, n > 1, since a point disconnects R
but not R"; several mathematicians before 1910 were also able to tackle the
cases m = 2 and m = 3, n > m. But the general proof of Dedekind's conjecture
was only obtained by Brouwer in the first of the series of papers which he
started in 1911 ([89], pp. 430-434).

Brouwer's proof is based on the key lemma showing that if a continuous
map/ of [- 1,1]" into R" is such that \f(x) - x\ < i for all x, then/([-1,1]")
contains the cube [-i,i]n (chap. I, §3,D). He used that lemma to show that
there may not exist an injective continuous map g of [— 1,1]" onto a rare
subset C of R". The proof is by contradiction: Brouwer showed that if such a
map existed, it would be possible to define a continuous map h: C -»• [ — 1,1]",
such that h(C) would be rare and \h(g(x)) — x\ < \ for all x e [-1,1]", in
contradiction with the lemma.

To construct h, start from a sufficiently fine triangulation T of a cube K => C
and consider the union F of the n-simplices of T that meet C. Define h0(a) f°r
each vertex a of an n-simplex a c F as one of the points of [ - 1,1]" such that
g(h0(a)) e a, then extend h0 to a piecewise affine map h0 of F into [ — 1,1]". If
h is the restriction of h0 to C, then h(a n C) is rare for each n-simplex a a F,
hence h has the required properties provided T has been chosen fine enough.

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-48,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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From this theorem, Brouwer obtained the invariance of dimension in two
steps:

1. Suppose m > n; a cube K of Rm contains a rare image K' of [- 1,1]" by
a continuous injection j. If there existed a continuous injective map /:
K -»• [- 1,1]", the map f oj would contradict the theorem.

2. If a cube K' of R" contained the image of [— 1, l]m by a homeomorphism
g, as there exists a continuous injection h: K' -»• [- 1, l]m such that h(K') is
rare, hog would again contradict the theorem.

These two corollaries imply the nonexistence of a homeomorphism of Rm
onto R" for m # n.

§ 2. The Invariance of Domain

A result closely related to the invariance of dimension was called the
"invariance of domain": if A is a compact subset of an R" and /: A -»• R" is a
continuous injective map, / sends interior points of A to interior points of /(A)
[which implies that it maps the interior of A homeomorphically onto the
interior of/(A)]. This property implies invariance of dimension: suppose there
existed a homeomorphism / of an open set U # 0 in Rm onto an open subset
of R" with n < m; one may consider R" as a rare subset of Rm, and for V open
nonempty and relatively compact in Rm and V c U, f(V), considered as a
subset of Rm, would have no interior point.

This is essentially the argument by which Baire, in 1907, wanted to prove
the invariance of dimension ([40], [41]). He then endeavored to reduce the
invariance of domain to a weak* generalization of the Jordan curve theorem
to n dimensions: if / is a homeomorphism of the closed ball Dn: |x | < 1 of R"
onto a subset of R", the complement of /"(SB_j) in R" has two connected
components [traditionally called the "interior" and "exterior" of/(SB_j), the
"exterior" being the unbounded one].

In assuming this result, Baire also had to assume that /(DB) was not
contained in the "exterior" of/(SB_j ).f He considered the concentric open balls
B(p): |x| < p for 0 < p < 1 [B(l) = DJ, and their boundaries S(p): \x\ = p.
Then /(B(l)) is contained by assumption in the "interior" A of/(S(l)), and by
contradiction /(B(l)) = A. Indeed, if that were not the case, there would be a
point y e A not in the closed set /(B(î)) = /(B(l)) u/(S(l)) and hence a ball

* That this is not the real generalization of the Jordan theorem is due to the fact that
a continuous injection of Sn_( into R" cannot in general be extended to a continuous
injection of D„ into R".
f If one knows that the order of an "interior" point A with respect to /(Sn_!) is + 1
(see § 3), it implies the fact that /(Dn) is not contained in the "exterior" of/(Sn_! ), for
as S(p) tends to a point when p tends to 0, the order of A with respect to /(S(p)) would
tend to 0, although it must be constant.
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y of center y and radius r that does not meet /(B(l)). It is impossible for y to
be contained in the "interior" off(S(p)) for all p, since the diameter off(S(p))
tends to 0 with p. Let p0 be the g.l.b. of the p > 0 such that y is contained in
the "interior" of f(S(p)). Then, for a sequence (ek) tending to 0, y would be at
a distance > r of the "interior" of f(S(p0 - ek)) and at a distance > r of the
"exterior" of f(S(p0 + ek)), which is impossible by continuity.

Baire, however, could not prove the weak generalization of the Jordan
theorem which he needed.* It was again Brouwer who gave two different
proofs of the invariance of domain. The first one ([89], p. 485) does not use
the Jordan-Brouwer theorem, but what we may call for short the no separation
theorem (NS), for which Brouwer gave a proof in the same paper (see §4):

(NS) If U is a connected open subset of R", and F c U is a homeomorphic
image of a compact subset A of SB_l5 distinct from S„_1? then U - F is
connected.

To deduce the invariance of domain from this, Brouwer argued by
contradiction: let / be an injective continuous map of U into R", where U is a
nonempty bounded open set in R", and suppose there exists a point P e U
such that f(P) is not interior to f(U). Let Q # P be another point of U; by
assumption, there are spheres £ of center f(P) and arbitrary small radius that
are not contained in /(O); take the radius of such a sphere £ smaller than the
distance of f(P) to f(Q) and such that F = /_1(Zn/(Ü)) is contained in a
closed ball BcU of center P that does not contain Q. By (NS), P and Q may
be joined by a polygonal line LcU that does not meet F; then f(L) cz f(U)
would join f(P) and f(Q) without meeting In/(U), which is the desired
contradiction.

Brouwer's second proof([89], pp. 509-510) is simpler and only uses
properties of the degree [or rather of its localization (chap. I, § 3,D)]. With the same
notations, let P e U and let I be a small open ball of center P such that Ï,
union of I and its boundary, the sphere K, is contained in U. Let H be the
connected component of the open set R" — f(K) that contains f(P), hence
also /(I) since f(l)nf(K) = 0; the proof consists in showing that /(I) = H.
Brouwer's argument, which is only sketched, is clearer if we use the localized
degree d{f,l,p); if/(I) # H it would imply rf(/,I,H) = 0 since Fr(I) = K
and H n/(K) = 0. In his proof of invariance of dimension (§ 1), however,
Brouwer had shown that there exists a nonempty open ball y' c /(I); then
y = f~l (y') n I is open in R", and the restriction off to y is a homeomorphism
onto /; hence d(f,y,y')= ±1 (chap. I, §3,D). If pey', then d(f,\,p) =
d(f, I, H) = 0; but d(f, I, p) = d(f, y, y') [Joe. cit. formula (14)] and therefore the
assumption /(I) # H implies a contradiction.

* He complained in a letter to Brouwer that his bad health prevented him from
mustering the energy needed to elaborate his ideas.
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§ 3. The Jordan-Brouwer Theorem

The full generalization of the Jordan curve theorem (now called the Jordan­
Brouwer theorem) was first tackled by Lebesgue and Brouwer in 1911. We
can split the problem into three parts. Given a subset J of R" homeomorphic
toS,,.,,

(i) The complement R" — J has at least two connected components.
(ii) J is the boundary of every connected component of R" - J.
(iii) R" - J has at most two connected components.

A. Lebesgue's Note

Part (i) is independent of the other two and also of (NS). In March 1911
Lebesgue published a sketch of a proof in a Comptes rendus note ([294], pp.
173-175). At first Brouwer had doubts that this sketch could be elaborated
into a correct proof ([89], p. 452); because of Lebesgue's imprecise language,
he thought J was any (n - l)-dimensional compact connected manifold in R".
Later he admitted that (i) could indeed be proved by Lebesgue's method, but
[probably owing to his contemporary controversy with Lebesgue on the
definition of dimension (see § 5)] he did not wish to write out a complete proof
himself. Lebesgue did not write anything on the matter after his Comptes
rendus note, so no complete proof of (i) was available until 1922.

Lebesgue's method relies on an ingenious interpretation of part (i): for
0 < k < n - 1, let Lk be a subset of R" homeomorphic to St; then there
exists a subset UH-k-x of R", homeomorphic to SB_fc_j, and such that Lt
and \Jn_k_x are "enlacées" (i.e., their linking number mod.2 is # 0). For
k = n — 1, Sn_t_! = S0 consists of two points, and the statement is thus
equivalent to (i). For k = 0, the theorem is trivial, and Lebesgue's proof
is by induction on k. He considered a piecewise affine approximation g to
a homeomorphism /: St -»• Lt; let A+, A_, and Lfc_j be the images by /
of the hemispheres D+, D and of their common boundary Sfc_j.* By the
inductive assumption Lt_j is linked by a homeomorphic image L'n-k of Sn_t.
Replacing \Jn-k by an arbitrarily close piecewise affine approximation h(Sn_t),
makes the intersection g(T>+) n h(S„_t) finite, and it has an odd number
of points (if not, replace D+ by D_). If P is one of these points, by a slight
change of g, it may be taken to be the intersection of a fc-simplex of g(Sk)
and an (n — /c)-simplex o of h(S„_t) and belongs to the interior of these
simplices; then the boundary of a in h(Sn_k) links g(Sk).

B. Brouwer's First Paper on the Jordan-Brouwer Theorem

Brouwer published two papers on the Jordan-Brouwer theorem. The first
one ([89], pp. 489-494), exclusively deals with part (iii) of the problem. Part

* This seems to be the first occurrence of this splitting of the sphere, which will be used
again and again later in many contexts.
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(ii) is dismissed with the remark that it follows from the (NS) theorem (§ 2), for
which he had written a proof in an earlier paper (see §4), without giving any
detail. For any point x0 e J, it is enough to delete from J the interior of an
arbitrarily small (n — l)-simplex a of a sufficiently fine triangulation of J
containingx0.IfGj and G2 are two connected components of R" — J,yj eG,
and y2 e G2, there is, by the (NS) theorem, a polygonal arc joining yt and y2
in R" - (J - ff); on that arc there are points of G, and points of G2 at a
distance from x0 smaller than the diameter of a; this proves (ii).

The proof of (iii) occupies four pages; it is quite involved and, in spite of its
length, full of cryptic statements that make it very hard to follow in detail.
What follows is my own interpretation and simplification of what I think are
the main points of Brouwer's arguments. He repeatedly uses a lemma first
stated in the paper on the (NS) theorem ([89], p. 478):

(L) The boundary F of a pseudomanifold-with-boundary P (chap. I, § 3,A),
of dimension n, is a disjoint union of closed (n — l)-dimensional pseudomani­
folds F,..

Simple examples show that, if taken literally, this is not correct, for an
(n — 2)-simplex of F may be contained in more than two (n — l)-simplices of
F. Brouwer acknowledges this but dismisses the matter by saying that p­
simplices of F, for p < n — 2, that appear to contradict the fact that the F,- are
pseudomanifolds and are pairwise disjoint, should be "demultiplied" ("als
verschieden zu betrachten sind") so to speak. It would have been clearer if he
had bothered to give a proof, and said that one can do away with those
occurrences by slightly moving the vertices of F!

The proof of (iii) is essentially based on the idea of linking number, which
Brouwer only defined in a general way six months later; here it is used in the
particular case of a polygonal Jordan curve L and the frontier; of an (n — 1)­
simplex a of a (cur vilinear) triangulation T of J; his arguments can be simplified
by using the definition of linking numbers as degrees of mappings (chap. I,
§ 3,C). Let E be the unbounded component of R" — J, G another (bounded)
component, P a point of G; the bulk of Brouwer's proof consists in constructing
a polygonal Jordan curve L containing P and such that lk(L,/)= + 1.

He first constructed in R" an infinite locally finite (n — l)-dimensional
simplicial complex jcG whose closure in R" is g kjj. Starting with the cubical
subdivisions Av of R" whose vertices are the points of 2~VZ", for each integer
t, let fiz be the union of the closed cubes of Av that meet the interior of a and
have a distance at least ^/n/21-1 from J" = J — a; if x is taken large enough,
P does not belong to any pz+k for k > 0. The union Vt of the [iz+k for k > 0 is
a kind of "thickening" of o in R" with a "decent" boundary; Vt u J" is closed
and connected, and Vt n J" = j. Define It as the intersection of G and of the
open component in R" of the complement of Vt u J" that contains P; g is the
part of the boundary of It contained in Vt, the union of the gv, where gv is a
finite rectilinear cell complex, the cells of which are cells in the frontiers of
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some of the cubes whose union is pz+k for x + k < v. After subdividing of the
cubes into simplices and using lemma (L), one sees that gv is the disjoint union
of finitely many (n - l)-dimensional pseudomanifolds.

To construct L, one first joins P to a point R on one of the rectilinear
simplices of g, by a polygonal arc L1 contained* in It. On the other hand, one
can join P, by a polygonal arc L2 contained in It, to a point B' arbitrarily close
to a point of J — a [using (ii)]; then [again using (ii)], one can join B' to a
point B" in E by a line segment of arbitrarily small length s2. Similarly, one
can join R to a point A' of Vt arbitrarily close to a point in the interior of a,
by a polygonal arc L3 in Vt; then, again using (ii), a line segment sl of
arbitrarily small length joins A' to a point A" in E; finally, one may join A"
and B" by a polygonal arc L4 contained in E. The polygonal Jordan curve L
is the union of Ll5 L3, s1, L4, s2, and L2.

If g were a closed pseudomanifold with boundary j, one would have
lk(L, j) = + 1, since L meets g in the single point R. But the argument by which
Brouwer proved the equivalence of the definition of the linking number as a
degree and its definition by counting intersection points does not apply to
"open" complexes such as g. To circumvent this difficulty, Brouwer apparently
considered the connected component yv of gv containing R, which is a
rectilinear (n — l)-dimensional pseudomanifold with boundary rjv, and he takes
for granted that rçv tends to; when v tends to +00, but gives no proof for this
statement. Taking v large enough and a sufficiently fine triangulation of yv, a
simplicial mapping q> of rçv into j can be defined, homotopic to the identity,*
so that lk(L, rçv) is equal to the degree of the map (x, y) h-> (<p(x) — y)/|<p(x) — y|
oft;, x L into S„_j ; by the multiplicative property of the degree, this implies
that

lk(L,»7v) = deg(<p).lk(LJ); (1)
but for yv and rçv, the equivalence of the two definitions of the linking number
applies, so that lk(L, rjv) = ± 1, and from (1) it follows that lk(Lj') = ± 1.

Now assume there exists a third (bounded) component G' of R" — J, and
construct the corresponding intersection 1^ of G' and an open component in
R" of the complement of Vt n J". If g' is the part of the boundary of 1^ contained
in Vt, the construction of the polygonal Jordan curve L shows that L n g' = 0,
if s, and s2 are small enough. But then lk(LJ) = 0 by the argument made
above where g is replaced by g'; this brings the required contradiction.

C. Brouwer's Second Paper on the Jordan-Brouwer Theorem

This paper immediately follows the first one in Mathematische Annalen ([89],
pp. 498-505). In it Brouwer capitalized on the hard work he did in the first

* To simplify the language, we say that a polygonal arc is "contained" in an open set
IT if the complement of its extremities is a subset of IT.
f Note that q> need not be injective.
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paper to obtain additional properties of the "Jordan hypersurfaces" in R",
generalizing results Schoenflies had proved for Jordan curves in R2.

(I) J is accessible from both components I and E (the "interior" and
"exterior" of J) of R" — J. This means that for any point A of J, there is a Jordan
arc having A as one extremity and contained in I (resp. in E). The idea is to
consider a sequence (Tk) of triangulations of J obtained by repeated
subdivisions of T, and a decreasing sequence (ak) of (n — l)-simplices of the
triangulation Tk, whose diameter tends to 0, such that A is interior to each
ak. For each k, Brouwer constructed a "thickening" V<*> of ak as in the first
paper, for a sufficiently large zk, in such a way that V^1' is contained in the
interior of V<*>. Then, starting from a point P0 e I not in V[\\ he constructed
a sequence of polygonal arcs Lk, joining a point Pk e V<*> — V'*^1' to a point
Pt+i e V^1» - V£+2) and contained in V*> n I. The union of the+Lk and of the
point A is the required Jordan arc. The same argument applies for a point in E.

(II) A similar argument proves the property called "Unbewaltheit" by
Schoenflies: if Q and Q' are two points of J, and m(Q,Q') is the infimum of
the diameters of Jordan arcs joining Q and Q' in I (resp. E), then m(Q, Q')
tends to 0 with the distance rf(Q,Q') of the two points in R". This time one
considers a sequence (Qk, Q'k) of pairs of points of J with d(Qk, Q'k) tending to
0, and a sequence (ok) of (n — l)-simplices of triangulations of J, whose
diameter tends to 0, and are such that both Qk and Q'k are in the interior of ok. The
construction in I) shows that m(Qk,Q'k) is at most the diameter of a
"thickening" V<*>, which obviously tends to 0 when the diameter of ak tends to 0 and
zk tends to +oo.

(III) Finally, Brouwer sketched a proof that the order of a point Pel with
respect to J (chap. I, § 3,B) is ± 1 (that order is of course constant in I). With
the notations of the first paper, he took for granted that there exists an
(n — l)-simplex a of the triangulation T of J, and a half-line D of origin a
suitable point P of I, such that D n J" = 0. To show this, take the first point
of intersection Q of J and of an oriented line D0 that meets I and does not
meet the (n — 2)-simplices of T; then if a is the (n — l)-simplex of T containing
Q, the distance of Q to J" = J — o is > 0. There is therefore a point P e D0 n I
close enough to Q that the half-line D of origin P and containing Q satisfies
the requirement.

Next he took a subdivision T, of T, and considered the piecewise affine map
h of J into R" coinciding with the identity on the vertices of T[ ; h is homotopic
with the identity by a homotopy F whose image does not contain P if T, is
fine enough. Hence the order of P with respect to J is, up to sign, the sum of
the intersection numbers of D and of the rectilinear complex J, = h(J) [one
may always suppose that D does not meet the (n — 2)-simplices of T, ].
Brouwer stated without proof that this number m is ± 1. It is possible to supply
a simple argument justifying this claim by using the construction of the
first paper: first take a polygonal arc L' joining P to a point P' of D n E,
which does not meet i\ = h(J"), and next a polygonal arc L" joining P' to
P and which does not meet ox = h(a). If L = L'u L", the construction gives
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lk(LJj) = ± 1, where;j = h(j). Now, if L0 is the segment of D joining P and
P', then by definition lk(L0 u L",jx) = ±m. If L'0 is the loop L0 u L', it is only
necessary to show that lk(V0,jt) = 0, and as V0 does not meet i'[, and j, is
homotopic to a point in the complex }'[, this is obvious.

There is also in this second paper a curious section in which Brouwer
claimed to have proved (by a fairly intricate construction) the orientability of
J. Did he forget that by definition J is homeomorphic to S„_j, and that S„_,
is orientable as a "manifold" in his sense, for any triangulation, according to
his own definition of orientability ([89], p. 458)?

§ 4. The No Separation Theorem

In Mathematische Annalen, this paper precedes the one on the Jordan
Brouwer theorem, and is entitled "Proof of the invariance of domain,"
although invariance of domain is only mentioned in the last section; the bulk
of the paper (six pages) consists in the proof of what we have called in §2
the "no separation theorem." It is certainly the most intricate proof of all
Brouwer's theorems and the most difficult to follow; the details are so sketchy
that I find it impossible to give more than a summary of the main arguments
as I understand them.

A preliminary result is a generalization of a theorem of Janiszewski on sets
of the plane [267]: let P, Q be two points of S„_j, X and Y be two disjoint
relatively closed subsets of the open ball B„: |x| < 1. Suppose P and Q are not
separated by X nor by Y in B„, a statement which Brouwer interpreted as
meaning that there are Jordan arcs L, M, joining P and Q in B„ such that
LnX = MnY = 0; then P and Q are not separated by X u Y, i.e., there is
a Jordan arc N joining P and Q in B„ such that N n (X u Y) = 0. Brouwer's
proof consists in approximating X and Y by neighborhoods that are sub­
complexes of a sufficiently fine triangulation T of B„, and showing that the
theorem may be proved when X and Y are replaced by these neighborhoods.
In that simpler case Brouwer used, in addition to lemma (L) of § 3, the
following unproved assertion:

(L') A subcomplex K of T separates P and Q if and only if any polygonal
arc joining P and Q in B„, and which does not meet any (n - 2)-simplex of T,
meets K in an odd number of points.

He then simply observed that if a polygonal arc joining P and Q in B„ and
having empty intersections with the (n — 2)-simplices of T meets each of the
subcomplexes X, Y in an even number of points, it also meets X u Y in an
even number of points.

Brouwer then used this theorem to show that if the points P, Q in S„_j are
separated in B„ by a relatively closed subset X of B„, then they also are
separated by a suitably chosen connected component of X.
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The proof of (NS) proper is by contradiction, and can be divided into three
steps.

First step. Let J be a "Jordan hypersurface" in R", M be a closed subset of
J distinct from J. By arguments that are not at all clear, Brouwer claimed that
the assumption that R" — M has more than one connected component leads
to the following situation: Pisa frontier point of M in J, D is an open ball of
R" with center at P, H is the (n — l)-dimensional sphere, boundary of D in R",
A, B are two points of H separated by M n D in D. From the preliminary
result he deduced that there is a connected set t contained in M n D, relatively
closed in D, containing P and separating A and B in D. Let u be the intersection
In H, contained in H n M, and G the connected component of M — u in J
containing t. The first step in Brouwer's argument was to show that t j=- G;
otherwise P would be an interior point of t = G, contrary to the assumption
that P is a frontier point of M in J. For a sufficiently fine triangulation T of J
there is therefore an (n — l)-simplex of T contained in G — t.

Second step. For the second and third step Brouwer found it easier to
transform R" — {B} by an inversion of pole B, bringing about the following
situation (where we use the same notation for elements of the former situation
and for their transforms by inversion): D is now an open half space of R",
having a hyperplane H as its frontier, and one has A e H; u is a closed subset
of H that does not contain A; G <=. D is a homeomorphic image of a subset
of J, open in J; u = G n H; finally t is a subset of G, relatively closed in G,
u = t~n H, and G — t contains an (n — l)-simplex o of a triangulation T of J.
If n: H — {A} -»• S is the projection from A of H — {A} onto an (n — 2)­
dimensional sphere ScH of center A, then, as A ^ u, the restriction p: u -»• S
of n to u is defined. The second step of the proof consists in extending p to a
continuous map p: t u u -* S. As nothing is known of the connected set t, p is
in fact extended to a continuous map p0:(G-a)uu-»S, and then p is the
restriction ofp0 tolun.

Begin by triangulating the open subset G of J by the usual method, taking
a sequence (T„) of successive subdivisions of T, whose mesh tends to 0. Gv
is the union of the simplices of Tv contained in G, and Gv c Gv+1; gv =
Gv+1 — Gv converges uniformly to u, and G is the union of the gv. Next define
p0 in two steps:

First take a sufficiently large number r, and define p0 on the union G'r of
all the gv for v > r by projecting each vertex of all gv for v > r on H by the
orthogonal projection /: R" -»• H; p0 is then defined on the vertices of G^ as
the map n°f. Extend it to a piecewise affine map G'r-> S (using barycentric
coordinates in the simplices of each Tv and in simplices of S). This defines p0
on the frontier Er in G of the union GJ.' of the Gv for v < r.

Next define p0 on G — a by extending it "backward," so to speak, from Er;
for each (n — l)-simplex or in G" with one of its faces zr in Er, assign an
arbitrary value in S to the only vertex of ot not in xt\ then p0 can be extended
from rr to the whole of or as a piecewise affine map (again using barycentric
coordinates in curvilinear simplices). Then p0 is defined on the union of these
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simplices ot, hence it is known on the frontier Er_j of the union of the
remaining simplices of G", and the procedure can be repeated. This would not
work if one wanted to define p0 in the whole set G (there would be an
"obstruction" in a); but it does work for G — a.

Third step. Let N be the connected component of the open complement of
t in the half space D, such that A e N. Let T' be a triangulation of the half
space D, such that the «-simplices of T that meet H have as an intersection
with H a p-simplex of their frontier (p ^ n — 1); these intersections form a
triangulation T" of H. Then construct a triangulation in the usual way for the
set Nu(H-u) (open in D) by taking successive subdivisions T„ of T' with
mesh tending to 0, and defining Nv as the union of the simplices of T„ contained
in N u (H - u); A may always be supposed interior to an (n — l)-simplex a0
of that triangulation. By lemma (L), the frontier of Nv in R" is the union of
N,nH (which contains A) and a union Lv of pseudomanifolds-with-boundary,
and Fv = Lv n H is a union of closed (n — 2)-dimensional pseudomanifolds.

For each vertex C of L not in H let C, be a point of t at a distance d(C, t)
of C, and let q(C) = p(C,) e S; if C e Fv, let q(C) = n(Q. Then extend q to Lv
as a piecewise affine map in S (using barycentric coordinates as above); q is
then a continuous map of Lv into S.

The contradiction needed to end the proof consists in computing, for
sufficiently large values of v, the degree of the restriction q|Fv (as a mapping
into S) in two different ways, using the fact that Fv is both the intersection
L,nH and the frontier of Nv n H in H. For the first computation take v large
enough; for any (n — l)-simplex ox in Lv, q(^i) is then contained in a half
sphere of S (depending on ox). The degree of the restriction of q to the
boundary of ox is then 0; By the additivity of the degree and the fact that any
(n — 2)-simplex of Lv is the face of two (n — l)-simplices except those in Fv the
degree of q|Fv is 0.

For the second computation, consider the (n — l)-simplices of Nv n H; it
may be assumed that they are so small that, with the exception of a0 (which
contains A), their images by n each belong to a half sphere of S; the degree of
the restriction of n to the boundary of each such simplex is therefore 0. The
additivity of the degree then shows that the degree of q|Fv = tt|Fv is the same
as the degree of the restriction of n to the boundary of a0, and it is clear that
the latter is ±1.

§ 5. The Notion of Dimension for Separable Metric
Spaces

The theorem on the invariance of dimension (§ 1) did not give a definition of
the word "dimension" as a number attached to a topological space and
invariant under homeomorphisms except for spaces locally homeomorphic to
R" ("pure" C° manifolds), and even for these spaces the introduction of the
auxiliary space R" was not satisfactory for a notion that should have been an
intrinsic one. This incongruity was stressed by Poincaré in 1903 [371] and
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again in 1912, the last year of his life [372], in articles written for a nonmathe­
matical public. He pointed out that, just as in classical geometry, one thought
of a surface as "limiting" a solid, a curve as "limiting" a surface, and a point
as "limiting" a curve, it should be possible to define the "dimension" of a
connected space by an inductive process: the dimension should be one if the
space may be disconnected by points, two if it may be disconnected by sets of
dimension 1, three if it may be disconnected by sets of dimenion 2, "and so on."

Meanwhile, in October 1910, Lebesgue, who had heard from Blumenthal
of Brouwer's proof of the invariance of dimension (then in the process of being
published in Mathematische Annalen, of which Blumenthal was one of the
editors) sketched, in a letter to Blumenthal (which the latter published
immediately after Brouwer's proof) another proof, based on a completely new
and remarkable idea ([293], pp. 170-171). Observing that for a covering of a
plane domain by sufficiently small closed "bricks" there always are points of
the domain belonging to at least three bricks, he stated as a theorem that for
any finite covering (Ej) of an open bounded connected set D in R" by
sufficiently small closed sets there always are points in D belonging to at least
n + 1 sets. He added that for a cube D it is always possible to find a finite
covering by arbitrary small parallelotopes for which no point of D belongs to
more than n + 1 sets of the covering (both statements of course together imply
the invariance of dimension).

This last part was easy enough to show by a simple arrangement of "bricks"
in the cube D; but although Lebesgue's sketch of a proof for the first statement
was later seen to be capable of yielding a correct argument, the way in which
he tried to apply it led to incorrect statements, as Brouwer almost immediately
observed. The proof is easily reduced to the case in which D is the cube [0,1]",
and the E} are unions of closed cubes of side 1/2V, having as vertices points of
2"VZ" for sufficiently large v; it is only necessary to suppose that no E} meets
both opposite faces C,, C| of D (defined, respectively, by x, = 0 and x, = 1) for
1 =$ i =$ n. Lebesgue's idea was to inductively construct nonempty closed sets
K[ => IC2 =)••■=> K„, for which it could be proved that each KA contains
points belonging to at least h + 1 sets Ej (cf. [261], p. 43). He thought he could
define the KA by taking the union G; of those E_, that meet Cj, and letting K;
be a connected component of the frontier of G, in R" contained in D, different
from Cj and meeting both Cj and C| for 2 < i =$ n. He could then take the
union G2 of those E} not contained in Gj and meeting both K2 and C2, and
let K2 be a connected component of the frontier of G2 n K1( not contained
in C2 and meeting both Ct and Cj for 3 =ç i =$ n. Lebesgue claimed he could
proceed inductively in this way (without giving any detail) to define the KA;
however Brouwer found a counterexample (for n = 3) where Lebesgue's
procedure does not yield any set K3 having the properties he claimed ([89],
p. 545). It was only in 1921 that Lebesgue published a correct proof of his
theorem ([295], pp. 177-206).

In the meantime Brouwer had taken up Poincaré's idea in 1913, and had
given it mathematical content ([89], pp. 540-546). He first observed that
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Poincaré's tentative definition had to be slightly modified to really conform
to intuition*: if one deletes the vertex of a cone with two sheets in R3, the cone
is disconnected although no one would consider its dimension to be 1 ! For a
space E,* Brouwer said that two disjoint closed sets F, F are separated by a
set C if any connected subset of E that meets F and F' also meets C*; he then
defined a space of dimension 0 as one containing no connected set with more
than one point, and a space E of dimension n > 0 by the property that n is the
smallest integer > 0 such that any two disjoint closed subsets of E are
separated by a subset of dimension =$ n — 1. That definition can immediately be
localized: a space E has dimension nata point P if P has a fundamental system
of neighborhoods of dimension n.

The bulk of Brouwer's paper is devoted to proving that, with his definition
of dimension, R" has dimension n at every point. By induction on n, it is easy
to show that this dimension is =$ n. To prove that it is "> n, an argument similar
to Lebesgue's reduced the proof to a simplicial version of Lebesgue's theorem:

(S) Let o- = A j A2 • ■ • A„+1 be an «-simplex in R", and consider a triangulation
T of a in rectilinear simplices, none of which meets both AjA2" Av and
Av+1 Av+2 • • ■ A„+1, for any v =$ n. Define os inductively for 1 =$ j =$ n by letting
y be the subcomplex of T, union of all the «-simplices of T having A, as one
of their vertices; lemma (L) of § 3 shows that y is a pseudomanifold-with­
boundary; the part ox ofthat boundary, the union of the (« — l)-simplices that
does not contain Aj, is a union of closed pseudomanifolds, and Aj ^ ox. In
general, ay is defined by induction on v ^ «: let yv be the subcomplex of av,
union of the (n — v)-simplices of av that meet A t A2 • • • Av+1, but do not meet
A, A2 ■ ' • AvAv+2 ■ • • A„+1 ; this is again a pseudomanifold-with-boundary; the
part <7V+1 of that boundary which is the union of the (« — v — l)-simplices of
ay that do not meet AjA2--Av is a union of closed pseudomanifolds. Then
the av, which form a decreasing sequence of sets, are all nonempty.

The proof uses the properties of the degree of a map, and, as usual, is very
sketchy and has to be interpreted to make sense. Let nv be the projection of
a — (AjA2---Av) onto Av+1Av+2---A„+1 [>V(M) being the intersection of
Av+i ' ' ' A„+1 with the v-dimensional linear affine variety generated by M and
AjA2---Av]. Let pv be the restriction of rcv to o\.

* A similar observation had already been made by Riesz [396].
f This paper is the only one of the period 1911-1913 in which Brouwer considers
general topological spaces. He says his spaces must be "Normalmenge in Fréchetschen
Sinne" (?) but does not use any property beyond the definition of a topological space.
* In the paper as it was first published, he had written "closed connected subset" instead
of "connected subset"; after Urysohn had pointed out to him that this definition was
incompatible with the proof of the main theorem of Brouwer's paper, the latter
published in 1923 a corrected version ([89], p. 547), which he elaborated in a 1924
paper ([89], pp. 554-557).
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The induction starts with the obvious remark that the degree of p, is equal
to 1.* The main point of the proof is to show that if the degree of pv is 1, so
is the degree of pv+1 ; this of course implies that o\, # 0 for all v.

The passage from v to v + 1 is done by considering each (n — v — l)-simplex
of o\ n (Aj ■ ■ ■ AvAv+2 ■ ■ ■ A„+1), which is the face of a unique (n — v)-simplex
of o\; it follows easily, by a continuity argument, that the restriction of pv+1
to o\, n (A j ■ ■ • Av Av+2 • • ■ A„+1 ), considered as a mapping into Av+2 ■ • • A„+1, has
degree 1. On the other hand, the restriction of pv+1 to the frontier of each
(n — v)-simplex meeting A, ■ ■ ■ AvAv+2 ■ ■ ■ A„+1 has degree 0. By additivity of
the degree, it follows that, deleting all these simplices from av, which by
definition gives as remnant yv+1, the restriction of pv+1 to av+l has degree 1.

§ 6. Later Developments

The first complete proofs of the "no separation" (§ 4) and Jordan-Br ouwer (§ 3)
theorems entirely devoid of the obscurities linked to the fantastic complexity
of Brouwer's constructions were given by Alexander in 1922. They constitute
the first and second steps, respectively, in the proof of his duality theorem
(Part 1, chap. II, §6). As we have seen, these proofs, based on convenient
splittings of a cube or a sphere, are reminiscent of the (later) Mayer-Vietoris
theorems. Indeed the use of the general Mayer-Vietoris exact sequence in
cohomology (Part 1, chap. IV, § 6) very easily determines the whole de Rham
cohomology H'(R" — X) (Part 1, chap. Ill, § 3) when X is homeomorphic to a
cube or to a sphere, and the "no separation" and Jordan Brouwer theorems
are just consequences of the computation of H°(R" — X).

Another way of obtaining these theorems was used by Leray [324] who
proved a general result containing both as special cases* : if K and K' are two
homeomorphic compact subsets of R", then R" — K and R" — K' have the
same cardinal number (finite or infinite) of connected components. This
follows from the multiplicative property of the localized degree [chap. I, § 3,
formula (13)] and the purely algebraic property of invariance of (linear)
dimension of a vector space over Q.

Although Brouwer gave a definition of the notion of dimension applying
to arbitrary spaces, he was obviously chiefly interested in proving that for R"
that definition gives the number n. This is probably the reason why his paper
was considered merely another way of proving the invariance of dimension,
and the fact that he had given a general definition of dimension was neglected.
At any rate, when in 1922 Urysohn and Menger proposed (independently of

* As a simplex is not a "manifold" in Brouwer's sense, it is in fact the localized degree
d(pi. I, M) which is equal to 1, where I is the interior of the simplex A2 A3 • • • An+1 and
M is a point of I. Similarly for the pv, v > 2.
f It also contains the "invariance of closed curves" that Brouwer had attempted to
prove ([89], pp. 523-526).
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each other) a definition that is equivalent to Brouwer's for locally connected
or compact separable metric spaces, they were at first unaware of Brouwer's
priority.

The Urysohn-Menger definition applies to all separable metric spaces. For
them the empty set has dimension — 1, and the dimension of a nonempty space
is the least integer n > 0 for which every point has a fundamental system of
neighborhoods whose boundaries have dimension < n (the dimension is taken
to be +oo if there is no such integer n).*

This definition's consequences were studied in the period, extending to
about 1940, during which dimension theory became a very active branch of
mathematics. But apart from the Brouwer theorem on the dimension of R"
the methods of proof in that theory belonged to general (also called "set­
theoretic") topology and made no use of triangulations or homology .* We will
therefore not describe all the results of that theory, but refer the reader to
[261]. Some of results, however have interesting connections with algebraic
topology.

First, Lebesgue's theorem furnishes (for separable metric spaces) an
alternative definition of dimension. The order of a finite open covering 9Î of a space E
is the largest integer p such that there exists p + 1 distinct sets of 9Î with
nonempty intersection. If m(9î) is the g.l.b. of the orders of the finite open
coverings of E finer than % Lebesgue's theorem says that for R" the l.u.b. of
the m(9î) for all finite open coverings 9Î of R" is equal to n. For a general space
E this l.u.b. is the dimension of E as defined by Urysohn and Menger.

From this it follows at once that for a separable metric space E of dimension
n, the Cech homology groups Hp(E; G) based on finite open coverings (Part 1,
chap. IV, § 2) are all 0 for p > n. Surprisingly enough this is not true for singular
homology groups: there exist compact metric spaces of finite dimension for
which infinitely many singular homology groups are # 0 [44], On the other
hand, there are obviously contractible compact spaces of any finite dimension,
so that there are no very strong links between dimension and homology of a
space. In Part 3, chap. II, we shall see that homotopy theory is much closer
to the notion of dimension.

With the arrival of sheaf cohomology (Part 1, chap. IV, §7,C), another
notion of "dimension" of a space could be defined. A space X, on which is
given a family O of supports (Part 1, chap. IV, §7,C), has finite ^-dimension
if there is an integer n > 0 such that

Hj„(X; !F) = 0 for every i > n and every sheaf !F over X; (2)

the smallest integer n having that property is called the (^-dimension of X and

* Brouwer's definition differs from that of Urysohn-Menger because he takes totally
disconnected spaces to have dimension 0, whereas for the Urysohn-Menger definition,
there are totally disconnected spaces of arbitrary finite dimension ([261], p. 23).
f Brouwer's proof was later replaced by a purely combinatorial lemma of Sperner
([30], p. 376).
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written dim,,, X; when O is the family of all closed sets in X, n is called the
cohomological dimension of X (or simply dimension) if no confusion arises. If
Oj =3 02 are two families of supports on X, and if X has <!>,-dimension =$ n,
then it has <J>2~dimension ^ w. If Y is a subset of X that is locally closed, and
if X has O-dimension =$ n, then Y has O'-dimension < n, where O' = O n Y.
When X is metrizable and has cohomological dimension =$ n, the same is true
for every subset of X. For a paracompact space X to have cohomological
dimension < n it is necessary and sufficient that each point of X have a
neighborhood of cohomological dimension =$ n. If a compact metric space has
dimension ^ w in the sense of Urysohn-Menger, it also has a cohomological
dimension ^ n ([66], [87]).

The condition (2) may be restricted by considering only sheaves !F of
modules over a fixed Dedekind ring A; if (2) holds for all such sheaves !F and
all paracompactifying families O, one says the dimension of X over A is =$ n,
and the smallest integer n having that property is the dimension of X over A,
written dimA X; it is also the smallest integer n for which the cohomology with
compact supports H"+1(U; A) = 0 for all open subsets U of X [208]. When
dimAX =$ n, the Borel-Moore homology (Part 1, chap. IV, §7,F) satisfies

H*(X; A) = 0 for q > n + 1 and any family O of supports; (3)
H*(X;A) = 0 forq>w+land all xeX. (4)

If J*1" is the constant sheaf A, or if O is paracompactifying, there is a canonical
isomorphism

H?(X;^)^r.(JTB(X;A)®^) ([66], pp. 151-152). (5)



Chapter III

Fixed Points

§ 1. The Theorems of Brouwer

Brouwer had been considering continuous maps of the sphere S2 into itself as
early as 1909; he first studied the particular case of a bijection* f (which is
therefore bicontinuous) preserving orientation, and he gave a proof that in
that case there exists at least one fixed point x for /, i.e., such that f(x) = x;
the proof is very long (nine pages) and involved, using intricate arguments on
deformations of curves on S2 ([89], pp. 195-205). In 1910 he gave another
proof of the same result as a corollary to the existence of at least one singular
point for a continuous vector field on S2 (§ 3) by another intricate argument
([89], pp. 303-318).

It was only in 1911, in the paper in which he gave the definition of the degree
of a map (chap. I, § 2), that he realized that this notion could be used to prove
that a continuous map / of S„ into itself, satisfying the only condition that
deg(/) # (— 1)"+I. has at least one fixed point. Equivalently, he showed that
if/ has no fixed point, then deg(/) = (— 1)"+I; but his first proof is far from
simple, and uses the computation (done earlier in that paper) of the sum of
the indices of a continuous vector field on S„ having only isolated singularities
(see § 3). Fixing a point O on S„, he considered, for every point P # O for which
f(P) # O, the unit vector tangent at P to the arc of the circle through O, P and
f(P) having extremities at P and f(P) and not containing O.f To apply his
theorem on vector fields, he had to define the vector field in the neighborhood
of O and of the points of/-1(O) where the previous definition is meaningless.

Finally, in the next paper he published in 1911 ([89], pp. 454-472), Brouwer
arrived at a very simple proof without using vector fields: if / has no fixed
point, the consideration of the great circle joining x and/(x) at once provides
a homotopy of / to the antipodal map ïk-x for which the degree is
obviously (— 1)"+1.

* Brouwer only assumed that / is infective, but by degree theory (which he had not
invented at that time) it follows that / is necessarily bijective.
f He had already used that device in 1910 for n = 2 ([89], p. 315).
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Being linked to the as yet unfamiliar notion of degree, this result did not
attract much attention from the mathematicians of that time. Things were
quite different for the corollary Brouwer added concerning a continuous map
g of a cube I" into itself. He showed that such a map always has at least one
fixed point. His argument consisted in replacing I" by the homeomorphic
upper hemisphere D+ of the sphere S„ and extending g to a continuous map
/: S„ -»• D+ by taking/(x) = g(s(x)) in the lower hemisphere D_, s being the
symmetry with respect to the equator; then deg(/) = 0 since/is not surjective,
and a fixed point of/ must of necessity be a fixed point of g. The interest
aroused by this result was due to its unexpected generality, which made
possible its application to existence proofs in analysis, using much weaker
assumptions than had been customary in earlier existence theorems; later it
was realized that Brouwer's fixed point theorem could even be used in infinite­
dimensional spaces, under assumptions allowing suitable approximations by
finite dimensional compact sets (see chap. VII).

§ 2. The Lefschetz Formula

It is clear that for a continuous map / of a compact space X into itself the
existence of fixed points will in general depend not only on the space X, but
on / itself (the Brouwer case X = I" being an exception). This fact was given
precise expression in a remarkable formula discovered by Lefschetz in 1926
[300],

Lefschetz limited himself to a combinatorial manifold X (Part 1, chap. II, § 4),
but considerably enlarged the concept of "fixed point." He first observed that
it was a special case of "coincidences" for two continuous maps / g of X into
itself, namely, the points x e X such that /(x) = g(x). As he was at that time
working on the topology of product spaces, he translated that notion in terms
of the graphs T(f) and T(g) of/ and g in the product space X x X which is
also a combinatorial manifold: a "coincidence" is the first projection in X of
a common point of T(f) and T(g). Lefschetz was thus led back to a problem
of intersection, a question on which we have seen he was also working (Part
1, chap. II, §§4 and 5).

It is quite obvious that he was strongly influenced by the similar problems
in algebraic geometry, and in particular by the theory of correspondences,
studied since the middle of the nineteenth century by Chasles and the school
of "enumerative geometry" (de Jonquières, Zeuthen, Schubert), then by Hurwitz
in the theory of Riemann surfaces, and which had been thoroughly
investigated by Severi in the first years of the twentieth century; this influence
explains the rather unusual frame within which Lefschetz developed his theory.

Let X be a compact, connected, orientable combinatorial manifold without
boundary, of dimension n, Lefschetz studied that he calls a "transformation"
T in X, by which he means an n-cycle fT in the product space X x X. If T' is
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a second "transformation" in X, the algebraic intersection number* (TT. TT.)
is defined (Part 1, chap. IV, §4). Once homology bases (distinct or not), (yp),
(ô'p), are known for H.(X;Q), as well as their multiplication table in the
"intersection ring" H.(X x X; Q), the yP x ôj for p + q = r form a base of
Hr(X x X; Q) by Kiinneth's theorem, and the intersection products of these
elements in H.(X x X; Q) are given by formula (30) of Part 1, chap. II, § 5. The
number (TT. TT.) could therefore be computed at once from the expressions

rT= Z 4%;xeP), rT.= £ tf(yP x &i_p\ (i)0<p<n O^psJn
But Lefschetz's original idea was to look for another computation of that
number by introducing actions of T and T' on the homology groups HP(X; Q).
Even before singular homology had been defined, it was possible to associate
to every continuous map/: X -»• Y of finite cell complexes, a homomorphism

/,:H.(X;Q)->H.(Y;Q)

of graded vector spaces, by simplicial approximation (Part 1, chap. II, §3).
Lefschetz [probably inspired by similar processes in algebraic geometry,
the images of divisors by correspondences (see [299])], extended this idea
to his "transformations." He considered a homology class ap e HP(X; Q)
and its product ap x [X] by the fundamental class of X (chap. I, § 3,A)
in HP+„(X x X;Q); its intersection rT.(ap x [X]) with rT is a class in
HP(X x X;Q), and the image of that class by the homomorphism (pr2)^ in
Hp(X; Q) is, by definition, the image T,.(ap) by the action of T on HP(X; Q).

From his intersection theory (Part 1, chap. II, §4), Lefschetz deduced the
fundamental result

(rT.(yp x #_,)) = (- i)pfi*(),;).«>_,) (2)
which gave him the expressions of the £PJ as linear forms in the coefficients of
the matrix (apJ) of the homomorphism (T^)p, the restriction of T^ to Hp(X; Q).
From these expressions he derived the expression of (rT.rT.) as function of
the matrices of the (T^)p and (T'^)fl. He did not at first express this formula in
terms of traces of matrices, but in a second paper [301] he obtained such an
expression, and in particular when T' is the identity (so that TT. is the diagonal
A of X x X, which is an «-cycle), he arrived at the famous Lefschetz formula

(TT.A)= £ (-l)"Tr((T„)p). (3)
When the cycle TT and the diagonal A intersect "transversally" in a finite
number of points, the left-hand side of (3) could be interpreted as the "algebraic
number of fixed points" of the "transformation" T.

* We abuse language by writing an intersection number for cycles instead of writing
it for their homology classes.



200 2. The First Applications of Simplicial Methods and of Homology

In 1928 Hopf returned to the initial problem of the existence of fixed points
for an arbitrary continuous map f: X -> X, but this time he considered not
merely a combinatorial manifold X, but an arbitrary finite euclidean simplicial
complex of dimension n. He associated to such a map, according to (3), what
came to be called the Lefschetz number off

A(/)= Z (-l)pTr((/Jp) (4)
and he proved first that if/ has no fixed point, then A(/) = 0.

As X is compact, the assumption implies that |/(x) — x| > 5 > 0 for all
x e X. There is therefore a subdivision K of the triangulation of X and a
simplicial approximation g of / for that triangulation, homotopic to / and
such that \g(x) — x| > <5/2 > 0 for x e X; since g% = /„., it is enough to prove
the theorem for g instead of/. If (o)), ^ J<a is the canonical basis of the Q-vector
space CP(K) of the p-chains of K, and rf the diameters of the simplices of K
are small enough, the endomorphism gp of CP(T) corresponding to g (Part 1,
chap. II, § 3) is such that

gp(<jj) = ± ak for an index k^jiî g(oj) is not degenerate,

ö'p(Oj) = 0 otherwise;

this implies that Tr(gp) = 0. From this Hopf concluded that all he had to do
was prove the formula that he rightly considered the natural generalization
of the Euler-Poincaré formula [Part 1, chap. I, §3, formula (4)]:

£ (-l)*Tr(0p)= £ (-l)'Tr((0„)p) (5)p=0 p=0
for every simplicial map g: X -»• X; it reduces to the Euler-Poincaré formula
when g is the identity. The proof is similar, using the fact that gp(Zp) c Zp,
gp(Bp) c Bp for cycles and boundaries and that

Tr(gp) = Tr(gp\Zp) + Tr(gp_l\Bp-l),

Tr((</,)p) = Tr(0p|Zp)-Tr(Jp|Bp).

When A(/) # 0 and X is again a combinatorial manifold, so that (3) is
applicable for T = /, Hopf gave an interpretation of the left-hand member
when / has only a finite number of fixed points, by defining for each fixed
point a of / an index ja, the definition of which is meaningful for any C°
manifold, triangulable or not. Consider a homeomorphism h of an open
neighborhood of a in X [with h(a) = 0], onto an open neighborhood of 0 in
R"; then, for sufficiently small p > 0, g = hfh~l is defined in the ball B: |x| =$ p
and is a continuous map B -»• R", with only one fixed point 0. The map
x h-> g(x)/\g(x}\ is defined on S: |x| = p and maps S into S„_j, so that its degree
is defined; it is independent of p and of the choice of the homeomorphism h,
and its value is by definition the index ja. Hopfs interpretation of (3) for T = /
is then
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I ;a = A(/), (6)
aeFix(r)

Fix(/) being the finite set of fixed points of/.
Hopfs first proof of (6) ([241a], p. 153) is particularly interesting. In the

neighborhood of a fixed point a, he modified both the cell complex X and the
map /. One may assume that a is contained in an n-simplex a, of frontier t,
and (with the preceding notation) the homeomorphism h maps ö onto B and
t onto S; a homotopy can modify / in a neighborhood of a in such a way that
f(x) does not meet a. Then Hopf added a new «-simplex a' to X by gluing it
to a along x in such a way that ctu o' becomes homeomorphic to S„, x being
mapped on the "equator" Sn-t. Transferring to ctuct' the symmetry with
respect to the equator gives an automorphism s of ö u o', exchanging a and
a' and leaving the points of x invariant. Next Hopf changed / in a, replacing
it by / = s o / and defined /in a' equal to / » s.

Doing this for every fixed point of/yields a cell complex X' and a continuous
map/of X' into itself with no fixed point; A(/) = 0; but the construction gives
the relation

A(/) = A(/)- Z L
aeFix(r)

hence the result. This is one of the first examples of the use of attachment of
new cells to a cell complex that later became an important tool (see chap. V,
§3).

Hopfs second proof [241b] starts from a triangulation T of X such that all
the fixed points of/ belong to n-simplices. He refined T to a sufficiently iterated
subdivision T', for which he constructed a simplicial approximation g homo­
topic to /, such that there are no fixed r-simplices of T for g when r < n; then
Tr(§r) = 0 for r < n and Tr(</„) = £aeF.x(r)./a, so that formula (6) becomes a
consequence of (5).

Lefschetz endeavored to generalize his formula to compact metric spaces
using Vietoris homology, but Hopf provided him with an example of a
compact subset X of R2 and a continuous map without fixed point for which
Mf) "^ 0 both for singular and Vietoris homology: X is the union of two
concentric circles and a spiral curve winding between both and asymptotic to
each of them, whereas / is just a rotation of a fixed angle co for points on each
circle and on the spiral ( [304], p. 347). Later Lefschetz realized that the validity
of the formula could be recovered by making assumptions on the "local
connectedness in the sense of homology" on X (cf. chap. IV) [46].

§ 3. The Index Formula

We have already mentioned (chap. I, §2) that in 1881 Poincaré, in his work
on global theory of differential equations, had introduced the notion of index
for a vector field on the sphere S2. He was studying in R2 the integral curves
of a differential equation
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dx dy

where X and Y are polynomials. He took a point O in R3 not in the plane, and
projected from O the vector field (X, Y) on a sphere S of center O, extending
it by continuity on the "equator" of S (section by the plane parallel to R2).
This gave him a vector field on S, symmetrical with respect to O. He showed
that there were always at least two (symmetrical) singular points of the field
(i.e., points where the field vanishes). Then he restricted himself to "general"
such fields in the following sense: (1) X and Y have the same degree m; (2) if
Xm, Ym are their homogeneous parts of degree m, xYm — yXm is not identically
0; (3) the curves X = 0 and Y = 0 intersect transversally in points not on the
equator; (4) the roots of the homogeneous equation xYm — yXm = 0 are
simple.

Next Poincaré introduced the notion of index of any closed curve on an
hemisphere of S containing no singular point: if h (resp. k) is the number of
points where Y/X passed from — oo to +oo (resp. from +oo to — oo) when
moving on the (positively oriented) curve, the index is defined as i = (h — k}/2.
He showed that i = ± 1 for a small enough curve around a singular point,
and took that value as the index of the singular point; he then proved the
remarkable result that the sum of the indices of the singular points is equal to
2 ([365], p. 29).

In 1909 Brouwer, who at that time probably was not aware of Poincaré's
paper, considered a vector field on S2 that he only supposed continuous
(whereas in Poincaré's case, the field is analytic at nonsingular points); he wanted to
prove that there exists at least one singular point. He argued by contradiction,
using the detailed study of the trajectories of the vector field (he could not use
local uniqueness since the field is not supposed to be C1) ([89], p. 279).

In his 1911 paper on the definition of the degree ([89], pp. 454-472)
Brouwer considered, for any n, a vector field on S„ that he merely supposed
continuous, with at most finitely many singular points; he proceeded to prove
that the sum of the indices of the singular points is 2 for even n, 0 for odd n.
To apply his definition of the degree to that problem he used a very
complicated and obscure process, starting from a simplicial triangulation T of S„
obtained by intersections of S„ with hyperplanes, among which is the equator;
T is supposed symmetrical with respect to the equator and the singular points
of the vector field are all contained in the interior of n-simplices of T. If T is
fine enough, the sum of the indices of the singular points of the vector field is
given by a sum of degrees of maps, written cla and c2a. To define clx, project
each «-simplex sla of T in the northern hemisphere stereographically on the
tangent hyperplane H, at the north pole, consider the map of the frontier
of the projected simplex in S„_j given by the (stereographically projected)
vector field in H,, and take its degree cla; do the same for the southern
hemisphere, stereographically projected on the tangent hyperplane H2 at the
south oole. to set the deerees c,.. Brouwer showed that, owine to the svmmetrv
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of T with respect to the equator, the sum of the degrees clx and c2a (for all
n-simplices of T) reduces to the sum of the degrees of two maps of the equator
S„_j into itself. He then claimed that the computation of that sum could be
reduced to the case of a constant vector field on S„_j, but his description of
what he does to reach that result is so sketchy and intricate that it is hard to
decide if his procedure really constitutes a proof.

In 1925 ([238], p. 2) Hopf announced that Brouwer's theorem for vector
fields on S„ would generalize to arbitrary compact "manifolds" X: for a
continuous vector field on X, with finitely many singular points, the sum of
the indices of these points is equal to the Euler-Poincaré characteristic. Hopf
indicated that this result could be derived from the theory of fixed points of
continuous maps. Alexandroff and Hopf showed in their book ([30], p. 549)
how this can be done very simply for a C1 manifold X and a C1 vector field
Z on X by considering the flow (x, t) h-> Fz(x, t) of Z. Recall that this is defined
for all x e X and all t e R; if v(t) = Fz(x, t), t h-> v(t) is the integral curve of the
field Z starting from x = v(0), i.e., v'(t) = Z(v(t)). A compactness argument
shows that there is an interval |t| =$ e such that the fixed points of the map
x h-> Fz(x, t) are exactly the singular points of Z for any t in that interval, with
the same indices. Since that map is also obviously homotopic to the identity,
the result follows from formula (6). It can be generalized to a vector field Z
on a C1 manifold X that is merely supposed continuous, for such a field is
homotopic to a C1 vector field with the same singular points.

The notion of vector field on X is not clearly defined for a combinatorial
manifold X, since there may be several distinct differential structures on X (or
none at all) compatible with the topology. In 1928 [240] Hopf considered
vectors attached to each point of X and satisfying conditions depending not
only on the topology of X but on its triangulation, and he proved that they
still satisfy the index formula.



Chapter IV

Local Homological Properties

§ 1. Local Invariants

Local properties of topological spaces were considered at the beginning of the
twentieth century, chiefly by Schoenflies, who was a pioneer in that matter.
They were mainly studied for subsets of R2, and without any intervention of
homological notions. Examples of these properties are accessibility and "Un­
bewaltheit," which we saw developed by Brouwer using simplicial methods
but still no homology (chap. II, §3,C). After 1910 the concept of local
connectedness* was also the theme of many papers in "point-set" (or "analytic")
topology (see [517] and [518], chap. I).

The fact that all contractible spaces have the same homology showed that
homology is a very coarse notion to use for the description of properties of a
space invariant under homeomorphism. At the end of the 1920s the idea
emerged that, just as global connectedness of a space is a property that gives
very little information, and "localizing" it gives much more, so one could
perhaps "localize" homology groups of any dimension in order to make a
deeper study of the topology of a space.

In this chapter, it shall always be understood that "homology group" means
reduced homology group (Part 1, chap. IV, §6,E).

The first instance of such ideas probably occurs in print in a footnote of a
1928 paper by Alexandraff ([27], p. 181, note 63), in which he introduces the
notion of "r-local connectedness" for any r > 0; we shall examine it in § 2; he
mentions that Alexander had considered the same definition but did not
publish it.

A. Local Homology Groups and Local Betti Numbers

It was only in 1934 that Alexandroff [28], Cech [122], and Seifert andThrelfall
in their book ([421], chap. VIII) independently gave definitions of "local"
homology groups or Betti numbers.

* For the many uncertainties and even priority claims to which the notion of
connectedness gave rise in the early 1900s, see [89], p. 486.
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Alexandroff only considered compact subspaces of R" and Vietoris
homology (Part 1, chap. IV, §2) with rational coefficients; Seifert and Threlfall
limited themselves to locally finite simplicial complexes and simplicial
homology; Cech gave definitions for arbitrary topological spaces and used Cech
homology based on finite open coverings (Part 1, chap. IV, § 2) with coefficients
in Q or in a finite field .

Both Alexandroff and Cech referred to Lefschetz's "relative homology"
(Part 1, chap. II, § 6), whereas Seifert and Threlfall gave direct definitions and
only mentioned relative homology in a footnote. The natural procedure
stemming from relative homology would be to take the relative homology groups
HP(X, X — {x}; G) as local invariants at a point x e X for some homology
theory (Part 1, chap. IV, §6,B), and if that theory satisfies the excision axiom
(loc.cit.) these groups may be replaced by HP(V,V — {x};G) where V is an
arbitrary open neighborhood of x; however, this is not the way the authors
mentioned above proceeded.

They attached to any point x e X an "r-dimensional Betti number pr(x) at
x" for every r > 0, in the following way (reformulated for convenience in the
present language, and for any homology theory with coefficients in a field).
Consider two open neighborhoods U => V of x, and the natural map

Hr(X,X-U)^Hr(X,X-V);

write prU,v the rank of that homomorphism [dimension of the image of
Hr(X, X — U)], which decreases when V decreases and hence has a limit prU
(finite integer or +oo) for the directed set U(x) of open neighborhoods of x.
Furthermore, when U decreases prU increases and hence has a limit pr(x) for
the directed set H(x). Observe that instead of the dimension prUiV, the
homology groups Hr(X, X — U) themselves may be considered, and one can take
direct limits over the directed set H(x). The group obtained in that manner is
not necessarily isomorphic to Hr(X, X — {x} ).

Suppose x has a fundamental decreasing system of neighborhoods (Um),
such that X — Um is a strong deformation retract (Part 1, chap. IV, §6,B) of
X — {x} and of X — U„ for n > m. It then follows from the exact sequence of
relative homology [Part 1, chap. IV, §6,B, formula (94)] that the maps

Hr(X,X - UJ^Hr(X,X - U„)-Hr(X,X - {x})

are all bijective; hence the groups obtained by the preceding limit processes
actually are the Hr(X,X — {x}), which then deserve to be called the local
homology groups at x.

This is particularly the case when X is a C°-manifold or a locally finite
simplicial complex. In the first case, if the dimension of X at the point x is n > 0,

Hj(X,X-{x}) = 0 ioTJytn
H„(X, X - {x}; A) =* A for any ring A. (1)

In the second case (the only one considered by Seifert and Threlfall), if St(x)
is the star of x for a triangulation of X, X — St(x) is a strong deformation
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retract of X — {x}. As Hp(St(x)) = 0 for all p>0, since St(x) is contractible,

Hp(X,X-{x})^Hp^(Kx) (2)
where Kx is the subcomplex St(x) — St(x) of the triangulation of X. This is
actually the definition given by Seifert and Threlfall for the local homology
groups, and of course they had to prove it independent of the triangulation
of X ([421], pp. 120-125). They used these groups to show that some
properties, defined a priori with respect to some triangulation, are in fact
independent of the choice of that triangulation; for instance, this is the case for the
union of the j-simplices that are not on the frontier of a (j + l)-simplex
[0 ^ M dim(X)].

B. Application to the Local Degree

Let u be a C00 map of R" into R" such that u(0) = 0, u(R" - {0}) c R" - {0},
so that u defines an endomorphism u* of H"~1(R" — {0};Z), which is
isomorphic to Z. Then u*(Q = c£ for any cohomology class £ and c e Z; the
integer c is called the local degree of u at 0, and written deg0(u). If the jacobian
J of u at 0 is #0, then deg0(u) = 1 if J > 0 and deg0(u) = — 1 if J < 0.

Now consider two smooth manifolds X, Y, both oriented and having the
same dimension n > 2, and let /: X -»• Y be a C°° map. A point a e X is isolated
for / if there is an open neighborhood U of a such that f(x) # f(a) for
x e 0 — {a}. One may assume that U is the domain of a chart q>: U -»• R" of
X such that <p(U) = R" and q>(a) = 0 and there is a chart i//: V -»• R" of Y such
that /(U) c V, ^(V) = R" and t//(/(a)) = 0. Then define the local degree
deg,,/ at the point a as deg,,/ = deg0(i/> °f° q>~1); it does not depend
on the choices of U, V, q>, and \j/. If the tangent mapping Ta(/) is a bijec­
tion of Ta(X) onto T/(a)(Y), then deg„/= 1 if Ta(/) preserves orientations,
dega/= —1 if not.

Let Z be another smooth oriented manifold of dimension n, and g: Y -»• Z
be a C°° map such that f(a) is isolated for g; then a is isolated for g° f, and

deg^ ° /) = deg/(a) g • deg„ /.

Finally, suppose X and Y are compact and connected and that there is a
point y0 e Y such that /~!(y0) = {^i»^2>--->xr}> a finite set. The x} are
isolated for /, and

r

deg/ = X degXj/.
y=i

C. Later Developments

The papers of Alexandroff and Cech defined Betti numbers pr(x) but not
groups attached to a point x. Alexandroff proposed definitions of other groups
at a point x, the dimension of which may be different from pr(x). One of his
definitions is similar to one that is better understood within the context of
Borel-Moore homology: the definitions and notations of Part 1, chap. IV,
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§7,G give the homology graded sheaf J"-*t(<'fH.(X;L)) for the generalized chain
complex of sheaves ^H.(X; L), written Jf.Qi; L). The stalk (3Vj(X; L))x at a point
x can be called the j-th local homology group at x; the exact sequence of relative
homology shows that it is isomorphic to the Borel-Moore relative homology
group H;(X,X-{x};L).

The work of Alexandroff and Cech was considerably enlarged and
diversified by Wilder between 1935 and 1955. He conclusively showed how all the
results (mainly relative to plane sets) obtained by the "point-set topologists"
of the Polish and American schools who shunned simplicial methods could
be enormously generalized and put in their proper perspective by the use of
homological notions [518]. He not only used Cech homology, but also Cech
cohomology with compact supports and coefficients in a field (which did not
yet exist when Alexandroff and Cech wrote their papers): for two open
neighborhoods U => V of x in a locally compact space X, there is a natural homo­
morphism WC(V) -> Hcr(U) (Part 1, chap. IV, § 7,G). If prViV is the dimension of
the image of that homomorphism, the numbers Pu-V behave exactly as the
numbers pr,UiV of Alexandroff; hence, by the same limit processes a number
pr(x) can be attached to each x e X, called the local co-Betti number at x, which
is an integer or +oc; Wilder showed that in fact pr(x) = pr(x) for all x e X
([518], p. 191).

Wilder's book contains a large number of local properties linked to
homology and cohomology. Since it was written when modern algebraic techniques
(Part 1, chap. IV, § 5) had not yet been introduced into algebraic topology, it
would be worthwhile rewriting it with the help of these techniques, which very
likely would make it shorter and more perspicuous.

In the remainder of this chapter, we shall restrict our description to the
notions and results of [518] that have proved most striking and useful in other
directions in algebraic topology (see [385]).

D. Phragmén-Brouwer Theorems and Unicoherence

As an illustration of Wilder's ideas, I think it worthwhile to insert as a small
digression an example of topological properties that are put into a better light
when they are connected with notions of algebraic topology.

In 1885 Phragmén published a short note on topology of plane sets [361] in
which he proved the following property: if A is a compact connected subset
of R2, and U is the unbounded connected component of the open set R2 — A,
then the frontier of U is connected. His method consisted in decomposing R2
into squares with sides of length 2~m, considering the union of those squares
that met the frontier of U, and letting m tend to infinity.

In one of his first topological papers, in which he gave a new proof of the
Jordan theorem for plane curves, Brouwer extended Phragmén's result by
showing that the frontier of any connected component of R2 — A is connected
([89], p. 378). Later it was discovered that this property is linked to several
others, and "point-set topologists" were able to extend them when R2 is
replaced by much more general spaces X. But apparently it was only in the
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Alexandroff Hopf ([30], p. 292) book that these properties were shown to
depend on the fact that H, (X; Z) = 0. The key property is:

If X is a Hausdorff arcwise connected space, such that H,(X;Z) = 0, and if A,
B are two nonempty disjoint closed sets such that X — A and X — B are
arcwise connected (neither A nor B "cuts" the space), then X-(AuB) also
is arcwise connected (AuB does not "cut" the space). This is an immediate
consequence of the Mayer—V ietoris homology exact sequence.

Elementary arguments of "point-set topology" easily produce from that
property the following so-called "Phragmên-Brouwer theorems," under the
additional assumption that X is locally arcwise connected.

(i) If A, B are two closed nonempty sets in X such that A n B = 0, and if x,
y belong both to the same connected component of X — A and to the same
connected component of X - B, then they also belong to the same
connected component of X — (A u B).

(ii) If A is a closed, connected, nonempty subset of X, each connected
component of X — A has a connected frontier.

(iii) If A, B are two closed connected subsets of X such that X = AuB, then
A n B is connected (a property that was much studied under the name of
"unicoherence").

(iv) If A is a closed subset of X, and C,, C2 two nonempty connected
components of X — A having the same frontier B, then B is connected.

§ 2. Homological and Cohomological Local
Connectedness

In a locally connected space X each x e X has a fundamental system of open
neighborhoods that are connected. It follows from the definitions (Part 1,
chap. IV, § 3) that for Alexander-Spanier cohomology, 0-cocycles are just
locally constant functions; hence for a connected space X the reduced
cohomology fl°(X) = 0. Conversely, if a compact space K is the union of two
nonempty open and closed sets U,, U2, then a function constant in U, and
constant in U2 but with different values is locally constant; hence fl°(K) # 0.
From this it follows at once that for locally compact spaces X, saying that X
is locally connected is equivalent to saying that p°(x) = 0 for all x e X.

This leads to the generalization of local connectedness formulated by
Alexandroff in 1929 and mentioned in §1. He said that X is homologically
locally connected in dimension q > 0 (later abbreviated into q — lc) at a point
x, if for every open neighborhood U of x there is an open neighborhood VcU
of x such that every q-cycle in V bounds in U. There is, however, no direct
relation between that property and the fact that pq(x) = 0, as Alexandroff
himself showed by examples ([28], p. 9). What p,(x) = 0 [or equivalently
pq(x) = 0] means is the corresponding notion for Cech-Alexander cohomol­
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ogy with coefficients in a field: X is cohomologically locally connected in
dimension q (abbreviated to q - clc) at the point x if for any open
neighborhood U of x there is an open neighborhood VcUofx such that the image
of the homomorphism H«(U) -> H«(V) is 0.

Examples show that at a point x of a locally compact space X, X may be
q - lc for all integers q in an arbitrary finite set, but not q - lc for the other
values of q ([304], p. 92). In 1935 Lefschetz [307] and Wilder defined the
property of being lc" at a point as meaning that the space is q — lc at that
point for all values q ^ n. They needed this for their definition of generalized
manifolds (see § 3); the notion was studied in detail by Begle for compact spaces
[46]. There is a corresponding notion (clc") for cohomology.

Results concerning these notions are now best expressed in the context of
Borel-Moore homology. In their notation (L being a Dedekind ring) the
locally compact space X is homologically (resp. cohomologically) locally
connected in dimension q [abbreviated to q — hlcL (resp. q — clcL)] at the
point x if, for any neighborhood U of x, there is a neighborhood VcUofx
such that the image of the homomorphism

H',(V; L) - H',(U; L) [resp. H«(U; L) - H«(V; L)] (3)
is 0. The space is q — hlcL (resp. q — clcL) if it has that property at every point,
and hlcf. (resp. clci.) if it is q - hlcL (resp. q - clcL) for all integers q < r. Finally,
X is hlcL (resp. clcL) if for any neighborhood U of any point x it is possible to
choose the neighborhood V c U independently of q such that the image of the
map (3) is 0 for every q.

For a hlcL space X and an L-module B, there is for every q ^ r a split exact
sequence

0 -+ Ext(H;_, (X; L), B) -+ H«(X; B) -+ Hom(H;(X; L), B) -+ 0 (4)

corresponding to the exact sequence for H,,(X;B) applicable to all locally
compact spaces [Part 1, chap. IV, § 7,G), formula (184)].

Property hlcl, implies cIcl, but cIcl only implies hlcjf1. When L is a field,
however, hlcj. and cIcl are equivalent, and hlcl, and cIcl are always equivalent.

If X is compact and hlcl,, then the L-modules H,,(X;L) and H*(X;L) are
finitely generated for q < r; Ext(H,+I(X;L),L) is then the torsion submodule
of H,(X; L) and Ext(H,_, (X; L), L) the torsion submodule of H«(X; L).

We conclude this section with the remark that singular homology can be
used for the definition of local properties instead of Cech homology or
Borel-Moore homology. This was done in 1935 by Lefschetz,* who defined
properties q - HLC, HLC, and HLC by replacing Cech homology by
singular homology in the definitions of q — lc, lcr, and hlc. The important property

* Do not confuse these notions with other concepts of "local connectedness" based on
homotopy rather than on homology, which we shall consider in Part 3, chap. II, § 2,B.
They were also introduced by Lefschetz, who used the symbol LC (with indices or
exponents) to designate them (the H in HLC stands for "homology").
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of HLC spaces is that for them Alexander-Spanier cohomology is naturally
isomorphic to singular cohomology.

§ 3. Duality in Manifolds and Generalized Manifolds

A. Fundamental Classes and Duality

Local properties of a C°° manifold M are used to extend the concept of
"fundamental class" in the homology of a compact manifold (chap. I, § 3,A)
to "relative fundamental classes" for a noncompact one.

Suppose M is an oriented smooth «-dimensional manifold (connected or
not). Choose an orientation on R" and on S„_j and let yn be the generator of
the group H„(R", R" - {0};Z) =. Z that is mapped on [S„_j] by the
isomorphism H„(Rn,Rn- {0);Z)^H,.1(S,.1;Z). For any chart q>: V^R"
preserving orientation, and x e V such that <p(x) = 0, there is an isomorphism
</V- H.(V, V - {x};Z) ^ H.(R",R" - {0};Z). Thus HP(V, V - {x};Z) = 0 for
p # « and H„(V, V - {x}; Z) is isomorphic to Hn(R", R" - {0}; Z). By excision,
this gives a composite isomorphism

H„(M, M - {x}; Z) ^ Hn(R", R" - {0}; Z)

which is independent of the chart q>; let fix be the element of H„(M, M - {x};Z)
mapped onto y„ by that isomorphism. Now let K c M be any compact subset.
Then there exists a unique class jumk e H„(M, M — K;Z), called the
fundamental class relative to K, such that for any x e K the image of nMK by the
homomorphism

;V H„(M, M - K; Z) - H„(M, M - {x}; Z)

deduced from the natural injection is the class nx. The proof uses a technique
similar to the one in H. Cartan's paper of 1945 [106]. Consider first the case
M = R" and then the case in which K is small enough, then apply the
Mayer-Vietoris exact sequence to treat the union of finitely many such
compact sets by induction on their number. Poincaré duality for homology
and cohomology of M with integer coefficients can then be obtained by
considering M as union of an increasing sequence (Km) such that each Km is
a compact neighborhood of Km_j. Let zm be a relative «-cycle whose homology
class is jUM;KeH„(M, M — Km;Z). Then, for each p-cocycle /on M with
compact support, the class of the cap product zm^-/ is the same for all
sufficiently large m and only depends on the class c of/ in H£(M; Z). Call J\c
that class in H„_P(M; Z); then the homomorphism

EV,:H?(M;Z)->H„_P(M;Z)

is bijective (Poincaré duality).
In a similar way for a closed subset A of M, there is an isomorphism

EV.V Hf(A; Z) - H„_p(M, M - A; Z)
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for Alexander-Spanier cohomology with compact supports and singular
homology (Alexander duality).

There are analogous results for nonorientable manifolds and coefficients
inF2.

B. Duality in Generalized Manifolds

Until 1930 Poincaré and Alexander duality theorems for integer coefficients
had only been proved for orientable compact triangulable C°-manifolds. This
was soon felt to be an unsatisfactory situation, since the notion of
triangulation depends on auxiliary subspaces R", whereas the duality theorems only
deal with homology and cohomology; even an extension to all C°-manifolds
(for which triangulability was unknown) would have suffered from the same
defect. Starting with Cech [121] and Lefschetz [306] in 1933 topologists
endeavored to define classes of spaces by purely homological conditions which
would include both combinatorial manifolds and C°-manifolds, and for which
the duality theorems would hold.

The general idea was to impose homological properties known to hold for
C°-manifolds on these spaces, particularly local homological conditions (§ 2).
Several definitions were proposed in succession by Wilder, Alexandroff and
Pontrjagin [31], P. Smith [437] and Begle [46]. Here again the introduction
of Borel™ Moore homology, with substantial improvements by Bredon [87],
brought a more satisfactory state of the theory.

If L is a Dedekind ring, a locally compact space X is a homology n-manifold
over L (abbreviated n — hmL) if:

1. The cohomological dimension dimL X of X over L (chap. II, §6) is finite.
2. The relative Borel-Moore homology

h,,x,x-M;l,={0l ;-;: (5)
for any x e X.

These conditions imply that the cohomological dimension dimL X ^ n + 1
and that the sheaves JVq(X; L) are 0 for q ^ n. Bredon has also proved that
0 = J^n(X; L) is locally isomorphic to the constant sheaf L. One says (9 is the
orientation sheaf and X is orientable over L if & is isomorphic to L; an
isomorphism of G onto L is called an orientation of X over L.

We have seen that in 1945 H. Cartan had already started to drop
assumptions of differentiability or triangulability in the theory of "manifolds" (Part 1,
chap. IV, § 5,A). In 1947 he realized that sheaf theory (which he still used at
that time in Leray's formulation) provided a way to "localize" the concept of
orientation. In his 1950-1951 Seminar he defined a generalized cochain
complex (with indices $0) of sheaves of singular chains and introduced an
orientation sheaf in that context, with the help of which he could prove
Poincaré and Alexander duality theorems for C°-manifolds.
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In the context of Borel-Moore homology the duality theorems are derived
from a spectral sequence applicable to all locally compact spaces X with finite
cohomological dimension. Suppose dimL X ^ n, and let @T be the generalized
cochain complex of sheaves defined by

^ = ^„,n_,(X;L) (6)
so that #<(&) = 0 for q < 0, and 3/e°(ât) = Jf„(X;L). Then ([66], p. 152)
for any paracompactifying family of supports O there is a spectral sequence
having as E2 terms

Ep2« = HS,(X;Jf"'(^-)) (7)
and H0(r,,,(^')) for abutment with a suitable filtration.

If X is now a homology n-manifold over L and dim.pX < +oo, there is a
natural isomorphism

H&(X;0®L)^H*_P(X;L) (8)
("Poincaré duality"). In addition, if A is a closed set in X, and dim,,^ X < + oo,
there are natural isomorphisms

HJ(X, X - A; (9 ® L) * H^(A; L) (9)
H§.n(X-A,(X - A; 0 ® L) * H?_P(X, A; L) (10)

("Alexander duality").
In the Borel-Moore theory a generalized n-manifold X over L (abbreviated

n — gmL), also called cohomology n-manifold (n — cmL), is an n — hmL which
is also clcL (§ 2), and dimL X < n. If L is a field, a metric n — hmL space is also
aw — cmL.

Using excision and the Künneth theorem, it is easy to see that combinatorial
manifolds of dimension n in the sense of Alexander (Part 1, chap. II, §4) are
generalized «-manifolds over Z.

C°-manifolds are trivially generalized manifolds, but generalized manifolds
are genuine generalizations of C°-manifolds. There are generalized manifolds
of dimension 4 in which for some points x there is an open neighborhood U
of x such that for no open neighborhood V c U of x is V — {x} simply
connected ([421], p. 241).

The main interest of generalized manifolds is that they are much easier to
work with than C°-manifolds. For instance, if a product A x B of locally
compact spaces is a generalized manifold, both A and B are generalized
manifolds. In the theory of transformation groups, fixed point sets and "slices"
in a generalized manifold are generalized manifolds.

Wilder's general program was to find conditions under which the Schoenflies
results for R2 could be extended to generalized manifolds. A whole chapter of
his book ([518], chap. 12) is devoted to the notion of accessibility. He
generalized Schoenflies' "Unbewaltheit" (chap. II, § ) to the notion of uniform local
q-connectedness: in a compact space X, an open subset D is uniformly locally
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connected in dimension q (abbreviated to q — ulc) if for every finite open
covering H = (UJ of X there exists a finite open covering 93 = (Vß) of X finer
than U and such that, for any Vß, there exists a Ua => V^ for which the image
of the map H,(V^ nD)-» H,(Ua n D) is 0; D is ulcr if it is q - ulc for 0 «S q «? r.

We only mention here a few of the numerous properties proved by Wilder.

1. If X is an orientable n - gm which is a homology sphere [H,(X) = 0 for
q # ri] and M is a compact (n — 1) — gm contained in X, then the
components of X - M are ulc"-1.

2. If X is as in 1 and McX is the common frontier in X of at least
two connected open sets, one of which is ulc"-2, then M is an orientable
(n - 1) - gm.

3. If X is an orientable n - gm such that Hi(X) = 0 and U c X is an open
connected set which is ulc"-2 and has a connected frontier B in X, then B
is an orientable (n — 1) — gm.

4. Finally, if X is an orientable generalized manifold and/: X-»Ya surjective
continuous map of X onto a Hausdorff space Y, such that the reduced
homology of each fiber f~l(y) 's 0> then Y is an orientable generalized
manifold and /„. : H.(X) -»• H.(Y) is an isomorphism [a remarkable
refinement of the Vietoris-Begle theorem (Part 1, chap. IV, §§7,B and 7,E)].



Chapter V

Quotient Spaces and Their
Homology

In this chapter I gather miscellaneous results and techniques related to
homology, in all of which the concept of quotient space plays a more or less
important part. Many of the constructions described were invented for their
use in homotopy theory, leading to major results in that theory (see Part 3).

§ 1. The Notion of Quotient Space

We saw in Part 1, chap. I that since the 1870s mathematicians had been freely
using "identifications" of points (or "gluing" of subspaces) on an "intuitive"
basis without any attempt at precise definitions, which in fact could not
possibly be given before the fundamental notions of topology such as limit
and neighborhood had been completely clarified.

The general problem, as we now state it in our language, is to assign a
suitable topology to the set X/R of equivalence classes for an equivalence
relation R on a topological space X. If p: X -> X/R is the natural map, what
is now known as the quotient topology of the topology of X by R is defined
on X/R by taking as open sets the sets U such that p_1(U) is open is X. It is
the finest topology on X/R for which the map p is continuous, and X/R, with
that topology, is called the quotient space of X by R.

It was only in the 1930s that this topology was considered for the most
general spaces, at the end of somewhat tortuous attempts. Since equivalence
classes for R are subsets of X, it is not surprising that the problem of defining
a topology on X/R did not emerge until some work had been done on
topologies on the set ^B(X) of all subsets of X, or more precisely on concepts
of limits of sequences of subsets (since for most mathematicians in the early
years of the twentieth century, the idea of limit of a sequence was the
fundamental topological notion). Such notions of "limit", which apparently were first
considered in a Note of Painlevé in 1909 [359], appear in the books on
topology by Hausdorff [220] and Kuratowski [291], but without any mention
of the special case in which only the parts of X belonging to a given partition
of the space are considered.

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-4J1,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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The first mention of a topology on X/R seems to be in the work of R.L.
Moore on special partitions of a metric space X, which he calls "upper semi­
continuous collections" [351]. They are characterized by the fact that when
A0 is a fixed set and A is a variable set of the partition, if the distance d(A0, A)
tends to 0, then the Hausdorff "Abweichung"

sup (d(x,A),d(y,A0))
xg A0,}>e A

also tends to 0. When spaces other than metric spaces were considered, this
condition meant that for any neighborhood U of A0, there is a neighborhood
VcU such that if A meets V it is contained in U. Moore said that a point
z0 e X/R is in the closure of a set H c X/R if for each neighborhood W of
p~l(z0) there is a point z e H such that p~l(z) c W (but he does not use the
map p to express that property). If for each z e X/R the fiber p~l (z) is compact,
it is easy, using the "upper semicontinuity," to see that, for the topology thus
defined on X/R, p is continuous. If the relation R is also closed* that topology
is indeed the quotient topology.

In 1934 Seifert and Threlfall devoted a whole section of their book [421]
(pp. 31-35) to what they call "Identifizieren," defining a topology on the set
X/R; the relation R is arbitrary and X is any topological space (in fact the
spaces they consider are more general than what we now call topological
spaces, since the only axiom they impose on open sets is that any union of
open sets is open). They take as neighborhoods of a point z e X/R the images
p(U) of all neighborhoods U of p~l (z) in X; the map p is then continuous for
that topology. However, an open neighborhood of p_1 (z) in X does not always
contain an open neighborhood of the form p-1(V) for an open neighborhood
V of z, so that their topology may be strictly finer than the quotient topology.
It is again identical to the quotient topology when the relation R is closed.
This is proved by Seifert and Threlfall when X is a compact subset of some
R"; they also showed that in that case the topology of X/R is characterized
by the fact that if a map g: X/R -»• Y into a topological space Y is such that
g o p: X -»• Y is continuous, then g itself is continuous for the quotient
topology. When categorical notions were later introduced (Part 1, chap. IV, §8),
this could be expressed in more pedantic terms by saying that if ContR(X, Y)
is the set of continuous maps of X into Y that are constant on each equivalence
class of R, the functor Y i—> ContR(X, Y) is represented by the pair (X/R, p) with
the quotient topology on X/R (in the category T of all topological spaces).
Alexandroff and Hopf in their 1935 book independently gave the definition
of the quotient topology for a Tj-space X, assuming that the equivalence
classes are closed in X ([30], p. 61). They also mention its "categorical"
characterization.

The first completely general definition of the quotient topology is ap­

* In a topological space X, an equivalence relation R is closed if for any closed subset
F of X, the union of the equivalence classes of the points of F is also closed.
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parently given in Bourbaki's treatise [85] published in 1940. This book also
contains results concerning subspaces and products of quotient spaces. In
particular, it is not always true that the product (X/R) x (Y/S) is naturally
homeomorphic to (X x Y)/(R x S) * but it is so when Y and Y/S are both
compact. Quotient spaces intervene naturally in the study of continuous maps
/: X -»• Y; such a map is always naturally factorized into three continuous
maps

x4.x/rA/(X)-W
where p is the natural map, h is bijective, and i is injective. When / is open
(resp. closed) [i.e. maps open (resp. closed) subsets of X onto open (resp. closed)
subsets of Y], h is a homeomorphism and i is open (resp. closed); an important
case is when X is compact and Y is Hausdorff, for then / is closed.

§ 2. Collapsing and Identifications

A. Collapsing

If X is a topological space and A is a subset of X, consider the partition of X
consisting of A and of the singletons {x} for x e X — A. The corresponding
quotient space is written X/A and it is obtained by collapsing (or shrinking) A
to a point; it was used by J.H.C. Whitehead as early as 1938 ([492],
p. 107). If A is closed in X, the restriction of the collapsing map p: X -* X/A
to X - A is a homeomorphism of X - A onto X/A - {p(A)}. For any
cohomology theory such that H*(X,A) ^ H;(X - A) and H*(X/A,{p(A)}) ^
H'(X/A — {p(A)}) it also follows from the exact cohomology sequence that
Hp(X/A) ä H'(X,A) for p > 1 and fl°(X/A) ä fl°(X,A). This is applicable
when the closed set A is a strong deformation retract (Part 1, chap. IV, § 6,B)
of a fundamental sequence of open neighborhoods of A. If in addition A is
contractible, H"(X/A) ^ H"(X) for p > 1 and fl°(X/A) ^ fl°(X). If A c B are
two closed subsets of X, the image p(B) into X/A is homeomorphic to B/A,
and there is a natural homeomorphism (X/A)/(B/A) 2J. X/B.

B. Cones

Let X be any topological space, and consider the space Y = X x [0,1] and
its closed subspace A0 = X x {0}. The space Y/A0 is called the unreduced cone
over X and written CX; it is clearly contractible, and X is identified to the
closed subspace image of X x {1} in CX. From the exact sequence of relative
homology,

H,(CX, CX - X) a. H,_,(X) for q > 1,
H!(CX,CX-X)^H0(X). (1)

* This was wrongly asserted in the first edition of that book.
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If x0 e X, the reduced cone (or simply cone) over (X, x0) is the quotient space

CX = Y/((Xx{0})u({xo}x[0,l])). (2)
It is also contractible to the point x0.

C. Suspension

Keeping the same notations as in B, let A1 = X x {1}, and consider the space
Y/(A0 uÂJï CX/X, written §X and called the unreduced suspension of X: all
points of X x {0} are identified to a single point a0 and all points of X x {1}
to a single point aj. That construction was introduced by Freudenthal in 1937
[201], and its properties were a landmark in homotopy theory (Part 3, chap.
II, §6,E). The space §X is covered by two open subsets U0 = §X — {a0},
Uj = §X — {a1} which are contractible, and X is a strong deformation retract
of U0 n Uj. This implies, by the Mayer-Vietoris exact sequence, the existence
of a natural isomorphism

c:Hp(X)^Hp+1(§X) forp^l; (3)
for p = 0, H°(X) has to be replaced in (3) by the reduced cohomology fl°(X),
and fl°(§X) = 0.

It can immediately be verified that §(S„) is homeomorphic to Sn+1; the
isomorphism (3) thus gives another way of computing H'(S„) by induction on
n.

Write [x, t\ the image of the point (x, t) e X x [0,1] in §X, so that [x, 0] =
a0, [x, 1] = at. If x0 is a point of X, the reduced suspension (or simply
suspension) SX of X is obtained by collapsing the set of all [x0,t] to a single point;
it can also be written CX/X. For a CW-complex (§ 3) the natural map §X -»• SX
gives isomorphisms in homology and cohomology.

D. Wedge and Smash Product

Let X, Y be any two spaces, x0 e X, y0 e Y. The wedge X v Y of the "pointed"
spaces (X, x0 ) and (Y, y0 ) is defined by considering the disjoint sum X ]J Y and
identifying x0 and y0 in that space. It is homeomorphic to the subspace

({x0} x Y)u(Xx{y0}) (4)
of the product X x Y. If {x0} (resp. {y0}) is a strong deformation retract of
one of its neighborhoods, then

H°(X v Y) ~ H°(X) © fl°(Y), H"(X v Y) ~ HP(X) © H"(Y) for p ^ 1.
(5)

The space obtained by shrinking to a point the subspace (4) of X x Y is called
the smash product of (X, x0 ) and (Y, y0 ) and is usually written X a Y; moreover,

[0,1] a X ~ CX, S, a X ~ SX. (6)
For an arbitrary family (Xa, xj of pointed spaces, the wedge \JaX„ is similarly
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defined by taking the topological sum ]JaXa, and collapsing the set of all xa
to a single point.

E. Join of Two Spaces

We have seen that Poincaré had already considered the "join" of two poly­
hedra (Part 1, chap. I, § 3). This notion can be defined for two arbitrary spaces
X, Y. Consider the product X x Y x [0,1] and in that space the partition
formed of:

the singletons {(x,y, t)} for 0 < t < 1, x e X, y e Y;

the sets {x} x Y x {0} for all x e X;

the sets X x {y} x {1} for all y e Y.

The join X * Y is the quotient space of X x Y x [0,1] by the corresponding
equivalence relation. The natural map p: XxYx[0,l]-»X*Y sends
X x Y x {0} onto a closed subspace homeomorphic toX, XxYxjl} onto
a closed subspace homeomorphic to Y.

Write [x, y, t] = p(x, y, t); the complement U0 (resp. U, ) of p(X x Y x {0} )
(resp. p(X x Y x {1}) is retracted on X (resp. Y) by the homotopy

([x,y,t],u)i->[x,y,tu] (resp. ([x,y,t],u)i->[x,y,(l - u)t + u]).

On the other hand, X x Y may be identified with a deformation retract of
U0 n Uj by the homotopy

([x,y,t],u)i->[x,y,iu + t(l - «)].

The Mayer-Vietoris sequence then shows that

H„(X * Y) ^ H„(X x Y)/H„(X v Y) for n>\. (7)
The unreduced cone CX is the join of X and a single point, the unreduced
suspension §X the join of X and a pair of points.

When X and Y are CW-complexes (§ 3), X * Y has the same homology as
X a Y.

F. Doubling

Let M be a pseudomanifold-with-boundary of dimension n, and let S be its
boundary (chap. I, § 3,A). Consider a homeomorphism h: M -»• M' of M on
another pseudomanifold-with-boundary M' with boundary S', so that h(S) =
S' ([421], p. 129). In the disjoint topological sum Y = M \\ M' let R be the
equivalence relation whose classes are the pairs {x,h(x)} for x e S and the
singletons {y} for the other points. In X = Y/R the points of S and h(S) are
identified by h. X is called the double of M; it is a pseudomanifold of dimension
n without boundary, and it was studied by Lefschetz ([301], p. 258-270)
and van Kampen. The map /: M TJ M' -»• M, such that f(x) = x for x e M,
f(x') = h~x(x') for x' e M' is factorized into
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M[]M'^Y-Im
where M is made into a quotient space of Y by the map q.

The same thing can be done when M is a "C°-manifold-with-boundary" of
dimension n, with boundary L: L is closed in M, M — L is an n-dimensional
C°-manifold, and every point x e L has an open neighborhood V in M such
that there is a homeomorphism of V onto Rn_1 x [0,1[ sending V n L onto
R" _1 x {0}; L is then a C°-manifold of dimension n - 1 (cf. Part 3, chap. VII,
§!)•

It was proved in 1962 [94] that if M is compact, there is a homeomorphism
of L x [0,1[ on a neighborhood U of L in M keeping the points of L fixed.
This implies that L has a fundamental system of neighborhoods of which it is
a strong deformation retract; it follows that HP(M,L;Z) is isomorphic to
HP(X, X - M; Z), M being identified with a closed subset of its double X.
Alexander duality then shows that if M is orientable, the Lefschetz duality
holds for singular homology and cohomology ([440], p. 298):

H"-«(M, L; Z) ~ H,(M; Z), H,(M, L; Z) ~ H-«(M; Z). (8)
There is also the exact sequence

• • • -» H"(X) -+ H"(M) © H"(M) -+ Hp(L) -+ Hp+1 (X) -+ • • • (9)

which in particular implies, for the Euler-Poincarè characteristics,

X(X) = 2x(M) - z(L); (10)
therefore, if X is oriented, as y(X) is even (and 0 if n is odd), x(L) is even.

For nonorientable C°-manifolds-with-boundary, there are similar results
for homology and cohomology with coefficients in F2.

G. Connected Sums

A construction similar to the "double" is the process of forming "connected
sums" of two connected C°-manifolds X, Y of same dimension n ([421],
p. 218). Consider a point x0 e X, a point y0 e Y, and two charts q>: U -»• B,
i//: V -»• B, where U (resp. V) is an open neighborhood of x0 (resp. y0) and B
is the open ball \z\ < 1 in R". Let B' be the closed ball \z\ «S \ in R", S its
boundary [an (n — l)-sphere] and h a homeomorphism of S onto itself. Take
the disjoint sum

(X-^-^B'JJLKY-r^B'))
and identify the points x e <p_1(S) and y e i//'1(S) in that space if \j/(y) =
h(<p(x)). It is easy to see that the quotient space Z is again a connected
C°-manifold, called a connected sum of X and Y and written X # Y. It can be
proved that, except perhaps for n = 3, if X and Y are oriented and h reverses
orientation, Z is oriented and does not depend on the choices made, up to
homeomorphism ([400], pp. 42-45). If X and Y are C-manifolds with r > 1,
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X # Y is also a C-manifold (and the intrinsic character of X # Y is then much
easier to prove). Under the same assumptions,

H"(X # Y) ~ H"(X) © H"(Y) for 1 < p ^ n - 1. (11)

§ 3. Attachments and CW-Complexes

The idea of adjunction space or attachment of a space to another one was
introduced in 1938 by J.H.C. Whitehead for the study of homotopy ([492],
p. 115). Let X be a topological space, A be a subspace of X, and /: A -»• Y be
a continuous map; consider the disjoint sum X ]J Y and in it the equivalence
relation R for which the classes are the singletons {x} for x e X - A and the
sets {y} u f'1 (y) for y e Y. The quotient space (X ]J Y)/R is said to be obtained
by attachment of X to Y along A by means of f and is sometimes written
XujY. If p: X ]J Y -»• X uy Y is the natural map, it can immediately be
verified that the restriction of p to Y is a homeomorphism onto p(Y), so that
Y can be identified with a subspace of X Uy Y. Similarly if A is closed in X, the
restriction of p to X — A is a homeomorphism of X - A onto the open subset
(X uy Y) — p(Y). If X and Y are normal spaces and A is closed in X, then
X Uy Y is normal.

A. The Mapping Cylinder

Let /: X -»• Y be a continuous map. The mapping cylinder Zf of /, defined in
1939 by J.H.C. Whitehead for use in his work on homotopy ([493], p. 115),
is obtained by attaching the closed subspace X x [0,1] to Y along the closed
subspace X x {1} by means of the map (x, 1 ) i-> f(x); X and Y are thus
identified to closed subspaces of Zs by the maps x i—> (x, 0) i—> p(x, 0) and y i—> p(y). Y
is also a strong deformation retract of Zf by the homotopy (z, u) i—> r(z, u) of
Zy x [0,1] into Zy, defined by

fr(p(x,t),u) = p(x,(l - u)t + u) for xe X, 0 «S t, u «g 1,
\r(p(y),u) = P(y) for y e Y.

The reduced mapping cylinder Zf is obtained by collapsing the set
P({xo} x [0,1]) in Zy to a point; Y is still a strong deformation retract of Zy.

B. The Mapping Cone

A construction similar to the preceding one gives the mapping cone Cf of the
map/, defined by Barratt in 1955 in a particular case [43] and generalized by
Puppe in 1958 [384]. Instead of X x [0,1], consider the reduced cone CX
{§ 2,B), in which X is naturally embedded, and attach CX to Y along X by
means of/, so that Cy = Y ur CX. Another definition is Cy ^ Zy/X.

If A is a closed subspace of X and i: A -»• X is the natural injection, then
X/A is naturally homeomorphic to (X u( CA)/CA.
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C. The CW-Complexes

In his study of the homology of grassmannians (§ 4) begun in 1933 Ehresmann
was led to consider a partition of a space X into "cells" of a more general type
than those in use up to that time. For each dimension p a cell of dimension p
is still homeomorphic to an open ball in Rp, but its boundary in X is not
necessarily homeomorphic to Sp_1 as for usual cells. This idea was developed
in more general contexts by J.H.C. Whitehead in 1941 ([492], p. 273) under
the name of "membrane complex," which he changed in 1950 to CW-complex
(abbreviation of "closure finite complex with weak topology"), in a systematic
exposition of the properties of these spaces ([493], pp. 95 105).

By definition, a CW-complex (also called CW-space in some texts) is a
Hausdorff space K equipped with a partition (E0, E1,..., E„,... ) into a finite
or denumerable family of subsets. Each E„ is itself a disjoint union of a family
(e])jeK indexed by a set of arbitrary cardinal. The e" are called the n-cells of
K. For each cell e", there is a continuous map ff of the unit closed ball
D„: \z\ ^ 1 in R" into K, such that

a. f"(Dn) = e", closure of e" in K (which therefore is compact),
b. the restriction f"\t)n to the open ball \z\ < 1 is a homeomorphism ofthat ball

onto e", and
c. if K"-1 is the(« - l)-skeleton of K, union of the Emfor m ^ n - UffiS^^

is contained in K"-1, and only meets a finite family of m-cells for m =$ n — 1.

A finite CW-complex, by definition, is a CW-complex having only a finite
number of cells (of all dimensions); it is compact. For infinite CW-complexes
Whitehead also imposed the condition that

d. K has the "weak" topology, i.e., a subset A of K is closed in K if and only
if its intersection A n e" is closed in e" for every cell.

Each e" is then open in E„. For that topology, K is always paracompact [348].
The dimension of K is the largest integer n such that E„ # 0 if such an integer
exists and +oo if not.

The usual cell complexes are CW-complexes. A simple example of CW­
complex is given by the sphere S„ with two cells, one e° consisting of a single
point, to which is attached a single «-cell. In order to visualize the map
p: D„ -»• S„, identify D„ with the lower hemisphere of S„ (defined by 0 =$ 8 <
7i/2, where 6 is the angle of the vector x with the vector -en+1 in Rn+1); p(x)
is then the point on the same meridian as x but the angle of p(x) and — en+1
is 26; the attaching map g: S„_! -»• {en+1} is constant.

A CW-subcomplex of a CW-complex K is a union L of a set of cells of K
such that if e" c L, then e" a L. It is a closed subspace of K, and every
neighborhood of L in K contains a neighborhood of which L is a strong
neighborhood retract; furthermore, on the space K/L obtained by collapsing
L to a point (§2,A) there is a natural structure of CW-complex [459]. In
general the closure e" of a cell in K is not necessarily a CW-subcomplex. The
«-skeleton K" of K is a CW-subcomplex of dimension «, and E„ is open in K".
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Any compact subset of a CW-complex K meets only a finite number of cells
and is contained in a finite subcomplex of K.

The product K x L of two CW-complexes is not always a CW-complex
but it has such a structure if K or L is locally compact.

One of the main properties of CW-complexes is that it is possible to define
a continuous map /: K -»• X of a CW-complex into a space X step by step by
defining them in succession on the «-skeletons K" of K. If/ is already defined
on K", consider on the closure of each (n + l)-cell e"+1 a continuous map
yn+i. en+\ _^ ^ and çfaççfc tjjat yn+i coincides with the already defined / on
K-neT1.

The process of attaching cells allows one to construct CW-complexes for
which the sets of indices J„ have arbitrary cardinality. Start with an arbitrary
discrete space J0 and attach «-cells step by step. If K"-1 is an (« — 1)­
dimensional CW-complex and if «-cells (e")aeJii are attached to K"""1 by maps
f", then the resulting space K" is a CW-complex of dimension «. If the process
is repeated for all values of«, and K is the set, union of the increasing sequence
of the spaces K", and if the fine topology is taken on K (i.e., a subset F of K
is closed for that topology if and only if its intersection with each K" is closed
in K" *), then the space K thus obtained is a CW-complex ([459], p. 71).

Note that this construction gives the definition of a simplicial complex (as
a space with a triangulation) without any restriction on the cardinal number
of the simplices of each dimension nor on the cardinal number of the simplices
whose closure contains a given simplex. ,4«y combinatorial complex (Part 1,
chap. II. §2) thus gives rise to a triangulation of a space to which this
combinatorial complex corresponds.

The construction of a CW-complex by successive attachments of cells yields
information on its homology. If K" is the «-skeleton, the singular homology
H.(K", Kn_1;Z) is entirely determined by the cardinal number of the set of
«-cells. Let M be a subset of K" — K" ' whose intersection with each «-cell
reduces to one point, then H.(K", K""1) ^ H.(K", K" - M), because K"""1 is a
strong deformation retract of K" - M. If U = K" - K"'1, H.(Kn,K" - M) ~
H.(U, U - M) by excision. Finally, as U is the disjoint union of all «-cells,
Hp(U,U - M) = 0 for p # « and H„(U,U - M) a. Z<J->. In a similar way,
H"(Kn, K""1; Z) ~ Z(J->. All this extends to arbitrary rings of coefficients.

Suppose that K is a finite CW-complex of dimension «, and let mk be the
number of /c-cells. Elementary computations of dimensions in the homology
exact sequence of a triple (Part 1, chap. IV, §6,B) give the inequalities

dimFHp(K;F)^mp (13)
for any field F, and in particular for the Euler-Poincaré characteristic

* Milnor ([347], p. 63) rightly protests against the use of the name "weak topology"
for that topology, since it is contrary to the use of the term "weak" in functional
analysis.
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X(K)= t (-\)pmp. (14)
The notion of CW-complex may be generalized to that oîrelative CW-complex
(X, A): this is the space obtained by successive attachments of «-cells for
increasing values of « "2= 1, but starting with an arbitrary Hausdorff space A
instead of a discrete space. The n-skeleton (X, A)" is defined by induction,
taking (X, A)0 = A, and (X, Af is the subspace obtained by attachment of all
the «-cells of (X, A) to (X, A)"""1. The relative dimension of (X, A) is the smallest
integer « for which (X, A) = (X, Af, and +oo if (X, A) # (X, A)" for all «.

§ 4. Applications: I. Homology of Grassmannians,
Quadrics, and Stiefel Manifolds

A. Homology of Projective Spaces

Among the "usual" spaces whose homology with coefficients in Z is not
computed in a trivial way, the projective spaces P„(F), where F is one of the
fields R, C, or H, were some of the first to be considered. The homology of
P„(C) was determined in papers by Hopf ([242], p. 30) and van der Waerden
[478]; their elementary method also gives the "intersection ring" of P„(C), and
can immediately be extended to P„(H). For P„(R) a similar method is described
in the book by Seifert and Threlfall ([421], p. 118).

The principle of these proofs is an induction on «. If (xj)0<J<n are
homogeneous coordinates in P„(F), the subspace defined by the equations xk+1 =
■ ■ ■ = xn = 0 is identified with Pt(F). If F = R and sm is a singular m-cycle with
m < n, it can be assumed, by simplicial approximation, that its image does
not contain the point (0,0,..., 0,1). The homotopy

((X0,Xj,.. . , X„), t)l—>(X0,Xj,..., Xn_j, tXn)

shows that sm is homologous to a singular m-cycle in P^^R), and the process
may be continued until one arrives at an m-cycle in the space Pm(R). For F = C
(resp. F = H), the same result obtains for m <2n (resp. m < 4«), with P[m/2](C)
[resp. P[m/4](H)] replacing Pm(R). For F = C (resp. F = H) it is then easy to
see by induction on « that

Hk(P„(C); Z) = 0 if k is odd, Hk(Pn(C); Z) ~ Z if k is even, (15)

Hk(P„(H); Z) = 0 if k # 0 (mod. 4), Hk(Pn(H); Z) ~ Z if k = 0 (mod. 4).
(16)

For F = R, P„(R) is orientable if « is odd, nonorientable if « is even. The
induction then uses the general result that for a connected compact pseudo­
manifold M of dimension «, H„(M;Z) ~ Z is M is orientable, but if M is
nonorientable, H„(M; Z) = 0 and the matrix of the boundary map b„: C„ -»•
C„ j from «-chains to (« — l)-chains has a single invariant factor # 1, equal
to 2 ([421], p. 89). The final result is
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H,(P„(R);Z)

0 for k even and 2 =$ k =$ n,

Z/2Z if k is odd and 1 ^ k ^ n - 1, (17)
Z if k = 0 and k = n when n is odd.

More sophisticated proofs use CW-complexes (see below) or fiber bundles
(Part 3, chap. IV, §2).

B. Homology of Grassmannians

If F is one of the fields R, C, or H, the grassmannian Gnp(F) is the set of
all p-dimensional vector subspaces of the vector space F" over F; Gn+11(F)
is therefore the projective space P„(F). When F = R (resp. F = C, F = H),
G„,p(R) is naturally a homogeneous space for the orthogonal group 0(w, R)
[resp. the unitary group U(w, C), resp. U(w, H)], hence has a natural structure
of Cœ manifold.

In 1933-1934 Ehresmann, in his thesis ([154], [155]), determined a basis
for the singular homology H.(G„ P(C); Z) of all complex grassmannians by the
introduction of a special structure of CW-complex on these spaces. For that
purpose he used algebraic subvarieties of G„iP(C) introduced in algebraic
geometry by H. Schubert in 1879 [417]. For every k < n, a Schubert symbol
a of order k is a sequence of k integers <jy such that

1 =$ o-j < a2 < ■ • ■ < ak < n. (18)
Denote by Ck the vector subspace of C spanned by the k first vectors of the
canonical basis. To each Schubert symbol a can be associated the subset e(a)
of G„iP(C) consisting of the p-dimensional vector subspaces X such that

dim(X n C<) = i, dim(X n C1'1 ) = i - 1 for 1 < i «S k. (19)

The closure e(a) in G„iP(C) is called a fundamental Schubert variety; it is an
algebraic variety (with singularities).

In his thesis Ehresmann proved that e(a) is homeomorphic to an open ball
in the space R2m<<7>, where

m(a) = («7» - 1) + (<72 - 2) + ■■■ + (a* - k). (20)

Furthermore, he showed that the boundary e(a) — e(a) is the union of the
closed cells e(x), where t is any one of the Schubert symbols obtained by
replacing at by a{ — 1 (1 «S i =$ k), provided the sequence thus obtained still
satisfies (18).

The fact that in the CW-complex Gnp(C) thus defined, there is no cell of
odd dimension immediately implies that Hk(G„ P(C);Z) is a free Z-module,
having as basis the homology classes of the Schubert varieties e{a) such that
2m(a) = k. Ehresmann also determined the intersection numbers of the e(a)
of complementary dimensions, obtaining by topological means the formulas
given by Schubert and Severi.

In a later paper [156] he studied the homology of the real grassmannians
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G„iP(R) in the same way. All definitions are the same, the field C being
everywhere replaced by R, and e(a) is now homeomorphic to an open ball in the
space Rm(<7), so that there are now cells of every dimension =$(p + l)(w — p).
Ehresmann explicitly computed (for suitable orientations) the boundary
operator

k

e{a1,a2,...,ak)^Y. 1ie(a1,...,ai^1,at - l,ot+1,...,ok) (21)
(=1

where on the right-hand side only the meaningful Schubert symbols must be
kept, and

rj. = 0 if 0-; + k + i is odd,
■7i = 2(-iri+'72+"'+'7' ifo-, + /c + iiseven. * '

In 1947 Chern [126] completed that result by determining the ring structure
of the singular cohomology H"(Gnp(R);F2). Pontrjagin [381] computed by
similar means the homology classes with coefficients in Z or in F2 of the special
grassmannian G'n,P(R), a two-sheeted covering space of G„-P(R) whose points
are the oriented p-dimensional vector subspaces of R" (see Part 3, chap. IV,
§ 1,B). Ehresmann also showed how similar methods can determine the
homology of flag manifolds.

C. Homology of Quadrics and Stiefel Manifolds

For F denoting one of the fields R, C, or H, the Stiefel manifolds S„ P(F) were
defined by Stiefel in 1936 during his investigations of vector fields on spheres
[457] (see Part 3, chap. IV, § 1,A). Let (x|y) be the hermitian scalar product

(x|y) = x1y1 +x2y2 + ■■■ + x„y„

on the vector space F" over F. For 1 =$ p =$ n — 1, S„ P(F) is the subspace of
F"p consisting of the p-tuples (x1,...,xp) of orthonormal vectors of F" [i.e.,
(x.iXj) = <y.

Stiefel (and independently Whitney in [505]) only considered the space
S„ P(R) = S„ p, and identified it with the space of pairs

(xu(y2,...,yp))

formed by a point xl e Sn^l and a system (y2,...,yp) of unitary vectors of
origin x1 in the tangent hyperplane to S„_! at the point Xj. Let s' (resp. s") be
the stereographic projection of SR_l - { — e„} (resp. S^ — {e„}) onto Rn_1,
and let S^-p (resp. S£-p) be the part of S„ p corresponding to the points x1 in
the closed hemisphere of S„_! with w-th coordinate Çn>0 (resp. £,„ < 0), so that

Furthermore, the fact that s' and s" preserve orthogonality of tangent
vectors easily implies that S^ p and S£ p are both homeomorphic to the product

-l x Sn_! p_ j, and SJ,P n SJ,'P homeomorphic to Sn_ 2 x Sn_lp_!. Using this
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decomposition of S„ p as the union of two product spaces, to which he applied
induction and the Künneth formula, Stiefel showed that S„ p is a compact
orientable Cœ manifold of dimension p(2n — p — l)/2 and constructed a
triangulation of that manifold that enabled him to partially compute the
simplicial homology of S„ p by reduction to the case p = 2. His results are

Hr(S„ p) = 0 for 1 =$ r < n — p,
Z if n — p is even,
Z/2Z if n — p is odd

[Whitney only computed (without proof) H„_P(S„iP)].
In [155] and [156], Ehresmann had studied the homology of the space of

maximal linear subvarieties (of dimension n) in a projective quadric over R
orC

x0 + xl + ■■■ + xn — xn+l - • ■ • — x2n+1 = 0 (23)

[or equivalently, the subspace of G2n+2,n+i(F) (for F = R or C) consisting of
the maximal isotropic subspaces for the quadratic form (23)]. He defined a
structure of CW-complex for that space by the same method (using Schubert
symbols) he applied to grassmannians. In 1939 [157] he considered more
generally the space of maximal linear subvarieties (of dimension p) in the
projective real quadric Q„ p

xl + x2! + ■■■ + xï-x%+l -•■•-xl+p+l =0 forp<w, (24)
and observed, by a simple geometric construction, that this space is homeo­
morphic to the Stiefel manifold Sn+1 p+1(R). He extended this homeomor­
phism to Sn+1 P+1(F) for F = C or F = H by considering the complex or
quaternionic "hyperquadric"

•!'"o-''"o + XjXj + '" + XnXn — Xn+1Xn+1 — ••• — Xn+p+1Xn+p+1 = U (Zj)

and the space of maximal complex (resp. quaternionic) linear subvarieties that
they contain, and showed that his general method could again apply to that
space. As the Stiefel manifold Sn+1 n+1(F) is the unitary group in the space
Fn+1, he had thus described another method of computation for the homology
of these groups.

In the theory of fiber bundles (Part 3, chap. Ill, §2,E) it was found that the
computation of the homotopy groups of the Stiefel manifolds S„ P(R) was a
useful tool. J.H.C. Whitehead described another decomposition of S„ P(R) as
a CW-complex for that purpose ( [492], pp. 303 355). This was further studied
by C. Miller in 1951 [338], who used it to describe the cohomology of S„ P(R).
The cells are again in one-to-one correspondence with some Schubert symbols
a. Consider first the group of rotations SO(w, R) = S„ „^(R); for each
component oj of a, let HCTj. be the half-space of R"j whose points have their Oy-th
coordinate >0. On the other hand, for any x e S„_!, let h(x) be the symmetry
with respect to the hyperplane orthogonal to x, and let f(x) be the rotation

H„-p(S„ p)



§§4C,5 V. Quotient Spaces and Their Homology 227

h{x)h(e j ). Then consider in SO(n, R) the set R(<r) consisting of all the rotations
of the form

/(xa/K-.v-.flx,)
for xy g S„_! n HCT . For all Schubert symbols satisfying the inequalities

n — p < G\ < a2 <■■■ < ak<n

the set B(<j) c S„ p(R) then consists of the elements

u • \ßn-p + li ^n-p+2' • • • ' 6B)

for all u g R((j). J.H.C. Whitehead proved that B(<r) is homeomorphic to an
open ball of dimension m = a1 + a2 + • • • + ak; they constitute the cells of a
CW-complex structure on S„ P(R), and the closure of B(<r) in S„ p(R) is
homeomorphic to the "stunted projective space" Pm(R)/Pm_!(R). Miller also
determined the boundary formulas

B(a1,a2,...,ak)^Y. ayBK,---,Oj - \,...,ak)
j

where the sum is extended only to the Schubert symbols which are meaningful,
and

a. = ((-iy + l)(-l)<"c+^-i + -+<'^i

from which he could compute explicitly the homology with coefficients in Z
as well as the cohomology algebra. The same method applies to complex and
quaternionic Stiefel manifolds.

The homology of projective complex quadrics was determined by E. Cartan
[98]. J. Nordon, a student of Ehresmann, completely described the homology
of projective real quadrics, using a CW-complex structure and the fact that
for quadrics not homeomorphic to spheres a product of two spheres is a
covering space [357].

Further progress in the theory of Lie groups and homogeneous spaces
showed that Schubert varieties can be generalized in other Lie groups [210].

§ 5. Applications: II. The Morse Inequalities

If M is a pure Cx manifold of dimension n, / is a real valued Cœ function
defined on M, and x0 is a critical point of / (Part 1, chap. Ill, § 1), then, in a
sufficiently small neighborhood of x0, the Taylor expansion of f(x) — f{x0),
expressed in terms of local coordinates ul,...,u„, begins with terms of degree
"52; x0 is called a nondegenerate critical point if the sum of the terms of degree
2 in that expansion is a nondegenerate quadratic form. Nondegenerate critical
points are isolated. The index of a quadratic form (degenerate or not) is the
maximal dimension of a vector subspace on which the form takes value <0
except at the origin. The index of a critical point x0 is the index of the quadratic
form consisting of the terms of degree 2 in the Taylor expansion of/(x) — /(x0);
it is a number independent of the choice of local coordinates.
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As a nondegenerate critical point x0 is characterized by an inequality
between the derivatives of the function / at x0 (with respect to the local
coordinates), it is to be expected that "in general" critical points are non­
degenerate. This was made precise by Marston Morse in 1931 [354] when M
is compact: for the C topology (r integer ^2), the functions on M with
nondegenerate critical points form a dense set in the space of C functions. The
elegant proof consists in embedding M into a space RN in such a way that the
function / is equal to the first projection prj in M, and choosing a point
z = ( —c + ej,e2,...,eN) in RN with large c > 0 and small Ej (1 =$ j < N); the
function

0(x) = (|x-z|2-c2)/2c

approaches / on M as closely as one wishes in the C topology, and it is easy
to see that its critical points are nondegenerate.

For the purposes of his researches in the calculus of variations (chap. VII,
§ 3), this approximation property allowed Morse to restrict his investigations,
for C°° functions on a compact manifold M, to functions having only
nondegenerate critical points; the number of these points is then finite. Letting Q
be the number of these points of index j (0 < ; < n), Morse discovered
relations between these numbers and the homology (mod. 2) of M.

Some special cases of these relations had been met before Morse. In 1885
Poincaré, in his work on differential equations on surfaces, had shown that
"in general" a differential equation

on a compact orientable surface M c R3 (where X and Y are polynomials)
has singular points (those where X and Y vanish simultaneously) classified as
nodes, saddle points, and foci, and that the respective numbers N, S, and F of
these points satisfy the relation

N-S + F = 2-2# (27)
where g is the genus of M ([365], p. 125) The "level curves" f(x,y) = a of a
C°° function / defined on M may be considered as integral curves of a
differential equation (26) (with functions X, Y more general than in Poincaré's
paper). In general the numbers N, S, F are exactly the numbers C2, Q, and
C0 of critical points of/.

In 1917, in his work on dynamical systems ([48], p. 42), G.D. Birkhoff had
to study the critical points of a function / defined on an n-dimensional
manifold M. In addition to the usual relative extrema of/he considered what
he called a minimax critical point, which he defined by the property that if x0
is such a point and f(x0) = c, the set Mc of points x g M such that f(x) < c is
not connected around x0. Introducing the index of a critical point, he showed
that the minimax points are those of index 1. In order to study those points
when M is compact and orientable, he had the idea of considering the open
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subsets Ma of M defined by f(x) < a when a varies, and arguments in the
Poincaré "intuitive" style gave him the inequality

Cj - C0 "5 Rj - R0 where Ry = dim Hy(M; F2). (28)
In 1925 M. Morse showed that these results are particular cases of the

inequalities valid for any C° function / on a compact C°° manifold with
nondegenerate critical points:

C0 ^ R0>

Q,., - C„_2 + ••■ + (-ir2C0 > R„_, - R„_2 + ••• + (-ir2R0

to which must be added the equality

C„ - C-, +•■■ + (- lr-'Co = R„ - R^ + •+(- lr'Ro- (30)
In order to prove these results he took up Birkhoff s idea of looking at the
variation with a of the open Ma, and in particular (using this time the rigorous
simplicial homology theory developed by Veblen, Alexander, and Lefschetz)
seeing what happens to their "Betti numbers in homology mod. 2" (which at
that time were still called "connectivities") when a crosses a value of / at a
critical point. His intricate arguments are better understood by using the
concept of "relative homology" of Lefschetz, as Seifert and Threlfall did in
their book on Morse theory ([422], pp. 85-92).

Let x0 be a nondegenerate critical point of /, and f{x0) = y. Consider a
relative /c-cycle Zk modulo M.. on the subspace My u {x0}. If k is not equal to
the index of x0, Zk is a relative boundary modulo My; if k is the index of x0,
there is exactly one relative /c-cycle Zk (over F2), up to relative boundaries,
which is not a relative boundary modulo Mr Then there are two possibilities
for that /c-cycle: it may be an absolute boundary in My or not; in the second
case, Zk becomes an absolute boundary in My u {x0}. The "/c-th connectivity"
therefore increases by 1 in the first case and decreases by 1 in the second.

If mk (resp. mk) is the number of critical points of the first (resp. second)
type, then

Ck = mk + mk and Rk = mk — mk+l
hence

Ck-Rk = mk + mk+1

and as mö = mn4rl = 0, this immediately implies (29) and (30).
The modern presentation of the Morse inequalities ([345], [461], [363])

makes essential use of the idea of attaching cells to a space, and has found
other quite startling applications to differential topology. The central result
is that the existence of a C°° function / on a compact C" manifold M having
only nondegenerate critical points implies that M has the same homology as
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a CW-complex defined by attachment of suitable cells corresponding to the
critical points. The Morse inequalities (29) and the relation (30) then follow
from the general properties (13) and (14) of the homology of a CW-complex
(§ 3), and are in fact valid for homology over an arbitrary field.

In more detail, the first step consists in considering, for two numbers a < b,
the closed subset f~x{\_a, o]) when it contains no critical point. Then, using a
Riemannian structure on M, the assumption implies that the vector field
grad(/)is =£0 everywhere in/-1 ([a, o]). For a suitably chosen C°° vector field
X defined on the whole manifold, vanishing outside of a neighborhood of
f~l{[_a, b~\), and proportional to grad(/)in/-1([a, o]), the flow* ¥x(x,t)oiX
is defined in the whole space M x R, and each map ht: xt-^Fx(x, t) is a
homeomorphism of M onto itself. For a < c < d < b, hd_c transforms Mc into
Md, and Mc is thus a strong deformation retract of Md.

The crucial point is what happens in the vicinity of a critical point x0 of/,
of index k. Using the Taylor formula and the Gram-Schmidt orthonormaliza­
tion process, Morse ([354], p. 172) showed that there are in a neighborhood
U of x0 local coordinates vanishing at the point x0 and such
that the local expression of / in U is

/(x) = c-Q1(u) + Q2(u) (31)
with

Qi (u) = u\ + u\ + • • • + ul, Q2(u) = ui+1 + ■ ■ ■ + u„2. (32)

The next step is to modify / in U in such a way that for the modified function
g the sets N, defined by g{x) < t are easier to study than the M(. More precisely,
g has to satisfy the following properties:

1. g coincides with / in M — U.
2. If £ > 0 is small enough, so that the ball B£ defined by

n

j=i

is contained in U, then Mc+e = Nc+£, and g has no critical point in
g~l{[c - e,c + £]).

3. g has the same critical points as /, with the same index.

Property 2 and the preliminary result then imply that Nc_£ is a strong
deformation retract of Nc+£ = Mc+E, the critical point x0 (for both / and g)
being in Nc_£ - Mc_£.

* Recall that the flow of a C°° vector field X on a C°° manifold M is a function
(x, t) i-+ Fx(x, t) defined in the subset dom(Fx) c M x R consisting of the points (x, t)
where x 6 M and t e Jx, where J* is the largest open interval containing 0 in R, where
the solution 11-+ v(t) of the differential equation

v'(t) = X(v(t))

taking the value x for t = 0, is defined, and Fx(x, t) is the value of that solution.
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Such a function g can be constructed in the following way:

g(x) = f(x) - h(x) in M (33)
where h(x) = 0 for x <£ B£, and for x g B£,

h(x)=<p(Q1(u) + 2Q2(u)) (34)
where ip: R -> R is a C°° function such that

<p{0) > £, tp{t) = 0 for t ^ 2e, and - 1 < <p'(£) «S 0 in R. (35)
It can also be shown that there is a function r defined and C°° in [0,1] x M

with values in M and such that

r(t, x) = x for x g M - U,
r(t,x) = (u1,...,uk,\j/{t,u)uk+u...,\j/{t,u)u„) for x g U,

where i/^t, u) is a real C°° function such that 1^(0, u) = 0 and i/.(l, u) = 1. Then
r is ahomotopy that retracts Nc_£ onto Mc_£uD, whereDcUisdefined by
the relations Qj (u) < £ and Q2(u) = 0, so that D is homeomorphic to a closed
ball in Rk, and its intersection with Mc_£ is the sphere Qj(u) = e. Therefore,
Mc_£ uDisa strong deformation retract of Mc+£ and is obtained by attaching
a k-cell (§ 3) to Mc_£.

In the same way, for each critical point of/, it can be seen that M has the
same homology as a finite CW-complex having Ck /c-cells for each k such that
0 < k < n. From this, and the inequalities (13), the Morse inequalities (29)
follow.



Chapter VI

Homology of Groups and
Homogeneous Spaces

With a few exceptions concerning "abstract" groups defined "by generators
and relations" or commutative groups of special types, for mathematicians of
the nineteenth century a "group" is a group of transformations, that is, a set
G of bijections of a set X onto itself, the composition of two elements of G
and the inverse of an element of G being in G. This was already obvious when
the first groups were defined by Cauchy and Galois as groups of permutations
of a finite set. That properties of such a group G would imply properties of X
is the substance of the famous "Erlangen Program" of Klein. Conversely, the
fact that an "abstract" group is isomorphic to a group of transformations
having special geometric properties, such as linear transformations of a vector
space, may yield useful information on the group itself, an idea basic in the
theory of linear representations created by Frobenius.

These ideas acquired even more significance and power with the
introduction of continuity and differentiability considerations both in the space X and
in the group G in the work of Lie and his followers, although it took a long
time for most mathematicians to realize the wealth of applications opened by
those richer structures.

§ 1. The Homology of Lie Groups

Until 1925 the bulk of papers on Lie groups were concerned with local
properties reduced by Lie theory to the algebraic study of their Lie algebras. Global
Lie groups were not unknown; the "classical" groups had been considered by
Lie himself, and E. Cartan had given descriptions of global groups
corresponding to the five exceptional simple complex Lie algebras. It was known
that on a global Lie group there sits a measure invariant by left (or right)
translations. Hurwitz, in 1897, was the first to use that fact in order to
introduce the "mean value" of a continuous function on the orthogonal group
by analogy with the "mean value" of a function on a finite set, which device
enabled him to construct invariants for the actions of the orthogonal group.
When in 1924 I. Schur took up that idea and showed that by its use the
Frobenius theory of characters could be generalized for the orthogonal group,
H. Weyl, who was aware of E. Cartan's theory of linear representations of
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semisimple Lie algebras, realized that for compact Lie groups Cartan's results
could be obtained by global arguments of topology and measure theory,
generalizing Schur's method.

This was a challenge to E. Cartan, who during the next 10 years produced
a series of wonderful papers on the topological properties of global Lie groups
and their homogeneous spaces [98]. His main tools, as always, were the
exterior differential forms; we have seen (Part 1, chap. Ill, §3) how, in order
to use them in topology he took up Poincaré's remark on their relation with
homology and how de Rham was able to base the real cohomology of a C"
manifold on simple computations with these forms without any
"combinatorial" technique.

One of Cartan's main theorems is that a connected Lie group G is diffeo­
morphic to the product of a maximal compact connected subgroup K and a
subvariety diffeomorphic to some R". This implies that K is a strong
deformation retract of G, hence the singular homology (resp. cohomology) of G is
isomorphic to the singular homology (resp. cohomology) of K for any ring of
coefficients, thus reducing the homological theory of Lie groups to the case
of compact groups.

Cartan only studied real cohomology, using de Rham's theorems. Let G be
a compact Lie group, operating on the right on a C°° manifold M by a C"°
operation (s,x) i—> x. s. Since there exists a measure ds on G, invariant by left
and right translations and of total mass 1, Hurwitz's idea of taking mean values
on G of an arbitrary exterior p-form a on M may be applied: for any point
x g M, the mean value m(a) of a p-form a takes the value

m(a)(x) : a{x.s)ds. (1)
G

Now m(a) is invariant under the action of G on M, and if a is closed (resp.
exact), then m(a) is also closed (resp. exact). Furthermore, a and m(a) are
cohomologous on M; if H'G(M) is the graded subspace of the real cohomology
space H'(M), consisting of the classes of the differential forms invariant under
the action of G, this defines an isomorphism

m*:H"(M)^H-G(M). (2)
Cartan's interpretation of the real cohomology H'(G) of a compact Lie group
Gis obtained as a corollary by consideration of the action ((s, f), x)i—>s-1x£ of
G x G on G. A p-form is invariant under that action if it is bi-invariant, that
is, invariant under both left and right translations in G. The Lie Cartan
theory implies that for such a form a, da = 0, so that when one computes
H'gxg(G), all cochains are cocycles and all coboundaries are 0. Hence the
fundamental result that H'(G) is isomorphic to the graded algebra b*(G) of all
bi-invariant differential forms.

The explicit determination of H'(G) is thus reduced to an algebraic
problem. The group G operates on the dual g* of the Lie algebra g by the coadjoint
representation si—>'Ad(s); b*(G) is the sum of the one-dimensional subspaces
of g* stable for that representation; for a compact group, they can in principle
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be determined by Cartan's method of highest weights. This method can also
be applied to homogeneous spaces of a compact Lie group, and examples were
given by Cartan himself and by Ehresmann in his thesis and later papers.

The explicit determination of the real cohomology H'(G) was first made
along those lines by R. Brauer [86] for the classical compact groups of the
four classes A, B, C, D. Pontrjagin obtained the same results simultaneously
and independently by a direct construction of homology bases [379]. In those
cases their results confirmed the guess made earlier by Cartan: the real
homology of such a group G is the same as the homology of a product

Sm, x Sm2 x • • • x Smi (3)
of / spheres of odd dimension, I being the rank of G (dimension of a maximal
torus in G). Cartan had also proved earlier that for all connected compact Lie
groups G the Euler-Poincaré characteristic #(G) is equal to 2'. He had shown
that the Poincaré polynomial can be expressed by the integral formula

Pg(T) = det(Ad(s) + T./)ds. (4)
G

Then, using Weyl's integration formula in a compact group, he could deduce
from (4) that PG(T) is divisible by (T + 1)', and PG(1) = 2'.

We recall that the homology of the classical groups can be deduced as
special case from the homology of Stiefel manifolds, obtained by
decomposition of these manifolds into CW-complexes (chap. V, §4).

§ 2. H-Spaces and Hopf Algebras

A. Hopfs Theorem

In his survey of what was known in 1936 on the homology of compact Lie
groups [103], E. Cartan conjectured that there should be a general result
implying that the homology of the classical groups is the same as the homology
of a product of odd-dimensional spheres. In 1939 Hopf discovered that general
result [246], showing that it held for more general spaces than compact Lie
groups, and was in fact a consequence of two properties:

1. The functorial character of homology and cohomology;
2. The existence of a law of composition of a very general type on the space.

We shall first consider cohomology, although Hopf elected to express his
results for homology using his "Umkehrhomomorphismus" (Part 1, chap. IV,
§4), which is somewhat more awkward.* Lefschetz had observed that for any
space X the natural "diagonal" map ö: xi—>(x,x) of X into X x X gives a
homomorphism of graded A-modules

* This was a deliberate choice, for Hopf mentioned Freudenthal's paper in which he
connects the "Umkehrhomomorphismus" with cohomology [203].
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(5*:H-(X x X;A)->H'(X;A) (5)

for any cohomology theory applicable to all spaces and all rings of coefficients.
But if A is a field, the Kiinneth formula yields a natural isomorphism of graded
A-modules

H-(X; A) ® A H"(X; A) ^ H'(X x X; A).

Hence 5* may be considered as a A-linear map

H-(X;A)®AH-(X;A)-H-(X;A)

(6)

(7)

respecting the graduation. The properties of associativity and anticommuta­
tivity of the graded A-algebra H'(X; A) thus defined follow from the
consideration of the commutative diagrams

X x X

X x X
ö x l

1 x 6

-► X x X x X

X x X

ö

-> X x X

ö

where a is the exchange of factors (x,y)i—>(y,x).*
This yields the cohomology algebra H'(X;A) over the field A, and its

functorial character follows from the commutativity of the diagram

<5x + X x X

4YxY

for any continuous map /: X -> Y.
Now suppose that on X there is given a continuous law of composition

m: X x X -> X, usually written m(x,y) = xy. This defines a homomorphism of
graded algebras

m* : H'(X; A) - H'(X x X; A) (8)
and, for a field A, H'(X x X;A) is naturally isomorphic to the skew tensor
product1

* In H"(X x X: A),

a*(upxvq) = (-l)"%xul,
if up is homogeneous of degree p and v homogeneous of degree q ([440], p. 233).
+ For two graded algebras A, B over a field A, the underlying vector space of the skew
product A8 (g)A B is the tensor product A ®A B, and the multiplication is defined by

(u„ ® vq)(ur ® vs) = (-\r(upur) <g) (v„vs)

for homogeneous elements up, vq, ur. vs of degrees p, q, r, s.
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H-(X;A)<-®AH-(X;A). (9)
Of course this applies to topological groups, but Hopf discovered that to prove
Cartan's conjecture for Lie groups he needed much less. Suppose there is in
X a "homotopy neutral element" e such that e.e = e, and for any x g X the
maps xi—>x.e and xi—>e.x are homotopic to the identity. Such spaces are
now called H-spaces (no other property of the "multiplication" m is assumed).
Hopf showed that for such a space any homogeneous element z g H'(X; A) one
may write

m*(z) = 1 ®z + z® 1 +Xx.®yy (10)

where, in the sum, x,- and yy are homogeneous elements (not uniquely
determined) for which degx,- > 0, degyy > 0, and degz = degx, + degyy. He then
realized that all he needed for the proof of Cartan's conjecture was formula
(10) ([246], p. 142). In fact he supposed even less on the "multiplication" in X,
namely, that (for X compact) the degrees of the translations yi—>x0y and
x i—> xy0 are both =£0 for all elements x0, y0. He proved that in that case (10)
is replaced by

m*(z)= 1 ® A(z) +/i(z) ® 1 +Xx.®yy (••)
i.y

where X and n are now automorphisms of the graded algebra H'(X; A). But if
m* is replaced by m'* = (k~l ® /i_1) o m*, this homomorphism satisfies (10).
It is not hard to trace these generalized assumptions to Hopfs work of 1935
on the continuous maps S2)(_1 -> S^ (Part 3, chap. II, § 1,C), where he defined
on S,; (for k odd) a "multiplication" for which the degrees of xi—>xy0 and
yi—>x0y were + 1 and +2. It follows from the Kiinneth formula that if two
connected compact oriented manifolds Ml5 M2 have "multiplications" m1,m2
satisfying (11) for suitable automorphisms, then the same is true for the
product M j x M 2 for the multiplication

((x1,x2),(y1,y2))h^(m1(x1,y1),m2(x2,y2)).

The analogy Cartan observed between compact Lie groups and products
of spheres thus appeared in a new light and became more understandable; it
remained to be proved that the relation (10) for elements of H'(X; A) and a
field A are enough to determine the structure of the graded algebra H'(X; A).

This is in fact a purely algebraic problem. A graded, associative algebra A
with unit element 1 over a field A is now called a Hopf algebra if there exists
a homomorphism of graded algebras

A: A -> Ag ®A A (12)
(called a comultiplication) which, for every homogeneous element z g A of
degree > 0, satisfies a relation

A(z)= 1 ®z + z® 1 +Xx(®y,. (13)
'J

with homogeneous elements x„ y} such that deg x( > 0, deg yy > 0, and deg z =
degx,- + degyy. The theorem which Hopf proved in his 1939 paper can be
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formulated as follows:

If the field A has characteristic 0 and A is a finite dimensional anticommutative
Hopf algebra over A, with A0 = A, then there is a vector subspace Eo/A having
a basis (x1,..., x,) consisting of homogeneous elements of odd degrees, such that
A is isomorphic to the exterior algebra /\(E).

His proof can be presented in the following way.
First observe that in a graded anticommutative algebra every (left or right)

graded ideal is two-sided; if the algebra has finite dimension, every
homogeneous element of degree >0 is nilpotent.

Let m be the maximal ideal of A generated by the elements of degree >0,
and for each p ^ 1, let Ep be a vector subspace of Ap supplementary to Ap n m2.
Let E be the direct sum of the Ep for p > 1, and consider a basis {x,,..., xm}
ofE, union of the bases of the Ep, with an ordering such that deg x} ^ deg xJ+1
for all j ^ 1. It is enough to prove for each k < m that:

(Pk) If xk g Ep, p is odd, the products xJixJ2---xJh for all sequences
j1 <j2 < ■ ■ ■ < jh < k are linearly independent, and the vector space
generated by 1 and by these products contains A'' for q < p.

Then (Pm) will imply Hopfs theorem, because if A has characteristic 0, A
is anticommutative and the Xj have odd degrees, then xf = 0, and XjXk =
— xkXj for; 9e k.

The proof is by induction on k (P0 is void). Let Bk_1 be the graded sub­
algebra of A having as basis over A the unit element 1 and the products
xhxh ' ' ' xh for h < h < ■ ■ ■ < Jh =? k - 1 (if k = 1, B0 = A. 1); let ak^ be the
graded ideal of A generated by Bk_1 n m. Observe first that xk £ ak_ls otherwise
one would have

r

xk = 2^ cjxk
j=0

where each Cj is a sum of products of an element of Bk_1 n m and an element
of A (which may be a scalar); equality of degrees implies xk = c0. But then xk
would be sum of elements Xxs (A e A, ; ^ /c - 1) of Bk_1 and of products of at
least two elements of m; however, as xk e Ep, this would contradict the
definition of Ep.

Next, let nk_! be the ideal A ® a^-! of A ® A. From (13) and the assumption
(P*-i),

A{xk) = 1 ® xk + xk ® 1 mod.nk_j, (14)
A(x;) = Xj ® 1 mod. nk_! for ;' < k — 1. (15)

The relations (15) imply that for any b g Bk_1

A{b) = b®\ mod.n^j. (16)
If p were even, a relation xk = 0 for an r ^ 2 would be impossible, which is
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absurd. Indeed, suppose r is the smallest integer ^2 such that xk = 0; as p is
even, xk is in the center of A, hence it follows from (14) that

0 = A(xrk) = (l®xk +xk®\)r mod.n^.j.

Taking into account that for the degrees of the second factor of A ® A, nk_j
is a graded ideal, it follows that

Q = rxrk~l®xk mod.nk_j.

As we have seen that xk $ ak^, this is only possible if rx'~l = 0, hence xk~l = 0
since A has characteristic 0, and this contradicts the definition of r.

From anticommutativity of A and from the fact that p is odd, it follows that
x\ = 0; to prove that the Xj • • • Xjh are linearly independent for/i <***■< j^ ^ k
it is enough to show that there is no relation

b0 + b1xk = 0 with b0, bx g Bk_j, and bx =£ 0.

Again, from (14) and (16), it would follow that

0 = A(o0 + bx xk) = bx ® xk mod. n,,-!,

but the result xk £ ak_x shows that this is impossible if bx =£ 0.
Finally, if xk_t g Ap, property (Pk-1) implies that B^.j :=> A'forq < p. If not,

Bk_t 3 Aq for q < p — 1 by {Pk-l), and Ep_l c Bk_lt hence Ap_1 c Bk by
definition.

Hopfs theorem was later extended by Leray [313] and A. Borel [58] to
Hopf algebras for which it is only supposed that each A" is finitely generated
and the field of scalars A may be of arbitrary characteristic p, but is perfect.
They established that there is again a system {x 1, x 2,..., xm} of homogeneous
linearly independent generators of A such that a basis of the vector space A
consists of the unit element and of some of the products xj'x^2 • • • x^,m. For each
Xj let Sj, the height of Xy, be the smallest integer s such that x? = 0, and sj= + oo
if no such integers exist; then in the preceding products each exponent rs may
take all values such that 0 < r} < Sj. Characteristic 2 is somewhat exceptional.
If p ¥= 2 and degxy is even, then Sj = +oo or sj must be a power of p; if p =£ 2
and deg Xj is odd, then sj = 2. If p = 2, sj is always + oo or a power of 2.

Hopf algebras may also be defined over any ring, in particular over Z. Even
when the algebra has no torsion and is defined over Z its structure may be
very complicated ([55], p. 405). However, when a Hopf algebra A over Z has
finite rank and no torsion Hopfs theorem still holds: A is isomorphic to an
exterior algebra /\(E), where E is a free Z-module having a finite basis of
homogeneous elements of odd degrees.

B. Samelson's Theorem and Pontrjagin Product

In Hopfs theorem the subspaces Ep c Ap are not uniquely determined. At the
end of his paper Hopf put forward the conjecture that, in the particular case
in which the H-space under consideration is a group G, there is a canonical
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system of generators of the algebra H'(G; A) consisting of the primitive
elements of that algebra, the homogeneous elements z for which

m*(z)= 1 ®z + z® 1. (17)
Hopfs conjecture was proved by Samelson in 1941 [402]. The theorem can
also be given a purely algebraic formulation. Suppose A is a finite dimensional
anticommutative Hopf algebra over a field A, having the properties:

1. the comultiplication (12) is coassociative, that is, the diagram

A —^—► A® A

a®1 (18)
A®A ► A®A®A1®a w w

commutes;
2. there are linearly independent homogeneous elements Xj, x2, ..., xr with

deg Xj < deg xJ+1, having odd degrees, and such that A is isomorphic to the
exterior algebra /\(E) over the vector subspace E generated by the x}.

Then if E0 is the vector subspace generated by the homogeneous primitive
elements, those satisfying

A(u)= 1 ®u + u® 1, (19)
the graded algebra A is also isomorphic to the exterior algebra /\ (E0), and
E0 has a basis of r primitive elements u} such that deg us = deg xs for 1 < ;' < r.

Samelson assumed in his proof that A has characteristic 0, but Leray gave
a proof valid for fields A of arbitrary characteristic [313]. The primitive
elements u} are constructed by induction on their degree. Suppose
have already been determined and that they generate the same subalgebra as
xl,..., xk; look for uk+1 of the form

"*+i = Xk+i + P("i, • • ■, uk) (20)
where P is a polynomial, and determine P in such a way that uk+1 is primitive
by writing

A(xk+1)= 1 ® xk+1 + xk+1 ® 1 + X chk"h ® »k (21)
H,K

where, for any subset H of p elements j1 < j2 < ••• < jp of {1,2,...,/c}, uH =
uj, A uh A ' ' ' A UJ ' an<^ tne summation is extended to all pairs of nonempty
complementary subsets H, K of {1,2,...,/c}. Suppose there is a coefficient
cHok0 = 0; writing

Xk + 1 = Xk + l i CH0K0UH0 A UK0

with a suitable sign, it is possible to show that the number of terms in

A(x;+1) - 1 ® x'k+1 - x'k+1 ® 1
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is smaller than the number of terms in

A(xk+1)- 1 ®xk+1 - xk+1® 1,

from which the theorem follows.
Samelson's theorem implies that the original form of Hopfs conjecture is

true for all H-spaces X such that the "multiplication" m is associative; that
condition may be expressed by saying that the diagram

X x X x X mxl) Xx X

1 x m

X xX

(22)

X

is commutative, and therefore the corresponding diagram for the cohomology
algebras

H'(X;A)

H'(X;A)®H'(X;A)
1 ®m*

H-(X;A)®H'(X;A)

m*® 1

H'(X; A) ® H'(X; A) ® H'(X; A)

(23)

is also commutative.
Samelson's proof used duality. If A is a finite-dimensional Hopf algebra over

a field A and A* is the dual vector space, the dual vector space of A ®A A is
naturally identified with A* ®A A*, so that

<x®y,u®t;> = <x,u><y,t;>. (24)
To the comultiplication A: A -> A ® A there corresponds by duality its

transpose
'A: A*® A*-> A* (25)

so that

<x, 'A(u ® v)~) = <A(x), u ® v}. (26)
The element 'A(u ® t;) is called the Pontrjagin product of u and v in A*, and
can be denoted by u v ». The unit element of A is a unit element for that
product, and u v v is distributive on both sides with respect to addition. By
duality the diagram (19) yields a commutative diagram

A*® A*® A* 'A®1> A*® A*

1®'A

A*® A*

'A

A*
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and therefore the product u v v is associative if and only if the comultiplica­
tion A is coassociative. In that case the primitive elements of A are exactly
those that are orthogonal to the decomposable elements of A*, that is, those
that are products of two or more homogeneous elements of degree ^ 1. If A
has finite dimension and is isomorphic to /\ (E0), A* is also an exterior algebra
over a vector subspace generated by homogeneous elements uf such that
deg(uf) = deg(Uj).

If X is an H-space, the multiplication m: X x X -> X defines in the homology
graded vector space H.(X; A) a multiplication

m, : H.(X; A) <g>A H.(X; A) - H.(X; A)

which is called the Pontrjagin product in homology, first considered by
Pontrjagin in 1939 [377]; its transpose is the comultiplication m* in the Hopf
algebra H'(X; A). If multiplication in X is associative, H.(X; A) is an associative
algebra; when H'(X;A) is an exterior algebra over the space of primitive
elements of odd degree, the same is true for H.(X; A). There are compact Lie
groups G for which H.(G; F2) is not commutative ([55], p. 405).

C. Interpretation of the Rank in Cohomology

In 1940 Hopf completed his work on the homology of groups by giving a
purely topological interpretation of the number / of spheres in the product (3),
which has the homology of an H-space X that is a connected, compact,
oriented manifold and has an associative multiplication. For such a space the
/c-th power mapp^: x\-^xk of X into itself is well defined for all integers k ^ 1.
Hopf proved that the degree of that map is exactly k' for all values of k > 1
([247], pp. 152-174).

The proof relies on the fact that if u, v are two continuous maps of X into
itself, the map w. x i—» u(x)v(x) may be written as the compositexixxX^»XxX^X (27)
where ö is the diagonal and m is the multiplication. If u*, v* are the endomor­
phisms of H'(X;A) corresponding to u and v, the map zi—>w*(z) can be
factorized as

H-(X; A) -£ H'(X; A) <g> H'(X; A) "*®v*> H'(X; A) <g> H'(X; A) -^> H'(X; A)

and this implies that for a primitive element z

w*(z) = u*(z) + v*(z);

hence for every integer k > 1

P*(z) = k.z.

But since H'(X; A) can be identified with the exterior algebra /\ (x1, x2, ■.., x,)
where the xs are primitive elements, the cohomology space of maximum
dimension has a basis consisting of the unique element x1 a x2 a ••• a x„
hence the restriction of p* to that space is multiplication by k', which
establishes the result [chap. I, §3,A, formula (6)].
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D. Remarks

We shall see in Part 3, chap. IV, §4 how the use of fiber spaces and spectral
sequences considerably increased the knowledge of homology of Lie groups,
H-spaces, and homogeneous spaces ([346], [426]).

The concept of "Hopf algebra" now appears as a special case of a module A
over a commutative ring A also equipped with a A-linear map A : A -> A ® A A,
called a comultiplication, or with both a comultiplication and a multiplication
(not necessarily associative) A ®A A -> A (the latter, when considered alone,
giving on A a structure of algebra). Bourbaki has given the name of cogebra
to the structure defined by a comultiplication, and the name of bigebra to the
structure defined by both a multiplication and a comultiplication on the same
A-module A; that module is not necessarily graded any more, and the
multiplication and comultiplication of a bigebra are usually submitted to restrictive
axioms linking them in various ways. It has been found that such structures
abound in many parts of algebra.

§ 3. Action of Transformation Groups on Homology

A. Complexes with Automorphisms

In his thesis ([389], pp. 106-110) de Rham generalized Tietze's lens spaces
(Part 1, chap. II, § 2) to higher dimensions. He considered a cyclic group J of
arbitrary order h acting without fixed points on the sphere S2n+i (identified
with the subspace £"=o |z,|2 = 1 of Cn+1 ) by the rotations Rk (0 «? k < h - 1),
where R is given by

(z0,zl,...,zn)\->(Ç0z0,Ç1z1,...,Çnzn) (28)
with Ck a primitive h-th root of unity such that &* = eMI", the lk (0 ^ k «? n)
being integers (mod. h) prime to h. The space of orbits X = S2n+i/J is written
L(/0, /,,...,.„) and called a generalized lens space; S2n+1 is its universal covering
space, with nl(X) = J. To compute the homology of X, de Rham considered
a triangulation of S2n+1 consisting, for each dimension q with 0 < q =$ 2n + 1,
of h q-cells Rkaq (0 ^ k ^ h — 1) deduced from a single one a" by the action
of J. The a" are defined by the following relations between the coordinates of
their points in S2n+1:

r

for q = 2r + 1, £ \zj\2 =1, 0 < argzr < 2n/h,
(29)r

for q = 2r, X \zj\2 = !> ° = ar8zr­

The boundary operator is then defined on the a" by

fb(a2'+1) = (R''-l).a2',
[b(a2r) = (l+ R + -" + R*-1).a2'-1 l '
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and on the other cells by

b(RJ'.a«)=RJ'.(b(a«)). (31)
The definition of this triangulation shows that the projections of its cells on

X form a triangulation of X. The chain complex C.(X; Z) ofthat triangulation
can therefore be identified with the submodule of C.(S2n+1 ; Z) having as basis
the sums

s, = £ RJ.a« (0s=qs=2n+l) (32)
j = 0

with boundary operator

b(s,)=x! RJ.(b{a")). (33)
j=o

From these formulas de Rham also very simply derived the intersection
numbers and the linking coefficients (when defined), of the elements of H.(X;Z).
For n = 1 he could thus recover in a much more natural and perspicuous
manner Alexander's result showing that the lens spaces L(5,1) and L(5,2) are
not homeomorphic. He generalized this result to the spaces L(/0,llt...,/„),
proving that a necessary condition for L(/0,l1,...,ln) and h(V0,l\,...,l'„) to be
homeomorphic is the existence of an integer m, prime to h and such that

l0h-ln=±mH*lr0Vl-VH (mod./i) (34)
(see Part 3, chap. II, § 2,C).

A further step forward was taken by Reidemeister in 1935 [387]. His goal
was to find other necessary conditions for the existence of a homeomorphism
between two lens spaces L(p,q),L(p,q'). He considered, more generally, a
finite cell complex K and a Galois covering K of K (Part 3, chap. I, §2,VIII)
with group G = AutK(K), K being given the structure of cell complex
described in Part 3, chap. I, §3,B. The group G acts linearly on the graded
Z-module of chains C.(K) [resp. on C.(K) ® z C] preserving graduation, and
commuting with the boundary operator. The chain complex C.(K) [resp.
C.(K) ®z C] may then be identified with the graded submodule of C.(K) [resp.
C.(K) ®z C] consisting of chains invariant under G. Since C.(K) [resp.
C.(K) ®z C] can be considered as a graded module over the group algebra
Z[G] [resp. C[G]), that module structure completely determines C.(K)
[resp. C.(K) ®z C] as the Z-module (resp. C-vector space) of C.(K) [resp.
C.(K) ®z C] annihilated by all the elements g-le Z[G] c C[G] for g g G.

If the "Hauptvermutung" (Part 1, chap. II, §2) holds for cell complexes
of dimension <n, the condition for homeomorphy of two such complexes
K, K' would be the existence of two subdivisions Kt, K\ of these complexes
that would be isomorphic as combinatorial complexes, a property that may
be called combinatorial homeomorphy. In 1935 it was not known if the
"Hauptvermutung" was true for dimensions >2; nevertheless, Reidemeister
attacked the problem of combinatorial homeomorphy, and his solution was
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the starting point for further studies of the topology of generalized lens spaces.
Since a subdivision of K lifts to a subdivision of the covering complex K,

stable under G, Reidemeister reformulated the problem: if K, K' are two cell
complexes on which acts the same group G, does there exist two subdivisions
K.J, K.'j of K, K', stable under G, and such that the Z[G]-modules C.(Ki) and
C.(K'j ) are isomorphic? He only treated the case n — 3, but his student W.
Franz [199] and independently de Rham [391] extended his method to
arbitrary finite cell complexes and arbitrary groups of automorphisms.

Their starting point is a complex with automorphisms, a pair (K, G)
consisting of a finite cell complex K and a finite group G of homeomorphisms of
K onto itself, which transform every cell of K into a cell of K, and commute
with the boundary operator. If t is a cell of K contained in the frontier of a
cell a, then for every g g G, g(i) is contained in the frontier of g(a). To explain
Reidemeister's method we may assume, for simplicity, that G operates freely,
that is, no cell of K is globally invariant by an element g =£ 1K of G; then every
Cp(K), considered as a Z[G]-module, is free. A basis ofthat module is obtained
by taking a representative af (1 < i < mp) in each orbit of G acting on the set
of p-cells of K and the closure of the union of these orbits is then the p-skeleton
Kp of K. From such a basis (af)1 <(<m of CP(K) a whole set Sp(K) of bases of
Cp(K), called distinguished bases, is deduced by application to {af) of the group
of matrices in GL(mp,Z[G]) generated by: (1) the permutation matrices, (2)
the diagonal matrices diag(g i,..., gm ), where the gs are elements of G, and (3)
the "transvection" matrices BtJ(X) with diagonal elements equal to 1 and all
other elements 0, except the element at the (i, ;')-th place, which is equal to any
X 9e 0 in Z[G]. Clearly Sp(K) does not depend on the particular set (af) of
representatives of the orbits.

Two complexes (K, G), (K', G) with actions of the same abstract group G
are considered isomorphic if there is a Z[G]-isomorphism C.(K) ^> C.(K') that
maps Sp(K) onto Sp(K') for each p.

The method consists in studying the passage from the Z[G]-module C.(K)
to C^Kj) when K1 is a subdivision of K, stable under G; this is done by
performing the subdivision one cell at a time. A cell complex L with action of
G is called trivial if Q(L) = 0 except for two values p, p — 1 of k and if the
boundary operator is such that b(Cp(L)) = CP_!(L) and b(Cp-!(L)) = 0; then
C.CKj) is isomorphic to a direct sum

C.(K)©C.(L1)©---©C.(Lr)

where the Ly are trivial.

B. The Franz-Reidemeister Torsion

Reidemeister was chiefly interested in the problem of combinatorial homeo­
morphy of two lens spaces L(p, q), L(p, q') for prime p. Applying the preceding
criterion directly to the triangulations defined by (29), he obtained the equations

(i - c«)(i - r«) = (i - c')(i - r-o (35)
which must be satisfied for every p-th root of unity £ ^ 1, implying q' = +q.
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Then Franz [199] and de Rham ([391], pp. 174 184) independently tackled
the general problem and succeeded in defining, for some finite cell
complexes K on which a finite group G acts freely and for each homomorphism
6: C[G] -> Cof the group ring C[G], an element of C which, up to
multiplication by 0(±g) for some g g G, is invariant by subdivisions of K and stable
under G.

The idea is to split the chain complex C.(K;C) with coefficients in C,
considered as a C[G]-module, into the direct sum C.(K; C) © C.'(K; C), where
C.(K; C) [resp. C.'(K; C)] is the direct sum of the CP(K; C) for all odd p (resp.
even p). The boundary operator in C.(K; C) can then be considered as a pair
of homomorphisms of graded modules

b':C.(K;C)->C.'(K;C), b": C.'(K;C)-> C.(K;C). (36)
Assume in addition that

Ker(b") = Im(b'), Ker(b') = Im(b"). (37)
{De Rham then called the C[G]-complex K acyclic, but this does not mean
that all Betti numbers of K of dimension > 1 are 0; for instance, the C[G]­
complex defined by (30) and (31), with underlying space S2n+1, is "acyclic" in
De Rham's sense.}

Then use the following (trivial) lemma on finite-dimensional vector spaces
over an arbitrary commutative field k:

Let E' = M' © N', E" = M" © N" be two finite-dimensional vector spaces
over k such that

dim M' = dim N" = m', dim M" = dim N' = m" (38)
and let u': N" ^ M', u": N' ^ M" be two isomorphisms. Let r', r", s', s" be
one-element bases of the respective exterior productsm' m" m" m'

Am', am"- An', An";
then

A "') is") = cY, (A "") (s') = c"r" (39)
for scalars c', c" in k, and the quotient c'/c" only depends on u', u" and on the
one-element bases

m' + m" m' + m"
r' a s' g A E', r" a s" g f\ E".

The lemma cannot be directly applied to E' = C.(K) and E" = C.'(K), since
A = C[G] is not a field in general. However, if 6 is a homomorphism of A
onto C, it extends to homomorphisms of graded modules

C(K) -» C.(0), C.'(K) -» C.'(0)

where C.(0) and C"(6) are graded C-vector spaces having as bases the af for
p odd (resp. even), and yields corresponding homomorphisms
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b^; C.(0) -» C.'(0), K: C.'(0) - C.(0).

Suppose the relations (37) are still satisfied when b', b" are replaced by b'e, bj'.
Then the lemma applies to

E' = C.(0), E" = Ç{0),
M'= Kerb^, M" = KerbJJ, u' = b|,|N', u" = bi'|N",

and r' a s' (resp. r" a s") is the exterior product of the vectors af for p odd
(resp. even); this gives an element c'e/cë e C. When the basis (af) is replaced
by another distinguished basis of the set Sp(K) for each p, c'e/cë is multiplied
by an element 6(±g), where g g G is independent of 0. The set of all elements
Cg/cg for all such homomorphisms 0 is what de Rham called the torsion of the
complex K with automorphism group G. Its fundamental property is that it
does not change when K is replaced by an arbitrary subdivision stable under G.

In the case of a cyclic group G of order h with generator y, C[G] is a direct
sum of h fields isomorphic to C, corresponding to the homomorphisms
0Ç: C[G] -> C, such that 6c(y) - £ for all h-th roots of unity £. If the action of
G on K is given by (28), and conditions (37) are satisfied, then when the root
of unity £ is primitive, the value of ce/c'é for 0 = 0Ç is

(+oa n (Ck - u
k = 0

where a is some integer independent of the choice of £. If the complexes
L(/0, .!,...,.„) and L(l'0,l[,...,l'„) have the same torsion, the relation

n«,'k-i)=(±c)'n«;'i-i)lt = 0 lt = 0
holds for some integer d, hence, taking norms

n (£<* - i)(r'" -1)=n (C4 - i)(c_,i -1) (40)Jfc=0 Jfc = 0
for all primitive h-th roots of unity £. If h is prime, the theory of cyclotomic
fields shows this implies the condition

{l1J2>---An} = {±'i, ±?2. •••. ±'b} for some choice of signs. (41)

Using Dirichlet's results on L functions, Franz was able to prove this condition
holds for any integer h [200].

This theory was later extended by J.H.C. Whitehead to the notions of
simple homotopy type and what is now called Whitehead torsion (Part 3,
chap. II, §7).

C. Fixed Points of Periodic Automorphisms

Similar ideas were used by Paul Smith in his work on periodic automorphisms
of a topological space ([395], [437]). The starting point is again a cyclic group
G of order h consisting of homeomorphisms of a space X onto itself, and its
action on the homology of X is studied, but the emphasis is different. The
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focus of interest is not the space of orbits X/G but the subset L of points of
X fixed under every g g G (or equivalently the fixed points of a generator
y of the cyclic group G); furthermore, the goal is to deal with the most
general possible spaces and with homeomorphisms that are not linked to
triangulations.

P. Smith used Cech homology, and thus had to start with preliminary
results on a simplicial complex with the group G acting as in the papers of
Reidemeister and de Rham; he then took limits over the nerves of "special"
open finite coverings of X invariant under G. He was not interested in the
whole group C.(K) of chains, considered as a Z[G]-module, but only in the
chains annihilated by one of the two elements of Z[G]:

t = 1 - y, a = 1 + y + y2 + ■ ■ ■ + yh~\ (42)
following some earlier ideas of M. Richardson [394]. After passage to the limit
on "special" coverings of X this gives homology modules H,.(t; A) and Hk(o; A)
with an arbitrary ring of coefficients A. His efforts were especially directed to
the case in which h is a prime number p and A is the field Fp; by a subtle analysis
of the action of a and t on chains he showed that these homology modules
contain Hk(L; Fp) when L ^ 0 and obtained many remarkable relations
between them, enabling him to prove two famous theorems:

(i) Suppose X is locally compact and finite dimensional and that Hk(X; Fp) = 0
for k > 1 and H0(X; Fp) ^ Fp; then there is at least one fixed point for any
cyclic group G of order pm.

(ii) Suppose X is a "homology n-sphere over Fp," that is, X has the same
homology as the sphere S„ with coefficients in Fp. Then, if the set L of fixed
points under a cyclic group G of order pm is not empty, it is also a homology
r-sphere over Fp for some r such that 0 ^ r ^ n.

P. Smith's proofs are quite intricate. In 1952 Floyd showed how similar
results could be formulated for sheaf cohomology in a simpler way [195]. The
space X is locally compact and a finite group G acts on X. If <D is a para­
compactifying family on X (Part 1, chap. IV, §7,C) and n: X -»• X/G is the
natural projection on the space of orbits X/G, that space is locally compact,
n is open and proper, and there is the Leray spectral sequence (Part 1, chap.
IV, §7,E) with E2 terms

Ef = HJ(X/G;jr«(7t;A)) (43)
for any ring of coefficients A; J*tq(n; A) is the sheaf on X/G associated to the
presheaf Ui—>H'i(7r'"'1(U); A), but as every fiber n~1(y) is finite for y eX/G,
E5* = 0 for q # 0, and it follows from the spectral sequence that there is a
natural isomorphism

H£/G(X/G;^)^H£(X;A) (44)
where <D/G is the family of sets N c X/G such that 7i_1(N) e <D (it is a para­
compactifying family), and se is the sheaf on X/G associated to the presheaf
Ui—> H°(7r~1(U); A). As the spaces n~l(y) are the orbits of G, the group G acts
as a group of automorphisms of the sheaf se. In the situation considered by
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P. Smith G is a cyclic group of prime order p and A is the field Fp; Floyd
introduced the elements (42) as operating on se.

(I) He first considered the case in which the set L of fixed points of G in X
is empty. By an argument similar to those used by Richardson and P. Smith
[395], he showed that in the sequence of subsheaves

all quotients t\r//t*+1<r/ are isomorphic to the constant sheaf Fp on X/G.
From the spectral sequence derived from the filtration (45), it follows that if
dimF H'(X;Fp) < +oo, then dimF H'(X/G;FP) < +oo and

x(X;Fp) = p.x(X/G;Fp) (46)
where, for any locally compact space Y, the "Euler characteristic" of Y over
Fp is defined as Z(Y; Fp) = £„(-1)"dimFp H"(Y; Fp).

(II) Suppose now that L # 0, and write srfL the sheaf on X/G whose stalks
are séy for y e n(L) and 0 outside n(L); there is then a surjective homomor­
phism n: srf -> sj/l [Part 1, chap. IV, §8,C, formula (128)]. It can immediately
be seen that the sequences

0-<■ t<a/-<■ <a/ -^H o\a/© <a/L-<■ 0,

0-<■ o\a/-<■ <a/ -^H t<a/© <a/L-► 0

are exact by looking at the stalks at each point of X/G. The corresponding
cohomology sequences for the "special" cohomology groups H^,/G(X/G; xsé)
and HJ„/G(X/G; ostf) [written for short H*(t) and H"(<r)]:

■ ■ ■ -+ H"(t) -+ H"(X/G; sf) -+ H» ® H"(X/G; j/L) -+ H"+1(t) -» ■ • • (47)

■■■-> H"(«r) -+ H"(X/G; j/) -+ H"(t)© H"(X/G; j/L)-+ Hn+1(o-)-+ • • ■ (48)

are called the P. Smith sequences.
From these exact sequences applied when dimF X < +oo (chap. II, §6),

relations between dimensions of cohomology spaces are deduced:

dimFp H"(X/G - n(L); ¥„) + £ dimFp H'(L; Fp) ^ £ dimFp H'(X; Fp), (49)

X(X;¥p) = x(UFp) mod.p, (50)
this easily gives P. Smith's theorems as corollaries in the formulation of Floyd:

(i') If dimFp X < +oo, HÏ(X; Fp) = 0 for i > 1, and Hg(X; Fp) ^ Fp) then L is
not empty, HJ„(L; Fp) = 0 for i > 1, and Hg(L;Fp) ~ Fp.

(ii') If dimF X < +oo and H^(X;Fp) ~ H"(S„;Fp) for some n, then, when L #
0, there exists an r with 0 ^ r ^ n and n — r even, such that H^(L; Fp) ^
H'(Sr;Fp).

After 1945 the study of transformation groups was continued and greatly
expanded with more sophisticated tools such as cohomology of groups, fiber
spaces, and spectral sequences.



Chapter VII

Applications of Homology
to Geometry and Analysis

§ 1. Applications to Algebraic Geometry

A. Early Applications

Algebraic geometry and algebraic topology have been linked from the
beginning, since the first topological invariant, the genus of a compact Riemann
surface, was introduced by Riemann in his path-breaking study of abelian
integrals. His successors extended the use of similar notions to the theory of
modular and automorphic functions.

During the years he devoted to the study of algebraic surfaces (1883 1906)
E. Picard used all the means at his disposal, such as abelian integrals on curves,
double integrals, linear systems, in a completely unsystematic way. We shall
limit the description of his results and of those of his successors to purely
topological properties of algebraic varieties.

As early as 1888 Picard was using Betti's "orders of connectivity" and
"deforming two-dimensional cycles" on an algebraic surface considered as a
four-dimensional real "variety." His most interesting results can be deduced
from a method he invented, which will later be called the study of a "pencil"
of algebraic curves on an irreducible surface S. Letf(x,y,z) = 0 (1)
be the equation of S in nonhomogeneous complex coordinates, and consider
for every y e C the plane curve Cy of equation f(x, y, z) = 0 between x and z.
After a suitable linear change of coordinates it may be assumed that:

1. Cy is irreducible for all y e C.
2. Cy has the same genus p for all y e C, with the exception of a finite number of

points ak (1 ^ k s? N).
3. The plane y = ak has a unique point of contact Ak with S and Ak is a double

point of C„fe with distinct tangents, so that the genus of Cafe is p — 1.

This tool is first used by Picard to study the 1-cycles on S. He showed that
it is possible to transform by "deformation" any 1-cycle into a 1-cycle carried
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by a curve Cy for y # ak ([362], vol. I, p. 86). He always considered two 1-cycles
deduced from one another by "deformation" to be "equivalent," and could
thus restrict himself to those contained in the curves Cr In the plane C of the
variable y he took a fixed point a distinct from the ak. Drawing loops lk of
origin a around each ak, he investigated the problem of how a 1-cycle y on Ca
"varies continuously" on Cy when y varies around the loop lk and returns to
a. At first he limited himself to a surface of equationz2 = g(x,y) (2)
where g is irreducible, and claimed that when y is a 1-cycle around the two
roots zl, z2 of (2) it returns to an equivalent cycle when y varies along all loops
lk, and when y tends to an ak the cycle shrinks to a point, from which he
concluded that the first Betti number of S is R1 = 0 ([362], vol. I, p. 88). Next
he claimed the same conclusion for a surface of equationzm = g(x,y) (3)
for any integer m > 2, and finally any "general" surface S can be "deformed"
into a surface of type (3) and therefore must also have Rj = 0 ([362], vol. I,
p. 91). However, in ([362], vol. I. p. 93) he said in substance that for any surface
which is the product C1 x C2 of two smooth projective irreducible curves of
genus > 1, Rj > 2.

He then returned to his original problem. Probably to feel on more secure
ground, he at first substituted for the variation of a 1-cycle on Cy the variation
of the period co(y) along that cycle of an abelian integral of the second kind
on C„

Hy)
P(x,y,z)dx

Jz

where the polynomial P is independent of the cycle y. He could then avail
himself of an earlier result of Fuchs, who had shown that, as functions of y,
all periods of l(y) are integrals of a linear differential equation (E) of order 2p
with polynomial coefficients and for which the ak are "regular" singular points
in the sense of Fuchs. The variation of the 1-cycles is thus mirrored in the
well-understood (since Riemann and Fuchs) variation of the integrals of (E)
around the singular points ak. In modern terms, the fundamental group
7tj(C — {a1,a2,...,aN}) acts on the homology module H^C^Z) that the
Fuchs-Picard equation identifies with the module of periods of 1(a). The
important fact recognized by Picard is that the image of n1(C — {a1,a2,...,aN})
in the group of automorphisms GL(2p, Z) may be a proper subgroup P of
GL(2p, Z). In other words, there is a submodule L of the module of periods of
1(a), consisting of elements invariant under the action if nx (C — {a1,a2,---, aN});
Picard showed that the rank ofthat submodule is the Betti number R1 of the
surface S, and later he proved that Rj is an even number ([362], vol. II, p. 423).

After reading Poincaré's first paper on Analysis situs, Picard was
emboldened to study the variation of the 1-cycles themselves. He showed that
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when y varies in the loop lk, a 1-cycle y is transformed into a 1-cycle
homologous to

T*(r) = 7 + mök (5)
where m is an integer and Ôk is a 1-cycle independent of y ([362], vol. II,
p. 334). He also considered the 2-cycles generated by the variation of a 1-cycle
in Cy when y varies in a loop lk ([362], vol. I, p. 108).

In 1902 Poincaré, who followed Picard's researches in algebraic geometry
with great interest, entered the field himself with his third and fourth
Compléments, using both Picard's method and his newly introduced concepts of
combinatorial topology. With the help of the group P (which he called the
"Picard group"), he gave, in the third Complément, a regular method to
determine the fundamental group ?r1(S) for a surface S of equation (2) and
applied it to explicit examples; in particular, he showed that 7ij(S) = 0 if / is
irreducible.

In the fourth Complément, Poincaré undertook to define a triangulation on
a surface of equation ( 1 ) with ordinary singularities. Using the above notations
he considered in the plane C the segments of origin a and extremity ak for
1 =$ k =$ N; the complement Q, in the Riemann sphere, of the union of these
segments, can therefore be considered a polygon with 2N sides. When y e Q,
Cj, has genus p, and is therefore always homeomorphic to a fixed Riemann
surface R. Although Poincaré did not speak of products, he did take the
product Q x R and the cells that are the products of the cells of a triangulation
of R with the vertex, the 2N sides and the interior Q of Q. He then described
at length how the "incidence matrices" of that triangulation of S can be
determined for dimensions 0 to 4. In his description of Picard's method, he
also observed that in formula (5) the cycles ök tend to a single point when a
tends to ak. For that reason he called them evanescent cycles.

B. The Work of Lefschetz

The preceding papers by Picard and Poincaré were written in the same style
as Poincaré's first two Compléments, and were open to the same criticisms.
The same is true of the first papers by Lefschetz on algebraic geometry written
between 1915 and 1924 [299], as he himself realized somewhat later when he
turned his attention to rigorous methods in algebraic topology. He then
claimed that all his previous results in algebraic geometry could be given
rigorous proofs, but he never bothered to write down these proofs himself.
This job actually was done by A. Wallace in 1958 [480]; in that book the
details of the technique are far from obvious, being quite long and intricate.

The novelty in Lefschetz's approach was first that in the study of the
topology of an algebraic surface S, he could dispense with the Fuchs Picard
equation and work directly with topological notions. He took for granted the
existence in some projective space PN(C) with N > 3, of a smooth model S*
of the function field of an algebraic irreducible surface S of equation (1) from
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which S could be recovered by a suitable projection on P3(C). In 1932 [310]
he pointed out, on simple examples, that the smooth models of the same
surface S needed not be homeomorphic, contrary to what (according to him)
was believed by many algebraic geometers. He explicitly observed that on S*
there is a naturally defined orientation and that an algebraic curve on S* is
not only a topological 2-chain but a topological 2-cycle. Finally he made
essential use of the theory of intersections outlined by Poincaré and of the
elementary (but capital) remark that the topological intersection number
(Cj. C2) of two algebraic curves on S (considered as 2-cycles) (Part I, chap. II,
§4) is in fact equal to the number of common points (taking into account
multiplicities) of Cl and C2, as defined in algebraic geometry, when C1 and
C2 are given their natural orientation.

This first enabled him to give the precise form of Picard's formula (5) for
the variation of a 1-cycle y:

•My) = y + (y ■ £*)£*• (6)
Using this formula and Poincaré's construction of cells in S, Lefschetz

showed that if sk is the segment joining a and ak, and 2,k is the set of points of
S that project on sk, then there is a 2-chain Ak on ~Lk having as boundary the
"evanescent" 1-cycle ök = Akn Ca; the 1-cycle Ak n Cy is deduced from ök by
continuity when y varies along the segment sk, and Ak n Cttk is the double point
of Cflfe. He then described the homology groups H^S; Z) for j = 1, 2, 3 with
the help of the chains ök, Ak and a basis of the homology group Hj (Ca; Z); in
particular he gave a purely topological proof of the fact that homology classes
of the ök form a submodule of rank 2p — R1? and of the fact that Rj is an even
number.

He then extended his methods to algebraic varieties V of arbitrary
dimension n, contained in a complex projective space PN(C). The pencil of curves
introduced by Picard is now replaced by the sections V n ¥ly of V by complex
hyperplanes H,, passing through a well-chosen linear variety of complex
dimension N — 2 in PN(C). His fundamental result, now called the weak
Lefschetz theorem, is that for general values of the complex parameter y the
natural map HjfVnH^^H^Z) (7)
is bijective for 0 ^ j ^ n — 2 and surjective for j — n — 1. This implies for the
Betti numbers the inequality Rp > Rp-2 f°r P *^n- Lefschetz also showed that
R2p+1 is always an even number (which may be 0), and finally that R2p > 0
for even dimensional Betti numbers. This last result follows from the simple
remark that an algebraic subvariety M of V, of complex dimension p, is a
2p-cycle that cannot be homologous to zero, because it is easy to define an
algebraic subvariety L of complex dimension n — p that has a finite and
nonempty intersection with M; this implies that the topological intersection
number (L.M) > 1.



§ IC VII. Applications of Homology to Geometry and Analysis 253

C. The Triangulation of Algebraic Varieties

In his papers on complex projective algebraic varieties of arbitrary dimension
Lefschetz assumed that they could be triangulated. The first mathematician
to have undertaken a proof was van der Waerden in 1930; he described in a
single page ([478], p. 360) a bare outline of a method that was proved correct
when it was elaborated later.

The idea is to prove first the existence of a triangulation on a real algebraic
projective variety W, that is, the subset of a real projective space PN(R) defined
by a finite number of equations

r'it(xO'xi'-• • >xn) = 0

where the F^ are homogeneous polynomials with real coefficients. Using a
stereographic projection, it is always possible to assume that W is a compact
subset of RN. The proof is by induction on N; we describe it in a little more
detail than the author, for the convenience of the reader.

The statement to be proved is:

(TN) Given in RN a finite set of compact real algebraic varieties Va and a finite
set of bounded open connected sets U^ such that the frontier in RN of each U^
is a finite union of closed subsets of some Va, then there is a finite curvilinear
triangulation TN of a cube C containing the Va and the U^ such that each Va,
each Up, and each frontier of a U^ is a union of cells of TN.

Statement (Tj) is trivial. Assuming (TN_!), it is always possible, by a linear
change of nonhomogeneous coordinates in RN, to suppose that in the equations

Hk:/)[(x1,x2,...,xN) = 0

of the hypersurfaces used to define each Va as an intersection of some of them
there is a term of highest degree mk that is a monomial c. x™k. For each point
x' e RN_1 the total number of points of intersection of the Hk with {x'} x R
is bounded. Let £î c RN_1 be the set of points x' for which no point in {x'} x R
belongs to two distinct Hk; then, for each x e Hkn({x'} x R), x is nonsingular
on Hk and the projection Hk -»• RN_1 is étale at x. The set £1 is open and its
frontier in RN_1 is the union of a finite number of algebraic varieties V'x. Using
(TN_!), there is a triangulation TN_! of a cube C containing the projections of
the Va and the U^, each cell of which is contained in some V{ or some connected
component U^ of Q.

Van der Waerden assumed that for each cell o of TN_! the number of points
of intersection of the union of the Hk with {x'} x R is constant for all x' e a,
that the locus of each of these points is a cell of same dimension p as a, and
that the union of the open segments on {x'} x R having as extremities the
points on the union of the Hk is a cell of dimension p + 1. These cells are those
of the triangulation TN.
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To pass to complex projective algebraic varieties it is only necessary to
embed the complex projective space PN(C) as a real compact algebraic variety
in some Rm.

At the end of the proof van der Waerden claimed without any detail that
it could be extended to analytic varieties, ignoring obvious difficulties such as
the existence of infinitely many points forming a discrete set in an intersection
of two analytic varieties of complementary dimensions. In his 1930 book
([304], p. 364) Lefschetz sketched a method essentially following the same
strategy as van der Waerden but applicable to analytic varieties. Some details
were still lacking, and were supplied in a long paper [91] by A.B. Brown and
B. Koopman with considerable care in the handling of analytic functions of
several complex variables, using extensively Osgood's classical treatise. Finally,
still keeping the same general method of induction on the dimension, Lefschetz
and J.H.C. Whitehead simplified the proof of Brown and Koopman in a
quasidefinitive version of the triangulation theorem [311].

D. The Hodge Theory

In a series of papers beginning in 1930 W.V.D. Hodge inaugurated a new and
powerful method of study of the homology of analytic and algebraic manifolds
based on a combination of de Rham's theorems (Part 1, chap. Ill, §3) and a
generalization of the way Riemann had used harmonic functions in his theory
of abelian integrals [237].

Any differential manifold M of dimension n can be equipped with many
Riemannian metrics

ds2 = X 0ü(«i , u2,..., un)du;duj
•J

(in local coordinates). Beltrami had shown that it is always possible for such
a metric to define an operator (depending on the metric) that generalizes the
usual laplacian on R" and therefore gives rise to the notion of harmonic
functions on the Riemannian manifold. Hodge showed that it is also possible
to define a notion of harmonic exterior differential form: the metric on M
canonically defines a metric on the tangent bundle T(M), hence also, by
standard multilinear algebra, a metric on any bundle of tensors on M. In
particular, let (a,ß)h^>gp(a,ß) be the positive nondegenerate symmetric
bilinear form defined on the vector space of p-forms on M. When M is orientable,
this defines a duality between p-forms and (n — p)-forms: to each p-form a is
associated a (n — p)-form * a, characterized by the relation

ßA(*x) = gp(a,ß)v (8)
for all p-forms a, ß, where v is the volume form on the Riemannian manifold
M. If d is the exterior derivative, it has a transposed operator ö for that duality,
defined by

ö = —(*)° d o (*) (9)
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which maps p-forms onto (p — l)-forms. The Hodge laplacian

A = doô + ôod (10)
transforms p-forms into p-forms and generalizes Beltrami's laplacian which is
its special case for p = 0 (up to sign). This defines harmonic (real or complex
valued) p-forms as those for which Aa = 0.

Hodge's fundamental theorem (in which he uses the theory of elliptic partial
differential equations) is that when the Riemannian manifold M is compact
and orientable there is exactly one harmonic p-form in every de Rham cohomo­
logy class in HP(M; C). In other words, HP(M; C) is naturally isomorphic to
the vector space of complex valued harmonic p-forms, and the same is true
for HP(M; R) and real valued harmonic p-forms. From this follows a very
simple proof of Poincaré's duality theorem for compact orientable C°°
manifolds, because if a is a harmonic p-form, * a is a harmonic (n — p)-form.

The importance of the Hodge theorem stems from its application to
complex analytic manifolds. Such a manifold M of complex dimension n is a C00
real differential manifold of dimension In. The existence of local complex
coordinates with holomorphic transition maps between charts implies a
natural decomposition of the complex differential p-forms on M: such a p-form is
called a form of type (r, s) with O^r^w, O^s^w and r + s = p if for local
complex coordinates z1, z2, ■■-, znit can be written

Z Ajl...Jrki...ks(z1,...,zn)dzji a ■•• a dzJr a dzkt a ••• a dzK.
j1,...Jr,k1,...,ks

This definition does not depend on the choice of local complex coordinates,
and every p-form (for 0 ^ p < 2w) can be uniquely writtenco = X «>'•' (11)
where a/,s has type (r, s) (with a/'s = 0 if r > n or s > ri).

On each complex manifold M of complex dimension n there are hermitian
metrics, that is, Riemannian metrics that can be expressed in complex local
coordinates as

ds2 = £ hJk dzj dzk with hkJ = hJk. (12)
j.k

A sesquilinear hermitian form has an imaginary part that is a real
alternating form; to the metric (12) is therefore naturally attached a differential
real 2-form

& = ^T.hJkd^k ^dzj. (13)
2J,k

In 1933 E. Kahler observed that for the complex projective space P„(C),
d® = 0 for the corresponding 2-form of the classical hermitian metric of
Fubini-Study, and the same is true for complex submanifolds of P„(C) with
the induced metric (they are smooth algebraic varieties by a theorem of Chow).
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The complex manifolds on which there is a hermitian metric such that d& = 0
are now called kählerian. Hodge showed that complex harmonic differential
forms have remarkable special properties on these manifolds.

In the first place, the Hodge laplacian A permutes with the natural
projections coi—>a/,s. If co is a complex harmonic p-form, so is cor's, and the space
Hp of complex harmonic p-forms splits into a direct sumH"= 0 Hrs (14)

r+s=p

where Hr,s is the subspace of harmonic p-forms of type (r, s). If M is compact
and hr,s = dimRHr's, the Betti number Rp is given by

Rp = Z h"'s for 1 ^ p < 2w (15)
r+s=p

by the Hodge theorem. On the other hand, if co has type (r,s) its complex
conjugate cö has type (s, r), so thaths-r = hr-s, (16)
giving Lefschetz's theorem that for odd p, Rp is an even number (which may
beO).

If &k denotes the 2/c-form, the exterior product of k factors equal to the
2-form 0, then 0* is harmonic and #0 for k ^ n; this gives another of
Lefschetz's results for compact kählerian manifolds:

R2k > 0 for 1 ^ k ^ n. (17)
Finally, on a compact kählerian manifold, Hodge showed that the linear

map L:coi->©aco (18)
permutes with A, sending harmonic forms to harmonic forms. A harmonic
p-form co is called primitive if p ^ n andU-p^co = 0. (19)
Let Pr's be the subspace of Hrs consisting of primitive forms of type (r, s) with
r + s ^ n, and pr's its dimension. If r + s < n,

Hr+l,S+l ^ L(Hr,S) 0 pr+l.» + l (20)
and L is injective in Hr,s; hence

hr + l,»+l = ftr,S + pr + l,S + l( (21)
giving another of Lefschetz's theorems

Rp-Rp-2= I Pr,s»0 forp^«. (22)
r+s=p

Hodge also showed that the linear map
L"-": H" -> H2"'" (23)
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is bijective for p ^ n. For smooth algebraic subvarieties M of PN(C) this can
be interpreted in purely cohomological terms: if n is the complex dimension
of M, the class of & in the de Rham group H2(M;C) is the Poincaré dual
(chap. I, § 3,A) of the homology class in H2n_2(M; C) of a section of M by a
hyperplane and L may be considered as the cup-product by that cohomology
class. The fact that the map

~ """: H"(M; C) -> H2"-"(M; C) (24)
is bijective is called the strong Lefschetz theorem.

By 1950 algebraic geometry had accumulated a large number of results,
obtained by two very different techniques. One of these used "transcendental"
means, such as triangulations and exterior differential forms and their
integrals, and most results proved in this way were still valid for some types of
nonalgebraic compact complex manifolds (e.g., kählerian manifolds). The
other was based on algebraic notions, from which it was gradually realized
that it was possible to expel all use of analysis so that the results could be
extended to "abstract" algebraic geometry, the study of algebraic varieties
defined over an arbitrary field. There were of course relations between both
kinds of notions, going back to Picard, such as trje fact that the first Betti
number of a surface is given by R1 = 2q, where q is the "irregularity,"
defined by the consideration of "adjoint" surfaces. Substantial parts of both
techniques were unified by the introduction of the concepts of fiber bundles
and sheaf cohomology, as we shall see in Part 3, chap. VII, §§2 and 3.

§ 2. Applications to Analysis

A. Fixed Point Theorems

In analysis it has been traditional since the nineteenth century to reduce
existence problems to particular types of equations to which iterative
processes can be applied. The best known example, which goes back to Cauchy
and Liou ville, is the problem of existence of a solution of a differential equation

y' = f(x,y)

taking a given value y0 for x = x0. This is equivalent to the existence of a
solution of

y(x) = F(x, y(x)), with F(x, y(x)) = y0 + f(t,y(t))dt; (25)

the well-known method of "successive approximations" consists in proving
that under suitable assumptions the functions yn(x) defined recursively by
.VoM = .Vo and yn+i(x) = F(x,y„(x)) converge to a solution of (25).

Banach, in his thesis, subsumed all applications ofthat method to a general
theorem applicable to any Banach space, often called the contraction principle:
let E be a Banach space, Q be a convex bounded open subset of E, and F be a
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map of Q into itself such that

||F(x)-F(3,)||^fc||x-y|| (26)
for x, y in £î, k being a fixed number such that 0 =$ k < 1; then there is a unique
point zeQ such that F(z) = z, and it is obtained as the limit of the sequence
(x„)n>0 where x0 e £î is arbitrary and xn+1 = F(x„) [42].

Applications ofthat theorem were therefore restricted to cases in which both
existence and uniqueness must be proved. Brouwer's fixed point theorem
(chap. Ill, § 1) was quite different, since the mapping had to satisfy much less
stringent assumptions than (26) and only existence of a fixed point was proved,
but its validity was limited to finite-dimensional spaces.

The first mathematicians who sought to prove fixed point theorems in
function spaces were G.D. Birkhoff and O. Kellogg in 1922 [50]. They were
apparently unaware of Brouwer's general theorem of 1911,* so they first
proved it by approximating a continuous map D„ -»• D„ by a polynomial map.
They then showed that the theorem could be extended to a continuous map
F: K -»• K, where K is a convex compact subset of the space C(0,1) of
continuous functions in [0,1], or of the Hubert space I2. A little later [408]
Schauder generalized their result to a convex compact subset of a Banach
space E having a "basis" in the sense of Banach, then to a convex compact set
in any Banach space [409], and finally to a weakly compact convex set K in a
separable Banach space, F being weakly continuous [410].

The method common to all these papers consists in "approximating" K by
a sequence of finite-dimensional compact convex subsets K„ and showing that
Brouwer's theorem gives the existence in K„ of a point z„ such that j| F(z„) — z„ ||
tends to 0 with 1/w; using compactness of K, a subsequence of (z„) tends to a
fixed point of F. The set K„ is constructed by covering K with N balls of centers
Xj (1 ^ j =$ N) and radius 1/w; K„ is the finite-dimensional convex hull of the
set of the x}, which is compact. Consider a sufficiently fine triangulation T of
K„ such that for every simplex o of T the diameter ö(F(a)) ^ 1/w. For each
vertex yt of T let xKi) be one of the points such that ||F(y() — x^H ^ 1/w, and
define F„ as the simplicial map (K„, T) -»• (K„, T) such that Fn(y;) = xJ(i) for
every vertex >>,- Then, for any simplex o of T, <5(Fn(o-)) ^ 3/n. By Brouwer's
fixed point theorem there is a point z„ e K„ such that F„(z„) = z„. If a is the
simplex of T containing z„, there is a vertex y, of a such that ||z„ — FB(yj)|| ^ 3/n,

hence ||z„ - F(^)|| _^ 4/«, and ||z„ - F(z„)|| ^ 5/«.T
The interest of this method of course lies in the kind of applications it allows.

We cannot enter into the details of the various analytic devices necessary for

* They only mentioned Brouwer's paper of 1910 on homeomorphisms of S2 onto itself
([89], pp. 244-249).
+ In [409] Schauder believed his proof valid for all metric complete topological vector
spaces, not only for Banach spaces. But for these more general spaces his arguments
are not correct, because it is not possible in general to give an upper bound of the
diameter of the convex hull of the set {xKi)} corresponding to the vertices yt of a simplex
a of T, which would be independent of the dimension of a.
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each of these applications to define the compact set K and the map F to which
the general theorem can be applied, and only mention two of these
applications given by Schauder. The first one proves the existence of at least one
solution of an equation

/ dz dz\

in a domain QcR2 with smooth boundary, vanishing on that boundary,
under the only assumption that / is bounded and continuous for bounded
values of the five variables on which it depends; the method consists in
transforming (27) into an integrodifferential equation

z(x,y) G(x, y, & n)f U, n, z(t, n\ %^d^ di <28)

where G is the Green function for Q [411].
The other application is to the local Cauchy problem for quasilinear

hyperbolic equations/ dz dz\J1z (
LAik[x1,...,xn,z,—,...,—\ =A xt x„z,i,k \ ox1 dxjdx;dxk \

dz dz'
dxl'"',dxj'

(29)

Here the idea is, for a given function z(x1,...,xn), to solve the local Cauchy
problem for the linear hyperbolic equation in the unknown function Z

/ dz dz\ d2Z __ f dz dz'
1^ A-iA xl,...,x„,z, - ,...,- I- - — Al Xj,.. -,x„,z,— ,...,­i,k \ dx1 dxj dx;dxk \ dx1 dx„

(30)

This solution Z(z) depends on the chosen function z, and the problem is to
determine a convex compact set K in a suitable Banach space of functions E
such that z i—» Z(z) maps K into itself and the fixed point theorem is applicable,
so that there exists a function u e K for which Z(u) = u [412].

In 1935 A. Tychonoff was able to extend Schauder's fixed point theorem to
convex compact subsets K in any Hausdorjf locally convex space E, using the
Brouwer fixed point theorem in a new and ingenious way [472]. Although at
that time uniform structures had not yet been defined, Tychonoff made use of
one of the properties of the unique uniform structure on the compact space
K: that for every entourage V ofthat structure there is an entourage V such
that V'2 c V. In terms of finite open coverings of K this means that for any
such covering (Wa) of K there is a finer finite open covering (U^) [the "half"
of (Wa)] such that, for every U^, there is a W, =i U^ such that any other IL
which meets Uß is also contained in Wa (this is of course what Tychonoff proved
directly).

The proof is by contradiction: assuming the continuous map/: K -»• K has
no fixed point, Tychonoff easily showed, by compactness, that there is a finite
open covering (W3) of K such that the Wa are convex sets and /(W,)nW, = 0
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for each a. Let (U^) be a corresponding "half" covering, take in each Uß a
point xß, and consider the finite-dimensional convex hull L of the set of the
xß. There is a simplicial triangulation T of L such that for every simplex a of
T there is an index ß such that f(o) a Uß. If y, (1 ^ j ^ n) are the vertices of
a simplex a of T, define <p{yj) equal to xß, where U^ is one of the open sets
containing f(yj). Then q> can be extended to a map of (L, T) in itself that is
affine in every simplex of T; by Brouwer's fixed point theorem, there is a point
a e L such that tp(a) = a. Let a be the simplex of T such that a e a, and let ys
(1 < j ^ p) be its vertices; there is a U^o such that f(a) and all the f{ys) are in
U^o. On the other hand, for each j, f(yj) and (p(yj) belong both to one Uß.;
since U^o n U^. # 0 for 1 ^ j ^ p, Ußo and all Uß. for 1 ^ j ^ p are contained
in some Wa. However, since Wa is convex, a — <p(a) e Wa, and as f(a) e Wa, a
contradiction has been reached.

B. The Leray-Schauder Degree
In 1930 Schauder was also interested in the Fredholm-Riesz theory of linear
compact maps in normed spaces. This may have led him to generalize the
concept of compact map to nonlinear ones, and to study, in the spirit of Riesz,
"perturbations" of the identity of type/: xi—>x — u(x), where u is a nonlinear
compact map, a continuous map of an open subset Q of a normed space E into
a normed space F such that the image by u of any bounded subset of Q is a
relatively compact subset of F.

In 1932 [411] he showed that for a map of the preceding type /, E and F
being Banach spaces, if in addition / is injective, then it maps open subsets of
Q onto open subsets of F. He applied this result to the proof of the following
theorem. Consider the equation

/ dz Bz\
Az-flx,y,z, — ,~j = il/(x,y) (31)

and suppose that for an open subset U of R2 it has at most one solution taking
given values q>(s) on the boundary of U; then, if it is known that for particular
functions <p0, i/.0 there exists such a solution, the same is true for functions <p,
{// sufficiently close to <p0, i/.0.

Then, in a famous paper [325] in 1934, Leray and Schauder discovered that
for a map /:xi—>x — u(x) with u a compact map, the Brouwer concept
of degree could be defined, which gave new proofs of Schauder's previous
theorems and had many other applications to the theory of partial differential
equations.

A compact map u: cü-► F, with co a bounded open subset of E, can be
approximated arbitrarily by a continuous map of ä> into a finite-dimensional
subspace of F:* By assumption K = u(ca) is a compact subset of F, hence, for

* For a long time it was not known if it was possible to approximate a linear compact
map by linear maps of finite rank. This approximation property holds in all "usual"
function spaces, such as C(0,1) or I2; only recently have Banach spaces been found
where it is not valid.
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every e, > 0, there exist a finite number of points yk e K such that the balls of
center yk and radius e, cover K. Define in K the continuous functions

, , je- ll.v-.yJI if Hy-yJI <<=,My)=\r. ;fll „. (32)
Then for every x e a> the ^k(u(x)) are not all 0, hence the map

us:xh^( Y,Mu(x))yk) /(Z /^("M)) (33)
takes its value in the vector subspace Ft generated by the yk, is defined and
continuous in a>, and its definition implies that for x e m

||«(x) - u£(x)|| ^ s. (34)
It is then possible to define the (local) degree d(f, at, p) for any Banach space

E, any map x t-*f(x) = x — u(x) of a bounded open subset ca c E into E, with
u a compact map of w into E, and any point p e E that does not belong to
/(Fr(co)) (by compactness of u, the image by / of any closed subset of m is
closed in E). Approach u by maps u£ as above, and let E„ be the finite­
dimensional subspace of E, of dimension ns, generated by p, the yk and a point
of w. The map fc: x i—>x — u£(x) is then defined in the bounded open subset
co„ = E„ n co of the finite-dimensional vector space E„t and maps cü„t into E„t,
so that the degree d(fE,œn,p) is defined (chap. I, §3,D). Leray and Schauder
defined

d(f,a>,p) = d(fE,co„t,p)

and had to prove the definition independent of the choices of e, and u£, provided
c is small enough.

This is a consequence of their second main lemma, which deals with finite­
dimensional spaces: let con+1 be an open bounded subset of Rn+1, such that
con = can+l n R" is not empty; let F : xi—>x + g„{x) be a continuous map of cön+1
into Rn+1, such that gn(x) e R" for x e œn+l, and let b e R" be a point that does
not belong to F(Fr(con+1)); then, if / is the restriction of F to mn, it is a map
of cön into R". Since b $ /(Fr(co„)), the local degree d(f, œn, b) is defined and
one shows

d{¥, con+1, b) = d(f, co„, b). (35)
The proof uses simplicial approximation and Brouwer's definition (chap. I,

§3,D). Care must be taken in the choice of the triangulation T of a>n+1: the
(n + l)-simplices must have no vertex in R", and one of their n-dimensional
faces must be in a hyperplane parallel to R". The intersections of R" and of
the simplices of T that meet R" then constitute a triangulation of œn, and the
restriction to R" of a simplicial approximation of F is a simplicial
approximation of/; equation (35) follows easily.

The Leray-Schauder degree of course has all the properties of the Brouwer
degree; in particular, if d(f, at, p) ^ 0, the equation f(x) = p has at least one
solution in co. The properties of continuity of the degree show that, if (x, A)i—>
u(x, X) is a map of <o x I into E (where I is an interval in R) that is uniformly
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continuous and such that each partial map x i—» u(x, À) is compact, then, if for
one value À0 e I, the equation x = u(x, À0) has exactly one solution in ca, the
equation x = u(x, X) has at least one solution in <o for every k e I. For further
details, see [436a].

§ 3. The Calculus of Variations in the Large
(Morse Theory)

The notion of geodesic curve on a surface goes back to Johann Bernoulli, who
defined it as providing the minimum length of a curve on the surface between
any two of its points. Their local theory was well understood after the work
of the nineteenth century geometers on surfaces (Gauss, Jacobi, O. Bonnet),
and later on Riemannian manifolds (Riemann, Christoffel, Levi-Civita). But
two main global problems on geodesies on a Riemannian manifold M of
dimension n can be formulated as follows: (1) Does an arc of geodesic with
extremities p, q actually have minimum length among all rectifiable curves
joining p and q (one then says it is a minimal geodesic between p and q)? (2)
How many geodesic arcs are there joining two points of M?

Locally these problems have a complete answer: each point of M has an
open neighborhood V such that for any two distinct points p, q of V there is
exactly one arc of a geodesic contained in V and joining p and q, and it is the
unique minimal geodesic between p and q.

Until 1920 the only general results on the global problem came from
Jacobi's deep investigations of problem 1: he had shown that on a geodesic
curve C of origin x0, there exists in general a sequence of points xx,x2, ...,
the conjugate points of x0 on C, such that any arc of C that does not contain
any of the x-s for j > 1 is a minimal geodesic; but if it does contain an Xj, then
in every neighborhood of C there exist piecewise smooth arcs joining two
points p, q of C, the length of which is strictly smaller than the length of the
arc of C between p and q.

In a series of papers beginning in 1928 Marston Morse attacked the
preceding problems by a bold combination of differential geometry and algebraic
topology applied to suitable function spaces, which he called "calculus of
variations in the large." He considered the setCl = Cl(M;p,q) (36)
of piecewise smooth paths on M having fixed extremities p, q defined as
continuous (not necessarily injective) maps y: [0,1] -»• M such that y(0) = p,
y(l) = q, and there are a finite number of points

to = 0<t1 <t2 <■■■<«„,_! <tm = 1 (37)
such that in every closed interval [t;, ti+1 ], y is a C° function. The parametriza­
tion is always chosen such that

ÎOTtj «S t «S tJ+1, t-tj = J±
dy
du

du with I, = dy
du

du;
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in other words, t — t-s is proportional to the length of the image of \_tj, t] by y.
Then

mL(y) = I h, (39)
J=o

the length of y, is a function of y in £1 A minimal arc from p to a should be a
path y for which L(y) is minimum in £î, and a geodesic arc from p to g should
be a path that is a "critical point" for the function L. This at first has no
meaning, since Q is not a differential manifold; the whole of Morse's theory
consists in showing that it is possible to substitute for £1 genuine differential
manifolds to which his results on critical points (chap. V, §4) can be applied.

Almost all of the ideas introduced by Morse in this process were new
[including his investigation of critical points of a function defined on a smooth
manifold (chap. V, §4)]. He applied his method not only to geodesies, but also
to extremals of more general problems of the calculus of variations (in one
variable), and to extremals joining both two points or two submanifolds. His
proofs have gradually been simplified: in [422], Seifert and Threlfall replaced
absolute cycles by relative ones and dropped the index, which was
reintroduced by Bott, and finally J. Milnor improved on Bott's presentation by
eliminating the construction of auxiliary hypersurfaces. We shall follow his
streamlined description [345].

To study the geodesies joining two points p, q it is convenient, instead of
working with the length L(y), to work with the energy of a path y: [a, o] -»• M,
defined by

2 du (40)
With the chosen parametrization (38) E(y) = (b — a)L(y)2 and the extremals
of E are again the geodesies, but the computations are easier with E. Milnor
divided his presentation of the Morse theory into several steps.

Step 1 is essentially a presentation of the classical Lagrange method that
brings to light the analogy with the critical points of a C°° function on M. No
topology is put on Q; a variation of a path y e Q is a continuous map a into
M, defined in a product ]-£,£[ x [0,1] with the following properties

l.a(0,t) = y(t),
2. x(u, 0) = p, x(u, 1) = q for — e, < u < e, and
3. there is a decomposition (37) such that a is C°° in each set

]-£,£[ x [t„t,+ 1].

A variation vector field 11—> W(t) is associated to each variation a, where
W(t) is a tangent vector in the tangent space Ty(t)M to M, defined by

W(0=4°W (41)
(jU

it is a continuous map of [0,1] into the tangent bundle T(M), smooth in each

K(y) =
dy
du
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interval \_tt, ti+1]. These maps [for all decompositions (37)] are the substitute
for the "tangent vectors" at the "point" y; they form an infinite-dimensional
vector space written TO(y).

More generally the interval ]—£,£[ can be replaced in the definition of a
variation by a neighborhood of 0 in some R", defining an n-parameter variation.

A critical path y0 e Q for a function F: Q -► R is defined by the condition
that for every variation a of y0 the function

ui—>F(a(u,.))

is derivable for u = 0 and its derivative is 0.
Step 2 is again a modern presentation of the formulas of Riemannian

geometry, giving the "first variation" and "second variation" of the energy
E(y) = Eô(y) of a path y eQ, which form the basis of Jacobi's results.

First consider an arbitrary path <o e £î, its "velocity" V(t) = dco/dt, and its
"acceleration" in the Riemannian sense

A(t) = V,V(t) (42)
(where V, is the covariant derivative). They belong to TB(()M for each t e [0,1],
are defined and continuous in each interval [t;, t,+1] in which co is smooth,
and have limits at both extremities. Now let a be a variation of <o and 11—> W(t)
be the corresponding variation vector field (41). The "first variation formula"
gives the first derivative

1 A

2 du E(a(u, .))|„.0 = -£ (W(t,)|V(t, + ) - V(t,-)) - f (W(OIA(O)A (43)

where (x|y) is the scalar product of two vectors in a tangent space. It follows
from this formula that y e £1 is a critical path for E if and only if y is a (smooth)
geodesic.

Next fix such a geodesic y and consider a two-parameter variation:

a: U x [0,1] -> M

where U is a neighborhood of 0 in R2, so that

a(0,0,t) = y(t), p-(0,0,t) = W^t). ~(0,0,t) = W2(t)oux ou2
where Wj and W2 are in TO(y). The "second variation" formula gives the mixed
second derivative

1 d2
TP -, E(a(u1,u2, .))|(0,o,2 dulou2

= -I (W2(t,)|V,W1(tt + ) - V.W.fo-))
i

(W2(t)|V,2W,(0 + R(V(t) a W.W). V(0)A (44)
o
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where Zi-»R(X a Y).Z is the curvature of the Levi-Civita connection. The
left-hand side of (44) is thus a bilinear symmetric form

(W1)W2)h^E„(W1,W2) (45)
on the product T£î(y) x T£î(y). For a one-parameter variation a

E**(W,W) = ^E(a(u,.))U0, (46)
from which it follows that if y is a minimal geodesic in Q, E^W, W) > 0 in
Tfl(y). As usual, we shall speak of E^ indifferently as a symmetric bilinear
form or as a quadratic form W i—» E„,„,(W, W).

Formula (44) naturally leads to the junction with Jacobi's work: consider
the smooth vector fields t i—> J(t) along y satisfying the equation

V,2J(t) + R(V(t) a J(t)).V(t) = 0 for 0 ^ t ^ 1. (47)
With respect to a frame along y moving by parallel translation this relation

is equivalent to a system of n linear homogeneous differential equations of
order 2 with C°° coefficients; the solutions J of (47) are called the Jacobi fields
along y and form a vector space of dimension In. If for a value a e ]0,1] of
the parameter t there exists a Jacobi field along y that is not identically 0 but
vanishes for t = 0 and t = a, then the points p = y(0) and r = y(a) are conjugate
along y with a multiplicity equal to the dimension of the vector space of Jacobi
fields vanishing for t = 0 and t = a.

Jacobi fields may also be defined as variation vector fields for "geodesic
variations" of the path y: they are Cœ maps

a: ]-£,e[ x [0,1]-* M

such that for any u e ]—e,e[, ti—>a(u,t) is a geodesic and a(0,t) = y(t) [no
conditions are imposed on a(u, 0) and a(u, 1)].

It can be proved that the Jacobi fields along y that vanish at p and q [hence
belong to TO(y)] are exactly the vector fields J e T£î(y) such that

E!|t!|!(J,W)=0 for every W e TOfo). (48)
Although TQ(y) is infinite dimensional, the form E„,„, is again called degenerate
if the vector space of the Jacobi fields vanishing at p and q is not reduced to
0, and the dimension of that vector space is called the nullity of E^; E^ is
thus degenerate if and only if p and q are conjugate along y and the nullity of
E^ is the multiplicity of q.

Step 3 is the beginning of Morse's contributions. He first considered a fixed
geodesic y: [0,1] -» M with extremities p = -y(0), q = -y(l) and the bilinear
symmetric form E,^: T£î(y) x TO(y) -» R. By analogy with the
finite-dimensional quadratic form, the index of E^ is defined as the maximum dimension
of a vector subspace of T£î(y) in which E^ is strictly negative [i.e., nonde­
generate and taking values E++(W, W) < 0 except for W = 0]. Morse's central
result gives the value of the index of E^^ and is known as the index theorem.
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Suppose a subdivision (37) is chosen such that each arcy([tj_1,tj) is
contained in an open set U, c M such that any two points of IL are joined by a
unique geodesic arc contained in U; that is minimal; }>(l-A-i^.j) is such an
arc. In the infinite-dimensional vector space T£î(y), consider the two vector
subspaces:

(i) T£l(y; t0, tj,..., tm) consisting of all continuous vector fields t1—> W(t) along
y, vanishing for t = 0 and t = 1, and such that each restriction W|[t;_!, t{]
is a Jacobi field (hence smooth) along y\[_ti-1,ti']; that subspace is finite
dimensional;

(ii) V consisting of the vector fields t\-> W(t) along y, such that W(t0) = 0,
W(t1) = 0,...,W(tm) = 0.

T£l(y) is then the direct sum TÇi(y;t0,tl,...,tm)@T; these two subspaces
are orthogonal for the bilinear form E,.,., and E,.,. is strictly positive in T', so
that the index of E,.,. is equal to the index of its restriction to the subspace
TO(y; t0, t !,..., tm). This follows easily from a suitable construction of
"variations" along y and the fact that a "broken Jacobi field" in TQ(y; t0, t j,..., tm)
is uniquely defined by its values at t0, tt,..., tm (in particular T contains no
such field except 0).

To compute the nullity and index of E,.,., due to this decomposition, apply
their definitions either to vector subspaces of T£l(y) or to vector subspaces of
T£l(y;t0,t1,...,tm). The computation of the index of E,.,. is done by
considering the geodesic arc yx: [0, t] -» M, the restriction of y to [0, t], and its
energy

E(yt) = t f

E^ is the corresponding quadratic form on TQ(yt), and X(x) its index; one
studies the variation of X(x) when t varies from 0 to 1, and A(l) is the index of

From the fact that yt is a minimal geodesic for small enough t it follows
that X(x) = 0 in a neighborhood of 0. The space TO(yt) can be identified to a
subspace of T£l(yr) for 0 < t < x' by extending any W e TO(yt) to a vector
field W e TO()v) such that W'(t) = 0 for x ^ t ^ x'. This easily implies that X
is increasing in [0,1].

The crucial part of the proof is the study of the continuity of X at a point
t e [0,1], first on the left and then on the right. There is continuity on the left;
more precisely X(x -e) = X(x) (49)
for sufficiently small ?. > 0. Here it is convenient to consider only broken
Jacobi fields. First suppose x < 1, and choose a subdivision (37) such that
tt < x < ti+l. Then, for e. small enough and t-,< x — e. ^ x' ^ x + e < ti+1,
the spaces TCi(yr; t0, tt,..., t-„ x') are identified to subspaces of same dimension
ni of TQ.(y;t0,...,tm) that vary continuously with x' (in the corresponding
Grassmannian), and E^ is a quadratic form on the space TQ(yt-, t0, ■ ■ ■, th x')

dy
du

du.
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that also "varies continuously" with x' in a sense easy to make precise by choice
of bases. It is then clear that if E^ is strictly negative on a subspace of
Tf2(yt;t0,tj,...,t,,r) of dimension À(x), E^ is strictly negative on a sub­
space of TQ(yt.;t0,t1,...,t;,T') of same dimension, so that a(t') "5 Â(x) for
t — e ^ t' < t + e. As ). is increasing, this proves (49). The proof for t = 1 is
done by a similar argument.

The last part of the proof consists in showing that for e > 0 sufficiently small

A(t + e) = A(t) + v, (50)

where v is the nullity of E^. From the preceding study of E^ on broken
Jacobi fields it follows that there is a subspace of T£î(yr; t0,..., t{, t) of
dimension ni — A(t) — v in which E^ is strictly positive; the same argument of
continuity then proves that for t — e ^ x' < t + e, x(t') < A(t) + v; it remains
only to prove that

A(t + e) > A(t) + v. (51)
This is done by returning to the consideration of arbitrary subspaces of

TO(yr). There are A(t) linearly independent vector fields Wj, W2, ••, WA(I) in
that space, spanning a subspace in which E^ is strictly negative, and these
vector fields can be identified as above to vector fields of TQ(yz+s). On the
other hand, there are v linearly independently (smooth) Jacobi fields J1, ...,
Jv defined in [0,1] and vanishing for t = 0 and t = t; let Jzh+C (1 =$ h ^ v) be
their restrictions to [0,t + e]. By the second variation formula (44)

E;+*ur,w,.) = o
K:(rh+\xk) = 2ôhk

for 1 < h ^ v, 1 ^ i ^ a{x),
for 1 ^ h, k ^ v,

(52)

where the Xt are suitably chosen vector fields in TQ(yz+s). It is then easy to
prove that E^£ is strictly negative in the vector space having as basis

W1,...,WA(t),c--1J1-cX1,...,c--1Jv cXv

for sufficiently small c > 0, proving (51).
From these properties the index theorem immediately follows: the index of

E** is the sum of the multiplicities of the points conjugate to p along y and
distinct from q.

We have seen that the dimension of rYQ.(y\t0,tl,...,tm) is finite; it follows
that the index of E^^ is always finite, and therefore the number of points
conjugate to p along y is also finite.

Step 4 of Morse theory introduces a topology on the set Q. = £Î(M; p, q). On
every connected Riemannian manifold M the usual topology can be defined
by a distance p(x,y), the g.l.b. of the lengths of all piecewise smooth paths
joining x and y. For any pair of paths œ1, œ2 in £Î(M; p, q), consider the function

d(couco2)= sup p(o)1(t),ü)2W) + It
ds2
lit dt

,1/2

(53)

where sx{t) [resp. s2(t)] is the length of the path ti—xu^t) [resp. ti—>co2(t)]
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defined in [0, t]. This is a distance on £î such that the function

co i—> E*(co)

is continuous for that distance.
Now suppose that the Riemannian manifold M is complete. Let c > 0 be a

number such that the subset Qc of Q consisting of the piecewise smooth paths
for which E(co) < c is not empty. Consider a subdivision (37) and the set
Bcfl' consisting of the piecewise smooth paths a> such that each restriction
ûjUA-.A] is a (smooth) geodesic for 1 =$ i =$ m. It is possible to take the
subdivision (37) such that for each broken geodesic <o e B each restriction
Hfri-ut.] is the unique minimal arc between atit;-^ and œ(t;) and depends
continuously on these two points. A broken geodesic <o e B is then uniquely
determined by the (m — l)-tuple

(ca(t1),ca(t2),...,ca(tm.1))eMm-1 (54)
and the map coi—>(co(t1),co(t2),...,co(tm_1)) is a homeomorphism of the subset
B of the space £îc onto an open subset of Mm_1; pulling back the C°° structure
of that open subset defines B as a C°° manifold.

Let E' be the restriction of E to B. Then:

(i) E' is a C°° map B -» R, and for each a < c the inverse image E'_1([0, a]) is
compact,

(ii) The set E'_1([0, a]) is a strong deformation retract (Part 1, chap. IV, § 6B)
of the set E_1([0,a]). This is proved by a construction of Morse: for
t;_! =$ u =$ ti and any a> e E-1([0,a]), ru(a>) is the piecewise smooth path
from p to q such that
a. ru(co)\[_tj-i,tj] coincides with the unique minimal geodesic between

co(tj-i) and œ(tj) for all j ^ i — 1;
b. r11(a))|[..1._1,H] is the minimal geodesic from cü(t;_!) to ca(u);
c. r„(co)|[u, 1] is the restriction ca\[u, 1],
It is then easy to see that r„ is a homotopy defining E'_1([0,a]) as strong
deformation retract of E_1([0,a]).

(iii) The critical points of E' in B are the same as those of E in E_1([0,c]),
namely, the smooth geodesies from p to q of length < y/c. Along each of
these geodesies the index (resp. nullity) of E^ is the same as the index
(resp. nullity) of E,..

This ends the reduction made by Morse to the finite-dimensional situation:

Suppose that on the complete Riemannian manifold M the points p, q are not
conjugate along any geodesic of length ^ ,7a. Then the homology of the space
E_1([0, a]) is the same as that of a compact C°° manifold on which is defined a
C°° function E' with a finite number of critical points. Each of these points
corresponds to a geodesic joining p and q, and the index of each critical point
of E' is equal to the index of E^^ along the corresponding geodesic.
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In particular only a finite number of geodesies of length ^ yfa can join p
and q; the example of antipodal points on a sphere S„ shows the necessity of
the condition that p and q should not be conjugate along a geodesic joining
them.

In order to apply this theorem, it is necessary to know that for every point
p e M there are points q e M such that q is not conjugate to p along any
geodesic. The "exponential" map expp: TP(M) -» M associates to each tangent
vector v e TP(M) the extremity of the geodesic arc y. [0,1] -» M such that
y(0) = p and dy/dt(0) = ». As M is complete, this map is defined everywhere
in Tp(M), and it is easy to show that q = expp(t;) is conjugate to p along y if
and only if the point v is critical for the map expp. It then follows from Sard's
theorem (Part 1, chap. Ill, § 1) that the points q e M which are not conjugate
to p along any geodesic form a dense subset of M.

After 1950 it was belatedly realized that the results of Morse had unexplored
potentialities that brought substantial process in homotopy theory (Part 3,
chap. V,§6B).



Introduction

In this part I retrace the history (until around 1960) of two fundamental
concepts, homotopy groups and fibrations, and of their interactions both
between themselves and with homology and other structures.

I) The concept of homotopy may be traced back to Lagrange's method in
the Calculus of variations. The vague intuitive idea of "deformation" is found
(without any definition) in many mathematical papers during the nineteenth
century and even later. Brouwer, in 1911, is the first to have given the general
definition of a homotopy between two continuous maps /: X -» Y, g: X -» Y;
it is a continuous map

F: X x [0,1] -» Y

such that F(x,0) = f(x) and F(x, 1) = g{x) for all x e X. It is clear that the
existence of a homotopy is an equivalence relation in the space ^(X, Y) of
continuous maps of X into Y.

Most results in homotopy theory are concerned with pointed spaces (X,x0)
with a privileged point x0 e X; they form a category when morphisms are
defined as continuous maps /: (X,x0) -*(Y,y0) subject to the condition
f(x0) = y0. A homotopy between two such maps/, g is then a continuous map

F:(X)Xo)x[Q,l]-(Y,y0)

such that F(x,0) = f(x), F(x, 1) = g(x), and F(x0,t) = y0 for all t e [0,1]. The
existence of such a map again defines an equivalence relation; the equivalence
class of/ is written [/], and the set of equivalence classes [X, x0;Y,y0] or
merely [X; Y]. In what follows only pointed spaces are considered.

II) The idea of homotopy groups appeared in Poincaré's paper of 1895. He
defined ^(X.Xq) as the set [Sl5 *;X,x0]*; a representative of a class ofthat
set, called a loop, can be considered as a continuous map y: [a,è>] -»X such

* S„ is defined as the subset of R"+1 satisfying the equation

x% + x\ + h x2„ = 1

and the chosen privileged point is * = ( 1,0,0,..., 0).

J. Dieudonné, A History of Algebraic and Differential Topology, 1900—1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-414,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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that y(a) = y(b) = x0. Poincaré defined a law of composition on 7tj(X,x0) by
first defining the juxtaposition y = yx v y2 of two loops: if yx and y2 are defined
in [0,1], then y: [0,1] -» X is such that y(t) = y^lt) for 0 ^ t ^ \ and y(t) =
y2(2t — 1) for \ =$ t =$ 1. It is easy to see that the class [y1 v y2] only depends
on the classes [y^ and [y2]' and if [yl v y2] = [y. ] ' [fcJ* the law

([yi],[y2])^[yi]-[y2]

defines a structure of group (noncommutative in general).
III) It was natural to consider the sets [S„; X] for n > 1, and the

generalization of the law of composition defined by Poincaré on [S^X] was not very
difficult; in fact, this was done by Cech in 1932, and he mentioned that Dehn
had thought of that definition earlier but did not publish it.

In 1935 Hurewicz found a more useful definition for those groups. The
set £î(X,x0) of the loops St -* X considered by Poincaré is a topological
space for the compact-open topology, and it has a natural privileged point,
the constant loop xx: Sx -*{x0}. Hurewicz therefore considered the group
nx(£3(X, x0), x j ) and found that the process could be repeated inductively. The
successive spaces of loops are

Çi"(X,x0) = Çi(Çi"-HX,x0),xp_l) (1)
where xp_t is the constant map St -» {xp_2}; the corresponding groupn^Œ-^X^olx^) (2)
is the p-th homotopy group 7ip(X,x0); it is a covariant functor from pointed
spaces to groups. It is easily seen that for an H-space X, n^X, x0) is
commutative; since £Î(X, x0) is an H-space for juxtaposition, the groups 7i„(X,x0)
are commutative for n > 2. As a set, 7i„(X,x0) is also identified to the set
7r0(£î"(X, x0)) of arcwise connected components of the space fi"(X, x0) having
as privileged point the arcwise connected component of x0.

A path a: [0,1] -* X with extremities a, b in X naturally defines an
isomorphism s(u): 7t„(X,a) 2+ nn(X,b); in particular the fundamental group 7tj(X,x0)
naturally operates by automorphisms on every 7i„(X,x0).

IV) A little later Hurewicz defined the relative homotopy groups nn(X, A, x0)
(with n "5 2) for any subset A of X with x0 e A, in the same manner. Here he
considered the set £Î(X, A, x0) consisting of the continuous paths a: [0,1] -» X
such that a(0) = x0 and a(l) e A; this is also a topological space for the
compact-open topology. A homotopy between two such paths a1, a2 is a
continuous map F: [0,1] x [0,1] -» X such that F(s,0) = otj(s), F(s, 1) = a2(s),
F(0,t) = x0, and F(l,t) e A for all (s,t); ^(X, A,x0) is the set of homotopy
classes of paths in £Î(X, A, x0).

Then define by induction for n "5 2

Q"(X, A,x0) = «(O--1 (X, Kx0Un-i) (3)
where xn_j is the constant loop St -» {x„_2}; the relative homotopy group is
defined by
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n„(X, A,x0) = nl(Q"(X,A,x0),xR_l); (4)
it is commutative for n "5 3 and is a covariant functor in the category of pairs
(X, A). A natural homeomorphism

n"(x,A,x0)^n(n--1(x,x0),n--1(A,x0),x11_1) (5)
is defined so that

n„(X, A,x0) ~ >i1(n--1(X,x0),ff,-1(A,x0),x11_1). (6)

Furthermore, there is a natural map

d:7i1(X,A,x0)-»7i0(A)

which associates the arcwise component of A containing a(l) to the class of a
path a e £Î(X, A, x0). Using (6), this defines for each n "5 2 a natural homo­
morphism of groups d: nn(X, A, x0) -» 7i„_1(A, x0).

In 1945 J.H.C. Whitehead proved that the sequence

*■ tn+i(X, A, x0) —► 7i„(A, x0) -^ nn(X, x0) -^* n„(X, A,x0) —► n^^A, x0)

*nl(X,x0) -^ rc^X, A, x0) —► 7i0(A) -» 7i0(X) (7)
is exact, where;': (X,x0) -» (X, A), i: (A,x0) -» (X,x0) are the natural injections
of pairs of pointed spaces.*

V) In 1935 Hurewicz defined the concept of homotopy equivalence between
two pointed spaces (X, x0), (Y, y0). It is a continuous map /: (X, x0) -» (Y, y0)
such that there exists another continuous map g: (V,y0) -*(X,x0) for which
the composed maps go f and fog are respectively homotopic to the identity
in X and in Y; g is then a homotopy equivalence, called a homotopy inverse of
/. When there exists a homotopy equivalence of X into Y, they have the same
homotopy type. The homology of a space only depends on its homotopy type,
and the set [X; Y] only depends on the homotopy types of X and Y; in
particular the homotopy groups of X also only depend on the homotopy type
ofX.

In 1939 J.H.C. Whitehead introduced other equivalence relations; /:
(X, x0) -» (Y,y0) is an n-equivalence if the corresponding homomorphism /„.:
nr(X,x0) -* 7tr(Y,y0) is bijective for 1 ^ r < n and surjective for r = n; f is a
weak homotopy equivalence if it is an «-equivalence for every n > 0. He then
proved the remarkable result that when X and Y are CW-complexes, any weak
homotopy equivalence /: X -* Y is in fact a homotopy equivalence.

VI) J.H.C. Whitehead defined still another notion of a combinatorial nature
for CW-complexes, which he called simple homotopy equivalence. It is related
to what he called the torsion t(/), defined only for homotopy equivalences
f: X -» Y between two CW-complexes. He began by defining, by purely group­

* The exactness of the last map d means that the image .^(re^X.Xo)) is mapped by d
on the arcwise connected component of x0 in A.
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theoretical means, a commutative group Wh(G) for any group G, now called
the Whitehead group of G; the torsion r(f) takes its values in Wh(7i1(X)).
Homotopy equivalences between X and Y are thus classified according to their
torsion, and those for which r(f) = 0 are called simple homotopy
equivalences. The spaces X and Y have the same simple homotopy type if there
exists a simple homotopy equivalence /: X -» Y. But it was only in 1972 that
it was proved that two homeomorphic CW-complexes have the same simple
homotopy type, a nontrivial result since that notion is attached to a particular
decomposition of a CW-complex into cells.

The Whitehead torsion generalized earlier combinatorial invariants defined
by Reidemeister, Franz, and De Rham in the 1930s in order to classify lens
spaces, defined as spaces of orbits for free action of cyclic groups on a sphere
S„. Using his notion of torsion, in 1940 Whitehead was able to give an
example of two lens spaces having the same homotopy type but which are not
homeomorphic.

VII) The definition of homotopy groups by Hurewicz had been preceded
in 1925-1930 by the pioneering work of H. Hopf on the maps of spheres into
spheres, which may rightly be called the starting point of homotopy theory.
Brouwer had conjectured that the homotopy class of a continuous map
/: S„ -» S„ is determined by deg(/), and had sketched a proof for n = 2. In
1925 Hopf completely proved Brouwer's conjecture, which now can be
expressed by saying that [/] i—> deg(/) is an isomorphismnn(Sn)^Z. (8)

It is easy to see that for n > 1 and m < n all continuous maps /: Sm -» S„
are homotopic to a constant, in other words nm(S„) = 0. But until 1930 nobody
had any idea of what the set [Sm; S„] was for m> n. The breakthrough was
due to Hopf, who proved what we now write7i3(S2) ~ Z. (9)

His method was to attach to any continuous map/: S3 -» S2 an integer, the
Hopf invariant H(/); for a simplicial map, this is the linking number of f~1(x)
and f~l(y) for two points x, y of S2 in general position. Hopf proved that
H(/) only depends on the class [/], and showed that the "Hopf fibration", a
restriction to S3 of the natural map

C2 - {0} - P.CQ * S2,

has an invariant equal to ± 1.
From that time on the determination of the groups 7im(S„) for m > n has

been one of the outstanding open problems in topology. Hurewicz's definition
of the homotopy groups enabled him to give simpler proofs for (8) and (9),
and he also proved that

7tm(S1) = 0 for m S* 2. (10)
In 1935 Hopf extended his definition of the Hopf invariant to continuous
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maps /: 82^.! -» Sk; if k is odd one always has H(/) = 0; but for k even, Hopf
constructed maps for which H (/) = + 2, so that "• 2ic -1 (S* ) contains a subgroup
isomorphic to Z; he even exhibited maps / with H(/) = + 1 for k = 2, 4 and
8.

VIII) After Hurewicz's papers appeared in 1935, and before 1950, the only
noticeable advance in the investigations of the nm(Sn) was the discovery of the
properties of homotopy suspension by H. Freudenthal in 1937. For any pointed
space (X,x0), he considered the product X x [—1,1] and the quotient space
(SX,x0) obtained by collapsing to x0 the subspace

(Xx {-l}u(Xx {l})u({x0} x[-l,l]).
This defines a covariant functor (X,x0)i—>(SX,x0), the "suspension", in an
obvious way in the category of pointed spaces; it is immediately seen that S(S„)
is homeomorphic to Sn+1.

For any pointed space (Y,y0) the definitions yield a natural bijection

[X,x0;£îY,yi]^[SX,x0;Y,y0] (11)
(later expressed by saying that S and Q are adjoint functors). On the other
hand, if p: X x [— 1,1] -» SX is the collapsing map, there is a natural map

s:(Y,y0)-+(ClSY,yi) (12)
such that s(y) is the loop th->p(y,t) in SY. This defines a map

V [X,x0; Y,y0] -» [X,x0;nSY,yj]

and by composition with (11) we get the homotopy suspension

E: [X,x0; Y,y0] - [SX,x0;SY,y0] (13)
and in particular a group homomorphism

E:7rr(Sn)-*7rr+1(Sn+1) forr>l,n>l. (14)
Freudenthal proved the striking result that (14) is bijective for

1 ^ r < In — 1 and surjective for r = In — 1. In addition he showed
that the kernel of the Hopf invariant H: n2r+l(Sr+l) -» Z is the image of E:
n2r(Sr) -* ^2r+i(Sr+i). Finally he proved that the kernel of E: 7i3(S2) -» 7i4(S3)
is the subgroup of 7r3(S2) formed of the classes of maps with even Hopf
invariant, which gave him the result

7r4(S3) =. Z/2Z. (15)
From the Freudenthal theorem it follows that the sequence

"MSJ -» nr+l(Sn+l) -* ■■■-* nr+k(Sn+k) -*■■

is stationary: all maps E are isomorphisms for k > r — In + 1. This was the
first appearance of stability in homotopy theory; the group nr+k(Sk) for
k > r + 1 is independent of k, up to isomorphism; it is called the r-stem or the
r-th stable homotopy group; in particular
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n„+1(S„) ~ Z/2Z for n$= 3. (16)
Hopf also generalized the Brouwer conjecture and determined the set

[X; S„] when X is an «-dimensional finite simplicial complex; his result was
put by Whitney in the simpler form

[X;Sn]^H"(X;Z).

IX) Poincaré had noticed (without proof) that to any relation between the
classes of loops in 7tj(X,x0) there corresponds a "homology" between their
classes as cycles. This later was formalized as defining a surjective homomor­
phism hl: 7tj(X,x0)-» Hj(X;Z), the kernel of which is the group of
commutators of n j (X, x0 ).

Similarly, for any n > 1, to any map /: (S„, *) -*(X,x0) can be associated
the singular chain which is the difference of the restrictions of / to the
hemispheres D+ and D_, naturally identified with the standard simplex A„.
Hurewicz showed that by passage to quotients one obtains a homomorphism

fcn: 7rn(X, x0)-» H„(X; Z),

but in general hn is neither injective nor surjective. However, Hurewicz could
prove that if X is (n — l)-connected, i.e. 7ij(X,x0) = 0 for 1 ^j^n—l, then
hn is bijective (the absolute Hurewicz isomorphism theorem).

In the same way, Hurewicz defined a natural homomorphism

hn: nn(X, A, x0) -» H„(X, A; Z)

and stated that if ^(X, A,x0) = 0 for 1 ^j ^n— 1, h„ is bijective (the relative
Hurewicz isomorphism theorem), but he did not publish a proof; later several
were given.

Combining that theorem and the homotopy exact sequence, J.H.C.
Whitehead proved that iff: (X, x0) -» (Y, y0) is an n-equivalence, then the homomor­
phisms in singular homology

/,:Hr(X;Z)-+Hr(Y;Z)

are bijective for r < n, surjective for r = n; if X and Y are simply connected,
the converse is true.

X) The origin of the concept of fibration can be found in notions like vector
fields or moving frames on a smooth manifold X; they deal with what may be
thought of as a kind of function defined on X, but which, for every x e X, takes
its value f(x) in a set Ex variable with x. A fibration is a space E which, as a
set, is the disjoint union of "fibers" Ex(x e X) with a suitable topology; a section
of the fibration E is then a continuous map s: X -» E such that s(x) e Ex for
each x e X.

The first general definition was given by Whitney in 1935, and his ideas were
developed a little later by himself and by Ehresmann, Feldbau, and Steenrod.
The kind of fibration they studied is what is now called (locally trivial) fiber
space. It is best defined as a quadruplet £, = (E,B,F,p) where E is the "total
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space," B the "base space," F the "typical fiber," and p, the "projection," is a
continuous surjective map p: E -» B satisfying the condition that each point
fceB has an open neighborhood U for which there is a homeomorphismfUxF^p-'fü) (17)
satisfying

p(q>(y, t)) - y for y e U and t e F. (18)
A fiber space can thus be regarded as a product "locally," but in general not
"globally." All fibers Efc = p_1(è>) are homeomorphic to F.

XI) Special examples of fiber spaces had in fact been considered (in an
intuitive way) by Poincaré in 1883, the covering spaces of a space X (in
Poincaré's case, X is an open subset of C); they are fiber spaces with base space
X and discrete fibers. They became the subject of a rigorous general theory
between 1913 and 1934. It was shown that they possess a remarkable "lifting"
property. If Y is a covering space of (X,x0) with projection p: Y -» X, and
y0 e p~1(x0), then for any path a: [0,1] -» X with a(0) = x0 there is a unique
path à: [0,1] -» Y with 5(0) = y0 such that a = p o S.. Furthermore, if <p:
[0,1] x [0,1] -» X is a homotopy between two paths al5 a2 (with <p(0, t) = x0
for all t e [0,1]) there exists a unique homotopy q> between fij and &2 such
that (p = p o q>.

For a general fiber space (E, B,F,p) the existence of a lifting of
a path is no longer guaranteed. But a very useful result remains: if
H: (Z, z0) x [0,1] -» (B, è>0) is a homotopy between two continuous maps /, g
with H(z0, t) = è>0 for all t e [0,1], and if / can be lifted to a continuous map
/: (Z,z0) -» (E,a0) with p(a0) = b0, then H can also be lifted to a homotopy
ft: (Z,z0) x [0,1] -> (E, a0) such that fl(z,0) = f(z) and p. fl = H (in general
one cannot hope that fl is unique). This is called the covering homotopy
property for the system (Z, E, B, p).

Around 1940 it was realized that the covering homotopy property for a
fiber space implies that the projection p: E -» B defines an isomorphism p^:
7i„(E, F, a0) ^ 7i„(B, è>0) for all n > 0. In conjunction with the exact homotopy
sequence (7) this gives the exact homotopy sequence of fiber spaces

► 7tB(F,a0) -** nn(E,a0) -^ nn(B,b0) —► 7tB_!(F,a0)

-•••-7io(F)^7io(E)^7ro(B)-0 (19)
linking the homotopy groups of the three spaces E, B, F.

XII) In 1940 Hurewicz and Steenrod had already shown that the covering
homotopy property is valid for maps p: E -» B more general than the
projections of fiber spaces. An important example of that phenomenon surfaces as
one of the main ingredients in Serre's work on homotopy groups: for any
arcwise connected space (X,x0), consider the space P = £Î(X, X,x0) of all
continuous paths a: [0,1] -» X such that a(0) = x0, and let p: P -» X be the
map a i—> a(l). Then for any space (Z, z0) the system (Z, P, X, p) has the covering
homotopy property; this follows from a more general theorem proved by
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Borsuk in 1937. It has become customary to call fibrations the systems (E, B, p)
such that (Z, E, B,p) has the covering homotopy property for all spaces (Z,z0)
(or merely for finite simplicial complexes). The fibers p_1(i>) are not in general
homeomorphic to the "typical fiber" F = p_1(i>o); if B is arcwise connected,
they only have the same homotopy type. The exact homotopy sequence (19)
is valid for all fibrations.

XIII) The most important fiber spaces are the principal fiber spaces and
the vector bundles. A principal fiber space (P, B, G, p) has a typical fiber G
which is a topological group, called the structural group. G acts continuously
(on the right) on P in such a way that for the homeomorphisms (18) defining P

<p(y,t)-s = <p(y,ts) for y e U and t, s in G. (20)
If a: Uh-»p_1(U) is a section, then q>(y,t) = a(y)-1. The fibers p_1(i>) are then
the orbits of the action of G on P; on each fiber the action of G is simply
transitive; B is identified with the space of orbits G\P. A typical example of
principal fiber space is a Lie group G with structural group a closed subgroup
H c G; the action of H on G is right translation (x, s) i—> xs, the fibers are the
right classes xH, and B is identified with the homogeneous space G/H.

A real (resp. complex) vector bundle is a fiber space (E, B, F,p) where F is a
vector space Rm (resp. Cm) and the homeomorphisms (18) are such that the
map tt—> <p(y,t) of F onto p~1(y) is R-linear (resp. C-linear) for every y e U.
The most important vector bundle is the tangent bundle T(M) to a C1 manifold
M, where the fiber TX(M) at x e M is the tangent space at that point. If N is
a submanifold of M, the tangent bundle T(N) is a vector subbundle of T(M),
and the quotient T(M)/T(N) is called the normal bundle of N in M.

When Ehresmann defined principal fiber spaces in 1940 he observed that
when the structural group G of a locally compact principal fiber space
(P, B, G, p) acts continuously on a locally compact space F, this canonically
defines a fiber space with base space B and typical fiber F associated to P. This
is done by letting G operate on the right on P x F by

(x,y)-s = (x.s,s~1 .y);

the space of orbits for that action is written P xG F; if rc: P x F-*P xGFis
the natural projection, x. y = n(x, y) e P x G F. Then pF(x. y) = p(x) does not
depend on y e F, and (P x G F, B, F, p¥) is the fiber space associated to P and
to the action of G on F. In particular, every real (resp. complex) vector bundle
of rank m is associated to a principal fiber space with structural group the
orthogonal group 0(m) (resp. the unitary group U(m)).

XIV) As soon as fiber spaces had been defined there came the problem
of classifying, for a given base space B and typical fiber F, all fiber spaces
(E, B, F,p) up to an isomorphism; for two fiber spaces E, E' with same base
space B and projections p, p' this means a homeomorphism /: E -» E' with
p(y) = p'(f(y)\ so that / is a homeomorphism of each fiber Efc onto Ej,.
Around 1940 Whitney and Steenrod attacked the problem for vector bundles
and principal fiber spaces with structural group 0(m).
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For any fiber space £, = (E, B, F, p) and continuous map g: B' -» B, Whitney
defined in 1935 the pull-back g*(£) = (E', B', F, p1) as the fiber product E x BB'
(the subspace of the product E x B' consisting of the pairs (y, b') for which
P(y) — d(b'))l the projection p'\ E' -» B' is then the restriction of the second
projection pr2; the map (y, fe')i—>y of E' into E is a homeomorphism of each
fiber p'~l(b') onto the fiber p~l(g(b')). If E is a vector bundle (resp. a principal
fiber space), so is E'.

In 1937 Whitney observed that if £, is a real vector bundle of rank r with
base space a finite simplicial complex B, there exists a continuous map
g: B -» G„ r into the grassmannian of r-planes in R" for large enough n, such
that £, is isomorphic to the pull-back g*{£,'), where £,' = (U„ r,G„ r, Rr,p') is the
tautological bundle* with base G„ r. Then Steenrod took up the idea and
proved that any two such pull-backs of £' by maps gx, g2 of B into G„ r are
isomorphic if and only if g1 and g2 are homotopic, so that the set of
isomorphism classes of vector bundles of rank r and base space B can be identified
with [B;G„ r] for large n. That same set can also be identified with the set of
isomorphism classes of principal fiber spaces with base space B and structural
group O(r); one has only to replace the tautological bundle U„ r by the Stiefel
manifold S„ r.

The same results hold for complex vector bundles and principal fiber spaces
with structural group U(r): replace G„ r by the complex grassmannian G„ r(C).
Later these results were extended to all principal fiber spaces (P, B, G, p) where
B is a CW-complex of dimension =$ n and G a topological group.

The important fact for the classification is that to obtain (P, B, G, p) as a
pull-back of (P', B', G,p') for all CW-complexes B of dimension < n, one must
assume that 7r,(P') = 0 for 1 < i ^ n. Principal fiber spaces with group G
satisfying that condition are called n-universal, and their base space B' n­
classifying for the group G. The limitation on the dimension of B can be lifted:
it is enough that there exists a sequence of continuous maps un: B -» [0,1]
such that P is trivializable over each open set u~1(]0,1]) and these open sets
form a covering of B. Milnor then showed how to construct a universal
principal fiber space PG which is contractible; its base space BG = PG/G is
called classifying for the group G. For any base space B satisfying the above
condition the set of isomorphism classes of principal fiber spaces with base
space B and structural group G is identified with [B; BG].

XV) In their pioneering work of 1935 Stiefel and Whitney were looking for
conditions implying the existence of a section s of a vector bundle (E, B, F, p)
such that s(b) # 0 for all fceB.B being a simplicial complex. They found that
a sufficient condition is the vanishing of a certain cohomology class of B with
values in F2.+ Pontrjagin was apparently the first to observe, in 1942, that the
Whitney-Steenrod classification determines for each real vector bundle à, =

* U„ r is defined as the set of pairs (V, y) in G„ r x R" such that y e V.
+ Stiefel only used homology and did not speak of fiber spaces.
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(E, B, Rm, p) a subalgebra of the cohomology algebra H'(B; A), namely the
image

öf*(H'(G A)
for the map g: B -» Gm+n m which defines ^asa pull-back and is determined
up to homotopy.* Ehresmann's cell decomposition of the grassmannian
enabled him to define m well-determined classes which are generators of its
cohomology algebra over Z; their images by g* are called characteristic classes
of the vector bundle £,.

Pontrjagin dealt with oriented vector bundles, associated to principal fiber
spaces with structural group SO(m) instead of 0(m) and base space G'm+Htm,
a double cover of Gm+nm. He also limited himself to the tangent bundle of a
manifold, and his results were complicated by the fact that H'(G'm+nm;Z) has
torsion. In 1945 Chern similarly used the Whitney-Steenrod theory for
complex vector bundles, where this time the cohomology of the complex
grassmannian over Z was free; the classes defined by Pontrjagin are more easily
obtained by considering the Chern classes of the complexified bundle of a real
vector bundle.

Pontrjagin and Chern independently found that their characteristic classes
for the tangent bundle of a Riemannian or Hermitian manifold could be
expressed (in the De Rham cohomology) by well-determined classes of
differential forms. This was later generalized to arbitrary vector bundles on a
smooth manifold by A. Weil, using the theory of connections.

Finally, the Stiefel-Whitney classes can also be defined as characteristic
classes pulled back from the cohomology of Gm+n m with coefficients in F2.

XVI) As soon as Leray had invented sheaf cohomology and spectral
sequences in 1946 he applied them to fiber spaces (X, B, F, p) where X, B and F
are locally compact and arcwise connected and B is locally arcwise connected.
He used the Alexander-Spanier cohomology with compact supports and with
coefficients in a A-module M, When 7tj(B) acts trivially on H'(Xfc;M) the
spectral sequences starts with the terms

Hp(B;H«(F;M))

and when M is a field, or M = Z and B or F has no torsion, that term is
isomorphic to HP(B; M) ® H*(F; M). These expressions enabled him to prove
many results on the relations between the cohomology of B, F and X. If two
of the cohomology modules H'(B; M), H'(F; M) and H'(X; M) are finitely
generated, so is the third one. If M = K is a field, the corresponding Betti
numbers satisfy

Wa(BxF) and X(X) = Z(B)X(F). (21)
If the injection i: F -» X is such that i*: H'(X; M) -» H'(F; M) is surjective, then

* Pontrjagin only used homology; Wu Wen Tsiln simplified his technique by using
cohomology.
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when X is compact and M = K is a field,

H'(X; K) a. H'(B : K) ® H*(F; K), (22)
as in the case of a product. This result was independently proved by G. Hirsch*
and is known as the Leray-Hirsch theorem.

In his work on homotopy groups Serre needed spectral sequences for a
general fibration, where the fibers are not locally compact in general. Since he
could not use the Alexander-Spanier cohomology, he had to extend Leray's
arguments to singular cohomology; he also showed that there is a similar
spectral sequence for singular homology.

From the Leray or Serre spectral sequences it is possible to deduce
important exact sequences earlier described by more direct methods. Let £, =
(E, B, Rm, p) be an oriented vector bundle of rank m, and E° the complement
of the zero section (identified with B); then one has the Gysin exact sequence:

► Hr-m(B; Z) -U Hr(B; Z) A Hr(E°; Z) -» Hr-m+1 (B; Z) -* ■ ■ ■ (23)

where p0 is the restriction of p to E° and g is the cup-product ci—>c^ e(à)
with the Euler class of £. There are similar sequences for homology, and for
unoriented vector bundles (with F2 as ring of coefficients).

When £, = (E, S„, F, p) is a fiber space with base space a sphere S„ and a fiber
F which is a finite simplicial complex, one has the Wang exact sequence in
singular homology:

• • • - Hr_n+1 (F) - Hr(F) - Hr(E) - Hr_„(F) - • • • (24)

There is a similar sequence in singular cohomology.
XVII) As an application of spectral sequences Leray was able to compute

in 1946 the cohomology of the homogeneous space G/T, where G is a compact
classical Lie group and T a maximal torus; in 1949 he extended his results to
homogeneous spaces G/U with' T <=. U <=. G and proved a formula,
conjectured by G. Hirsch, which gives the Betti numbers of G/U when those of G
and of U are known.

Several mathematicians then investigated the cohomology of principal fiber
spaces more generally. The most complete results were obtained by A. Borel
in 1953, using a deep algebraic study of spectral sequences. Its main
application concerns the relation between the cohomology of a compact Lie group
G and the cohomology of a classifying space BG. The general philosophy is
that when K is a field of arbitrary characteristic, and H'(G; K.) ~ /\ (x j,..., xm)
for homogeneous elements of odd degree (a condition verified when K
has characteristic 0, by Hopfs theorem), then H'(BG;K) s. K[y1,...,ym],
an algebra of polynomials, where each y-s is homogeneous of degree
degy, = 1 + degx,-- Theproof relies on the fact that the spectral sequence of
the universal principal fiber space (PG, BG,G) starts with terms

* Hirsch's method also enabled him to prove (21) independently of Leray.
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K[y1,...,yJ®A(x1,...,xm);
in fact this is an algebra already introduced a little earlier by A. Weil when
K = R. Many of A. Borel's other results concerned the cohomology of G/U
for closed subgroups U of G. These advances not only gave the Betti numbers
of all Lie groups, but for the first time they gave access to their torsion.

XVIII) Beginning in 1941 more sophisticated relations were described
between homotopy and homology. First Hopf discovered that for a locally
finite arcwise connected simplicial complex K the quotient H2(K)/h2(^2(K))
(h2 being the Hurewicz homomorphism) is entirely determined by the
fundamental group ^(K): there is a purely group-theoretic construction
applicable to any group II, and it gives the above quotient when it is performed
on II = n^K). No similar results exist for Hn(K)/hn(nn(K)) when n "5 3, but
Hopf and Eilenberg-Mac Lane independently found that if 7i;(X) = 0 for
2 =$ i =$ n - 1, then all homology groups Hr(X; G) for r < n are again
determined by group-theoretic constructions performed on ^(K). The two
procedures they described looked different but were later shown to be equivalent.
Applied to any group II and any commutative group G they produce
commutative groups Hr(II; G) for all r "5 0 now called the homology groups of the
(discrete) group II with coefficients in G; similar constructions give the
cohomology groups Hr(II, G).

In this way those groups made their entrance and inaugurated what is now
called homological algebra. One of the first applications of these groups was
made in 1947 by Leray and H. Cartan to the spectral sequence of a connected
covering space X of a space B with automorphism group II. The spectral
sequence now starts with the groups

Hp(II; H«(X; A))

and gives information on the groups W+q(\l; A).
XIX) The method used by Eilen berg and Mac Lane in the definition of the

homology groups of a group II consisted in constructing by purely algebraical
means a chain complex K.(II, 1), the homology of which is H.(II; G). If nßi) =
0 for 2 ^ i < n - 1, then

Hr(X; G) ~ Hr(7i ! (X); G) for r < n.

They also considered spaces X for which itj(X) = 0 for allj > m* and their
method led to construction of other chain complexes K.(II,m) generalizing
K.(II, 1). But in general this did not give them the homology H.(X;G) for
II = 7im(G), except in the case where also itj(X) = 0 for l =$ j < m; in other
words, for such spaces nm(X) is the only non trivial homomopy group; then,
for all n^ I

* Such spaces already had been considered by Hurewicz for m = 1, under the name of
aspherical spaces; he had shown that if a finite simplicial complex X is aspherical, its
homotopy type is determined by jt^X).
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H„(X; G) ~ H„(K.(7rm(X), m); G)
H"(X;G)~H"(K.(;rm(X),m);G) [ '

These spaces are now called Eilenberg-Mac Lane spaces, and have acquired
a central position in algebraic and differential topology.

Their existence for each m > 0 follows from a general result of J.H.C.
Whitehead: Given an arbitrary sequence (Gn)n^1 of groups, commutative
except possibly for n = 1, there exists a CW-complex Z for which nn(Z) = G„
for all n "5 1, and such a space is determined up to a homotopy equivalence.

It has become customary to write K(II, n) an Eilenberg-Mac Lane space
which is a CW-complex with 7r„(K(II, «)) ~ II. For any commutative group
G there is a natural isomorphism

H"(K(n, n); G) ^ Horn (II, G). (26)
In particular, if G = II, there is an element

ceH"(K(n,w);n)

which corresponds by (26) to the identity in End(II); it is called the canonical
cohomology class of K(II, n). For any CW-complex X the map

m^f*(c)
is a bijection

[X;K(n,«)]^H"(X;n). (27)
The many applications of Eilenberg Mac Lane spaces require the

knowledge of all their cohomology groups (not only (26)). Preliminary work based
on (25) was done by Eilenberg and Mac Lane themselves, but the chain
complex K.(II, n) is unwieldly. They started to modify it by an algebraic device
which they called "bar construction," but this did not give them explicit
expressions for Hn+)((K(n, n);Z) beyond k = 10. Only by deep and lengthy
manipulations of more general "constructions" did H. Cartan finally succeed
in describing H'(K(II, n);G) for all finitely generated groups II and G.
Earlier Serre had elucidated the case G = F2 by topological methods.

XX) Hopfs result showing that H2(X)/h2(7i2(X)) only depends on the group
n1 = 7ii(X) raised the problem: does h2(7i2(X)) also only depend on nl, n2 =
7i2(X) and on the natural action of n1 on 7i2? In 1946 Eilenberg and Mac Lane
gave a counterexample to that conjecture, and going farther, they defined an
explicit element fc3 e H3(7i1;7i2) which brought the missing information needed
to completely determine H2(X;Z).

A little later that result was greatly generalized by Postnikov; his
construction can be presented in several ways. The most suggestive relies on a method
independently discovered by G. Whitehead and Cartan-Serre: it "kills" in
succession the homotopy groups of a space by passage to suitable fiber spaces,
just as the passage from a CW-complex to its universal covering space replaces
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a space by another one which has the same homotopy groups nt for i "5 2, but
for which nx has vanished.

In that presentation, the "Postnikov tower" of X is a sequence of fibrations

0 <— z,j <— z,2 *—•••*— z,„ <— • • •

where pn+1: Zn+1 -» Z„ is the projection of a fibration with typical fiber an
Eilenberg-Mac Lane space K(nn(X), n); pn+l is completely defined by an
invariant class kn+2 e Hn+2(Zn;7in+1(X)) generalizing the Eilenberg-Mac Lane
invariant. There is an inverse system of maps fn: X-*Zn such that the inverse
limit

/ = lim /„ : X -» Z = lim Z„

is a weak homotopy equivalence. By Whitehead's theorem it follows that the
homology

H.(X;Z)~H.(Z;Z)

is completely determined by the homotopy groups nn(X) and the Postnikov
invariants k".

Postnikov towers have proved useful in several parts of algebraic topology,
in particular for a generalization of the theory of obstructions, first developed
by Eilenberg in 1940.

XXI) The Eilenberg-Mac Lane spaces also provide a description
(independently due to Serre and to Eilenberg-Mac Lane) of all cohomology
operations. Given two integers n "5 0, q 5= 0, and two commutative groups A,
B, a cohomology operation of type (q, n, A, B) is the assignment to each CW­
complex X of a map £(X): W(X; A) -» H"(X; B) satisfying the following
condition: for any CW-complex Y and any continuous map v. X -» Y, the diagram

H«(Y;A) "* > H«(X;A)

{(Y) {(X)

H"(Y;B) ► H"(X;B)
V*

is commutative. An example is the cup-square: u\—>u^u, which is a map
H«(X;A)-*H2,i(X;A).

If i e H'?(K(A, q); A) is the canonical cohomology class of K(A, q), it follows
from (27) that, for any x e W(X; A), there is a continuous map

0x,A„:X-*K(A,q)

such that gtAq(i) = x. Now let a be any element of H"(K(A,q);B), and
consider the map g*-A„: H"(K(A, q); B) -» H"(X; B). Then

x^(X)(x) = 0*A»
defines a cohomology operation of type (q, w,A,B) and any cohomology
operation of that type corresponds in that way to a unique element
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aeH"(K(A,q);B).

This general theorem was motivated by the discovery, due to N. Steenrod,
of new, hitherto unsuspected, cohomology operations. In 1947, in order to
determine the set [K;S„] when K is a finite simplicial complex of dimension
n + 1, he described, by a fairly intricate construction, generalizations of the
cup-square now known as the Steenrod squares; they are functorial homomor­
phisms, now written

Sq':H"(X;F2)->H"+'(X;F2).

In 1950 he described similar homomorphisms for all primes p > 2, the Steenrod
reduced powers

0>kp: Hm(X;Fp) -» Hm+2,(<p-1>(X;Fp).

These operations and the algebras of operators they generate (called the
Steenrod algebras) have found many applications in algebraic and differential
topology. The most spectacular was the proof by J.F. Adams that the only
cases in which maps /: S2k+i -» Sk+l may have Hopf invariant ± 1 are the
ones discovered by Hopf, k = 1, 3 or 7.

XXII) The 1950s saw significant advances in homotopy theory. The first
was the remarkable finiteness theorems proved by Serre in his 1951 thesis: for
m> n, nm(Sn) is finite if n is odd and also if n is even and m # 2w — 1; n2n-i ($„)
for n even is the direct sum of Z and a finite group. For n odd, the result
follows from two statements:

1.7im(S„) is finitely generated;
2. for a field K of characteristic 0, nm{S„) ® K = 0.

Both are proved by the following strategy, using loop spaces as in Hurewicz's
definition. If X is arcwise connected and simply connected, consider the
sequence of spaces

X0 = X, Tj, Xj, T2, X2,...

where T,- is the universal covering space of Xj-_j* and X,- = Q(Tj) the space of
loops of Tj. Then 7in+1(X) = Hj(X„;Z). Under the single assumption that all
homology groups Hj(X; Z) are finitely generated, it follows from the spectral
sequence of the space of paths and the spectral sequence of covering spaces
that all Hj(Xm; Z) are also finitely generated for all m; this takes care of the
first statement for X = S„.

The second statement is proved by first showing that for X = S„ and
m =$ n — 1, H'(Xm; K) is alternately a K-algebra of polynomials generated by
a single element of degree n — m if m is odd and an exterior algebra generated
by a single element of degree n — m if m is even. Then the spactral sequence

* One must assume all the universal covering spaces Tj do exist; this is the case when
X is a finite CW-complex.
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of covering spaces gives H,(Tn; K) = 0 for i > 0. Serre proved that this implies
Tt/fTJ ® K = 0 for all i > 0; since 7tj(TJ = ni+n^ (S„) this ended the proof. The
details, involving many spectral sequences, are fairly intricate.

Serre proceeded in a similar way to get the nm{S„) for n even, using Stiefel
manifolds instead of spheres.

The explicit computation of the 7im(S„) did not fare so well. The fact that
7in+2(Sn) ~ Z/2Z for n "5 2 was only proved in 1950 by Pontrjagin and G.
Whitehead independently, and it took the combined efforts of several topolo­
gists to obtain n6(S3) ~ Z/12Z. Using various methods, Serre and other
mathematicians determined nn+k(S„) for 3 ^ k =$ 8, but the complexity of the
proofs increased with k. At present, due to the work of H. Toda and his school,
these groups are known for k < 30, but no general pattern has yet emerged;
only for p-components and values of n related to the prime p do some general
results exist.

XXIII) Another open problem attracted topologists in the 1950's, the
computation of the homotopy groups 7i;(G) for a compact Lie group G. For the
classical groups U(w, F) with F = R, C or H, several methods reduced the
problem to the computation of homotopy groups of spheres, and tables were
obtained for i =$ 12. Here again there were stability phenomena: for the
unitary group U(w) = U(w, C), all 7r;(U(w)) are isomorphic for n > i + 1. A
remarkable periodicity also appeared: for 2 ^ i < 2n, the groups 7r;(U(w)) are
alternately 0 and Z, whereas they become very irregular for i "5 2w. In 1956 R. Bott
showed by entirely new methods that this periodicity holds for all pairs (n, i)
with i < 2n; similar periodicities (with period 8 instead of 2) take place for
SO(w) and U(w,H) (also written Sp(w)).

His idea was to use Morse theory. By stability, 7ti_j(U(m)) =■ 7r,_1(U(2m))
for i ^ 2m. Using the homotopy exact sequence for the fibrations
(U(2m), S2m,m(C), U(m)) and (S2m-m(C), G2m,m(C), U(m)), one gets «,_, (U(m)) =*
tt.(G2m,m(Q) for i ^ 2m; finally n,(SU(n)) a. w,(U(n)) for; 5= 2. The crux of the
proof was therefore to show that

7ri+1(SU(2m)) =. 7r;(G2m,m(C)) for i ^ 2m;

from the definition of homotopy groups, this is equivalent to

7ii(Q(SU(2m),/2m)^7ri(G2m,m(C)).

The space of loops £î(SU(2m),/2m) has the same homotopy type as the space
P of paths joining I2m and —I2m- Bott first showed that for i ^ 2m

n,(P) = ji,(Pmin)

where Pmin is the subspace of P consisting of minimal geodesies; then he
explicitly computed the groups 7r,(Pmi„) using the knowledge of the geodesies
of SU(2m) derived from Lie theory. Both steps relied heavily on Morse's
theorems.

It is convenient to express Bott's periodicity by introducing the "infinite
unitary group" U = lim U(m); Bott's theorem has then the simpler form that
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there exist weak homotopy equivalences

U -» ^(Bu), B„xZ-. Q(U).
Other proofs for that formulation, and for the similar results concerning
the "infinite" groups O = lim 0(m) and Sp = lim Sp(m), do not use Morse
theory.

XXIV) In the 1950s there also were new departures in algebraic and
differential topology, with the introduction of new groups and rings attached to
topological spaces or to smooth manifolds.

Cobordism appeared as a revival of Poincaré's unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without
boundary) are again considered as "negligible" when they are boundaries of smooth
manifolds-with-boundary. But there is a big difference, which keeps definition
of "addition" of manifolds from running into the difficulties encountered by
Poincaré; it is now the disjoint union. The (unoriented) cobordism relation
between two compact smooth manifolds Ml5 M2 of same dimension n simply
means that their disjoint union is the boundary of an (n + l)-dimensional
smooth manifold-with-boundary. This is an equivalence relation, and the
classes for that relation of «-dimensional manifolds form a commutative group
9t„ in which every element has order 2. The direct sum 91. = @„>0^n 's a
ring for the multiplication of classes deduced from the cartesian product of
manifolds.

This idea is not very deep, but R. Thorn used it with a remarkable originality;
mustering all the resources algebraic topology had accumulated in a half
century, he was able to determine the structure of the graded ring 91., namely

91. ~F2[v2,V4,v5,v6,v8,vg,...] (28)
an F2-algebra of polynomials in infinitely many indeterminates v} of degree j,
withy # 2* - 1. He used the following ideas:

1. For every vector bundle £, = (E,B,R*) with B a finite CW-complex, he
considered the finite CW-complex T(^) (now called the pointed Thorn space
of Ç) obtained by compactifying E with a single point at infinity, which is
the privileged point of that space.

2. When B is a smooth manifold, for every m > k, he defined a natural
homomorphism

^:nm(T(^)-*9lm.k (29)
by associating to each continuous map of pointed spaces/: Sm -» T(<ü) a C°°
map g homotopic to /, for which öf_1(B) is an (m - fc)-dimensional smooth
submanifold of Sm; he proved that any two such maps are cobordant.

3. Specializing to the vector bundle ymk = (Um k, Gmk, Rk), he proved that

is bijective for m and k large (another case of stability) by direct geometric
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constructions inspired by Steenrod's proof of the classifying theorem for
vector bundles.

4. Using the Steenrod squares as Serre had done for the study of the coho­
mology of the Eilenberg-Mac Lane spaces, Thorn finally proved that for
h < k and m large, the homotopy groups nk+n(T(y„tk)) are the same as those
of a certain space, the product of Eilenberg-Mac Lane spaces. This also
enabled him to determine the multiplication in 91..

Thorn also defined oriented cobordism, where only oriented smooth manifolds
(both with and without boundary) are considered; there is a corresponding
graded ring £î. of oriented cobordism classes. But he could only determine £î„
explicitly for n =$ 7; he showed that ÇI. ®z Q is a graded polynomial algebra

Q[w4,w8,...,w4j,...]

where w4j is the class of the projective complex space P2j(C). Later work by
Milnor, Averbuch, Rokhlin, and C.T.C. Wall completely elucidated the rather
complicated structure of the ring £î. itself.

XXV) The starting point of K-theory was even simpler that the initial idea
of cobordism, and it is almost unbelievable that nobody thought of it before
Grothendieck did in 1957. Since the beginning of the 20'* century it had been
well known that any commutative monoid* without zero divisor could be
canonically imbedded in a commutative group which it generates; it is in that
way that negative integers are defined from the additive monoid N, and the
positive rational numbers from the multiplicative monoid N* = N — {0}.
Grothendieck applied to monoids the idea of "universal" object, already
known at that time, and which he a little later elaborated in the now familiar
concept of "representable functor" and used with great power. For any
commutative monoid M there is a commutative group K(M), defined up to a
unique isomorphism, and a canonically defined homomorphism of monoids
<p: M -»• K(M) such that for any commutative group G, any homomorphism
of monoids u: M -»• G uniquely factorizes into

u: M-^K(M)-^G

where v is a homomorphism of groups. The proof is the (now commonplace)
method of "generators and relations" reminiscent of Whitney's definition
of the tensor product in 1938: Z[M] is the Z-module of all formal linear
combinations Xj^j(mj} °f one-element subsets of M with coefficients in Z,
K(M) is the quotient of Z[M] by the submodule generated by the elements
{m + m'} — {m} — {m'}, and <p(m) is the image of {m} in that quotient.

Grothendieck, and a little later Atiyah and Hirzebruch, applied that
construction to the additive monoid of isomorphism classes of complex vector
bundles with a base space of a finite CW-complex X. Addition is deduced from

* A monoid is a set equipped with an associative law of composition having a neutral
element.
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the usual Whitney sum, and the Grothendieck group is written K(X);
XwK (X) is a contravariant functor in the category of finite CW-complexes.
If 7(E) is the image in K(X) of a vector bundle E with base space X, the tensor
product of vector bundles defines on K(X) a structure of commutative ring by
7(E)7(F) = 7(E ® F).

There is a natural homomorphism of groups

chx:K(X)->H-(X;Q)

defined by combinations of Chern classes. It enabled Grothendieck to obtain
a "relative" version of the Riemann Roch Hirzebruch theorem for algebraic
varieties (later Atiyah and Hirzebruch did the same for smooth manifolds).
For a morphism /: X ->■ Y, it relates the maps chx, chv and maps K(X) -»• K( Y)
and H"(X; Q) ->■ H"(Y; Q) deduced from /.*

XXVI) The central result of Atiyah and Hirzebruch in their work on K(X)
was the proof that the natural map

K(X) ® K(S2) ->■ K(X x S2)

deduced from the product of vector bundles on X and on S2 is an isomorphism
of rings; their proof used Bott's periodicity theorem, but several more
elementary proofs were soon found. This led them to use the iterated suspension
to define

K-"(X) = K(S"X) for n ^ 0;

for a subspace YcX which is a sub-CW-complex, they introduced a "relative"
K-group

K-"(X,Y) = K-"(X/Y)

where X/Y is the CW-complex obtained by collapsing Y to a point. With these
definitions they proved that there exists a natural exact sequence

•••->■ K^^fY) ->■ K-"(X, Y) ->■ K~"(X) ->■ K-"(Y) ->■•••->■ K°(X) ->■ K°(Y).

(where in fact there are only 6 different groups, since K~"~2(X) ~ K~"(X)).
This of course reminds one of the homology exact sequence, and in fact Atiyah
and Hirzebruch showed that all Eilenberg Steenrod axioms are satisfied by
the functors K~"(X, Y), with the obvious exception of the "dimension" axiom,
since for X = pt. (one point space) the K~"(pt.) are not all 0 for n ^ 0.

This was the first example of functors having these axiomatic properties,
defining what was called generalized homology and generalized cohomology.
Other ones soon followed; a general construction is based on the concept of
spectrum of spaces, defined by Lima in 1958 and linked to the notion of
suspension: it is a sequence of spaces

* The functors K and H being contravariant, such maps can only exist under special
assumptions on the spaces X and Y.
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£^'£^l.£^2-''-- 1-%,, . . .

with given continuous maps

A." ^^n "~* En+i •

It is used to define generalized cohomology groups as direct limits

Ht(X) = hm[S"X;E,+11]

and there is a similar definition of generalized homology groups.
Singular cohomology corresponds to E„ = K(ILn), and the Atiyah­

Hirzebruch functors to E2n = Bv, E2n+1 = U. The Thorn cobordism groups
can also be obtained by this process. It is therefore not surprising that after
1960 generalized homology and cohomology have become central concepts
in algebraic topology.



Chapter I

Fundamental Group and
Covering Spaces

§ 1. Covering Spaces
In modern mathematics three notions are interconnected in such a way that
each one essentially determines the other two: fundamental group, covering
space, and properly discontinuous group. Historically, they appeared in the
reverse order.

In modern terminology a properly discontinuous group G is a group of
homeomorphisms s: xi—>s.x of a topological space X onto itself having the
property that for any x e X there is an open neighborhood U of x such that
for any two distinct elements s, s' of G, the intersection s.Uns'.U # 0. This
implies that for any x e X, the orbit G. x of x is a discrete subset of X, and
that the map si-^s.xofG into G. x is bijective (a property also expressed by
saying that there are no fixed points in X for homeomorphisms s e G distinct
from the identity e: for any x e X, the relation s.x = x implies s = e).

Trivial examples of properly discontinuous groups are the groups of
integral translations x i—> x + na (n e Z, a # 0) in R, z i—> z + mco1 + nco2 in C
[(m, n) e Z2, a>Jco2 not real]. The latter appeared at the beginning of the
theory of elliptic functions in unpublished papers by Gauss. Much less obvious
is the group G = T(2) of transformations

zi—>(az — ßi)/(y + öiz)

of the half-plane P: Rez > 0, where a, ß, y, ö are integers such that a, ö are
odd, ß, y are even and xö — ßy = 1; it was studied by Gauss in connection
with his discovery of the first example of modular functions, which are holo­
morphic in P and invariant under G.

In this context Gauss had already introduced the idea of fundamental
domain: in general it is a subset D of X such that two distinct points of D do
not belong to the same orbit under G, and the disjoint sets s. D for all s e G
form a partition of X.* For the group G of translations z i—> z + mco1 + nco2,
D can be taken as the "parallelogram of periods", i.e., the set of points
z = uco1 + vco2 such that 0 ^ « < 1, 0 ^ i; < 1. For G = T(2) Gauss showed
that D can be taken as the set of points z e P such that

* In general, such a set is not unique.
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-l<Imz<l and -1 < Im(l/z) ^ 1.
When, after Riemann, modular functions were rediscovered and actively

studied (Dedekind, Klein), as well as quotients of solutions of linear differential
equations of the second order (Schwarz, Fuchs), many more properly
discontinuous groups of transformations of P and fundamental domains for these groups
were defined and investigated. They all were included as particular cases in the
general theory of fuchsian and kleinian groups created by Poincaré [366].

With Riemann a second member of the triad we mentioned at the beginning
made its emergence. There is no indication that anybody before Riemann had
thought of a surface consisting of "many sheets, superposed on each other,
and covering many times the same part of the plane." The applications of this
concept made by Riemann to the theory of analytic functions of a complex
variable show that he had in mind the modern concept of a "ramified covering
surface" of an open subset X of the sphere S2: a surface T equipped with a
continuous "projection" p: T -»• X such that, except for a finite set R c X (the
"ramification points") there is an open neighborhood V of x in X — R for any
x e X — R such that p_1(V) is a disjoint union of open sets Wj in T, for which
each restriction p|Wj is a homeomorphism onto V. The surface p_1(X — R) is
an unramified covering surface of X — R.

The relation between an unramified covering surface and the fundamental
domain of a properly discontinuous group operating on an open subset of C
is probably simplest for the group G of all translations z i—> z + n in C for
n e Z; a fundamental domain B is defined by the conditions 0 =$ Rez < 1.
Consider the "cylinder" K obtained by "gluing" together the lines Re z = 0
and Re z = 1 forming the boundary of B [i.e., identifying the points (0, y) and
(1, y) for all y e R (Part 2, chap. V, § 1)]. For z e B, let z be the natural image of z
in K. Then the plane C is an unramified covering of K with infinitely many
"sheets," the projection p(z) of a point z e C being equal to z', where z' is the
unique point in B for which z = z' + n for an integer n e Z.

In the last third of the nineteenth century this construction of a surface K
by "gluing" together parts of the boundary of a fundamental domain F of a
properly discontinuous group G of homeomorphisms of an open subset U of
C was commonly used in the works of Schwarz, Klein, and Poincaré.
"Suppose," Poincaré said, ([366], p. 147) "that we cut the [fuchsian] polygon R0
[along its boundary], and bend it in a continuous way so that corresponding
points [for the fuchsian group] of the boundary are brought together; after
this operation, R0 has become a closed surface." The set U, union of the
transforms by G of F, has then become an unramified covering of that surface,
and the transforms of F by G are the "sheets" ofthat covering space. The same
process is used to define ramified coverings, which correspond to groups G
for which some points of U (the projections of the "ramification points") are
invariant by at least one transformation of G distinct from the identity.
However, the modern definition of K as the space of orbits U/G (quotient
space of U, the equivalence classes being the orbits) was not introduced until
1930 (Part 2, chap. V, § 1).



§1 I. Fundamental Group and Covering Spaces 295

The detailed study by Klein of the subgroups of the modular group SL(2, Z)
and of their fundamental domains gave examples of covering spaces T -»• K,
where T is not simply connected, being a surface obtained by the same gluing
process as K but for a subgroup of G. In 1883 Poincaré described a process
that in a sense "reverses" the association of a "surface of orbits" K to a group
G operating in a simply connected open set UcC. He did not speak of
surfaces, but starting from "nonuniform" analytic functions y1; y2, ■■■, ym,
holomorphic in an open arcwise connected open set V c C, he constructed a
covering surface U of V that is simply connected and by which the y} are
"uniformized": there are single-valued genuine holomorphic functions y}
defined in U such that the (generally different) values that yj takes at the points
of U which are above the same point z e V are the "values of the multiform
function" yj at the point z ([368], pp. 57-69). When the y} are "algebraic
functions," this construction amounts to finding a common universal covering
space (not connected in general) for a finite number of Riemann surfaces from
which the ramification points have been deleted.

Poincaré's construction does not substantially differ from the modern one:
starting from a fixed point a e V, he considered the paths joining a to z in V
for each z e V; two such paths y, y' are said to be equivalent if the analytic
continuations of each y} along y and y' take the same value at z and if y and
/ are homotopic in V (the extremities a, z remaining fixed). The equivalence
classes for this relation are the points of \J above z; Poincaré took it for granted
that "intuitively" the set U of all these points could be considered as a surface
(topology did not exist in 1883!).

Finally, we saw in Part 1, chap I, § 2 that in his paper Analysis Situs Poincaré
defined the third member of our triad, the fundamental group of a connected
manifold X. His definition was essentially the same as ours, described in an
"intuitive" language: loops of origin a e X (Poincaré calls them "chemins") are
paths starting at a and coming back to the same point; the composition aß of
two loops of origin a is the loop obtained by juxtaposition, first moving along
a and then along ß; the inverse a-1 is obtained by moving along a in the
opposite direction.

Poincaré considered two loops that can be "deformed" into one another
"equivalent", their common origin being fixed (remember homotopy had not
yet been precisely defined)*; he then called the group defined by composition
of the equivalence classes the fundamental group of X at the point a, which we
now write ^(X.a). Poincaré showed that if b is another point of X and co is
a path joining b to a, by associating to a loop ß of origin b the loop coßco'1
of origin a, an isomorphism of n1 (X, b) onto nl (X, a) could be defined.+

Poincaré did not mention the fundamental group again in the two first

* In Analysis Situs, he apparently thought that a loop "equivalent to 0" was one that
bounds a connected surface ([369], p. 241); he corrected the error in the fifth
"Complément'" (ibid., p. 469).

+ This justifies the notation jijfX) for a group n1(X,x0) with unspecified x0.
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Compléments, but he devoted the third one to the determination of nl (X) when
X is a special algebraic surface (Part 2, chap. VII, § 1,A). In the fifth Complément
([369], pp. 435-498) he again used it in an essential way to construct a three­
dimensional compact connected manifold X without boundary having the
same homology as the sphere S3 but a nontrivial fundamental group. Written
in the usual "intuitive" style of Poincaré, this extremely long and involved
construction defining X as generated by "moving" surfaces depending on a
real parameter is impossible to describe in detail here; for another
interpretation of that space, see § 4D. In defining generators of the fundamental group
of X in his constructions, Poincaré found it necessary to summarize the (then
classical) description of a compact Riemann surface Y of genus g by gluing
edges of a "fuchsian" polygon P with 4g edges. Apparently for the only time
in all his papers he explicitly mentioned (without proof) the isomorphism
between rc^Y) and the "fuchsian group" having P as fundamental domain.

After Poincaré the stage was set for the development of the complete theory
of the three interrelated notions mentioned at the beginning of this section.

§ 2. The Theory of Covering Spaces

The definition of an (unramified) covering surface (§ 1) immediately extends
to arbitrary topological spaces but is only interesting for arcwise-connected
spaces. The essential property linking a space X and a covering space Y with
projection p: Y -»• X, are two statements that we may call the path lifting
theorem:

1. If ti-> ß(t) is a path in X defined in [0,1] with ß(0) = a, then for any point
b e p~l{a) there is a unique path y: [0,1] -»• Y with y(0) = b and ß = p °y
(a "lifting" of ß).

2. If ß: [0,1] -+ X and /?': [0,1] -+ X are two paths in X with ß(0) = ß'(0) = a
and if q>: [0,1] x [0,1] -»• X is a homotopy in X between ß and ß' leaving
a fixed, there exists a homotopy i/. : [0,1] x [0,1] -»• Y between the path y
lifting ß and the path y' lifting ß' with the same origin such that <p = p ° ip
("lifting" of the homotopy <p).

It is quite likely that Poincaré and his immediate successors, such as Tietze
and Dehn, were aware of that theorem, even if they did not formulate it
explicitly (still less try to prove it!). It was stated and proved for surfaces by
H. Weyl in 1913 [483]. In 1928 Reidemeister published a short paper on
fundamental groups and covering spaces [386] in which he only considered
combinatorial manifolds. He deplored the fact that, except for dimension 2,
no previous treatment of these questions was available. His own treatment is
in fact limited to dimension 3, although he claims it might be generalized to
any dimension; it is written in the Poincaré style, without genuine proofs, and
the path lifting theorem is not mentioned.

It was only in 1934 that, in their book [421], Seifert and Threlfall gave an
admirable and thorough elaboration of the relations between fundamental



§2 I. Fundamental Group and Covering Spaces 297

groups and covering spaces based on the path lifting theorem: although
limited to locally finite simplicial complexes (of any dimension), it is essentially
definitive, and can be extended to more general spaces with only minor
modifications. We shall follow their description, keeping in mind that many
of their results had already been formulated in imperfect forms before them
and probably did not seem very new to their contemporaries (but certainly
their proofs did!).

I. For a covering space Y of X with projection p: Y -»• X and any point
a e X the group n1(X,a) operates naturally on p~l{a). For any loop y in X of
origin a and any point b e p'1 (a) there is a unique path yh in Y of origin b such
that p o yh = y. Furthermore, if / is a loop of origin a in X homotopic to y,
the corresponding path y'h is homotopic to yh, hence has the same extremity
since p~l(a) is discrete; this extremity is a point that therefore only depends
on b and on the class u e nl (X, a) of y, and that may be written b. u. It is readily
verified that for the neutral element e of nx(X, a), b. e = b, and that (b. u). v =
b. (uv) for any two elements u, v of nx (X, a), hence nl (X, a) operates on the right
on p~1(a).

II. The fundamental group n1(X, a) is a covariant functor (Part 1, chap. IV,
§ 8) in the category T of all topological spaces. For any continuous map
f:X->X' and any loop y in X of origin a, f o y is a loop in X' of origin f(a).
If y1, y2 are two loops in X of origin a homotopic in X, / o y1 and f °y2 are
homotopic in X'. Hence there is a map /„,: n1(X,a)^>nl(X',f(a)), which to
each class aes^X.a) associates the class in ^(X',/^)) of the loops /oyfor
y eu; it is immediately verified that /„, is a homomorphism of groups.

III. In their book Seifert and Threlfall only considered covering spaces that
were arcwise-connected. For an arcwise-connected space X and an arbitrary
covering space Y of X the question arises whether the arcwise-connected
components of Y are again covering spaces of X. This is easily seen to be the
case if X is locally arcwise-connected, which means that the arcwise-connected
components of any open subset of X are open. But for spaces X which do not
fulfil that condition counterexamples are known of covering spaces Y whose
arcwise-connected components are not covering spaces of X ([440], p. 64).

IV. Let Y be a covering space of an arcwise-connected space X and p: Y -»• X
be the projection. In order that Y be arcwise-connected it is necessary and
sufficient that for one point a e X, 7ii(X, a) operates transitively on p~1(a) (and
then the same property holds for all points of X). Then for any point b e p'1 (a)
the homomorphism p^ji.rv.ty-jr.pu) (i)
is injective, and its image is the stabilizer Sh of b for the action of ^(X.a) on
p~l{a). If b' = b.u is another point of p~1(a), with u e n^X,a), the stabilizerSb. = u~lSbu. (2)

V. The question of "lifting" a map /: Z -»• X to a map /: Z -»• Y into a
covering space Y of X with projection p: Y -»• X may be considered for spaces
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Z other than an interval of R. Suppose X, Y, Z are arcwise-connected; let c e Z
and f(c) = a. Then the existence of f such that p° f = f immediately implies
that if/(c) = b and a = p(b), then

/*(«i(Z,c))c=p1,(Wl(Y,fc)). (3)
Conversely, that condition implies that if two paths y, /join c to a point z e Z,
the paths in Y with origin b lifting f °y and f °y' have the same extremity,
by IV. This extremity thus only depends on z and may be written f(z); if Z is
locally arcwise-connected, / is continuous. Condition (3) is always satisfied if
Z is simply connected; the existence of the "lifting" / is then sometimes called
the monodromy principle.

VI. Let X be an arcwise-connected and locally arcwise-connected space.
There is then a relation of domination between the arcwise-connected covering
spaces of X: such a covering space (Y',p') dominates (Y,p) if there is a
continuous map q: Y' -»• Y for which Y' is a covering space of Y and p' = p o q.
It follows from IV and V that this condition is equivalent to the following:
There exist beY and b' e Y' such that p(b) = p'(b') and the group p'^n^Y', b'))
is conjugate in 7i1(X,p(è>)) to a subgroup of ^„.(^(Y,b)). In particular, if
/>*(?"'i (Y, b)) and p'^n^Y', b')) are conjugate, there is a unique homeomorphism
g: Y' -»• Y such that p'' = p ° g; such a homeomorphism is also called an
X-isomorphism of Y' onto Y.

VII. From this last result it follows that if, to a class of X-isomorphic
arcwise-connected covering spaces of X is associated the corresponding class
of conjugate subgroups of 7tj(X,a), the map thus defined is injective. It is
natural to ask if it is bijective; in other words, for any subgroup H of ^(X.a),
are there arcwise-connected covering spaces Y of X such that n1(Y,b) is
isomorphic to H for a point beY above a?

An obvious approach is to generalize Poincaré's construction of 1883 (§ 1):
for a point xeX two paths ß, ß' joining a to x are H-equivalent if the class of
ß'ß~l in 7tj(X,a) belongs to H; Y is the set of these H-equivalence classes, the
map p: Y -»• X being obvious. Next define a topology on Y, assuming X is
locally arcwise-connected; for any arcwise-connected open set U in X
containing x, and any path a joining a to x, <a,U> is the set of H-equivalence
classes of paths ay, where y is a path in U of origin x; these sets form a base
for a topology on Y for which p is continuous and open.

It remains to be seen that Y is a covering space of X, and that, for a point
b e p~l{a), Pt.(ni(Y,b)) = H. This, however, is only true if X satisfies an
additional property: Consider an open subset UcX such that p_1(U) is trivial,
and all loops "attached to U" of origin a. These are the loops a~1ya, where a
is a path from a to a point x0 e U, and y a loop in U of origin x0; all such
loops lift to loops in Y. Let % be a covering of X by open sets Ua such that
p_1(Ua) is trivial, and let nxiß,a) be the subgroup of 7ti(X,a) generated by
the classes of all loops attached to a Ua e ^; then, as these loops all lift to
loops in Y,
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«.(^aJcpJn.Of.fc)) (4)
for all b e p~1(a). The necessary and sufficient condition for the existence of
the connected covering space Y such that p^n^Y, b)) = H is the existence of
a covering 'W of X by open sets such that7t!(*,a)c:H. (5)
This condition is always satisfied if there is an open covering % of X consisting
of arcwise-connected and simply connected open sets; this is always the case
if X is a C°-manifold or a locally finite simplicial complex. Seifert and Threl­
fall could therefore prove the existence of a covering space of such a complex
with fundamental group an arbitrary subgroup of 7tj(X,a) ([421], pp. 189
192).

VIII. Let X be an arcwise-connected space and Y be an arcwise-connected
covering space of X, p: Y->X the natural map. An X-automorphism (or
"decktransformation") of Y is a homeomorphism / of Y onto itself such that
p(f(y)) = P(y) f°r all J" e Y; restricted to any fiber p-1(x),/is a permutation of
that (discrete) space. In fact such an X-automorphism is entirely determined
by its restriction to one fiber p~l{a), for if y e Y and ß is a path joining a to
x = p(y), ß'1 lifts to a unique path ß'1 joining y to a point b e p~l{a), such
that p ° ßy = ß. The group Autx(Y) of all X-automorphisms is thus isomorphic
to its restriction to any fiber.

To determine all X-automorphisms of Y, it is necessary to see what
condition a point b'ep~l(a) must satisfy in order for there to exist an X­
automorphism / of Y such that /(è>) = b'. Since /„, transforms nx{Y,b) into
7ii(Y, b'), p^in^Y, b')) = ^„.(^(Y, è>)); this means that the stabilizers SfcandSfc.
must be the same, and if b' = b. u, u~l Shu = Sh by (2). In other words u must
belong to the normalizer N(Sfc) in n j (X, a); but by VI that condition is sufficient,
and Autx(Y) is therefore isomorphic to N(Sfc)/Sfc.

In particular, b' can be any point of p~l{a) if and only if Sfc is a normal
subgroup of 7tj(X,a), and then Sfc. = Sfc for all points b' e p~l{a); the group
Autx(Y) then acts transitively on each fiber p~l{a) and is isomorphic to
nlQi,a)ßh. These covering spaces were already considered by the immediate
successors of Poincaré, who called them "regular"; later they also were named
"Galois coverings" of X, and for any such space Y, Autx(Y) was called the
Galois group of Y. These coverings were also characterized as those for which
either every lifting in Y of a loop in X of origin a is a loop in Y or none is a
loop.

IX. From VII it follows that for an arcwise- and locally arcwise-connected
space X to have a simply connected arcwise-connected covering space X, a
necessary and sufficient condition is that there exist an open covering ^ of X
by arcwise-connected sets, such that nx^U,a) — 0. By VI such a space
dominates all other arcwise-connected covering spaces of X and is therefore called
a universal covering space of X; it is unique up to X-isomorphism. The covering
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space X is a Galois covering space, and Autx(X) is isomorphic to ^(X.a). If
/: X -»• Y is a continuous map, and the universal covering spaces X, Y exist,
then / can be "lifted" to a continuous map /: X -»• Y such that the diagram

fX —J—* Y

X ► Y
commutes; this follows at once from V.

X. Let X be an arcwise-connected space, Y an arcwise-connected covering
space of X, p: Y -»• X the natural map. For any x e X there is an open
neighborhood U of x such that p_1(U) is the disjoint union of open
subsets Va of Y such that p\ Va is a homeomorphism onto U, hence Autx(Y) is
a properly discontinuous group of homeomorphisms of Y. Conversely,
suppose G is a properly discontinuous group of homeomorphisms of a space Z
and let p be the natural map of Z onto the space of orbits Z/G. If V is an
open set of Z such that all open sets s. V for s e G are distinct, the image p(V)
in Z/G is open and p_1(p(V)) is the disjoint union of the open sets s. V, the
restriction of p to each s. V being a homeomorphism on p(V). If Z is arcwise­
connected and locally arcwise-connected, so is Z/G. Since G operates
transitively in each orbit, Z is a Galois covering of Z/G and Autz/G(Z) is isomorphic
toG.

In particular, if Z is simply connected, it is the universal covering of Z/G,
and ^(Z/G-x,,) is isomorphic to G.

XI. Another approach to covering spaces was developed by Chevalley
[131], following a suggestion of H. Cartan. It is no longer based on the use
of paths and deals with connected (not necessarily arcwise-connected) spaces.
The definition of a simply connected space X is then that any connected
covering space of X is trivial. If every point of a space X has a simply connected
neighborhood, one says X is locally simply connected. Chevalley proved that
any connected, locally connected and locally simply connected space X has a
simply connected covering space X ([131], pp. 54-56) and that X is unique
up to X-isomorphism. The fundamental group 7ii(X) is then defined as the
group of X-automorphisms of X. There are arcwise-connected and locally
arcwise-connected spaces X that are simply connected in the sense of Chevalley
but for which the fundamental group 7tj(X,a) (by Poincaré's definition) is not
reduced to the identity ([440], p. 84).

Finally, mention must be made of the notion that generalizes ramified
Riemann surfaces. A branched covering Y of a space X is a space with a
continuous map p: Y -»• X such that there is a dense open subset X — B for
which p_1(X — B) is a covering space of X — B; B is the branch set (or branch
locus) of the covering. One of the main topics is the possible extension to a
branched covering of a covering space of X — B ([400], pp. 292-296).
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§ 3. Computation of Fundamental Groups

A. Elementary Properties

It follows at once from the definition that for two "pointed spaces" (X,x0),
(Y, y0) there is a natural isomorphism

7ij(X x Y,(x0,y0))^7ti(X,x0) x tt^Y^'o) (6)
deduced from the map z i—*(prx z, pr2 z).

If A c X is a strong deformation retract of X (Part 1, chap. IV, §6,B), the
homomorphism !'„.: 7tj(A,x0) -»• 7tj(X,x0) corresponding to the natural
injection i: A -»• X is an isomorphism for every x0 e A, since any loop in X of origin
x0 is homotopic to a loop in A by a homotopy fixing the points of A.

If X is obtained by adjoining to a space A a family of n-cells with n^2 (Part
2, chap. V, §3), and /: A -»• X is the natural injection, the homomorphism
'*: ni(&-,x0) -»• 7ij(X,x0) is surjective for x0 e A ([440], p. 146).

B. Fundamental Groups of Simplicial Complexes

For a space X the computation of 7tj(X, a) starting directly from the definition
is usually unwieldy, and the examples given (without proof) by Poincaré are
not very convincing. As early as 1908 Tietze [466] gave an algorithm for that
computation which can be applied whenever a (finite or not) triangulation T of
a space X is available. Instead of considering arbitrary paths [a, ß~\ -* X, only
edge paths are used: juxtapositions of paths i/. : [a, /?] -► X such that i//(a) = v
and i/,(/J) = v' are vertices of T and il/(]a,ß[) is an 0-simplex (when v = v') or
a 1-simplex. The equivalence class of such paths with fixed values v, v' is written
(v,v') for the relation i/.' = i/. o p where p is a homomorphism of an interval
onto an interval.

Starting from an 0-simplex {x0} of T, the Poincaré definition is applied
only to edge-loops, i.e., edge-paths having origin and extremity at x0. Tietze
assumed without proof that any loop of origin x0 is homotopic to an
edge-loop.* Then, instead of the topological concept of homotopy between
edge-loops, he used a combinatorial notion mimicking it, earlier defined by
Dehn and Heegaard [138]: in a juxtaposition of edge-paths a1a2"ar,
suppressing (or intercalating) consecutive pairs (v, v')(v', v), or consecutive triples
(v,v')(v',v")(v",v) when there is a 2-simplex of T having v, v', v" as vertices,
yields "combinatorially homotopic" edge-paths. Again, the fact that an edge­
loop that is topologically homotopic to a point is also "combinatorially
homotopic" to that point was taken for granted by Tietze.

The justification of Tietze's assumptions is provided by the simplicial
approximation method of Alexander (Part 1, chap. II, §3). For the first one the

* Remember that at that time the general notion of homotopic maps had not been
explicitly defined.
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method is applied to a map of [0,1] in X by subdividing [0,1] into small
intervals; for the second the method is applied to a map of [0,1] x [0,1] into
X by subdividing the square into small triangles. This is done in detail in Seifert
and Threlfall's book ([421], pp. 158-162).

The possibility of considering only edge-loops instead of general loops leads
to a description of 7ii(X,x0) "by generators and relations." For each vertex v
of T choose an edge-path ßv of origin x0 and extremity v. Then, for all
1-simplices of T of extremities v, v', consider the edge-loop ßv(v,v')ß~,1; their
classes are generators of nl(X,x0). The relations between these generators
correspond to the 1-chains of T that are boundaries of 2-chains.

This method was later improved. A tree in T is a one-dimensional connected
and simply-connected subcomplex of T. Let A be a maximal tree in T,
that necessarily contains all vertices of T, and consider an abstract group
G having generators written [i?i,u2D in one-to-one correspondence with
all 1-simplices [vl,v2] of T. Between these generators the relations are:
[vl,v2]- [t?2,tf.] = e, [v1,v2] = e if the 1-simplex {v1,v2} is contained in A,
and finally [_v1,v2]-[v2,v3]-[_v3,v1] = e if vly v2, v3 are the vertices of a
2-simplex of T.

This abstract group G is isomorphic to ^(X^q) ([440], p. 140). For
instance, this construction shows that a closed w-simplex A„ is simply
connected and that 7ii(X,x0) only depends on the 2-skeleton T2 of T.

C. Covering Spaces of Complexes

When X is a connected simplicial complex (finite or not), any covering space
Y of X may be given a natural structure of simplicial complex. It is best to
consider X and Y combinatorial complexes (Part 1, chap. II, § 2). If H is a subgroup
of n^X, a) corresponding to Y, the vertices of Y are the H-equivalence classes
(§2,VII) c„ corresponding to the vertices v of X. The 1-simplices are the pairs
{cv,cv,} such that {t;, t;'} is a 1-simplex of X and, if ßv is a path of the class c„,
the class of the loop ßv(v, v')ß~-1 belongs to H. Finally for any p > 2 a p-simplex
of Y is a set {cVo,cVi,...,cv} such that all pairs {cv.,cVj} are 1-simplices of Y
and {v0,v1,...,vp} is a p-simplex of X ([421], p. 190).

It can also be proved that any covering space of a CW-complex (Part 2,
chap. V, §3) is similarly equipped in a natural way with a structure of
CW-complex ([493], pp. 103-105). If Y is such a connected covering space of
a CW-complex X corresponding to a subgroup of finite order d of nx (X), then
the Euler-Poincaré characteristics are related by

X(Y) = d.X(X). (7)
D. The Seifert-van Kampen Theorem

Let X be an arcwise-connected space and X1; X2 be two arcwise-connected
open subspaces of X such that X = X1 u X2- Then the open subspace X0 =
XI n X2 is not empty; if it is arcwise-connected and il : X0 -»• Xl, i2: X0 -* X2
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are the natural injections, then van Kampen proved in 1932 [473] that for a
point x0 e X0, n^X,x0) is naturally isomorphic to the quotient of the free
product

7r1(X1,x0)*7i1(X2,x0)

by the normal subgroup generated by the elements'i*(")'2*("_1) (8)
where u takes all values in tz^Xq^q).

The method is to decompose any loop y: [a, è>] -»• X of origin x0 into small
paths by a subdivision of [a, è>] into small intervals lk such that y(lk) is
contained in Xv(t), where v(fc) is equal to 0,1, or 2. Using for each k an auxiliary
path <xk joining x0 to the origin of y(lk) and entirely contained in Xy(k), a
decomposition y = yly2 ••■% ••• y, is obtained, where % = v-k{yW)v.kl\ is a loop
in Xv(t). This proves that the natural map

nl(Xl,x0)*nl(X2,x0)^>iil(X,x0)

is surjective.
To show that the kernel of that map is generated by the products (8),

the following result must be proved: if in the previous decomposition
the class of yk in 7ti(Xv(t),x0) is denoted by ck, and if \J/1:7tj(Xj,x0)-»- H,
i>i- 7Ii(X2,^'o) "*■ H are two homomorphisms such that

•Ai ° »i* = <A2 ° «2*

then, if y is homotopic to the constant loop [a, è>] -»• {x0},

>/'v(i)(c1)i/'v(2)(c2)"-i/'v(r)(cr) = e (9)
where i/.0 = iAi ° h* = i>i ° h*­

Let h: [a, è>] x [0,1] -»• X be a homotopy such that

h(t, 0) = y(t), h(t,l) = x0, h(a, s) = h(b, s) = x0.

By decomposing each lk into smaller intervals, and [0,1] into small intervals
[Sj-,Sj-+1], it may be assumed that

h(lk x [sj,sj+1])c Y„(tJ)

where fi(k,j) is equal to 0, 1, or 2 [it needs not be equal to v(fc) for s} =£ 0] and

* *.</.,./) = ^-mkj)n ^-mk+ij)n ^-^kj-i)n ^-nikj+i)­

For each (k,j), let ßkJ be a path joining x0 to h(tk,Sj) in YMktJ), where tk is the
origin of lk, and consider the loops in Y„(tij)

Vtj = ßkj(h\(lkx{j}))fäu,,

àkj = ßkj(h\({tk} x [sj,sJ+J))ßZ)+1,

and their classes ckJ and dkJ in n^Y^^Xo); from the definitions it follows at
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once that

•A/i<fc, j)("fcjck, j + l "fc+l, jCfcj ) = e

and

These relations imply that the two elements

•A/x(l.j)(Clj)»/'j1(2,j>(C2j) ' ' ' *l>K(r,j)(Crj)'

lA/.(l,j+l)(Cl,j+l)l/'/.(2,j+l)(C2,j+l)' ' ' lA/.(r,j+l)(Cr,j+l)

are equal; but for Sj = 0 they are equal to (9) and for sJ+1 = 1, to e, hence the
conclusion.

Seifert proved an identical statement at the the same time for a locally finite
cell complex X and two subcomplexes Xl5 X2 of X, but the van Kampen
theorem cannot be extended to the case of closed arcwise-connected subspaces
Xj, X2 of an arcwise-connected space X without additional assumptions; there
is an example in which X1 and X2 are closed and simply connected, X1 n X2
is reduced to a single point, but X = X1 u X2 is not simply connected ([213];
see [358]).

E. Fundamental Group and One-Dimensional Homology Group

Although Poincaré did not use homology groups, we have seen (Part 1, chap.
I, § 2) that he observed that relations

sl'sl2---s^k = e

in the fundamental group 7tj(X,a) gave rise to "homologies"

otjSj + a2S2 + • ■ • + otkSk ~ 0

where Sj is a one-dimensional cycle containing the point a, and which, for a
convenient orientation, can be considered a loop of class Sj. Poincaré also
stated without proof that all "homologies" in dimension 1 could be obtained
in that way. It was not very difficult to translate this idea into a correct proof
that the singular homology group Hj(X;Z) is isomorphic to the "abelianized"
fundamental group, i.e., the quotient of ^(X.a) by its group of commutators.
This can be found in Seifert and Threlfall's book ([421], pp. 171-174) for a
locally fnite simplicial complex, but it can be done in the same way for any
arcwise-connected space X. A loop y: [0,1] -»• X with origin a can be
considered a continuous map [y]: A1 ->X such that [y](e0) = [}>](e.) = a, a
singular 1 -cycle in Z1 (X). Furthermore, if (t, u) i—> F(t, u) is a homotopy between
two loops y, y' of origin a, i.e., a continuous map F: [0,1] x [0,1] -»• X such
that

F(t,0) = F(t,l) = a for te [0,1],

F(0,u) = y(u), F(l,u) = /(u) for ue [0,1],
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then there is a singular 2-simplex s: A2 -»• X such that

b2(s - c) = [/] - M
where c is the singular 2-simplex equal to the constant a in A2. Just take

s(t(ue2 + (1 - u)e0) + (1 — t)(ue! + (1 - u)e0)) = F(t,u) for 0 ^ t, u s? 1.

This defines a homomorphism

fc:7i1(X,a)^H1(X;Z). (10)
It must be shown that

1. h is surjective. For each x e X, choose a path a(x) from a to x and to each
singular simplex s: Aj -»• X, associate the loop

/(5) = «(5(e0))s(«(.s-(e0)))-1;

it is easy to prove that if z = Yj=i A.sj *s a singular 1-cycle, the class of z in
Hj(X;Z) is the image by h of

2. The kernel of h is the commutator subgroup of n 1 (X, a). It is enough to show
that for any singular 1-boundary s0 — s1 + s2, where s0, s,, s2 are singular
1-simplices such that

si(e0) = s0(e1), s2(e0) = si(ei), s0(e0) = s2(e.),

then the loop/(s0)/(s1)~1/(s2) is null homotopic; this is a simple consequence
of the fact that the identity map on the boundary Ä2 — A2 is homotopic to
a constant map in A2.

§4. Examples and Applications

A. Fundamental Groups of Graphs

In algebraic topology a simplicial complex of dimension 1 is often called a
graph. If K is a connected graph, its fundamental group n [(K, x0) is free. This
follows from the Tietze construction, improved by the use of a maximal tree
T(§ 3,B): since there is no 2-simplex in K, the generators \_vx, v2~] for which the
1-simplex {v1,v2} is not contained in T satisfy no relation, and the others are
equal to the neutral element.

Conversely, any free group F with an arbitrary family (Xj)JeJ of generators
is isomorphic to the fundamental group of a connected graph K. Define K as
a combinatorial complex: the vertices consist of two families (vj)je s, (wj)js s and
an additional vertex z; the 1-simplices are the pairs {z, Vj}, {z, w,}, and {vj, Wj}
for j e J; then 7ij(K,z) is the free group on the generators [v}, Wj]. This
correspondence between homeomorphism classes of graphs and fundamental
groups led to the first example of an application of algebraic topology to group
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theory. In 1927 O. Schreier showed by purely algebraic methods that any
subgroup of a free group is free [416], This result has a very simple proof
using the theory of fundamental groups: suppose a connected graph X has
a fundamental group rc^X, x0) isomorphic to a given free group F, and
let H be a subgroup of F; then there is a connected covering space Y of
X such that, for a point y0 above x0, 7tj(Y, y0) is isomorphic to H (§2,VII),
and since Y has a natural structure of graph (§3,C), H is free. If X is a
connected graph with n0 vertices and nl 1-simplices, a maximal tree in X
has n0 vertices and n0 — 1 1-simplices, hence rc^X, x0) has n1 — n0 + 1
generators. If H is a subgroup of F of index (F : H) = m, the corresponding covering
graph Y of X has mn0 vertices and mnl 1-simplices, hence 7ti(Y,y0) is a free
group with m{nl — n0) + 1 generators [134]; this is another of Schreier's
results for free groups with a finite number of generators.

B. The "Gruppenbild"

There are many other applications of fundamental groups to group theory.
By using attachment of 2-cells to a graph (Part 2, chap. V, § 3) it is possible to
construct for any group G a complex of dimension 2 having G as fundamental
group ([474], p. 145). (This "realizability" property is a particular case of a
much more general result for higher homotopy groups; see chap. II, §6,F.)

A useful construction for the study of groups defined by generators and
relations is Dehn's "Gruppenbild" ([421], p. 328). Suppose a group G is
generated by a finite number n of elements gp (1 < p < w); take a set (Ms)seG
indexed by G, and define a graph T(G) having as vertices the Ms: Assign 2w
1-simplices having as common vertex Ms to any s e G:

Sp(s) = {Ms, Msgf}, S;1 (s) = {Ms, M„-,}.

Any product

"Pi*P2 "Pk

with £• = +1 corresponds to the paths of origin Ms (for the various s e G)
consisting of the juxtaposition of the successive 1-simplices

s^(4 s%(sg;\),.-, sx(sg;\g;i--g;t\)­
The relations

between the generators gp exactly correspond to the loops in T(G). But if G is
the fundamental group 7tj(X,a) of a simplicial complex X, Reidemeister
observed [386] that one can "concretize" the graph T(G). Consider the universal
covering space X of X, and take for Ms all the points of X above a; if the gp
are loops of origin a whose classes generate 7tj(X,a), then Sp(s) is the path of
origin Ms which projects on gp.
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C. Fundamental Group of an H-Space

Let (x, y) i—> xy be the product in an H-space X (Part 2, chap. VI, § 2) and e be
the"homotopy identity." For two paths t\-^y1(t), t\-^y2(t), maps of [0,1] into
X, write y, *y2 the path t\-^y1(t)y2(t); then, if y\ (resp. y'2) is homotopic to y1
(resp. y2), y\*f2 is homotopic to yt *y2. If points of X are identified with
constant paths, 7j is a path from e to a, and y2 a path from e to b, then yx * y2
is homotopic to each of the juxtapositions (yl * e)(a* y2) and (e*y2)(y1 * b).
When a = b = e, a loop 7 of origin e can be identified with e * y and with 7 * e;
this proves that the law of composition in the fundamental group 7ij(X,e) is
the law of composition of classes of loops, corresponding to (yi,y2)t—>yi * I2,
and that this law is commutative.

This applies in particular to a topological group G when it is assumed that
G is arcwise-connected and locally arcwise-connected. If G' is a connected
covering space of G and e' is a point of G' above the neutral element e, there
is a unique structure of topological group on G' such that the projection
p: G' -> G is a homomorphism and e' the neutral element; p'1 (e) is isomorphic
to a quotient group of n1(G,e) and is contained in the center of G'. If there
exists a universal covering space G of G, the corresponding structure of group
on G (defined up to isomorphism) defines G as the universal covering group
of G, having a center that contains a group isomorphic to nx(G,e). Such a
group always exists if G is a Lie group.

There are corresponding statements for the Chevalley conception of
fundamental group (§2,X1).

D. Poincaré Manifolds

The three-dimensional manifold constructed by Poincaré in his fifth
Complément has been the topic of many investigations ([400], pp. 224, 290, 308-311;
[421], pp. 216-221, 227) in which it is defined in many different ways. The
simplest way is to obtain it as a space of orbits P = S3/I, where I is a finite
subgroup of the group S3 of quaternions of norm one, chosen in such a way
that P is orientable and I is equal to its group of commutators; then 7ij(P, e) 2.
I,butH,(P;Z) = H2(P;Z) = 0 by § 3,E and Poincaré duality. It turns out that
there is such a group; S3 may be identified to the double covering Spin(3) of
SO(3) and I is the inverse image in S3 of the finite group of rotations of the
regular icosahedron (or dodecahedron), which is a simple group of order 60.
Furthermore the symmetry x 1—» — x, which belongs to I, is a commutator in
1, hence 1 is a group of order 120, equal to its group of commutators. The
manifold P is also called "icosahedral space" or "dodecahedral space."

E. Knots and Links

The basic problem of topology, classifying spaces up to homeomorphism,
can be extended to pairs (X, A) where AcX, a homeomorphism
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h: (X, A) 2$ (X', A') being a homeomorphism of X onto X' mapping A onto A'
[in the language of categories, they are the isomorphisms in the category Tx
of pairs (Part 1, chap. IV, §5E)]. The restriction of h to X — A is then a
homeomorphism onto X' — A' so that h is a relative homeomorphism in the
sense of Lefschetz (Part 1, chap. II, §6), but the converse is not true. When
X' = X and(X, A) is homeomorphic to (X, A'), one says A and A' are equivalent
subspaces of X.*

Most of the work done in that direction has been concentrated on the case
in which X = S„ (or X = R") and A is homeomorphic to a sphere Sk with k < n
or to a disjoint union of finitely many such spheres. Already in the nineteeth
century the case n = 3, k = 1 [(X, A) being called a classical knot when A is
homeomorphic to a circle Sj, a classical link if A is homeomorphic to a disjoint
union of finitely many sets homeomorphic to Sj] had a peculiar fascination
(not only for professional mathematicians), due to its immediate "physical"
interpretation [460],

Concerning that problem, Tietze had already observed [466] that an
embedding of Sj in R3 may be very "wild," with infinitely many "knotted"
portions accumulating in the vicinity of a point ([400], p. 224). A distinction
therefore had to be made between such "wild" embeddings and "tame" ones:
the latter are defined by the condition that for each point x0 of the image A
of Sj there is a neighborhood U of x0 in R3 and a homeomorphism h of U
onto an open ball of R3 such that h(U n A) is a diameter in that ball. This is
immediately generalized to any pairs (n, k) with k < n; an equivalent definition
consists in considering a triangulation T of S„ and taking for A a /c-dimensional
subcomplex of T homeomorphic to Sk.

As soon as topological tools became available topologists such as Dehn
[137] and, a little later, Alexander [15], applied them to the study of classical
knots and links and to their higher-dimensional generalizations (also called
knots and links). These early works have grown into a very extensive theory,
which at present engages the efforts of many mathematicians (see [400]); we
shall mostly consider tame embeddings.

A first distinction has to be made according to the value of n — k; if
n — k^ 3, all tame embeddings of Sk into S„ are equivalent [400] (this, however,
does not extend to embeddings of disjoint unions of at least two spaces
homeomorphic to Sk)S

For n = 2, k = 1, it is still true that any two embeddings (tame or not) of
Sj into S2 are equivalent (Schönflies theorem [415]). But for n = 3, k = 2,
there are "wild" embeddings of S2 into S3 (the "Alexander horned sphere," see
[400], pp. 76-81) that are not equivalent to the standard embedding. To
ensure an equivalent embedding, a kind of "global tameness" condition must
be added, namely, the existence, for the image A of S2 in S3, of a "bicollar,"

* There are other definitions of equivalence ([400], p. 3).
+ If one only considers C" embeddings, the condition n — k > 3 is no longer sufficient
to ensure equivalence of all C" embeddings of Sfc into S„ [218].
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i.e., a neighborhood U of A such that there is a homeomorphism of A x ] — 1,1 [
onto U, reducing to the map (x,0)i—>x in A x {0}. That same condition also
implies equivalence for embeddings of S„_j into S„ for any n > 3.

Let A and B be two closed sets in R", both homeomorphic to S„_j, such
that B is contained in the bounded component of R" — A. If U is the
intersection of the bounded component of R" — A and the unbounded
component of R" - B and both A and B are "bicollared", Ü is homeomorphic to
S„-i x [—1,1]. This remained for a long time known as the "annulus
conjecture"; it was only proved for n # 3 in 1969 [400].

For the remainder of this section we will only consider the case n — k = 2,
which is the one usually meant when one speaks of knots and links.

By definition, if two tame knots (resp. links) A, A' in S„ are equivalent,
S„ — A and S„ — A' are homeomorphic; it is not known if that condition
implies conversely that A and A' are equivalent. At any rate the fundamental
group 7ij(S„ — A) (called the "knot group" or the "link group") attaches one
of the most important algebraic invariants of knot type or link type to any
tame knot or link, but there are nonequivalent knots having isomorphic knot
groups.

For n = 3 there is a regular way to describe the knot group by generators
and relations. A tame knot K in R3 can be considered a Jordan polygon; it is
possible to project it on a plane (taken as the xy-plane in R3 ) in such a way
that the projected polygon K' has only double points that are not on its
vertices. Once K is oriented it is decomposed into a juxtaposition of simple
arcs a, = P;Pi+1 (0 < i < m, Pm+1 = P0) by the points P, projected on the
double points of K', and such that the other point Qi having the same
projection as Pj is above P,; let j(i) be the index such that Q, is contained in the
arc am. Taking a base point b e R3 — K above K, assign a loop of origin
b going around at to each arc at. The classes ct of these loops generate
7rj(R3 — K) and the relations between them are

Cj(i)Ci = ci + lCj(i) °r CiCj(i) = Cj(0C' + l

depending on the respective orientations in R2 of the oriented projections of
a; and aj(i).

Even for n = 3 it has not yet been possible to find a finite system of algebraic
invariants that would characterize the tvpe of a classical knot. We shall only
consider the invariants related to homology. For any dimension n it follows
from Alexander duality (Part 1, chap. II, § 6) that if K <= S„ is homeomorphic
to S„_2, then H l (S„ - K; Z) ~ Z. In other words (§ 3,E), the space X = S„ - K
is such that the quotient of 7r1(X) by its commutator subgroup is isomorphic
to Z. It follows (§3,VII) that to the group Z (resp. Z/mZ) there corresponds
a covering space Xœ (resp. Xm) of X such that Autx(Xoc) ~ Z [resp. Autx(Xm) ~
Z/mZ]. The invariant factors # 1 of the finitely generated commutative group
Hj(Xm) are called the m-th torsion numbers of the knot K and obviously are
invariant under equivalence.

An even more interesting invariant comes from the consideration of the
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homology groups H^X^; Z) for 1 «S i < n. Let t be a generator of the group
G = Autx(Xœ) isomorphic to Z. Since G acts on every Z-module H^X^; Z),
that action can be extended to the group algebra Z[G], which is the algebra
of "Laurent polynomials" Z[t, t-1] with integer coefficients; if

P(t) = c_ht~h + ■■■ + c_xt~l + c0 + c1t + --- + cktk

the action is given by

(P,u)i- X cj(tj.u) forueH^Z).
J=-h

The Z-module H^X,«; Z) is thus given a structure of Z[t, t_1]-module known
as the i-th Alexander invariant of K. When that module is generated by a single
element uh the ideal ct; of Z[t, t_1], annihilator of u;, is called the Alexander
ideal; if it is a principal ideal, it is generated by a unique polynomial of Z[t],
called the Alexander polynomial [15]. There are several ways to compute it
[400]; it can often distinguish between knots for which all other invariants
are the same.

A similar theory may be done for links, but for a link L with r components,
Hj(L; Z) is isomorphic to Zr; if X = S„ — L, the groups H^X^) are modules
over "Laurent polynomials" in r variables.



Chapter II

Elementary Notions and Early
Results in Homotopy Theory

Until around 1930 the concept of homotopy (as defined by Brouwer in 1911,
see Part 1, chap. II, §2) essentially appeared as an auxiliary notion, chiefly
used as a tool in the proofs of the theorems on homology. The theory of the
fundamental group stood apart, as a kind of refinement of one-dimensional
homology. It was H. Hopf who, by his pioneering study of maps into spheres
between 1926 and 1935, inaugurated homotopy theory.

§1. The Work of H. Hopf

A. Brouwer's Conjecture

One of the main results of Brouwer's theory of the degree of a map (Part 2,
chap. I) was its invariance under homotopy. In a talk at the International
Congress of Mathematicians in 1912 he expressed his belief that, conversely,
if M is a connected, compact, orientable n-dimensional manifold (in the sense
of Brouwer) and / and g are two continuous maps of M into S„ which have
the same degree, then they are homotopic. In that talk he sketched a proof of
that statement for n = 2 and M = S2, and he detailed that proof a year later
([89], pp. 527-537). It is one of these fantastically complicated and obscure
proofs in which he so often indulged; he went through four successive
reductions, in order to finally apply a result of Klein on compact Riemann surfaces
of genus 0; although at one point he uses simplicial approximation, the validity
of the arguments certainly is questionable.

Hopf proved the Brouwer conjecture in 1926 [239]. The proof is long,
ingenious, and intricate, and very much inspired by Brouwer's techniques, but
fortunately much more precise. I think it is instructive to compare that proof
"starting from scratch" with the much simpler later ones, when new topological
and algebraic tools had been invented.

The main tool in the proof is a generalization obtained by Hopf in 1925 of
Brouwer's criterion for the existence of fixed points for a continuous map of
S„ into itself (Part 2, chap. Ill, § 1). He considered more generally a compact,
connected, orientable n-dimensional combinatorial manifold M, and two
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continuous maps fx, f2 of M into S„; the points of coincidence of fx and f2 in
M are those for which fx{x) = f2{x); it is assumed that the number of these
points is finite. For each point of coincidence x an index of coincidence is
defined: identifying a neighborhood of x and a neighborhood of fx{x) = f2(x)
with a ball of R", consider a small (n — l)-dimensional sphere S of center x,
and the vector

■^7777 F7-77 (!)
on S; the index of coincidence is the degree of the map S -»• S„_t thus defined.
Hopfs result was that the sum of the coincidence indices at all coincidence
points of/j and/2 is

(-l)"deg/1+deg/2. (2)
The proof of Brouwer's conjecture is by induction on n; for n = 1 the result

is obvious and of course was well known. We describe the proof by breaking
it up into four parts.

1. An obvious generalization of Brouwer's last proof of his fixed point
theorem (Part 2, chap. Ill, § 1) is: if gx, g2 are two continuous maps of M into
S„ without coincidence points, then it is possible to replace g2 by a homotopic
map g'2 such that g'2(x) = —gl(x) for all x e M by considering the great circle
joining gx{x) and g2(x) for all points x e M such that gx(x) # — g2(x).

2. Next suppose that gl and g2 have only one point of coincidence x0 and
that deg(gf2) = (- 1)"+1 deg(0t); Hopfs 1925 result showed that the index of
coincidence at x0 is 0. Let p be the stereographic projection onto the hyper­
plane H tangent to S„ at the point ^(xo) = ö^O^o) and let B a neighborhood
of x0 in M identified with a small closed ball of R" with boundary S; then

xh^u(x) = p{gx{x)) - p{g2(x))

is a vector field in B with values in H vanishing only at x0. If Bj is a closed
ball of smaller radius concentric to B and Sj is its boundary, the assumption
implies that on Sj the map x 1—» v(x)/\v(x)\ has degree 0, and by the induction
hypothesis there is a homotopy of the restriction v\Sx to a constant map. An
elementary lemma then shows that there is a homotopy of v itself to a vector
field t., defined in B,, coinciding with nonS,, which does not vanish in Bt.
From this deduce a homotopy of g2 to a map g'2 such that

"iW = p(9i(x))-p{g'2(x))

in Bj; now gx and g'2 have no coincidence point.
3. The third step deals with two arbitrary continuous maps h1,h2 of M into

S„ with a finite number of coincidence points, and proves that by a homotopy
on h2 it is always possible to reach the situation in which hx and h2 have only
one coincidence point. By simplicial approximation it can always be supposed
that hx and h2 are simplicial maps and that there is a point y0 e S„ and a small
ball B <= S„ of center y0 such that h71(B) [resp. ^(B)] is a disjoint union of



§1A II. Elementary Notions and Early Results in Homotopy Theory 313

closed balls Uj(l ^; < /)[resp. Vt(l ^ k < m)] in M; the U, have no common
point with the Vfc, and fcj |IL (resp. h2\Vk) is a homeomorphism onto B.

Now let p be the stereographic projection onto the hyperplane H tangent
to S„ at — >o- If t is a translation in H, h'2 = p~ltph2 is homotopic to h2; it is
possible to choose t such that the points of coincidence of h1 and h'2 belong
to the disjoint union W of the interiors of the U, and the Wk. Using a
triangulation of M and the inequality n ^ 2, it is possible to construct a set
E c M homeomorphic to a closed ball in R", containing W and such that
MEJu/i^EJ^S...

Then take a point z0 in S„ that is not in hj(E) u h2(E) and let q be the
stereographic projection onto the hyperplane H' tangent to S„ at — z0.
Associate in H' the vector w(x) = q(hi(x)) — q{h'2(x)) to each point x e E; w(x) # 0
on the boundary S' of E and an elementary lemma shows there is a homotopy
transforming w into a vector field w1 defined in E, coinciding with w on S' and
vanishing at only one point u0 e E. Then there is a homotopy of h'2 to h'{ such
that q(h1(x)) — q(h2(x)) = Wj(x) in E, and therefore u0 is the only point of
coincidence of h1 and h2.

4. The end of the proof is now very short. Suppose fx and f2 have equal
degrees; then if s : y i—» — y is the symmetry, g1 = fx and g2 = s° f2 are such
thatdeg(gr2) = (— l)"+1deg(öf1). A first homotopy reduces to the case in which
g1 and g2 have only one point of coincidence, by 3; a second to the case in
which g1 and g2 have no point of coincidence, by 2; and finally a third to the
case in which g2 = s ° gl by 1, so that after a homotopy, f2 = fi­

Hopf added to the Brouwer conjecture the fact that for any integer d eZ
there is a continuous map /: M -»• S„ such that deg(/) = d. He first considered
the case M = S„; if n = 1, the map zi—>zd of Sj into itself has degree d. For
n > 1 he used induction on n; considering S„_j as defined by the equation
xn+i = 0 in S„ <= R"+\ he let g: S„_j -»• S„_j have degree d; any point x of S„
other than +e„+1 can be written (ö,y), where y e S„_j and 6 e ]0,7r[ is the
angle of the vectors x and e„+1. He then took /(x) = {0,g{y)) for x # +e„+1
and/( + e„+1) = +e„+1. The remaining problem is todefine a continuous map
/: M -»• S„ of degree + 1. Hopf took a (rectilinear) triangulation T of M with
vertices vl, v2, ..., vk; let v't, v'2, ..., v'k be k points in R"+1 such that no set
of n + 2 of these points are in a linear subvariety of R"+1 of dimension n.
He then defined a piecewise affine map h: M -»• R"+1 by the condition that
h(v}) = v'j for 1 ^ j ^ k and that h be affine in each simplex of T. Finally, he
considered a straight line D in R"+1 intersecting h(M) in a finite set, no point
of which belongs to the image by h of a p-simplex of T for p < n — 1. He let
a1 < a2 < ■ ■ ■ < ar be the successive intersections of D with h(M) ordered by
an orientation of D, and he took a point b between a1 and a2. Then, if p is the
projection from b of h(M) onto a sphere S of center b, the map xi—>p(h(x)) of
M onto S has degree + 1, by Brouwer's definition.

In 1933 [244] Hopf generalized and simplified his solution of Brouwer's
conjecture; we shall see in § 4,B how that paper was incorporated in the nascent
general theory of homotopy.
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B. The Hopf Invariant

Ever since his first paper Hopf's work in algebraic topology had been centered
on topological properties of mappings and of their connection with algebraic
notions; his papers on the degree of a map (Part 2, chap. I, §3,D), on the
"Umkehrhomomorphismus" (Part 1, chap. IV, §4), and on the Brouwer
conjecture were all typical of that orientation. They were all concerned with
continuous maps X -»• Y for combinatorial manifolds of same dimension; it
was natural that Hopf should turn his attention to maps /: X -»• S„ when the
compact combinatorial manifold X has a dimension m # n. For m < n these
maps are of a trivial kind, since by a suitable simplicial approximation it can
be assumed that f(X) is not the whole sphere S„, and therefore a homotopy
reduces / to a constant map. Aside from the fairly trivial case n = 1, however,
before 1930 nobody knew anything about continuous maps /: X -»• S„ when
dim X > n, even maps /: Sm -»• S„ with m > n. It was clear that the
consideration of the corresponding homomorphism /.: H.(Sm) -»• H.(S„) could give no
information, since for p > 0 either Hp(Sm) = 0 or Hp(S„) = 0. There remained,
however, a topological principle of classification, the "homotopy class" of
Brouwer. In particular, since/,,,, acting on reduced homology, is always 0, was
it true that / is always homotopic to a constant map?

The breakthrough came in 1930 when, by a brilliant combination of the
Brouwer technique and of his own idea of "Umkehrhomomorphismus" (Part
1, chap. IV, §4), Hopf succeeded in proving that there are infinitely many
"homotopy classes" of maps of S3 into S2 [243], Again the proof, starting
from scratch, is long (14 pages) and burdened with many technical details, but
it is always quite clear.

I. The bulk of the proof concerns euclidean (rectilinear) simplicial
complexes X, Y with triangulations T, T' and simplicial maps; chain complexes are
used not only for T and T', but for subdivisions of these triangulations. For
simplicity we suppose Y to be of dimension 2, X of dimension n > 2.

For each 2-simplex a of T and every point Ç interior to a 2-simplex t of T',
<pa(i) is defined as 0 if Ç i f{a); but if Ç e f(a), the restriction of / to a is an
affine bijection of a onto t, and if x is the unique point of a such that/(x) = £,
then q>a{Ç) is taken equal to x if f\a preserves orientation, — x if it reverses
orientation. For any 2-chain Z = Y,j aj°) (with the a} e Z), cpz(Ç)is then defined
as the 0-chain XjOj'/Vd!.). so that after subdivisions of T and T' such that Ç
and its inverse images by / are vertices of the subdivided complexes, the map
Zi—><Pz(£) is a homomorphism of the Z-module C2(T) of 2-chains into the
Z-module C0(T) of 0-chains.

Starting from that definition, Hopf showed by induction on p that it was
possible to define, for any p-chain Z of T, a (p — 2)-chain cpz(0 of some
subdivision of T, in such a way that for the boundary opertors

bp_2<pz(£) = <pbpZ(£), (3)
and Z i—> (pz(Ç) is a linear map of Cp(T) into Cp_2(T) [in particular <p0(Ç) = 0].
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In his 1931 paper Hopf only used this construction for n = 3 and n = 4. For
n = 3 he assumed X to be oriented combinatorial manifold; if [X] is its
fundamental 3-cycle (Part 2, chap. I, §3) and Ç e/(X), he showed that for a
2-chain Z in T the intersection number (Z. (p[X](Ç))ls defined and equal to the
degree of/ at the point £. By this he meant that if Z = Xjaj°)' where the oj
are 2-simplices of T, that degree is Y^jajd{f,<*),£,) (Part 2, chap. I, §3,D). To
prove this equality, Hopf used the fact that any 2-simplex a of T that meets
f~l{Ç) has only one point in f~l{E,). Since every 2-simplex of T is a face of
exactly two 3-simplices, (p[X]{Ç) is a 1-cyc/c, and the intersection number
(a. <P[X](£)) is + 1 (resp. — 1) if f\a preserves (resp. reverses) orientation.

After these generalities Hopf only considered the case in which X (resp. Y)
is a euclidean simplicial complex homeomorphic to S3 (resp. S2). Since for any
{eY such that (p[X](Ç) is defined it is a 1-cycle, it is also a boundary of a 2-chain
K in X (provided the triangulations T and T' have been conveniently
subdivided). If / is the homomorphism C'2(T)->C'2(T) deduced from /, the
boundary of f(K) is a multiple of the degenerate 1-chain {£}, hence in C2(T)
(Part 1, chap. II, § 2) it is 0, so that /(K) is a 2-cyc/e in Y and as Y has dimension
2, /(K) is homologous to a cycle }>.(/). [Y], the multiple of the fundamental
cycle [Y] by an integer y^f), now called the Hopf invariant off. That number
can also be defined as the local degree d(f, K, n) for all points n # £ in Y (Part
2, chap. I, §2).

The remainder of the proof first establishes the properties of y^{f) (always
for simplicial maps /).

1. The number y^f) is independent of the choice of the 2-chain K with
boundary <p[X](Ç); this is due to the interpretation of }•$(/) as the intersection
number (K. q>m{n)) for any point n # £ interior to a 2-simplex of Y, hence it
is equal to the linking coefficient

M<Pix\(S),<Pm(l)) (4)
and the assertion results from the relation

lk(-P[X](0, <Pm(l)) = lk(<W»7)> <P[x](Ç)) (5)

(Part 2, chap. I, § 3,C). One can therefore write y(f) instead oîy^f), or y(f T),
or y(f T, T') to emphasize dependence on the triangulations T, T'.

2. The second step consists in proving that if / is a simplicial
approximation of the simplicial map / constructed by Alexander's process (Part 1,
chap. II, §3) for two suitable subdivisions T, T' of T and T', such that
/(Star(u)) <= Star(/(u)) for any vertex v of T, then

y(/,T,T') = y(/,T,T'). (6)
Hopf had to prove that if f and x\ are two distinct 2-simplices of T", and if

£ is interior to T and n is interior to x\, then

lk(^[X](<f ), ^[X1(^)) = lk((p[X](<^), (p[X]W), (7)

where <p[X] is defined for the triangulations T, T' and the map / He reduced
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the problem to showing the existence of a 2-chain K of T, whose support meets
neither /~1(<i,) nor f'1^), and whose boundary is <f[X](ç) — <P[x](Ç)> which
implies

M<Pix](Z), <P[x](lï) = lk(<P[X](Ç), (p[X](l))

and a similar argument then proves that

lk(^[x](£),<P[x-(»7)) = lk(^x](^).^x](»7))­

The existence of K follows from the fact that the 1 -cycle

z = <Pix](£) - <P[x](<0

has an intersection number equal to 0 with every 2-simplex of T; by successive
reduction of the total number of points of intersection of the support of Z with
the 2-simplices of T, Hopf finally arrived at the situation in which a 1-cycle
homologous to Z is a sum of a finite number of 1-cycles, each of which has a
support contained in a 3-simplex of T, hence is a boundary.

3. Next Hopf proved that if f0, fx are two simplicial maps relative to the
triangulations T, T', which are nomotopic, then

V(/o.T,T') = ■/(/, ,T,T). (8)
He first extended the triangulation T of X to a triangulation T0 of E =
X x [0,1], and replaces the homotopy F of f0 tofi, defined in E, by a suitable
simplicial approximation G, for suitable subdivisions of T0 and T'. Let C0 and
Cj be the fundamental 3-cycles on X x {0} and X x {1}; there is a 4-chain B
on E such that b4B = C0 — C,. Then from (3) it follows that

b2%(Ç) = <Pc0(c) - <Pc,{£)­

Let K0, Kj be 2-chains on X x [0] and X x J1} such that

b2K0 = (pc0(cl b2K, =<Pc,(c);

Z = K, — K0 — (pB(c) is then a 2-cycle on E. By projection on X x [0], Z is
homologous in E to a 2-cycle Z0 on X x {0}, hence G(Z) ~ G(Z0) on Y; but
on X x {0}, the 2-cycle Z0 is homologous to 0 (since X is homeomorphic with
S3), hence G(Z0) = /0(Z0) = 0 on Y (since on Y, homeomorphic to S2, the
only 2-cycle homologous to 0 is 0). Therefore G(Z) = 0, which means that

/1(K1)-/o(Ko)-G(<pB(^)) = 0.

Since the 2-cycle G(<f>B(c)) has support {ç}, G(<f>B(ç)) = 0, hence /0(K0) =
/i(Kj), and by definition this means that y{f0) = ~;{f\)­

At this stage we can define ■/(/, T, T') for any continuous map f: X-> Y.
Any two simplicial approximations fu f2 oî f obtained by the Alexander
process for subdivisions of T and T' are homotopic to/, hence y(/i,T,T') =
y{f2, T, T'), so that y(f, T, T') may be defined as the common value of y(fl, T, T)
for all these simplicial approximations f1 of f.

4. Before showing that y(f, T, T') is independent of the triangulations T, T',
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Hopf investigated its behavior relative to continuous maps g:X1^X,
h: Y->Yj, where X1 (resp. YJ is another euclidean simplicial complex
homeomorphic to S3 (resp. S2) with triangulation Tj (resp. T'j). Using
simplicial approximations of/, g, h for suitable subdivisions of T, T', T1; T', and
the definition of the degree given by Brouwer he proved that

y(/°ff,T1,T') = deg(ff).y(/,T,T'), (9)
y{hof,l,T\) = (deg(h))2.y(/,T,T'). (10)

5. The last step in the definition of y(f) uses the Brouwer device (Part 2,
chap. I, §1): if T1; T2 are two triangulations of S3 and T'j, T'2 are two
triangulations of S2, it follows from (9) and (10) that for any continuous map
/:S3^S2,

y(/,T1,T'1) = deg(lS3)deg(lS2)2y(/,T2,T2)=y(/,T2,T2).

6. From the relation y0(Ç) = 0 it is clear that when / is homotopic to a
constant map, y(f) = 0; thus, to prove the significance of his invariant, Hopf
still had to exhibit an example of a map /: S3 -»• S2 with y(f) # 0. He found
a beautiful example, now known as the Hopf fibration over S2 (Part 3, chap.
Ill, § 1), for which y(f) = 1 [by (9), this implies that there are maps/: S3 -»• S2
for which y(f) is an arbitrary integer n e Z]. He used the fact that the complex
projective line Pj(C) is homeomorphic to S2 (the "Riemann sphere"): let
p: C2 — {0} -»• Pj(C) be the natural map sending the point {z1,z2) to the line
joining 0 to that point; S3 is the subspace of C2 — {0} defined by |zj|2 +
|z2|2 = 1; / is just the restriction of p to S3. If f{zuz2) = £ for a point
(zj,z2)eS3, the set f~l{£) is the great circle th-y(z1e",z2e"); the relation
y(f) = + 1 follows from the fact that if £, # n, the great circle f'1^) cuts a
2-sphere 2 of S3, having Z"1^) as great circle, in exactly two points; hence it
cuts one of the hemispheres of 2 having f'1^) as boundary in exactly one
point.

C. Generalizations to Maps from S2t_i into St

In 1935 Hopf, perhaps prodded by the first Hurewicz notes on homotopy
groups (§ 3) just published, returned to the study of continuous maps of spheres
into spheres [245]. He realized that his technique of 1931 could easily be
extended to continuous maps /: Sm -»• Sk, provided that for simplicial maps
the linking coefficient \k(f~l(!;),f~l(t])) could be defined for two distinct
points £, n of S^; this is only the case if 2(m — k) + \ = m, i.e., m = 2k — 1.
Without bothering to repeat the long sequence of arguments leading to the
definition of y{f), Hopf focused his paper on the search for maps / for which
y(f) "^ 0- He first observed that if k is odd, then y(f) = 0 for all continuous
maps /: S2k-i ~* Sk. This follows from the relation

iMr1^),/-1^)) = {-\)k\k{f-\^2)j-\^))
for two distinct points ^t, £,2 of Sk (Part 2, chap. I, §3,C); therefore, yit{f) =
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— }'i2{f) if k is odd (with the notations of B), but if £3 is a third point of Sk,
7(Sf) = -yi3{f) = }'i2(fl hence y^f) = 0.

To show that y(f) may be / 0 when k is even Hopf invented, for all integers
r ^ 1, a remarkable family of continuous maps S2r+i -► Sr+1. He starts from
a decomposition of S2r+1 as a union of two closed sets V+, V~, both homeo­
morphic to Sr x Dr+1, such that V+ nV" is homeomorphic to Sr x Sr. He
used a generalization of a device introduced by Heegaard for r = 1; in S2r+1,
considered as the subspace of R2r+2 defined by

x, +x2 + --- + x2r+2 = 1,

the subsets V+ and V~ are defined by

V+:x2 + x2 + ---+xr2+1 s= 1/2

(equivalent to x2+2 + xr2+3 + • • • + x2r+2 > 1/2), (11)

V~:x2 + x\ + ■■■ + x2+1 ^ 1/2

(equivalent to x2+2 + x2+3 + • • • + x2r+2 ^ 1/2). (12)

Their common boundary P2r in S2r+1 is their intersection, equal to
((l/v/2)Sr) x ((l/V2)Sr). The map Sr x ((l/^D,^) - V+ defined by

(V,z)^(z,,...,zr+1,y,(l - Izl2)1'2,...,^^! - Izl2)1'2) (13)
is a homeomorphism, whose inverse will be written

x^(r+(x),w+(x)). (14)
Similarly the map Sr x ((\/^2)T)r+1) -> V" defined by

(y.zJh-OMl - |z|2)lfl,...,yr+1(l - Izl2)1''2,^,...,^^) (15)

is a homeomorphism, whose inverse will be written

xi->(i;-(x),w-(x)). (16)
Suppose now that a continuous map<7:P2,-Sr (17)

has been defined; it is then possible to extend g to a continuous map

J '■ S2r+i ~~* Sr+1

in the following way. Let p0 be the point (l/v/2,0,...,0) in (l/^/ÏJS,, and
define^! (resp. g2) as the restriction of a to ((l/^/ÏJS,) x {p0} [resp. {p0} x
((1/^/2)8,)]. Let Er++1 and E,T+1 be the two hemispheres xr+2 ^ 0 and xr+2 ^ 0
in the sphere Sr+1, and for any point z e Dr+1 let h+(z) and h~(z) be the points
in E,+1 and Er~+1 that project orthogonally to z. Now let \p: ( 1/^/2)Dr+1 -►
[^, 1] be a continuous function that is not constant and is equal to 1 in
(l/v/2)Sr. Then take
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f{x) = h+ ( <A(w+(x)). 9l ( -^Ü+W ) ) in V^

f(x) = h~ [ ilf(w-(x)).g2 [ ~^v-(x) ) ) in V2r+1.

(18)

The idea behind this construction is to start from a map g such that the degrees
of g1 and g2 are both # 0; then Hopf showed that for the corresponding
function / defined by (18),

y(/)=±deg(01)deg(02)#O (19)
by the following argument.

A basis for the Z-module Hr(P2r; Z) is given by the classes of the two r-cycles

zi = {Po} >• Z2 = > x {Po}. (20)

In the space V2r+1, Zx is the boundary of an (r + l)-chain having as support
the set U defined by

U: x1 ^—=,x2 = •• =xr+1 =0, xr2+2 + ••• + x22r+2 sc 1/2. (21)
2

This set has only one common point with the sphere Yc defined, for
c < (1/^2) by

xl + ' ' ' + xr+l — 1 — C > Xr+2 = C> Xr+3 = ' ' ' = X2r+2 = U. (22)

In the sphere S2r+1, Zx is homologous to 0, hence U and Yc are the supports
of two cycles [U], [Yc], and the intersection number of these cycles is ± 1.
But it is clear that [Yc] is homologous to Z2 in S2r+1, hencelk(Z1,Z2)=±l (23)
(Part 2, chap. I, § 3, C). Now / may be taken simplicial, and if £2 is an interior
point of an (r + l)-simplex in E~+1, <P[S2r.+1](^2)1S defined as an r-cycle in V2r+1.
As the restriction off to the support of Z1 is g^, its restriction to U has degree
degfaj, hence the intersection number of [U] and of </)[S2+i](iJ2) is ±deg(a1);
by (23), this implies that <P[s2r+1](£2) 's homologous to ±dcg{g1). Z2. Similarly,
if ijx is an interior point of an (r + l)-simplex in E*+1, then <P[s2r+1](£i) 's defined
as an r-cycle in V2r+1 and is homologous to ±deg(a2). Zx; finally

y{f) = lk(ç)(S2,tl](^),ç)ts2rtl](^)) = ±deg{g1)deg(g2). (24)

The last part of the proof consists in finding a map g such that degfaj = ± 1,
degfâ^) = ±2. To show that this is possible when r is odd, Hopf defined (for
any r) (\js/l)g(xl,x2) as the point of (1/^/2)8, that is the symmetrical of x1
with respect to the hyperplane orthogonal to x2. It is then clear that deg^) =
— 1; but gfxj, — x2) = g(x1,x2) and g2 maps the closed hemisphere D of pole
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p0 onto Sr with degree ± 1, and if r is odd, the symmetry s: x i—► — x has degree
+ 1; g2 has degree +2, since the restriction of g2 to — D is identical with the
restriction of g2 o s to D.

This theorem immediately raises the question of the existence of continuous
mapsg:Sr x Sr -► Sr for which feotfc deg(g1) and deg(a2) are ± 1, which would
imply that the Hopf invariant ■/(/) = ± 1. Hopf showed that such maps exist
for r = 1,3, or 7. He derived this result from the existence of a norm on Rr+1,
that is, a continuous function N: Rr+1 -► R+ such that for some continuous
map (x, y) i-> xy ofRr+1 x Rr+1 into Rr+1,

N(xy) = N(x)N(y) (25)
and furthermore N(x) > 0 for x # 0. For r + 1 = 2, 4, or 8 such maps exist
for the "product" (x, y) i—► xy in the algebra of complex numbers for r + 1 = 2,
the algebra of quaternions for r + 1 = 4 and the (nonassociative) Cayley
algebra of "octonions"* for r + 1 = 8. It was suspected for a long time that
these values of r were the only ones for which maps /: S2r+1 —► Sr+1 exist with
"/(f) = 1. and gradually partial results accumulated, restricting the possible
values of r by various methods, until J.F. Adams in 1958 succeeded in proving
the conjecture, using very sophisticated tools (chap. VI, § 5,D).

§ 2. Basic Notions in Homotopy Theory

A. Homotopy and Extensions

Let X, Y be topological spaces, A be a subspace of X, and /:A-»Ybea
continuous map. An extension of / to X is a continuous map g: X -► Y such
that g\A = f; if j: A -► X is the natural injection, this also means that

g°j = f­

* In the algebra of quaternions, the conjugate of a quaternion q = s + xi + yj + zk is
the quaternion q = s — xi — yj — zk; one has N(<j) = qq = qq = s2 + x2 + y2 + z2.
Octonions are pairs of quaternions p = (q^qj), with multiplication defined by

(q1,q2)(q\,q,2) = (<..<.. ~ q'ili^iQ'i + <J2<2.)'

it is neither associative nor commutative, but satisfies the weaker relations

V\Vl =Pl(PlP2). PlP22=(PlPl)P2­
The conjugate of an octonion p = (<j,,q2) is the octonion p = (qt, —q2Y, the product
N(p) = pp = pp is again a scalar satisfying (25), and

N(p) = N(<?,) + N(q2) > 0 for p + 0.

In every one of the three cases, the map /: S2r+i -* Sr+1 can be defined directly: S2r+i
is the subspace of R2r+2 defined as the set of pairs (zi,z1) of complex numbers (resp.
quaternions, resp. octonions) such that N(Z[) + N(z2) = 1, and

/(z1,z2) = (2z1z2,N(z1)-N(z2))eRr+2.

It is easy to check that/(z,,z2) 6 Sr+1, and one can also prove that/is a submersion.
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This last relation implies

0*%=/* (resp./* =j*og*)
for the corresponding homomorphisms in homology (resp. cohomology). In
particular Kerfj^) c Kerf/,.) is a necessary condition for the existence of an
extension of/ to X. For instance, if Hp(X) = 0 and /„.: Hp(A) -► Hp(Y) is not
0, there is no extension of/ to X.

A homotopy between two maps /: X -► Y and g: X -► Y can be considered
as a special case of extension: consider in the space X x [0,1] the subspace

A = (X x {0})u(X x {1})

and the continuous map G: A -► Y defined by

G(x,0) = /(x) and G(x, 1) = g(x);

a homotopy F from / to g is then an extension of G to X x [0,1].
In his paper of 1933 in which he determined the "homotopy classes" of maps

into S„ of any n-dimensional combinatorial manifold M, Hopf pointed out
that (after reduction to simplicial maps) the problem of existence of a
homotopy between two continuous maps of M into S„ amounts to finding, for an
n-dimensional subcomplex L of an (n + l)-dimensional simplicial complex K,
conditions for a simplicial map L -► S„ to have an extension to K ([244], p. 86).

B. Retracts and Extensions

At about the same time two other mathematicians, Borsuk and Lefschetz,
were interested in extension problems for other reasons.

A retraction r: X -► A of a space X onto a subspace A is a continuous map
such that r(X) = A and r(x) = x for x e A. If/. A -► X is the natural injection,
this definition also means that r o j is the identity 1A, or that r is a "left inverse"
of/ A subspace A of X for which there is a retraction onto A is called a retract
of X [70]. The main (obvious) property of a retract A of X is that any
continuous map /: A -► Y has at least one extension g:X->Y, namely, g =
for.

A retract A of a Hausdorff space X is closed in X, since it is the set of points
xeX for which r(x) = x. From the relation roj= 1A it follows that for
homology (resp. cohomology)

r* ° J* = 1H.(A) (resp. j* ° r* = 1H.(A))

which impose restrictions on A to be a retract; S„_! is not a retract of Rm for
m ^ n. A less trivial example (Steenrod) can be given by using the ring
structure of H'(A) and H'(X) and the fact that j* and r* are ring
homomorphisms: Imr* is a subring and Kerj* an ideal of H'(X), and from the relation
j* o r* = 1H(A)> it follows that H'(X) = Im r* ® Ker j* and Im r* is isomorphic
to H'(A). Take X = P2(C) and A = P1(C); there is then a unique
decomposition H'(X) = M © N into two graded submodules, with M isomorphic to the
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module H'(A): in dimensions 0 and 2, M is the whole module and N is 0, and
in dimension 4. M is 0 and N is the whole module. However M is not a su bring,
because from the structure of H'(X), it follows that if u # 0 in H2(X),
u—- u / 0. So P^C) is not a retract of P2(C).

The notion of retract suffers from a defect when one wants to study a
subspace A of a space X: it implies the consideration of the whole space X, so
that points of X that may be "very far" from A, still, by their presence, may
prevent the existence of a retraction X -► A. To palliate this defect, Borsuk
introduced two other notions [71]. Restrict the concept of retract by the
condition that for every space X and every homeomorphism j of A onto a
subspace j(A) of X. /(A) be a retract of X: A is then called an absolute retract.
The other notion, on the contrary, expands the concept by only requiring that
A be a retract of some unspecified neighborhood of A in X. Then A is called
a neighborhood retract of X; for instance, S„-1 is now a neighborhood retract
of R", although not a retract.

The most useful notion introduced by Borsuk is intermediate, so to speak,
between the two last ones: a separable metrizable space Y is an absolute
neighborhood retract (abbreviated ANR) if for any homeomorphism of Y onto
a subspace Z of an arbitrary space X, Z is a neighborhood retract of X. An
equivalent definition is that, for every closed subset A of a metrizable space X,
every continuous map/': A -► Y has an extension to a neighborhood of A in X.

A retract of an ANR is an ANR; an open subspace of an ANR is an ANR;
a product of two ANR's is an ANR. If Y1; Y2 are two closed subsets of a
metrizable space Y, and if Y^ Y2 and Yj n Y2 are ANR's, then Y! u Y2 is an
ANR.

Compact ANR's have been characterized by Borsuk as being homeomorphic
to neighborhood retracts of the Hilbert cube.*

It turns out that a little earlier Lefschetz had considered a notion closely
related to the notion of ANR, namely the locally contractible (abbreviated LC)
spaces: they are defined by the condition that any point x has a neighborhood
which is a subspace contractible to the point x [309]. Since the Hilbert cube is
locally contractible, any compact metrizable ANR is locally contractible. In
[71] Borsuk showed conversely that, any locally contractible compact
metrizable space of finite dimension is an ANR, but the condition of finite dimension
cannot be dropped ([69a], pp. 124-127).

The CW-complexes are locally contractible ([493], p. 102), but compact
ANR's may exhibit very "pathological" features ([69a], chap. VI).

Lefschetz also introduced concepts weaker than local contractibility. He
said that a space X is p — LC at a point x if every neighborhood U of x
contains a neighborhood such that every injective continuous map Sp -► V is
homotopic in U to a point. The space X is LC (resp. LC'0) at x if it is q — LC
at x for every q ^ p (resp. for every q). To put that notion in relation with the

* The Hilbert cube is the subspace of I2 consisting of the sequences x = (x„) such that
|.x„| =g \/n for every n: it is homeomorphic to the compact space [0,1]N.



§2ß,C II. Elementary Notions and Early Results in Homotopy Theory 323

idea of neighborhood retract he also weakened the notion of ANR: a space
X is an ANRP if, for every space Y such that X is a subspace of Y and
dim(Y — X) ^ p, then X is a neighborhood retract of Y. He then showed that,
for compact metric spaces, the property of being ANRP+1 is equivalent to
being LC at every point [309].

C. Homotopy Type

If X, Y are two topological spaces, the relation "/ is homotopic to g," written
f ~ g, between two elements of the set <^(X; Y) of continuous maps of X
into Y is an equivalence relation, as it results immediately from the
definition. If u: Xj -► X and v. Y -► Yj are continuous, the relation f ~ g implies
vofou^vogou. The set of equivalence classes in %'{X\ Y) for the relation
/ ~ g is often written [X; Y] or n{\; Y). The continuous maps u: X1 -► X and
v. Y -► Y1 therefore define maps

«*:[X;Y]-[Xi;Y] and Vtt: [X;Y] - [X;YJ

such thatfu! o u2)* = u* ° u* andf^ ° u2)* = ^'i* ° u2*- More generally, if /,
f2 are two elements of ^(XjY) and gx,g2 are two elements of ^(Y;Z), and if
fi "" fi> 9i ~ 02' then gt o /. ~~ g2 o f2. If T is the category of topological
spaces (Part 1, chap. IV, §8), then X i-> [X; Y] (resp. Yi->[X;Y]) is a contra­
variant (resp. covariant) functor T-* Set.

In his 1935 notes on homotopy [256] Hurewicz introduced the concept of
homotopy equivalence for a continuous map /: X —► Y. There exists a
continuous map g: Y -► X such that

fo g ^ lY and g o / - lx;
g is called a homotopy inverse of/; it is also a homotopy equivalence,
determined up to homotopy. Two spaces X, X' have the same homotopy type if there
exists a homotopy equivalence /: X -► X'. This is an equivalence relation
between topological spaces, and the set [X; Y] only depends on the homotopy
types of X and Y. All contractible spaces have the homotopy type of a space
reduced to a single point.

The concept of "homotopy inverse" may be "decomposed" [198], that is,
/: X —► Y has a right (resp. left) homotopy inverse if there exists a continuous
map g: Y -► X such that f ° g ~ 1Y (resp. g ° / ~ lx). That property implies
that the homomorphism /„,: H,(X) -► H,(Y) is surjective (resp. injective); the
existence of both right and left homotopy inverses for / implies that / is a
homotopy equivalence.

When there is a continuous map/; X -► Y that has a left homotopy inverse,
the space X is said to be dominated by Y. If A is a subspace of X, the fact that
the injection j: A -► X has a right homotopy inverse means that there exist a
continuous map g: X -► A and a continuous map F: Xx[0,l]-»X such that
F(x, 0) = j(g{x)) and F(x, 1) = x for all x e X; F is called a deformation of X
into A.
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When the use of "categorical" language became widespread in the 1950s,
the preceding notions could be expressed in that language by the introduction
of the homotopy category H. It has the same objects as the category T of
topological spaces, but the morphisms are the homotopy classes of continuous
maps, so that Mor//(X,Y) = [X;Y]; classes of "homotopy inverses" then
become "inverse morphisms" (left, right, or two-sided).

Example: Homotopy Types of Lens Spaces

In 1940 J.H.C. Whitehead achieved substantial progress in the theory of lens
spaces. For two lens spaces L(p, q), L(p, q') where p is prime, he proved that the
condition q' = ± v2g(mod. p) for some integer v, which Alexander had shown
to be necessary for homeomorphy of the two spaces (Part 2, chap. I, § 3,C), is
necessary and sufficient for L(p, q) and L(p, q') to have the same homotopy type
[496]. His proof was based on his theory of simple homotopy type (§ 7). In 1943
Franz, unaware of Whitehead's result, gave another proof [200], which was
extended and simplified in 1960 by de Rham ([388], pp. 575-580), who proved
the corresponding result for (2n + l)-dimensional generalized lens spaces for
any n ^ 2 (Part 2, chap. VI, § 3,A). The two generalized lens spaces L, L' are
respectively defined as the spaces of orbits S2„+1/G, S2„+1/G', where G and
G' are the cyclic groups of order h generated by the respective rotations of

R.(z0,z1,...,z.,)^(CoZ0,Ç1z1,...,C.z„) with Ck = e2«im»'h,
(26)

R':(z0,z„...,zI1)h-(^z0,C'1z1,...,C;zI1) with ft = e2^'",

where the mk and m'k are prime to h. Let c (resp. c') be a generator of the
homology group H2„+1(L; Z) [resp. H2„+1 (L'; Z)] that is isomorphic to Z, and
g (resp. g') be a generator of the fundamental group ^(L) [resp. ^(L')] that
is isomorphic to Z/fiZ. The necessary and sufficient condition for L and L' to
have the same homotopy type is obtained in several steps:

1. Let/: L -► L' be any continuous map;/„.(c) = dc' and/„(g) = g'a, where
d = deg(/) and a is an integer mod.h. The map / lifts to a map F:
S2„+1 -► S2„+1 of degree d such thatFoR = R"oF (27)
(chap. I, § 2,V). Two maps f0 ,fx of L into L' are homotopic if and only if there
is a homotopy E: S2„+1 x [0,1] -► S2„+1 such that, for the liftings F0, Fx,

E(z,0) = Fo(z), E(z,l) = F,(z), and
(28)

E(R(z), f) = R'a(E(z, t)) for 0 s= t < 1

(chap. I, §2).
2. If one writes that both sides of (27) have the same degree the relation

dm0ml--mn = a"m'0m'l ■ ■ ■ m'n (mod.h) (29)
is obtained at once.
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3. For any integer iieZ satisfying (29) there is a map F: S2„+1 -► S2„+1 of
degree d, satisfying (27) [239].

First exhibit a map with degree d0 for which d = d0 (mod. h). Let pk be an
integer such that pkmk = a (mod. h) and define F by the relations

F(z0,z1,...,zJ = (F0(z0),F1(z1),...,Fn(z„))

with

Fk(rke2niVk) = rke2niPkm^ for each k.

F satisfies (27) and has a degree d0 such that

\d0\ = Pofn'oPifn'i---pnm'n.

To pass from that map to one with degree d, the following general lemma
is used. Suppose g: S2„+1 -► S2„+1 is a continuous map which is C°° in a dense
open subset U; then, for any integer r e Z and any open set V c U, there exists
a continuous map g1:S2n+i -1>S2n+1, equal to g outside V and of degree
deg(g) + r.

The application of that lemma is done in the following way: U is the set
where all the zk # 0, V is a small open subset such that the images RJ'(V) are
all distinct; F is modified in V according to the lemma, and in each of the
RJ'(V) for j "> 1 in such a way that the modified function F1 still satisfies (27);
then deg(F1) = deg(F) + hr = d0 + hr.

To prove the lemma, consider a point x0 in S2„+1 such that g'1 (x0) is discrete
and finite; take distinct points yk in V with 1 ^ k ^ r, which do not belong to
g~l{x0), and for each yk take a neighborhood \k c U such that the \k are
disjoint and do not meet g~1{x0). Let C be a small ball of center x0 such that
g-1(C) does not meet any Vt, and for each k consider a diffeomorphism uk of
a small ball Bk c Vk of center yk onto C such that uk(yk) = x0, with a jacobian
having the sign of r. Finally, let X be a map of S2„+1 into [0,1], equal to 1 in
jC, to 0 outside C; define

vk(x) = l(uk{x))uk{x) + (1 - X(uk(x)))g{x) for x e ukl(^C).

Finally, take g^x) = vk{x)/\vk(x)\ for x e uk1{jC), and g^x) = g(x) elsewhere.
4. Conversely, suppose F0 and F1 are two continuous maps of S2„+1 into

itself, both satisfying (27) and having the same degree d which verifies (29);
then there exists a homotopy E satisfying the relations (28).

The space S2„+1 is triangulated in cells af = Rj .aq{0 ^ q ^2n + 1,0 < j <
h — 1), where the a" are defined by formulas (29) of Part 2, chap. VI, §3,A.
Then, on S2„+1 x [0,1] a triangulation by the cells af x [0,1], af x {0}, and
a? x {1} is obtained. Using the third condition (28), it is enough to define E
on the cells aq x [0,1]; this is done by induction on the dimension q. The
values of E on the vertices of the af x [0,1] are given by the first two relations
(28); using obstruction theory (see below, § 3D) and the fact that 7r,(S2„+1) = 0
for i < 2n, the extension is possible for q ^ 2n. Let Ej be the restriction of E
to the boundary of a2n+1 x [0,1]; to extend it to the interior of that cell it is
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sufficient that the degree of Ej be 0 by the Brouwer-Hopf theorem. The degrees
of all Ej have the same value e, hence the sum of these degrees is he, but the
sum of the fundamental cycles of the af" x [0,1] is equal to the difference
[S2n+i] x {0} — [S2„+i] x {1}, hence he is the difference of the degrees of F0
and Fx. If this difference is 0, then e = 0 and this proves the existence of the
homotopy E.

5. Suppose now that for some integer a prime to h, the relation (29) is
satisfied for d = 1 or d = — 1. Let b be an integer such that ab = 1 (mod. h);
then

dm'0m'l---m,n = b"m0m1---mn (mod. ft)

and from 4 it follows that there exist two continuous maps /: L -► L', /':
L' -► L of same degree d = ± 1 such that f*{g) = g'a, f*(g') = gb. Then the
maps f'ofandfo f have degree +\,f*°U(g) = g and /„ o f^(g') = g'; by
the Brouwer-Hopf theorem applied to their liftings to S2„+1 they are homo­
topic to the identity.

D. Retracts and Homotopy
We already met the notion of strong deformation retract (Part 1, chap. IV,
§ 6,B); it was first introduced by Borsuk in 1933 [72]. A subspace A of a space
X that is a strong deformation retract of X not only has the same homology
and cohomology as X, but also the same homotopy type. For instance, the
existence on a compact C°° manifold X of a C30 function / having only
nondegenerate critical points implies that X has the homotopy type of a
CW-complex explicitly described in terms of the indices of the critical points
of/(Part 2, chap. V,§4).

If A c X is a strong deformation retract of X, for the retraction r: X -► A,
then any continuous map /: Y -► X is homotopic in X to the map r ° f: Y -► A.
A useful example of strong deformation retract is given by the box lemma:
consider the product X = D„ x [0,1] and the subspace

A = (S„_1 x [0,l])u(D„x {0}).

Then, if c is the point (0,2) in R" x R, a retraction r. X -► A is defined by
taking for r(x) the point where the line joining c and x meets A; the map
(x,()hF(jc,.) = t.r(x) + (1 — t)x is then such that F(x, 0) = x, F(x, 1) = r(x).

When X is an ANR, in order to prove that a closed subset AcXisa strong
deformation retract of X, it is enough to show that there exists a homotopy
F: X x [0,1] -► X such that F(x, 0) = x in X and x i—► F(x, 1) is a retraction of
X onto A, but it is not necessary to assume that F(x, t) = x for all x e A and
all te [0,1] ([403], p. 448).

If A is a closed subspace of a space X, one says the pair (X, A) has the
homotopy extension property relatively to a space Y if for every continuous
map f0: X -► Y, every homotopy F: A x [0,1]-»Y between the restriction
0o — /olA and a map g1: A -► Y has an extension H: X x [0,1] -► Y which is
a homotopy between f0 and a map f1: X -► Y extending g1.
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This is equivalent to an ordinary problem of extension: consider the product
X x [0,1] and in it the closed subspace

W = (A x [0,1]) u(X x {0}),

and the continuous map Fx: W -► Y equal to {x,0)\—>fo{x) in X x {0} and to
F in A x [0,1]; the requested homotopies H are the extensions of Fx to
X x [0,1]. If the extension f1 of g1 is prescribed, then the homotopies H
between f0 and f1 extending F are the extensions to X x [0,1] of the map
F; of

W' = Wu(X x {1})

into Y, equal to Fx in W and to (x, l)h—»-^(x) in X x {1}. The existence of H
in these two problems will be established if W (resp. W) is a retract of
X x [0,1].

It is in that problem that the ANR spaces are useful because of the following
lemma. Suppose both X and A are separable metrizable ANR's; then (§ 2,B) W
and W are ANR's, and therefore every neighborhood of W (resp. W) contains
a neighborhood T (resp. T')such that F: (resp. F\) has an extension G1: T-» Y
(resp. G'i.T' -► Y). By compactness, any "fiber" {x} x [0,1] in A x [0,1] has
a neighborhood of the form U x [0,1] contained in T (resp. T'), hence there
is a neighborhood of A x [0,1] contained in T (resp. T)oftheformN x [0,1],
where V is a neighborhood of A.

This lemma has the following consequences:

1. If X and A are both ANR's, there is a fundamental system of open
neighborhoods V^ of A in X such that A is a strong deformation retract of each
VA: observe that each open neighborhood U of A in X is an ANR, and replace
in the lemma X by a neighborhood U' c U of A for which there is a retraction
r: U' -► A, Y being replaced by A and f0 and fx by r.

2. If both X and A are ANR's, then (X, A) has the homotopy extension
property with respect to any space Y. Indeed, with the notations of the lemma,
W is an ANR, hence there is a neighborhood T of W in X x [0,1] and a
retraction r: T -► W. This shows that (x, t) i—► G(x, f) = F(r(x, t)) is a map of T
into Y such that G(x,0) = F(x,0). Furthermore, T contains a set U x [0, l],
where U is a neighborhood of A in X, hence there is a continuous real function
u: X -► [0,1] such that u(x) = 0 in X — U and u(x) = 1 in A. Then

(x,f)h->H(x,f) = G(x,f.u(x)) (30)
is continuous in X x [0,1] and such thatH(x,0) = G(x,0) = F(x,0)forx e A.

This result was proved by J.H.C. Whitehead for compact spaces and
extended by S. Hu for metrizable spaces [253].

3. Suppose now that the space Y is an ANR. Borsuk proved [71] that for
any paracompact space X and any closed subspace A of X the pair (X, A) has
the homotopy extension property with respect to Y. Indeed, with the notations
introduced in the above lemma, there exists an extension G of F: to a
neighborhood TofW since Y is an ANR, and T contains a neighborhood U x [0,1]
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of A x [0,1] for a neighborhood U of A. Then the definition (30) is applicable
and H(x, 0) = F(x, 0) for x e A.

After the theory of fiber spaces had been developed (chap. Ill) their
properties appeared as "dual" in some sense to the extension problem, and when a
pair (X, A) has the homotopy extension property for all spaces Y, the natural
injection A -► X is called a cofibration. IfAcBcX and the injections A -► B
and B -► X are cofibrations, the injection A -► X is a cofibration.

An important property of a cofibration i: A -► X is that if A is contractible
(in itself), then the collapsing map p: (X,x0) -► (X/A,x0) with x0 e A, x0 =
p(x0) = p(A) (Part 2, chap. V, §2,A) is a homotopy equivalence. Indeed the
assumptions imply the existence of a continuous map h: X x [0,1]-»X such
that h{x, 0) = x for x e X, h(x, f) e A and h(x, 1) = x0 for x e A, so that one
may write h{x, 1) = k(p(x)) where k: (X/A, x0) -► (X,x0) is continuous, hence
k°p~lx. On the other hand, p(h(x,t)) = hl(p(x),f), where fij:(X/A)x
[0,1] -► X/A is continuous, and fij(y,0) = y, ht(y, 1) = p(k(y)) for y e X/A, so
P°k~ 1X/A.

Examples of Cofibrations: I. Mapping Cylinder

Let /: X -► Y be a continuous map, Zf be its mapping cylinder (Part 2, chap.
V, § 3,A), and p: Y JJ (X x [0,1]) -► Zf be the natural projection. There are
two injections i: x\—>p(x,0) of X into Xf and j: y\—*p{y) of Y into Zf; both i
and j are cofibrations. To see that i is a cofibration it is enough to define a
retraction R' of the space Zf x [0,1] on its subspace

(Z/X {0})u(Xx [0,1])
[where X is identified with i(X)]. This is done by a variation of the "box
lemma" (see above) applied to each product p({x} x [0,1]) x [0,1]. Explicitly,

R'(p(y),s) = (P(y),0) for y e Y,

„,, , rt, UP(x,0),(s - 2t)/(l - t)) ifO^f^s/2R (p(x, f), s) = < for x e X.
{n ' \(p(x,(2t - s)/(2 - s)),0) if s/2 ^ t ^ 1

The method is the same for j; this time define a retraction R" of the space
Zf x [0,1] on its subspace

(Zf x {0}) u (Y x [0,1]) [Y identified with j(Y)]
by

W'(p(y),s) = (p(y\s) foryeY,

p»,, a^ |(p(x,2t/(2-s)),0) if0<f<(2-s)/2R (p(x, f), s) = < _ for x e X.
\(p(x, l),(s + 2f - 2)/f) if (2 - s)/2 < f < 1

Recall (Part 2, chap. V, § 3,A) that Y is a strong deformation retract of Zf; if
r:Zf->Y is the corresponding retraction, / = r o /, so that / is homotopic to
i in Zf. This can be expressed by saying that any continuous map may be
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multiplied on the left by a homotopy equivalence so that the product is
homotopic to a cofibration.

II. Mapping Cone

With the same assumptions, consider the mapping cone Cf (Part 2, chap. V,
§ 3,B) and the injection j: Y -► Cf, j is a cofibration. The space Cf is equal
to Zy/A, where A is a subspace of Zr (loc. cit.), then the retraction R"
defined above is such that R"(A x [0,l])cA x [0,1]; passing to the
quotient, R" yields a retraction Rq of Cf x [0,1] onto the subspace
(C, x {0})u(Yx [0,1]).

///. CW-Complexes

Let (X, A) be a relative CW-complex (Part 2, chap. V, § 3,C). Then the natural
injection j: A -> X is a cofibration. It is enough to prove that when X is
obtained by attaching n-cells e£ to A by maps fa: D„ -► X. It is necessary to
show that W = (X x {0}) u (A x [0,1]) is a retract of X x [0,1]. By the box
lemma, there is a retraction

r: D„ x [0,1] - (D„ x {0}) u (S,., x [0,1]).

Then the retraction R of X x [0,1] on W is defined by taking

R(x, f) = (x, f) forxeA,

R(/,(z), 0 = U<P(z, 0) if Hz, t) = (q)(z, t), t') e D„ x [0,1].

E. Fixed Points and Retracts

The interest expressed by Lefschetz for locally contractible spaces clearly
stemmed from his desire to extend as much as possible his fixed point formula
(Part 2, chap. Ill, §2); in ([304], p. 347) he proved its validity for compact
locally contractible spaces. Later he realized that any compact ANR, X, is
dominated (§ 2,C) by a finite euclidean simplicial complex Y; for any e > 0, Y
and the continuous maps /: X -► Y and g: Y -► X can be chosen such that
there is a homotopy F: X x [0,1] -► X between go f and lx having the
additional property that the diameter of F({x} x [0,1]) is ^ e for any x e X.
From this result it is easy to deduce the fixed point formula for X from the
fact that it holds for Y.

Much work was done later to refine the conclusions of the Lefschetz fixed
point formula, for which we refer to [94a].

F. The Lusternik-Schnirelmann Category
Around 1930 Lusternik and Schnirelmann attached a new numerical invariant
of the homotopy type ([329], [414]) to a pair (X, A) of topological spaces. A
nonempty subspace Y of X is deformable to a point in X if the natural injection
Y -► X is homotopic in X to a constant map Y -► {a} for some a e X; any
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subspace Z of Y is then also deformable to a point. If A c X is the union of
a finite number of subspaces of X deformable to a point, the smallest number
of subspaces of such a union is called the Lusternik-Schnirelmann category of
A in X and written catx(A); if no such union exists, catx(A) = +OC. The
number catx(X) is simply written cat(X) and called the category of the space
X. The relation cat(X) = 1 means that X is contractible. Elementary properties
are, for subspaces A, B of X, that if A c B, then catx(A) ^ catx(B) and for
any two subspaces catx(A uB)^ catx(A) + catx(B). If two arcwise-connected
spaces Xj, X2 have finite category

sup(cat(X,), cat(X2)) s= cat(X, x X2) < cat(X,) + cat(X2) - 1

Even if X is arcwise-connected and simply connected, there may exist
subspaces A of X such that catx(A) > 1 [196].

The Lusternik Schnirelmann category of a space is not determined by its
cohomology: clearly cat(S„) = 2 for all n > 1, but if P is the Poincaré space
(chap. I, §4,D), cat(P) > 2 although P and S3 have isomorphic cohomology
algebras [73]; this can be proved using the general fact that if cat(X) ^ 2, then
n^X) is a free group [196].

There are, however, relations between category and cohomology. If X is a
smooth compact manifold such that cat(X) = n, any cup-product u1 —- u2 —­
■ ■ ■ —-1<„ = 0 in H'(X; A) if the (homogeneous) classes Uj are not scalars.

Using that property and construction of suitable coverings, one proves
cat(T") = n + 1, cat(P„(R)) = n + 1, and cat(S„.m(C)) = m for complex Stiefel
manifolds.

§3. Homotopy Groups

A. The Hurewicz Definition

We have seen (Part 2, chap. VII) how the study of the homology of suitable
spaces of functions can yield results on problems of geometry or analysis in
finite-dimensional spaces. A similar idea led Hurewicz, in a series of four Notes
published in 1934-1936 [256],* to define the first algebraic objects in
homotopy theory. His central tool was the introduction of a topology on the set
^(Y; X) of continuous maps of a space Y into a space X. When Y is compact
and X is a metric space with distance d, a distance can be defined in <t5(Y; X) by

d(fg) = sup d(f(y),g(y)l (31)
ye Y

generalizing the familiar normed space %f\) of real continuous functions in a
compact interval, so that convergence for the distance (31) may be called
uniform convergence in Y. Around 1940 this idea was extended to provide a

* In these Notes he announced a paper that would contain detailed proofs of his
theorems, but that paper was never published.
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topology on the set #(Y; X) for any pair of topological spaces X, Y. For any
quasicompact set K c Y and any open set U c X, let T(K, U) be the set of all
maps / e ^(Y; X) such that f{K) c U. Since

T(K, uK2,U, nU2) c: T(K„U,)nT(K2,U2),

the sets T(K, U) form a basis for a topology on ^(Y; X) called the compact-open
topology, or the topology of compact convergence. Clearly

(Y,X)h-«(Y;X)

is a bifunctor T x T-> T, covariant in X and contravariant in Y. It has a very
useful fundamental property:

When Y is a locally compact space, X is an arbitrary space, and Z is a Hausdorff
space, continuity of a map f:Z x Y -► X is equivalent to continuity of the map
/:Z->-#(Y;X), where f(z) = (y^f(z,y)); (32)
there is a natural bijection f\-*f of sets

f(ZxY;X)^f(Z;«(Y;X)), (33)
but this is also a homeomorphism for the compact-open topologies.

This property was the point of departure of Hurewicz. Let Y be a locally
compact space and X be any topological space; a homotopy F between two
maps f0,fi in <£{Y;X) is a continuous map (f,y)i—>• F(f,y) of [0,1] x Y into X
with F(0,y) = f0(y) and F(l,y) = fx(y); the corresponding map

fh-F(f)e^(Y;X)

is a path in ^(Y; X) of origin f0 and extremity j\. There is thus a natural
bijection*

[Y;X]^7r0(^(Y;X)) (34)
of the set [Y; X] of classes of homotopic maps of Y into X onto the set of arcwise
connected components of the space <&( Y; X). In more sophisticated language, it
was later said that (34) is a bifunctor (covariant in X, contravariant in Y)LCx T^Set (35)
where LC is the full subcategory of T consisting of locally compact spaces.

To work with loops and fundamental groups it is necessary to consider the
subspaces ^(Y, y0; X, x0) of <&(Y; X) consisting of the continuous maps / such
that f(y0) = x0 for y0 e Y, x0 e X; one says / is a map of pointed spaces

/:(Y,y0)-(X,x0). (36)
In categorical language, these maps are the morphisms in the category PT of

* For any space Z, n0(Z) is the set of arcwise-connected components of Z.
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pointed spaces, in which the objects are the pairs (X,x0); for a homotopy F
between two such maps, it is always required that F(f, y0) = x0 for all t e [0,1].
One also uses the category PH, where the objects are the pointed spaces, and
the morphisms the homotopy classes of the maps (36).

The set of homotopy classes [/] of maps (36), in the preceding sense, is
written

[Y,y0;X,x0].

The loops in a pointed space (X, x0) are then the maps of pointed spaces*

(S,,*)-»(X,x0),

so that the set of these loops

Q(X,x0) = #(S,,*;X,x0) (37)
is now given the topology of a subspace of ^(S, ;X),+ and, just as above, there
is a natural bijection

K,(X,x0)=iKo(«'(S1,*;X,Xo)). (38)
The natural generalization that Hurewicz introduced was to consider for

any integer n > 1 the arcwise-connected components of the space #(S„, *; X, x0).
The key property is that if an designates the constant map S„_, —► {x0} for

n ^ 2, there is a natural bijection

n0mS„, *;X, x0)) Z, n, («-(S,,-,, *; X, x0), an). (39)

Identify the space ^fS.,, *;X,x0) with the subspace of <^([0,1]";X) consisting
of the maps / such that /(Fr([0,1]")) = {x0}; that subspace is naturally
homeomorphic to the space ^(Y,y0;X,x0), where Y is the collapsed space
[0,1]"/Fr([0,1]"), y0 being the image of Fr([0,1]") (Part 2, chap. IV, §2,A).
Furthermore, we defined in Part 2, chap. IV, §2,C a canonical homeomor­
phism of (Y,_y0) onto (S„, *) when S„ is considered as a CW-complex with only
two cells.1 Using the fact that [0,1]" = [0,1] x [0,1]"~\ the fundamental
property of the compact-open topology yields a natural identification /"■—►/"
ofi-?([0, l]";X)with#([0,1];^([0, l]""';X)),wherefor(f,f,,...,f„_,) e [0,1]",

f(t)(t,,..., f„„, ) = f(t,t,,..., f„_,). (40)
Hence the natural homeomorphism

#(S„, *; X, x0) ^ *(S,, *; #(S„_,, *; X, x0), a„) = Q(#(S„_,, *;X, x0), an), (41)

which yields the natural bijection (39) by (38).

* The sphere S„ is always considered as the subspace of R"+l defined by £"ij if = '.
and the vector e, is noted as *.
f IfX[ is the constant loop S ! -» {x0}, (X, x0)i—>(n(X,x0), xx) is a contravariant functor
in the category PH.
1 We identify the closed unit ball D„ c R" with [0,1]", to which it is homeomorphic.
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By chap. I, § 1 it follows from (39) that there is on n0(<&(Sn, *; X, x0)) a natural
structure of group; this group is denoted by 7r„(X,x0) and called the n-th
homotopy group of the pointed space (X, x0). Applying the definitions of
Poincaré and using (40), the group law in nn{X,x0) is defined as follows:
7r„(X, x0) is the set of classes of continuous maps /: [0, l]n-»X such that
/(Fr([0,1]")) = {x0}; two such maps /, g are in the same class if there is a
homotopy between / and g leaving invariant all points of Fr([0,1]"); if [/j],
[/2] are two classes in nn(X, x0), the sum [/.] + [/2] is the class of the map

ttt t . J/i(2t,t„...,t.-,) ifO^f^l/2,(f,tj,...,t„ x)i-^< .,...,.. (42)
y2(2t- i,tj,...,tn_j) if i/2 ^ r ^ i.

The neutral element 0 is the class of the constant map [0,1]" -► {x0} and the
inverse element - [/] of [/] is the class [/ o s], where

s(f,f1,...,f„_1) = (l -t,t,,...,(„_,). (43)
This definition includes the definition of the fundamental group nl (X, x0); but
for n ^ 2 the group nn(X,x0) is commutative (hence the additive notation).
Indeed, the space Q(X, x0) for any pointed space (X,x0) is an H-space for the
juxtaposition of loops (Part 2, chap. VI, §2,A), since the constant loop
[0,1] -► {x0} is a "homotopy neutral element" for that law; but for n "> 2, by
(39) and (41) there is a natural group isomorphism

7r„(X, x0) x K, (n(<g(S„-2, *; X, x0), «„_, )); (44)

the assertion follows from chap. I, §4,C.
If X0 is the arcwise-connected component of the point x0 in X, it is clear

that any map (S„,*) -► (X, x0) takes its values in X0 for n "> 1; hence 7r„(X,x0) =
i„(X0,x0).

B. Elementary Properties of Homotopy Groups

The preceding definition and the properties of the spaces ^(Y; X) imply the
following elementary properties of nn(X, x0):

1. n„: (X, x0)i—>7i„(X, x0) is a covariant functorPH -► Gr. (45)
Indeed, for any map u: (X,x0) -► (Y,y0), the homomorphism

"*:in(X,x0)-mn(Y,y0)

maps each class [/] to the class [u o /] that only depends on the homotopy
class [u] and can be written [u] o [/].

2. The map

7r„(X x Y,(x0,^0))^7r„(X,x0) x nn{Y,y0)

deduced by 1 from z i—► (prj (z), pr2(z)) is an isomorphism; this can be generalized
to arbitrary products:
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t,(nx.,wjÄnn,(x,lX,).
3. If Z is a covering space of X, p: Z -> X is the natural projection, and z0eZ

is any point of p"1 (x0), then /or n ^ 2 the map

/V rc„(Z, z0) -> 7r„(X, x0) (46)
is an isomorphism. Indeed, S„ is then simply connected, therefore any map
(S„,*) -► (X, x0) lifts uniquely to a map (Sn,*)-*(Z,z0), and the homotopy
class of the latter only depends on the homotopy class of the former (chap. I,
§2).

4. nn(X, x0) = 0 for all n for a contractible space X, since any map (S„, *) -►
(X, x0) is homotopic to the constant map S„ -► {x0}.

From 3 and 4 it follows in particular that

7r„(S1) = 0 forn^2 (47)
since the covering space R of Sj is contractible.

C. Suspensions and Loop Spaces

For a pointed space (X, x0), iterated loop spaces (QP(X), xp) are defined by
induction: xl is the constant loop S; -► {x0} and in general xp is the constant
loop Si -► {xp_i} in (np-'(X),xp_i). Then one defines Q°(X) = X and

Q"(X) = Q(Qp-'(X),xp_1). (48)
From this definition, (37), and (41)

Qm+"(X)^(Sm,*;Q"(X),x„) (49)
by induction on m and n; hence there are natural isomorphisms

7r„(X, x0) 3. Kn-x ("(X), x, ) x ■ ■ ■ =L n„-p(W(X), xP)*-Z. 7t0(ß"(X)). (50)

Later [440] these properties, which concern maps of spheres into arbitrary
spaces, were generalized for any pair of pointed spaces (X,x0), (Y,y0), where
Y is a Hausdorff space. There is a natural homeomorphism

«(Y,y0;ßX,x,)^,iP(SY,y0;X,x0) (51)
where y0 is identified with its image in the reduced suspension SY (Part 2,
chap. V, §2,C). By (33) #(Y,y0;Q(X),Xi) is identified with the subspace of
#([0,1] x Y;X) consisting of the maps (t,y)i->/(t,y) such that /(0,y) =
/(l,y) = x0 and f{t,y0) = x0 for 0 < t < 1; but these are exactly the maps

[0,1] x Y A SY -^ X,

where p is the natural map on the quotient space and g e#(SY, _y0;X,x0).
From (51) is deduced a natural bijection

[Y,y0;nX,x,]^[SY,y0;X,x0]. (52)
In categorical language this is expressed by saying that in the subcategory
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of PH consisting of pointed Hausdorff spaces,

(Y,y0)^(SY,y0) and (X,x0)^(QX,Xl)

are adjoint functors (Part 1, chap. IV, §8,C).
Now (QX, xx) is not only a H-space, but an H-group; in general, this is a

pointed H-space (Z,z0) in which: (1) the multiplication m is such that the
diagram

Z x Z x Z

m x 1

Z x Z

1 x m Z x Z

commutes up to homotopy (i.e., commutes in the category PH); (2) z0 is a
"homotopy neutral element" (Part 2, chap. VI, § 2,A) and there is a "homotopy
inverse" i: (Z,z0) -> (Z, z0), meaning that the diagrams

(Uo) Z x Z Uo. 1)

(where z0 is identified with the map Z -* {z0}) also commute in P//. For such
a H-group (Z,z0) and any pointed space (Y,y0), the set [Y, y0;Z,z0] is given
a law of composition

([/],[0])H-[/].[g]
for which [/] . [g] is the homotopy class of the map

-► Y x Y /x y Z x Z

(53)

(54)

[where ô is the diagonal map: ô(y) = (y,y)] and it is readily seen that this
makes [Y,_y0; Z,z0] into a group; if the diagram

Z x Z -> Z x Z

[where a is the reversal map: a(zl,z2) = (z2>zi)j commutes in PH, one says
the H-group (Z,z0) is commutative, and the group [Y, _y0; Z, z0] is commutative.

In particular, (QfX),*!) is an H-group for any pointed space (X,x0),
and if (X,x0) is itself an H-space, then (fi(X),Xj) is commutative, hence
[Y^ojQXjXi] {and by (52), [SY,y0;X,x0]} are groups, and for any p > 2,
[Y,^0;QPX, xp] is a commutative group; by (52), the same is true of
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[_SkY,y0;Çl"kX,xp^
for all k ^ p, all these groups being naturally isomorphic.

In particular the homotopy group 7r„(X,x0) is naturally identified with the
group [S„,*;X, x0], generalizing the definition of the fundamental group. In
fact, such a definition had been proposed by Cech at the International
Congress of Mathematicians in 1932 [121], and he reported that the same idea
had earlier been considered by Dehn, who had not published it. Cech himself
did not pursue the study of these groups, because at that time it was believed
that significant generalizations of the fundamental group should be non­
commutative in general. The group law on the set [S„,*;X,x0] can be
presented in the following way [254]. Identify S„ with the sphere ^"ÏJ £? = 1 in
R"+1, let D+ and D_ be the two closed hemispheres in S„ defined by £„+1 ^ 0
and £„+1 ^ 0, and let /, g be two continuous maps of S„ into X taking the
value x0 at the point *. Since D+ and D are contractible, the
restrictions /|D_ and g\D+ are homotopic to the constant maps D_ -> {x0} and
D+ -* {x0}, respectively. From the homotopy extension property (§2,D) it
follows that there exists a map /x: (S„, *) -* (X,x0) homotopic to / and such
that /i(D_) =/i(S„_1) = {x0} and a map gt: (S„,*)-> (X,x0) homotopic to
g and such that 0i(D+) = ^(S.,^) = {x0}. Then if h is the map equal to fY
in D+ and to gi in D_, the sum [/] + [g] of the homotopy classes of/
and g in n„(X,x0) is the homotopy class [ft].

The continuous maps /: (S„,*) -> (X, x0) such that [/] = 0 are by
definition those for which there is a continuous map F: S„ x [0,1] -> X such that
F(y, 0) = f(y), F(y,l) = x0, and F (a, f) = x0 for 0 ^ f ^ 1 where a = * (for
convenience); but any point z e Dn+1 other than a can be written z = ta + (1 — t)y
for y eSn and 0 ^ f < 1; the function z i—► G(z) = F(y, t) for z / a, G(a) = x0,
is then continuous in D„+1 and extends f. The converse is immediate, and the
maps /: (S„, *) -> (X, x0) such that [/] = 0 are therefore identified to those
which can be continuously extended to the ball Dn+1.

Finally, from this description it follows that for any map /: (S„, *) -> (X, x)
the class — [/] is the class off ° s, where s is the symmetry £„+1i—► — £„+1 with
respect to the hyperplane £„+1 = 0 (generally identified with R"): if f1 is the
map homotopic to / and such that /\(D_) = {x0}, then gl = /x o s is homo­
topic to / o s, and if h is equal to fv in D+ and to g1 in D_, it can be extended
to D„+1 by h(ty + (1 - t)s(y)) = f,(y) for all y e D+.

D. The Homotopy Suspension

If in (51) X = S Y and x0 = y0, to the identity 1SY is associated a canonical map
s:(Y,y0)^(ClSY,yi) (55)

such that s(y) is the loop f i—>p(f,_y) in SY. By functoriality this determines a
map s„.: [X,x0; Y,y0] -* [X^oiQSY,^], and using the bijection (52) a natural
map is obtained:

E: [Y,^0;X,x0]^[SY,^0;SX,x0] (also written S) (56)
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called the homotopy suspension, which was introduced in 1937 by
Freudenthal [201], and which has become one of the most important concepts in
homotopy theory. For any map /: (Y,_y0) -> (X,x0), E([/]) can be defined
directly as the homotopy class of the map E(/): (SY,_y0) -> (SX,x0) (also
written Sf), which sends p(y, t) to p()(y), i).

In particular, this defines a natural transformation (Part 1, chap. IV, § 5,E)
of the functor nn to the functor 7r„+1 o S:

E: 7r.,(X,x0)->7r„+1(SX,x0). (57)
In contrast with (50), this map is not necessarily injective nor surjective:
^(S.) = 0 but 7r3(S2) # 0, and we shall see later that 7r4(S3) is finite although
rc3(S2) ^ Z.

E. Whitehead Products

In 1941, in order to study the homotopy of CW-complexes, J.H.C. Whitehead
defined a map ([492], p. 238)

nm(X, x0) x 7r„(X, x0) -»• 7rm+„-! (X, x0) for m > 1, n > 1 (58)

in the following way. Write I = [0,1] and start from two continuous maps

f:lm^X, y.V^X,
such that /(Fr(Im)) = {x0} and g(Fr(V)) = {x0}. The frontier Fr(Im+") can
be written as the union (Im x Fr(I")) u (Fr(Im) x I"), the intersection of these
two sets being Fr(Im) x Fr(I"). Define a continuous map h: Fr(Im+") -> X by

Mst)=i^ for(S,f)eImxFr(I"),
,S' ' \g(i) for (s, f) e Fr(Im) x I",

since f(s) = g(t) = x0 for (s, f) e Fr(Im) x Fr(I"). The homotopy class w of h
only depends on the homotopy classes u, v of / and g, hence one may writew = [u, v\ (59)
defining the map (58). For m = n = 1,[m, t;] is the commutator uvu~xv~l, which
justifies the notation (59). Whitehead proved that for fixed u, ui—>[u, v] is a
homomorphism of groups, so that for n ^ 2

[u,vl + u2] = [m,^] + [u,î;2]. (60)
Furthermore, for m + n ^ 3,

[v,u] = (-iym[u,v\ (61)
and, for m + n + p > 4, there is a Jacobi identity [355]

(-l)m''[[u,!;],w] + (-l)"m[[i;,w],u] + (- l)p"[[w,u],i;] = 0. (62)

Finally, for any continuous map (p: (X, x0) -> (Y,_y0)

<P* ( [". v\ ) = [p* (u), (p* (v)l (63)
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Steenrod has shown that the Whitehead product can be related to his
"functional cup-product" (Part 1, chap. IV, §4,B). Let a 6 7rm(X,x0),
ß en„(X,x0) be the homotopy classes of /: (Sm,*) -> (X,x0) and
g: (S„, *) -> (X, x0), respectively. These maps define a map

h:SmvS„^X

such that h(x, *) = f(x) and h(*,x) = g(x). Now let k: Sm+n^t ->Sm v S„ be
such that [/<] = [/„,, /„], the Whitehead product of the classes im, i„ of the
natural injections Sm -> Sm v S„, S„ -> Sm v S„. Then the Whitehead product
[a,/?] is the homotopy class of the composite mapk h

F; Sm+„_1 —► Sm v S„ —► X.

Since fe*(Hm+"-1(Sm v S„)) = 0, F*(Hm+"-1(X)) = 0. This implies that for co­
homology classes u e Hm(X), v e H"(X) such that u^- v = 0, the functional
cup-product u^-Fv is defined and is an element of Hm+"_1(Sm+„_1) equal to
h*(u)^-kh*(v).

F. Change of Base Points

We have seen that in an arcwise-connected space X, a path a of origin x0 and
extremity x1 determines an isomorphism of n1(X,x0) onto n^X^x^ (chap. I,
§ 1). This extends to all homotopy groups.

To see this, use the "box lemma" (§2,D): for a map /: I" -> X equal to x0 in
Fr(I"), there is an extension F to I" x I of the map equal to (x,0)i—>/(x) in
I" x {0}, and to (x, f)i—>a(f) on Fr(I") x I. The homotopy extension property
for ANR's (§2,D) shows that the homotopy class of xi—>F(x, 1) in ^(X^J
only depends on the class [/] in 7r„(X,x0), and therefore we have defined a
map

o-.,(a):7r„(X,x0)->7r„(X,x1). (64)
Using the definition of addition in 7r„(X,x0) and ^(X^J given in §3,C for

the Cech definition of homotopy groups, it is easy to verify that on(a) is a
homomorphism of groups. The box lemma and the homotopy extension
property also show that if a' is a path from x0 to x1 homotopic to a (with fixed
extremities), o-„(a') = o-„(a). Furthermore, an(a.ß) = on(<x) o an(ß) for the
juxtaposition of two paths a, ß, thus <T„(a) o ö-„(a_1) is the identity, and an{a.) is an
isomorphism.

In particular, if y is a loop in X of origin x0, an(y) is an automorphism of
7r„(X,x0) that only depends on the class u of a in rc^X»*^, and it therefore
can be written <r„(u). The map u\—>on{u) is a homomorphism ofn^X^Q) into
the group Aut(7r„(X,x0)), and for any v e nn(X,x0),

on(u).v — v = [_v,u]. (65)
A space X is called n-simple if <xn(u) is the identity for all u e n1(X,x0); for

any point x1 e X, the isomorphism <r„(a) is the same for all paths a of origin
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x0 and extremity xt. In general, the groups n„(X,x) for x eX form a local
system of groups (Part 1, chap. IV, §7,A).

When X is n-simple and /, g are two maps S„ -* X in the same homotopy
class, but with different values /(*) = x0, g{*) = x1, there is by assumption a
path a: I -> X of origin x0 and extremity x1 such that o-„(a) sends [/] to [#],
so that the class of/ in the set [S„;X] can be naturally identified with its class
in 7r„(X;x0). This defines on the set [S„;X] a group structure independent of
x0; that group is often written nn(X), and by abuse of language that notation
is also used for nn{X; x0) even when X is not n-simple.

To say that a space X is l-simple means that the fundamental group n1(X)
is commutative. An arcwise-connected space X for which n^X) = 0 or nn(X) = 0
is n-simple.

Let X be an arcwise-connected H-space, and let /, g be two maps defining
homotopy classes u, v in nm(X,x0) and nn{X,x0); if p: Im+" -* X is the map
defined by

p(s,t)=f(s).g(t)

(product defined by the multiplication in X), the homotopy class of p|Fr(Im+")
is the Whitehead product [u, u]; this implies [u, v] = 0; hence, by (65), X is
n-simple for every n ([429], p. 477).

§4. First Relations between Homotopy and Homology

A. The Hurewicz Homomorphism
Hurewicz's second Note of 1935 was devoted to relations between the
homotopy groups 7r„(X, x0) of a pointed space (X,x0) and the singular homology
groups H„(X; Z) with integer coefficients; he only spoke of metric spaces and
used Vietoris homology, but in a footnote ([256], II, p. 525) he mentions that
one can use singular homology as well, and for that homology theory his
arguments apply to an arbitrary space.

Generalizing the well-known homomorphism ti1(X,x0) -> HX(X;Z) (chap.
I, § 3,B), he defined for each n a natural homomorphism

hn:nn(X,x0)^Hn(X;Z\ (66)
which is now called the Hurewicz homomorphism. As the closure A„ of the
standard n-simplex is homeomorphic to the closed cube [0,1]", elements of
7r„(X, x0) may be identified with the connected components of the space of
maps /: A„ -* X such that f(An — A„) = {x0}. For such a map, consider the
homomorphism in relative singular homology [Part 1, chap. IV, §2, formula
(4)]:

/„: H„(Ä„, Ä„ - A„; Z) - H„(X, {x0}; Z).

The exact sequence of homology for n ^ 2 (Part 1, chap. IV, §6,B) yields
natural isomorphisms



340 3. Homotopy and its Relation to Homology

H„(X;Z)^H„(X,{x0};Z),

H.,(Ä.,,A.,-A.,;Z)^H.,_1(S„_1;Z).

The inverse image e„ by the second isomorphism of the fundamental class
[S„-i] can also be defined as the class of the relative singular n-cycle defined
by the identity map of A„. From the homotopy axiom of homology theory it
follows that the element /„.(e„) e H„(X; Z) only depends on the homotopy class
[/] °f/in nn(X, x0), so that a map (66) is defined byK-in^UK)- (67)
Using the homotopy operators between a singular simplex and its subdivisions
(Part 1, chap. II, §3), as well as the definition of [/] + [#] in the Cech
approach to homotopy groups (§ 3,C), it is easy to see that hn is a homomor­
phism of groups. In general it is neither injective nor surjective: the Hopf
fibration implies that 7r3(S2) / 0, whereas H3(S2; Z) = 0. On the other hand,
as R2 is the universal covering space of T2,7t2(T2) = 0, whereas H2(T2; Z) / 0.
But in his second Note of 1935 Hurewicz discovered a remarkable case in
which hn is bijective, namely, when Ttj(X) = 0 for 1 ^j^n— 1; he called that
result (which he proved for finite simplicial complexes) the "equivalence
theorem"; it is now referred to as the absolute Hurewicz isomorphism theorem,
and has become one of the key results in homotopy theory.

Hurewicz's proof relies on the fact that for a subcomplex L of a finite
simplicial complex K, the pair (K, L) has the homotopy extension property,
since both K and L are ANR's (§§ 2,B and 2,C). For an n-dimensional simplicial
complex K and for 0 ^ q ^ n, he considered the q-skeleton K?, the subcomplex
union of all simplices of K of dimension ^ q. Using induction on q, and the
homotopy extension property, he proved the preliminary lemma:

If X is an arcwise-connected space such that 7r,(X, x0) = 0 for 1 ^ i ^ n — 1,
then any continuous map /: K -* X is homotopic to a map g: K -* X such
that0(K„_1)={xo}.

To prove surjectivity of hn, Hurewicz considered an arbitrary n-cycle z =
Yjj Aj-s", where the s" are continuous maps A„ -* X such that Y,j^bsj1 = 0. It
is easy to define a finite euclidean simplicial complex K (depending on z) and
a continuous map/: K -> X such that z = f(z') wherez' = ^^fj1 is an n-cycle
in K. By the preliminary lemma, / is homotopic to a map g: K -* X such that
g(K„_1) = {x0}. By the Cech definition of addition in 7r„(X,x0) the homology
class z' of z' is

and as the class z of z is equal to z', this shows that z is in the image of hn.
To prove injectivity, suppose / is identified with a map A„+1 — A„+1 -* X,

and that /!„([/]) = 0 in H„(X; Z). Using the preliminary lemma, assume that
if er; : A„ -> A„+1 is the canonical map onto the i-th face of Äri+l,f{ai{Ä„ — AJ) =
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{x0} for each i. The condition hn([f~\) = 0 means by definition that the
singular cycle £"=0 +{f ° <?{) is a boundary in Z„(X;Z); there is therefore
a finite family of singular (n + l)-simplices s"+1:An+l ->X such that for
0 ^ i ^ n + 1, / o o"; is equal to one of the s"+1 o a{. But the map

(z,f)^S;+1(fe,. + (l-f)z)
[where e, is the vertex of A„+1 opposite to <x,(A„)] is a homotopy between
s"+1 o ai and the constant map A„ -* {x0}. Applying this for 0 ^ i ^ n + 1, it
follows that / is homotopic to the constant map A„+1 — A„+1 -> {x0}, hence
[/] = 0.

A similar proof can be given for cubical singular homology (Part 1, chap
IV,§6,D).

Since ^(S.,) = 0 for n ^ 2, the Hurewicz theorem immediately implies
7r,(S„) = 0 for i < n, (68)tt„(S„) ~ Z, (69)

the last relation being the Brouwer conjecture for spheres (§ 1).
A space X is called n-connected* if rc^X) = 0 for 1 ^ i ^ n.

B. Application to the Hopf Classification Problem

In his 1933 paper ([244], p. 40) Hopf characterized the elements of the set
[X;S„] of homotopy classes when X is an n-dimensional finite simplicial
complex. Two maps /, g belong to the same class if and only if they define the
same homomorphisms

H„(X; Z) -► H„(S„; Z) and H„(X;Z/mZ)-»H„(S„;Z/mZ) for all m >2.

Hopfs method for proving sufficiency ofthat condition consists in considering
the k-skeletons Xk (§4,A) for 0 ^ k ^ n, and defining, by induction on k, the
homotopy between f\Xk and g\Xk; he showed that, as in Borsuk's work,
the problem reduces to extending a continuous map from Xk x [0,1] to
Xfc+i x [0,1], In his third Note of 1935 [256] Hurewicz, using his
"equivalence theorem" (§4,A), showed how Hopfs result could be extended to the
case in which S„ is replaced by any (n — \)-connected space Y (§4,A); his
method did not substantially differ from Hopfs, except that he used his
"preliminary lemma." Then in 1937 Whitney observed that an equivalent but
simpler formulation of the Hopf-Hurewicz criterion was that the maps in
cohomology

H"(Y;Z)->H"(X;Z)

be the same for / and g [509] [see formula (88) in C below].

* For n = \, this agrees with the traditional expression "simply connected" which goes
back to Riemann. But in classical Analysis, the term "n times connected" applied to
open sets in R2, meant something quite different, namely, that the Betti number i>j is
equal ton- 1.
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C. Obstruction Theory

This use of cohomology was pushed one step further by Eilenberg in 1939 in
a paper which we shall examine in more detail [168]. He gave their natural
extension to the Hopf-Hurewicz theorems and to the technique of "climbing
up" along the skeletons in his theory of obstructions. His new idea was to
attach to maps X -* Y elements of the singular cohomology groups of X with
coefficient groups equal to (commutative) homotopy groups of Y.*

Eilenberg's theory dealt with continuous maps of a locally finite cell complex
X into an n-simple space Y (§3,F), so that the elements of n„(Y) are the
homotopy classes of all continuous maps of S„ into Y; such classes are
therefore attached to maps of the n-skeleton X„ of X into Y. The method can
be presented in the following way ([254], pp. 176-180).

I. Let / be a continuous map of X„ into Y. Each (n + l)-cell x of X has a
definite orientation; let q>x be a homeomorphism of the unit ball Dn+1 onto f
preserving orientation, and consider the restriction <pr|S„, which is a
homeomorphism of S„ onto the frontier Fr(r); then the class of fo (<pt|S„) does
not depend on the choice of <pt, owing to the Brouwer-Hopf theorem (§ 1).
By linearity, this defines a Z-module homomorphism of the chain complex
C„+1(X;Z):

bn+1(fY-Cn+1(X;Z)^n„(Y), (70)
in other words, an (n + l)-cochain on X with values in 7r„(Y), such that

<è„+1(/),t> = [/o((?,r|S„)]. (71)
This definition shows that <b„+1(/),T> = 0 if and only if /|Fr(r) has an
extension to x.

The main property of bn+l(f) is that it is a cocycle, in other words
<b„+1(/),b<7> = 0 (72)

for any (n + 2)-cell a of X. Consider the (n + l)-dimensional subcomplex L of
X consisting of all the cells of X having support in Fr(cr); the Z-module Z„(L)
of n-cycles of L is identical to the submodule B„(L) of n-boundaries, since
H„(L) = 0, L being homeomorphic to S„+1. But Z„(L) is also the Z-module of
n-cycles of the n-skeleton L„, and as there are no boundaries in the group
C„(L„;Z), Z„(L) is identified with the homology Z-module H„(L„). However,
H7(L„) = Hj(L) = 0 for 1 «c j se n - 1, and 7r,(L„) = n^L) = 0 (chap. I, §3,B);
by Hurewicz's theorem, the Hurewicz map is an isomorphism hn: nn(Ln) 2;
H„(L„). For any (n + l)-cell x of L, it follows from the definitions that

<è„+1(/),t> = (/|L„)o(n„-i(bt)),

and as b(bcr) = 0, (72) is proved.

* "Measuring" by a cohomology class the fact that a continuous map defined in a
subspace A of a space X cannot be extended to a map continuous in X is an idea which
probably appeared for the first time in the work of Stiefel and Whitney of 1935 on the
existence of continuous sections of a fiber space (chap. IV, § 1).
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II. Note that if A is a (closed) subcomplex of X and / is a continuous
map X,uA-»Y, then bn+1(f) is a relative (n + \)-cocycle modulo A, because
if the (n + l)-cell z is contained in A, f\Fr(z) has an extension to z, hence
<W/V> = o.

Consider now two continuous maps f0, fx of X„ u A into Y such that their
restrictions to X„_, u A are homotopic. In the cell complex X„ x I with I =
[0,1],

W„ = ((X„_, u A) x I) u ((X„ u A) x {0}) u ((X„ u A) x {1}) (73)

is a subcomplex, and there is therefore a continuous map F: W„ -> Y such that

F(x, 0) = f0{x), F(x, 1) = fx (x) for x e X„ u A. (74)
The (n + l)-cells of X x I are either of the form pxl, where p is an n-cell of
X, or t x {0}, or t x {1}, where z is an (n + l)-cell of X. Define (n + 1)­
cochains b'n+1(f0) and b'n+1(fx) on X x I by

<è„'+1(/o),r x {0}> = <è„+1(/0),T>, K+1{f0) has value 0 on other cells, (75)

<K+1(A), t x {1}> = (bn+1(fx),z\ K+1(fi) 's 0 on other cells. (76)

On the other hand, F is defined on the n-cells of X x I, hence the (n + 1)­
cocycle bn+1(F) is defined, and

<b„+1(F),T x {0}> = <K+l(f0),z x {0}>,
(77)

(UF),tx{i}) = (i.;+l(/,),tx|i}).
From these relations, for the (n + l)-cochain on X x I

u = bn+1(F) - K+1(fo) ~ K+dfi) (78)
one has

d«=-dfe11'+1(/0)-dfe11'+1(/1); (79)
but as bn+1(f0) and bn+1(f1) are cocycles,

<è„' + 1(/0),b(T X I)> = -<fc,, + 1(/o),T>,

<è„' + 1(/1),b(TXl)> = <è„ + 1(/1),T>,

for any (n + l)-cell z of X. Hence

<du,r x I> = <.b„+1(f0),z) - (bn+1(fx),zy for an (n + l)-cell z in X; (80)

<du,o-x {0}> = 0, <du,o-x {1}> =0 for an (n + 2)-cell a in X. (81)

This shows that there is an n-cochain c(f0,fl7 F) on X such that

<c„(/o!/i!F)>P> = <",P x I> for any n-cell p in X, (82)
àcH(f0,A,F) = bH+l(fo) ~ fe,+i(/i). (83)

Furthermore, cn(f0,fx, F) is 0 on the n-cells p contained in A, since u is 0 for
the corresponding cells p x I. In other words, cn(/0,/1,F) is an element of
C"(X, A; 7r„(Y)), a relative n-cochain on X with respect to A, with values in nn(Y).



344 3. Homotopy and its Relation to Homology

III. Suppose given a continuous map /0:X„uA-»Y, a continuous map
g^. X„_! uA-»Y, and a homotopy

G:(X„_,uA) xUY
such that G(x,0) = f0(x) and G(x, 1) = g^x) for x e X„_, u A. Then, for any
relative n-cochain c e C"(X, A;7r„(Y)), there is a map/^: X„ u A -> Y extending
glt and a homotopy F: W„ -> Y extending G, such that

c,(/o./i»F) = c (84)
The proof consists in defining F in a x I, for every n-cell a of X. The closure
of a x I in X x I is homeomorphic to the ball D„+1, and there is therefore a
homeomorphism

iia: S„ ^ Frfo- xl) = (ux{0j)u (Fr(ff) x I) u {a x {1})

which preserves orientation. Let ha: Fr(cr x I) -* Y be a continuous map such
that the class [ha o i/.^] = c(o). As T = (er x {0}) u (Fr(cr) x I) is
homeomorphic to D„, any two continuous maps of T into Y are homotopic; using the
homotopy extension property, one may assume that

ha(x, t) = G(x, t) for (x, f) e Fr(<r) x I,

ha(x,0) = f0(x) for x e a.

Then define F by F(x, f) = ha(x,t) in Fr(cr x I), and /\(x) = F(x, 1) for x e a.
This definition on each n-cell cr of X implies that F is continuous in W„ and
/\ in X„ u A.

IV. With the help of these properties Eilenberg solved the problems of
extension and homotopy stepwise on the skeletons of X by showing that they
depend on the vanishing of relative cohomology classes; the space Y is always
assumed n-simple for every n ^ 1.

First suppose given a continuous map /:X„uA-»Y; then the cocycle
bn+1(f) e Z"+1(X, A;7r„(Y)) is defined, as well as its cohomology class

/?„+1(/)eH"+1(X,A;7r„(Y)). (85)
The condition ßn+i(f) = 0 is then necessary and sufficient for the existence of
a continuous map h: X„+1 uA-»Y that is not necessarily an extension of/,
but an extension of the restriction f\{Xn^1 uA).

To prove necessity, note that ifh exists and if g = h\(Xnu A), then bn+l(g) =
0 by I. As / and g have the same restriction to X„_, u A, the n-cochain
cn(fg, G0) is defined for G0(x, f) = f{x) in (X„_! u A) x I, by II. From (83) it
follows that bn+1{f) = dcn{fg,G0), hence ßn+1{f) = 0.

Conversely, suppose bn+1(f) is the relative coboundary of an n-cochain c;
by III there is a homotopy F: W„ -► Y extending G0 such that if h(x) = F(x; 1)
in X„ u A, c„(f, h, F) = c; then by (83) b„+1{h) = 0, hence h (which coincides
with / in X„_, u A) can be extended to any (n + l)-cell of X.

V. Now suppose that /, g are two continuous maps of X into Y such that
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f\ A = g\ A and there exists a "relative" homotopy between the restrictions of
/ and g to X„_, u A, with respect to A (see § 5), i.e., a continuous map

G:(Xn_juA) xI^Y
such that G(x,0) = /(x), G(x, 1) = g(x) for xeX„_1uA, and G(x,f) =
/(x) = g(x) for x e A and t e I. Since / and g are defined in X, the map
F: W„ -»• Y such that F(x,0) = f(x) and F(x, 1) = g(x) for x e X„ u A, and
F(x, f) = G(x, f) in (X._, u A) x I is continuous; if/„ =/|(X„u A) and gn =
g|(X„u A), then c„(f„,g„,¥) is defined. Furthermore, since /"„ and gn are
extended to fn+l and g„+l inX„+1 u A,bn+1(fn) = 0 and b„+l(g„) = 0 by I; relation
(83) then shows that cn(fn,gn, F) is a relative cocycle in Z"(X, A; nn(Y)), so that
its cohomology class

y„(/„,0„,F)eH"(X,A;7r„(Y)) (86)
is defined. The condition yn{fn,gn,F) = 0 is then necessary and sufficient for
the existence of an extension F': W„+1 -> Y, not of F, but of the restriction of
F to W,_i such that F'(x,0) = f(x) and F'(x, 1) = g(x) for x e X„ u A. From
the description of the cells in X x I, W„ = (X x I)„ u (A x I); since cn(fn,gn, F)
is a coboundary, by (78), bn+l (F) is a coboundary in Z"+1 (X x I, A x I; 7t„(Y)).
The theorem is thus a consequence of IV applied to the pair (X x I, A x I).

VI. When X is a locally finite cell complex and A is a (closed) subcomplex
of X, it is possible to give necessary and sufficient conditions of a cohomological
nature for a continuous map /: A -> Y to have an extension to X under the
following assumptions (with n ^ 2):

1. Tt.fY) = 0 for 1 ^ i ^ n — 1 (Y is therefore m-simple for any m ^ 1);
2. HJ+1(X, A;itj(Y)) = 0 for j ^ n + 1; observe that this is always the case if

X — A has dimension ^ n + 1.

Then it is immediate that / can be extended to a map /„: X„ u A -> Y, and
any two such extensions are relatively homotopic with respect to A; therefore,
the class ß„+l (/„) £ H"+1 (X, A; 7t„(Y)) is defined and only depends on /, so that
it may be written ßn+1(f). The condition ßn+1(f) = 0 is then necessary and
sufficient (by IV) for the existence of an extension fn+l of /n_x (hence of/) to
X„+1 u A. When that condition is satisfied, ßn+2(f„+i) is defined, but is 0 by
condition 2, so that there is an extension fn+2 of fn (hence of f) to X„+2 u A.
The argument can be repeated, giving a succession of extensions fn+lr of f to
X„+2,-u A, such that /n+2(r+i) is an extension of fn+2r- As X is locally finite,
there is an extension g of / to X coinciding with fn+2r on each X,+2,uA.
Therefore the condition ßn + 1{f) = 0 is necessary and sufficient for the
existence of an extension of f to X.

VII. Similarly, suppose /, g are two continuous maps of X into Y, with the
assumptions (for n > 2):

1.7tj(Y) = 0 for 1 s= i^n - 1;
2. HJ'(X, A; Ttj(Y)) = 0 for j "> n + 1, if X - A has a dimension s= n.
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Then, if f\ A = g\A, it is possible to give a necessary and sufficient condition
of a cohomological nature for / and g to be relatively homotopic with respect
to A. By V, if f} and g3 are the restrictions of / and g to X, u A, there is a
relative homotopy G._, between fn^1 and gn^1 with respect to A. By the
homotopy extension property, there exist maps/', g' of X into Y, respectively,
relatively homotopic to / and g with respect to A, that coincide in X._, u A;
if J(x, f) = f'(x) = g'(x) in (X„_, u A) x I, the element cn(f',g',J) is defined
and is a relative cocycle in Z"(X, A;7r„(Y)); its cohomology class yn(f',g',J) e
H"(X, A; 7r„(Y)) does not depend on the choice of/' and g', hence can be written
y„{fg)- The condition yn(f,g) = 0 is then necessary and sufficient (by V) for
the existence of a homotopy G„ between /„ and gn that coincides with G„_2
in (X„_2 u A) x I. When that condition is satisfied, yn+1{f,g) is defined and is
0 by assumption 2, hence there is a homotopy G„+1 between /„+1 and gn+l
that coincides with G„_1 in (X„_! u A) x I. Finally, repeating the argument
as in VI, the condition yn{f, g) = 0 is necessary and sufficient for the existence
of a relative homotopy with respect to A between / and g.

VIII. Suppose the assumptions of VI are verified, and let /: X -» Y be a
continuous map and y e H"(X, A; 7r„(Y)) be a cohomology class. Then there is
a continuous map g: X -* Y such that/|A = g\A and yn{fg) = y.

Let c be a relative cocycle mod. A whose class is y; by III, if/ = /|(Xj u A),
there is a map gn: X„uA-»Y such that ^IfX.,^ u A) = /n_x and cn{fn,gn,F) =
c for a relative homotopy F between /„ and gn. Since dc = 0, it follows from
(83) that bri+1{g„) = bri+1{f„) = 0 because / is defined in X„+1 u A, Therefore,
by I there is an extension gn+1 oîg to X„+1 u A, By IV, since ßn+1(gn) = 0, there
is an extension g of gn to X by VII, and yn(f,g) = y.

Eilenberg's theory is easily extended to the case in which (X, A) is only
supposed to be a relative CW-complex ([490], pp. 228-235).

IX. The relative cocycles ßn+1 (/) and yn{fg) may be defined for an (n — 1)­
connected space Y and an arbitrary pair (X, A). By Hurewicz's theorem the
singular homology group H„(Y) may be naturally identified with 7r„(Y);
H,-(Y) = 0 for 1 sc j s= n - 1, therefore [Part 1, chap. IV, § 5D), formula (66)],
H"(Y;H„(Y)) is naturally isomorphic to End(H„(Y)). Let k be the element in
H"(Y; H„(Y)) which corresponds to the identity by that isomorphism. For any
continuous map /: X -> Y, the map

/*:H"(Y;H„(Y))^H"(X;H„(Y))

associates an element a(f) = /*(«) e H"(X;H„(Y))to/ If A is now a subspace
of X and g: A -* Y is a continuous map, the image of a.(g) by the homomorphism
of the cohomology exact sequence

d: H"(A; H„(Y)) -» H"+1(X, A; H„(Y))

is called the obstruction ß(g) of g (relatively to X). When X is a locally finite
complex, ß{g) = ß„+1(g) as defined in VI.

Similarly, if / and g are two continuous maps of X into Y that coincide in
A, then for any commutative group G, /* — g* is a homomorphism of
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H"(Y;G) into H"(X,A;G) when Y is (n - l)-connected, so that the pair (f,g)
defines an element y{f,g) = f*{k) — q*{k) of H"(X, A; H„(Y)), called the
deviation between / and g. When X is a locally finite complex, y(f,g) = yn{f,g) as
defined in VII.

With the later discovery of more sophisticated relations between homotopy
and homology, obstruction theory could be greatly generalized (chap. V,
§2,C).

X. If we return to the classification problem of Hopf-Hurewicz (§4,B), we
see that if Y is (n — l)-connected and X is a locally finite cell complex, then
under the condition

Hj'(X;ttj.(Y)) = 0 and W+1(X;tlj(Y)) = 0 for j > n + 1 (87)
there is a natural bijection

[X,x0;Y^0]^H"(X;7r„(Y)); (88)
it is given by associating the element yn{f,e) to a homotopy class [/], where
e is the constant map X -* {y0}- This is the Hopf-Hurewicz- Whitney theorem.
In particular, for X = Y = S„ the first Hopf result is recovered:

7r„(S„) ~ Z forn •> 1. (89)
There have been generalizations of the classification problem when X is a

more general space and Y = S„, using Cech cohomology theory. The most
interesting one was given by Dowker [144]: if X is locally compact, metrizable,
and separable, then there is a bijection

[X;S„]^fi;(X), (90)
where H"(X) is the Cech cohomology group with integer coefficients, based
on finite open coverings of X (Part 1, chap. IV, §6,B); this implies the rather
surprising result that

[R;S„]^C(R)/BC(R) (91)
(loc. cit.).

§ 5. Relative Homotopy and Exact Sequences

A. Relative Homotopy Groups

In his second Note of 1935 [256] Hurewicz considered a topological group
G and a closed subgroup H, and investigated the relations among the spaces
of continuous functions ^(Y;G), #(Y;H), and #(Y;G/H). In chapter III we
shall describe in some detail the results he announced on this question and
see how they were precursors of the homotopy theory of fibrations, begun in
a Note he published in 1940 together with Steenrod [260]. It was in that Note
that the notion of relative homotopy appeared in print for the first time, without
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a complete definition.* But in 1938, in unpublished lectures, Hurewicz had
outlined a "relative" theory of homotopy following the same pattern as in his
definition of the groups nn(X,x0) [253]. Let A be a nonempty subspace of a
space X, and x0 e A. Instead of the space ^(Sn, *; X, x0), consider in the space
'IfD.; X) the subspace

*(DI1,SI1_1,*;X)A,Xo) (92)
whose elements are the continuous maps /: D„ -* X such that

/(S„-,)cA, /(*) = x0.
The relative homotopy set nn(X, A,x0) is by definition the set

7r„(X, A,x0) = 7r0(^(D„,S.,_1,*;X,A,x0))

of arcwise-connected components of the space (92); for A = {x0}, we recover
n„(X, x0), and it is clear that if X0 and A0 are the arcwise-connected components
of x0 in X and A, nn(X, A, x0) = nn(XQ, A0, x0).

To interpret the arcwise-connected components of (92), we need the general
definition of relative homotopy between two maps /, g of a pair (X, A) into a
pair (Y, B). It is a continuous map F: X x [0,1] -> Y such that F(x,0) = f(x)
andF(x, 1) = g(x), andF(x, f) e B for all x e Aandf e [0,1]. This again defines
an equivalence relation in the space <t#"(X, A; Y, B) of maps of pairs, and the set
of equivalence classes is written [X, A; Y, B]. In the category of pointed spaces
maps (X, A, x0) -> (Y, B, y0) (with x0 e A and y0 e B) always map x0 to y0, and
relative homotopies F are always such that F(x0, f) = y0 for all t e [0,1]; the
set of relative homotopy classes is then written [X, A,x0; Y,B,_y0].

With these definitions it is clear that two maps /, g in 1(D„, Sn_x, *; X, A, x0)
belong to the same arcwise component if and only if there exists a relative
homotopy between / and g considered as maps (D„, Sn-t, *) -* (X, A, x0). The
natural homeomorphism (41) of § 3, A generalizes to a natural homeomorphism

^(D„,S.,_1,*;X,A,x0)^Q(^(D.,_1,S.,_2,*;X,A,.x0),a.,_1) (93)

for n ^ 2, «„_! being the constant map D„_! -* {x0}.
The proof is patterned after the proof of (41). The ball D„ is identified with

[0,1]", and Dn_! with the "lid" Ln_x = [0, l]""1 x {1}; the maps (D^S.,^, *) -►
(X, A, x0) are identified with the continuous maps /: [0,1]"->X such that
/(L„_1) c A and f(tl,t2> ■ ■ ■. tn) = xo m [0> H" — ^n-i- The homeomorphism
(93) again results from the identification (40) of §3A. From (93) is deduced a
natural bijection for n ^ 2

7r.,(X,A,x0)^7r1(^(D„-1,S.,_2,*;X,A,x0),a.,_1) (94)

* In that Note there is no definition of relative homotopy; it is merely stated that the
elements of the relative homotopy group n„(X,A,x0) are "represented" by maps
/: D„->X such that /(S^^ c A and /(*) = x0. A general reference to Hurewicz's
Notes of 1935 does not seem to be justified, since there is no mention of relative
homotopy in these Notes.
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which gives for n ^ 2 a natural group structure on 7r„(X, A,x0). When D„ is
identified to [0,1]" as above, the group law in 7t„(X, A,x0) is still given by
formula (42) of §3,A. In order that the image [/] in nn(X, A,x0) of a map
/ et<'?(D.,,S.,_1,*;X,A,x0) be the neutral element of nn(X, A, x0) (for n ^ 2), it
is necessary and sufficient that there exists a relative homotopy with respect
to Sn_x between / and a continuous map g: D„ -> X such that #(D„) c A.

The relative homotopy sets may also be considered as "absolute" homotopy
sets: write

Q(X,A,x0) = ^(D1,S0,*;X,A,x0) (95)
the space of paths in X with origin at x0 and arbitrary extremity in A, and
define by induction on n

Q"(X, A,x0) = QfQ^fX, A, x0), *„_!), (96)
x„_! being the constant map Dx -> {x„_2}. From (93) follows by induction on
n a natural homeomorphism

^(D„, S,.!, *; X, A, x0) Z. Q"(X, A, x0) (97)
hence natural bijections for n ^ 2

7r„(X, A,x0) 2i nn^1(fi(X, A,x0), xx) -^ • • ■ %■ nn_k{Q.k{X, A,x0),xk) ^ ■ ■ ■^7r0(Q"(X,A,x0)). (98)
This proves in particular that for n ^ 3 the group nn(X, A, x0) is commutative.
For/i = 1,-ji^X, A, x0) = 7r0(Q(X, A, x0)) is a set with "privileged" element xl5
but no natural group structure.

A useful natural homeomorphism is

Q"(X, A,x0) z «(«"-^X,x0),Q""1 (A,x0),x.,^). (99)
To define it, consider the identification of D„ with [0,1]" introduced above
and to each / e Q"(X, A, x0), associate the map

/': [0,1] -» tf([0, l]--1;O--1(X,x0)) (100)
defined by

f'(t„)(tl,t2, ..., (-„.J = f(tltt2, ..., tn_utn). (101)
It is clear that/'(0) = x„_l5 and/'(l) belongs to fin_1(A,x0), hence the
homeomorphism (99) is derived from the fundamental property of the compact-open
topology (§ 3,A).

\{PH1 is the homotopy category of pairs (X, A, x0) of pointed spaces (where
morphisms are homotopy classes for relative homotopy), then (X, A,x0)i—►
7r„(X, A, x0) is a covariant functor PH1 -> GHor n ^ 2 (and a covariant functor
PH^ -»• Set for n = 1).

Let x1 be a point of A in the arcwise-connected component of x0 in A.
Let a be any path in A from x0 to x1 and /: [0,1]" -> X be a continuous map
such that fÇLn-i) c A and /([0,1]" - L.,^) = {x0}; a double application of
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the box lemma (§ 2D) shows that there is an extension F: [0,1]" x [0,1] -> X
of the map equal to (x,0)i—>/(x) in [0,1]" x {0} and to (x, f)i—>a(f) in
([0,1]" - L„_i) x [0,1], such that F(L„_! x [0,1]) c A. The homotopy class
of x i—► F(x, 1) in 7t„(X, A, xx) then only depends on the class off in nn(X, A, x0),
hence this defines a map <x„(a): w„(X, A,x0) -* nn(X, A,xx); the properties of
that map are similar to those of o"„(a) for the homotopy groups nn(X,x0) and
7r„(X, xx) (§ 3,D). In particular, the fundamental group n^X, x0) acts naturally
on 7r„(X, A,x0) for n ^ 2; the pair (X, A,x0) is called n-simple if that action is
trivial.

B. The Exact Homotopy Sequence

Let (X, A) be a pair of spaces, with x0 e A. The injections j: A -* X, and
i: {x0} -> A may be considered respectively as maps of pairs

j: (A, x0) -» (X, x0), i: (X, x0) -» (X, A)

leaving x0 invariant. Therefore, they give rise to group homomorphisms for
n > 2

(for n = 1,)^ is still a group homomorphism but i^ is only a map of sets). There
is a natural map

<3: ^(X^^oJ^Tr^ifA^o) (102)
forn ^ 2; it associates to the homotopy class of a map/: [0,1]" -* Xsuch that
/(Ln_!) c A and /([0,1]" - L.,^) = {x0}, the homotopy class of the map

and it is clear that this map is a homomorphism of groups. There is also such
a map (102) for n = 1: the elements of n1(X, A,x0) are the homotopy classes
of the paths y: [0,1] -* X such that y(0) = x0 and y(l) e A, and it is clear that
if two such paths y, y' are relatively homotopic (with x0 fixed), then y(l) and
y'(l) are in the same arcwise connected component of A; hence there is a map
of sets

d:n1{X,A,x0)^n0(A).

Finally, the injection) defines trivially a map /„.: n0{A) -* n0(X). The infinite
sequence

• • • -»• 7r„+1 (X, A, x0) -»• 7r„(A, x0) -* nn(X, x0) -A n„(X, A, x0)

-»• nn^{A,x0) ->••■-► TTifA^o) -A ti^X.Xq) -A T^fX, A,x0) -► tt0(A) -A tt0(X)

was first considered (without using arrows) by J.H.C. Whitehead in 1945
([498], p. 345). He proved that the sequence is exact: for the last four terms
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the image of ti1(X,x0) by i^ is the inverse image d~1(A0) of the arcwise­
connected component A0 of x0 in A, and A0 is the inverse image by j^. of the
arcwise-connected component of x0 in X.

The proof can be reduced to proving the exactness for the last four maps,
since by (99), there is a commutative diagram

t.(A)

12

Wi(A')

t.(X)

12

MX')

-> 7T„(X,A)

12

-> 7ti(X',A')

-> 7r„-!(A)

12

7r0(A')

- ^-i(X)

12

7r0(X')

where A' = Q"_1(A), X' = Q"_1(X'), and the base points have been suppressed
for short.

However, in the sequence (103):

1. Exactness at n0{A) is a trivial consequence of the definitions.
2. Exactness at n^X, A, x0) means that if there is in A a path ß from x0 to x,

then there is a relative homotopy F with respect to A between any path a
in X from x0 to x and a loop in X of origin x0. To define it, take

F(f, s) = a(2f/(2 - s)) for 0 ^ t s= (2 - s)/2,

F{t,s) = ß{3- s-2t) for (2- s)/2 «c t < 1.

3. Exactness at n1(K,x0) means that if a is a loop of origin x0 in X, ß is a path
of origin x0 in A, and there is a relative homotopy F with respect to A,
deforming a into ß such that

F(f,0) = a(f), F(f,l)eA, F(0,s) = xo, F(l,s) = ß(s),
then there is a homotopy y{t,s) such that

y(0,s) = y(l,s) = xo, y(f,0) = a(f), y(t,l)eA.
Take

y(t, s) = F(2f,s) for 0 s? t «c 1/2,

y(t,s) = F(l,2s(l - f)) for 1/2 ^ f ^ 1.

If/: X -* X' is a continuous map, A' is a subspace of X' such that/(A) c A',
and x'0 e A' such that f{x0) = x'0, the diagram

^(A,x0)

^(A',xô)

^(X,x0)

^(X',xô)

7r„(X,A,x0)

nn{X',A',x'0)

^n-i(A,x0)

^-i(A',xô)
is commutative.

Easy consequences follow from the homotopy exact sequence (103). If A is
contractible {in itself) to x0, then nn{X, A, x0) = nn(X,x0); if X is contractible
to x0, n„(X,A,x0) = n„_1(A, x0). If Ais a retract of X, nn(X,A,x0) is commuta­
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tive and

7r„(X,x0)~7r.,(A,x0)©7r„(X,A,x0) forn > 2. (104)

If X is deformable into A with x0 e A fixed, then

n„(A,x0)~n„(X,x0)®n„+l(X,A,x0) forn ^ 2. (105)
If A is contractible in X to x0 e A, so that there is a homotopy fixing x0

between the injection A -> X and the constant map A -* {x0}, then

7r„(X,A,x0) ^ 7r„(X,Xo)©7r„-i(A,x0) forn ^ 3. (106)

For instance, if X = S„ and A is a proper closed arcwise-connected subspace
ofS„,

^(S^A,*)^^.,,*)©^,^,*) fori>3, (107)
a result proved in 1940 by Hurewicz and Steenrod [260].

Finally, for the wedge (X v Y,(x0,y0)) of two Hausdorff pointed spaces
considered as a subspace of (X x Y,(x0,y0)),

n„(X v Y, (x0) y0)) * n„(X, x„) © n„(Y, y0) © n„+l (X x Y, X v Y, (x0, y0))
(108)

for n ^ 2.

C. Triples and Triads

Consider a triple (X, A, B) (Part 1, chap. IV, § 6,B), that is, a space X and two
subspaces B c A c X, with x0 e B. Then the injections of pairs

i:(A,B)-»(X,B), /:(X,B)-»(X,A)

define maps of sets (group homomorphisms for n > 2)

'*: rc„(A, B, x0) -»• 7r„(X, B,x0), j*. nn{X,B, x„) -»• nn(X, A, x0).

On the other hand, consider the injection h: (A, {x0}) -* (A, B) and the map
d: nn(X, A, x0) -> 7i„_1(A,x0) of the homotopy exact sequence (103); by
composition, this gives a map— ~) h

d: n„(X, A, x0) -»• 7i„_i (A,x0) -+ rc„-i(A, B, x0)

and we thus get an infinite sequence

► 7t„ + l(X, A, X0) -»• 7T„(A, B, X0) 4. 7T„(X, B, X0) 4 7T„(X, A, X0)

-> >7r2(X, B, x0)-$n2(X, A, x0)-*nl (A, B, Xq)-*^ (X, B, XqJ-^ji^X, A, x0).
(109)

This sequence is exact [with the same meaning as in (103) for the last
five terms] and is called the homotopy exact sequence of the triple (X, A, B);
it reduces to (103) for B = {x0}. A proof may be given by following the



§ 5C, D II. Elementary Notions and Early Results in Homotopy Theory 353

Eilenberg-Steenrod procedure for the homology exact sequence of the triple
(X, A, B) (Part 1, chap. IV, § 6B).

A triad is a system (X, A, B) where A and B are again two subspaces of X,
but only submitted to the condition that A n B is not empty. If we introduce
abbreviated notations (with x0 e A n B):

P = Q(X,B,x0), Q = Q(A,AnB,x0),

it is clear that QcP; since the constant map x1: [0,1] -* {x0} belongs to Q,
we can write the homotopy exact sequence (103)

•••^7r.,+1(P,Q,x1)^7r.,(Q,x1)^7r„(P,x1)^7r.,(P,Q,x1)^---^7r0(Q)^7r0(P).
(110)

Now, by (98) there are natural isomorphisms

rc,.(Q>Xi) = w„+i(A,AnB,x0), rc„(P,Xj) = 7r„+1(X,B,x0).

If we define the n-th homotopy group of the triad (X, A, B) by

7r„(X,A,B,x0)=7r.,_1(P,Q,x1) for n ^ 2; (111)
from the exactness of (110) follows the exactness of the sequence

•••-»• nn+1 (X, A, B, x„) -»• rc„(A, A n B, x0) -4 nn(X, B, x0) -4 nn{X, A, B, x0)

-»•••-»7i2(X,A,B,x0)-^7i1(A,AnB,x0)^7i1(X,B,x0), (112)
which is called the homotopy exact sequence of the triad (X, A, B); it reduces to
(109) for B c A.

Equivalent descriptions of nn(X, A, B,x0) are the following ones [459]:
1. Consider the two hemispheres E*_l,E~_l in S„_j, respectively defined by

£„ "> 0 and £„ ^ 0, and the subspace

^(D„,E„+_1,E.r_1,*;X,A,B,x0) (113)
of 'IfD.; X), consisting of the maps / such that

/(El-,)cA, /fclcB, f(*) = x0. (114)
Then nn(X, A, B,x0) is the set of arcwise-connected components of the space
(113).

2. A useful variant is to replace D„, E^_l5 E„_1; * respectively by

D„_x x [0,1], S„_2 x [0,1], D„_x x {1}, (B^ x {0}) u ({*} x [0,1]).

D. The Barratt Puppe Sequence

The category PSet of pointed sets has objects that are pairs (X,x0) of an
arbitrary set X and an element x0 e X; morphisms (X, x0) -* (Y,y0) are the
maps f:X-*Y such that f{x0) = y0. In that category, an exact sequence of
morphisms

(A, a) -^ (B, b) A (C, c)
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is defined by the condition that lm(g) = f~1(c) (which may be called the
"kernel" of/).

Now consider in the category PT of pointed topological spaces, a sequence
of morphisms, i.e., continuous maps

It is called coexact if, for every pointed space (W, w0), the sequence of
morphisms of pointed sets

[X,x0;W,w0]/^[Y,^0;W,w0]£-[Z,z0;W,w0]

is exact. It was first observed by Barratt [43], and generalized by Puppe [384],
that any continuous map /: (X,x0) -* {Y,y0) is the first term of an infinite
coexact sequence

(X, x0) -^L (Y, y0) -!L (Cf,y0) -^L (SX,x0) -^ (SY,y0)

^L (SCf,y0) ^L (S2X,x0) ^L (S2Y,^o) ^ (S2Cf,y0) -^ ■ ■ ■
(115)

usually called the Barratt-Puppe sequence. Cf = Y uf CX is the (reduced)
mapping cone off and if the natural injection Y -> Cf (Part 2, chap. V, § 3,B);
SX is identified with the space Cy/Y and the collapsing map Pf associates to
the image of (x, t) in CX the image of the same point in SX. Finally, Sf is the
suspension of the map / sending the image of (x, t) to the image of (f(x), t).

To prove (115) is coexact, first check it for / and if. The fact that (if) o f
is homotopic to the constant map follows from the definitions and the fact
that CX is contractible. Conversely, let u: Y -* W be a map such that u o f is
homotopic to the constant map Y -> {w0}; if [x, 1] is the point of CX image
of (x, 1) e X x [0,1], there is a map v. CX -»• W such that v([_x, 1]) = u(f(x)\
and therefore there is a continuous map g: Cf -> W such that g([_x, 1]) =
v([_x, 1]) and g(y) = u(y); then (J/*)([#]) = [«]. Iterating that result, the
infinite sequence

W,yo)^—>(Cf,y0)^->(C}f,y0)^->(C}2f,y0) ►••• (116)
is coexact. On the other hand [using the fact that (X ufCA)/CA ~ X/A, see
Part 2, chap. V, § 3,B], there is a homotopy commutative diagramJ2/ Pf

(Cf,y0) ► (Cjy^o) * (C,2f,y0)

(117)

(Pf,y0) ——> (SX,x0) ——> (SY,y0)

where the vertical arrows are homotopy equivalences. The end of the proof
uses the bijection (52) of § 3,C; for any space (W, w0), the commutativity of the
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diagram (where the base points have been omitted)sy« s"j/* st/* s"Y«
[S"X:W] < [S"Y;W] < [S"Cr;W] < [S"+,X;W] <—— [S"+,Y;W]\i I? \l \l \l
[X;f2"W] < [Y;f2"W] < [C,;0."W] < [X;Q"+,W] < [Y;0."+,W]/• J/* ' p/* s/*

implies that the upper line is exact since the lower line is exact.
There is a similar sequence for maps of pairs (X, A) -> (Y, B) ([440], p. 369).

E. The Relative Hurewicz Homomorphism

The definition of the "absolute" Hurewicz homomorphism given in §4,A
generalizes to any pair (X, A, x0): there is a natural homomorphism of groups

/Vrc„(X,A,x0)-»Hn(X,A;Z) forn > 2, (118)
where the right-hand side is the relative singular homology group. Each map
/: A„ -> X such that f(A„ — A„) c A and /(*) = x0 defines a homomorphism
depending only on the homotopy class [/] in nn(X, A, x0)

/,:H„(Ä„,Ä„-A„;Z)^H„(X,A;Z). (119)
If the class s„ e H„(Ä„, Ä„ — A„; Z) is defined as in § 4,A the element /„,(£„) can
be associated to [/], which defines the map (118), even for n = 1; the proof
that it is a homomorphism of groups for n ^ 2 is done as in §4,A.

The definitions imply that the diagram of exact sequences

■■■-»• 7r„+1 (X, A, x0) -»• 7r„(A,x0) -> nn(X,x0) -»• n„(X, A, x0) -»• w„-i(A, x0) -> ■ • •

*.+. h. hn K K

• • • - HB+1 (X, A; Z) -» H„(A; Z) -» H„(X; Z) -» H„(X, A; Z) -» H„., (A; Z) -» ■ • •
(120)

is commutative.
A pair (X, A) of arcwise-connected spaces is called n-connected if the groups

nk(X, A, x0) = 0 for all x0 e A and 1 ^ k ^ n.
The relative Hurewicz isomorphism theorem asserts that if the pair (X, A) is

(n — \)-connected and n-simple, then hn is an isomorphism. Hurewicz did not
publish a proof of that theorem; very likely his intended proof was built along
the lines of the method he had used for the "absolute" isomorphism theorem
(§4,A). Both isomorphisms theorems were completed by Fox in 1943 [198],
who showed that under the same assumptions on (X, A) the Hurewicz map
hn+1 is surjective. Since then many proofs have been published; we shall meet
some sophisticated ones later (chap. V, § 4).

F. The First Whitehead Theorem

From the relative Hurewicz isomorphism theorem and the homotopy exact
sequence can be deduced a remarkable relation between the action of a
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continuous map on homotopy groups and homology groups, discovered by
J.H.C. Whitehead ([493], pp. 9-21).

A continuous map/: (X, x0) -> (Y,_y0) of arcwise-connected spaces is called
an n-equivalence if the homomorphism/,.: nr(X,x0) -* nr(Y, y0) is bijective for
1 ^ r < n, surjective for r = n. Whitehead's theorem is:

(i) If/ is an n-equivalence, the homomorphisms of singular homology groups
/„,: H,(X; Z) -> H,(Y; Z) are bijective for r < n, surjective for r = n.

(ii) If X and Y are also simply connected, the converse is true.

When X and Y are not simply connected, assertion (ii) is false; for a
counterexample, see ([440], p. 420).

The proof is a good illustration of the use of the mapping cylinder (Part 2,
chap. V, §3,A).

A. Special case: X is a subspace of Y with x0 = y0 and /is the injection.
The homotopy exact sequence (103) and the assumptions of (i) imply that

7t,(Y, X, x0) = 0 for 1 ^ q ^ n — 1; by the relative Hurewicz isomorphism
theorem, H^fY, X; Z) = 0 for 1 ^ q ^ n - 1. The conclusion of (i) follows from
the homology exact sequence. If in addition ^(X.Xq) = 7ti(Y,y0) = 0, then
H ; (X; Z) = 0 and H j (Y; Z) = 0, so the assumptions of (ii) imply H,(Y, X; Z) =
0 by the homology exact sequence for 1 < q ^ n — 1. The relative Hurewicz
isomorphism theorem then yields (ii) by the homotopy exact sequence, using
the fact that the pair (Y, X) is (n — l)-connected and n-simple.

B. General case: Consider the mapping cylinder Zf of/ the natural
embedding i:X-*Zf, and the retraction r: Zf -> Y, for which Y is a strong
deformation retract of Zf; the maps

W nq(Zf,y0) - 7t,(Y,y0), r„: H,(Z/;Z) - H,(Y;Z)

are isomorphisms for all q "> 1. Since / = r ° i, there are factorizations

/*: t,(X,x0) -4 nq(Zf,y0) -4 7t,(Y,y0),

/„: H,(X; Z) ^ H,(Z/; Z) ^4 H,(Y; Z).

The proof is thrown back on the embedding i, taking into account the fact
that when Y is simply connected, the same is true of Zf.

Care must be taken not to jump to the conclusion that two spaces having
the same homotopy groups (resp. homology groups) have the same homology
groups (resp. homotopy groups). Examples are known to the contrary ([440],
p. 420).

§ 6. Homotopy Properties of CW-Complexes

A. Aspherical Spaces

In his fourth Note of 1935-1936 on homotopy groups [256] Hurewicz,
from his isomorphism theorem for (n — l)-connected spaces and the Hopf­
Hurewicz classification theorem, deduced a consequence that would later lead
to unsuspected developments in several directions (chap. V, § 1).
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He said that an arcwise-connected space X is aspherical if 7rj(X) = 0 for all
integers j at least 2. If X has a universal covering space X, this is equivalent to
saying that X is n-connected for any n ^ 1. Hurewicz discovered that for a
finite simplicial complex X that is aspherical, the homotopy type of X is
determined by its fundamental group.

First consider an arcwise-connected finite simplicial complex X and an
aspherical space Y; for each map /: (X, x0) ->(Y,_y0) of pointed spaces, the
group homomorphism /„.: ^(X.Xq) -> ^(Y.yo) oniv depends on the
homotopy class [/] e [X, x0;Y,_y0]. Hurewicz showed* that the map[/]■-/* (121)
is a bijection of [X,x0;Y,_y0] onto Hom{nl{X,x0),nl{Y,y0)). To prove in­
jectivity, assume that /„. = g^ and use induction on the dimension n of X. If
n = 1, use the description of ny (X, x0) by means of a maximal tree T in X (chap.
I, §3,B) and induction on the number of generators [uj,u2] 0OC- c,t)- For
n > 1, the inductive assumption shows that the restrictions/|X„_1 andglX.,.!
to the (n — l)-skeletons are homotopic; since 7r„(Y) = 0, the homotopy can be
extended to a homotopy between / and g, by the special case of obstruction
theory that Hurewicz had used earlier in his proof of his isomorphism theorem
(§4,A).

Surjectivity is also proved by induction on n. Let (p: nt(X,x0) -* ^(Y,^)
be the given homomorphism; for n = 1, again use the description of 7Tj(X,x0)
(chap. I, §3,B). The map / is taken on T equal to the constant y0; for each
generator [ui,u2] of the free group ni(X,x0), / is defined on the 1-simplex
{vuv2} (identified with the interval [0,1]) as a loop of origin y0 belonging to
the class in nl(Y,y0) of (p{[vl,v2]). For n = 2, consider the 1-skeleton Xt and
the composite map

nl(Xl,x0)-^nl{X,x0)^n1{Y,y0)

and define /onXj as before. Then, if a is a 2-simplex {vi,v2,v3} of X, / is
extended from its known values on the 1-simplices {v1,v2}, {^2,^3}, and
{t"3,t"i} to a map of a into Y, using the fact that n2(Y,y0) = 0. For n ^ 3, the
maps 7ti(Xk,x0)->7tj(Xk+1,x0) for the skeletons Xk are bijective for k ^ 2
(chap. I, §3,B). So when / is extended from Xk to Xk+1, using the fact that
tk+i(Y,y0) = °>the maP (f\*k+i)* is always equal to cpln^X^^Xo).

As a corollary, when both X and Y are aspherical finite simplicial complexes
and there exist isomorphisms (p : n ! (X, x0) 2+ n x (Y, y0), \jj : n ^ (Y, y0) 2+ n ^ (X, x0)
inverse to each other, there exist maps/: (X,x0) -* (Y,y0), g: (Y,y0) -> (X,x0)
such that f* = (p and g^ = \jj, hence

0*% = l*l(X), /*°9* = 1<I(YC
The injectivity of the map (121) implies that g ° f ~ 1 x and f ° g ~ 1Y, which

* His formulation was more complicated because he considered the homomorphisms
of .Ti(X, x0) into an abstract group isomorphic to jz^Y, y0), and these are only
determined up to inner automorphisms ofthat group.
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means X and Y have the same homotopy type (and in particular the same
homology).

B. The Second Whitehead Theorem

The preceding result of Hurewicz may be expressed by saying that if X and Y
are aspherical finite-dimensional simplicial complexes, any continuous map
/: X -> Y such that /„.: 7rr(X) -> 7rr(Y) is an isomorphism for all r ^ 0, is a
homotopy equivalence.

In 1939 [494] J.H.C. Whitehead obtained a far reaching generalization of
that theorem. A continuous map /: (X, x0) -> (Y,y0) is called a weak homotopy
equivalence if it is an n-equivalence (§ 5F) for every n ^ 0: the homomorphism
/„.: 7rr(X,x0) -* nr{Y,y0) is bijective for every n. Whitehead's theorem is that if
X and Y are CW-complexes, then any weak homotopy equivalence is in fact a
homotopy equivalence.

Whitehead proved the theorem by means of his theory of simple homotopy
type (§ 7). It can be derived from a more general result, showing that a weak
homotopy equivalence /: X -> Y allows "lifting" a continuous map h: P -> Y
to a map h': P -* X "up to homotopy," that is, h is homotopic to / o h'.

It is convenient to work here with relative CW-complexes (X,A) (Part 2,
chap. V, §3,C). The proof is done in several steps [459].

1. Suppose X is obtained by attachment of a family (e£) of n-cells to A. Let
(Y,B) be a pair such that 7r„(Y,B,_y0) = 0. Then for any map/: (X,A,x0)->
(Y, B,y0) there is a relative homotopy with respect to A between / and a
map g: (X, x0) -> (B,_y0). Suppose the family (e£) consists of a single n-cell e",
and let p: (D„,S„-i) -> (X, A) be the corresponding map with p(f>„) = e" and
pfS.,-!) c A. The assumption on Y implies that there exists a continuous map
F: D„ x [0,1] -► Y such that F(z, f) = f(p(z)) for zeS„_„ F(z, 0) = f(p(z)\
and F(z, 1) e B for z e D„. This allows us to define a continuous map G:
Xx[0,l]-»Y by

G(x, f) = f(x) if x e A, G(p(z), f) = F(z, f) for z e D„.

When the family (e£) is arbitrary, the map Fa: D„ x [0,1] -> Y for each a is
defined in the same way, and then G is defined by

G(x, f) = f(x) if x e A, G(pa(z), f) = Fa(z, f) for z e D„.

2. If (X, A) has relative dimension n and (Y, B) is n-connected, there is again
a relative homotopy with respect to A between /: (X, A) -* (Y, B) and a map
g: (X, x0) -* (B, y0), by induction on the relative dimension of (X, A), using the
fact that if (X', A) is a relative subcomplex of (X, A), the injection X' -* X is a
cofibration (§ 2,D).

3. The crucial point of the proof is the following lemma:

Let /: X -> Y be an n-equivalence (§ 5,F), and (P, Q) a relative CW-complex
of relative dimension ^ n. Suppose there are continuous maps fi: P-»Y,
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g: Q ->X such that h\Q — f ° g. Then there is a continuous map g': P ->X
such that g'IQ = g, and ft is relatively homotopic to f o g' with respect to Q.

This is seen by considering the mapping cylinder Zf, the injections i: X -> Z/;
j: Y ->• Zy and the retraction r: Z7 -> Y, for which Y is a strong deformation
retract of Zf (Part 2, chap. V, §3,A). From the definition of n-equivalence and
the homotopy exact sequence

■••-»■ ns(X, *o) "-+ ""U2/, 3"o) -» nsizf, x, 3"o) -» ""Vi (x> *o) -* ts-i (z/, .Vo) -»• • ' '

it follows that (Zf,X) is n-connected, because/ =roi,/)(: 7rs(X, x0) -> 7rs(Y, y0)
is an isomorphism for s < n, and r^: 7ts(Zy,y0) -> ns(Y,y0) is the identity for
alls.

Since Q -> P is a cofibration (§2,D), there is a map h': P -* Zf such that
h'\Q = i ° g and r\h' is relatively homotopic to r o j o h with respect to Q. By
2, /i' is relatively homotopic to a map #': P->X with respect to Q. Then
g'\Q = 0, and f ° g' = r ° i ° g' 's relatively homotopic to r o h', hence to
r o j o h = h.

4. From 3 it follows in particular that if P is a C W-complex of dimension ^ n
and /: X -> Y an n-equivalence, then the map

/*:[P;X]-[P;Y] (122)
is surjective. If we also suppose that the dimension of P is ^ n — 1, then/,, is
injective. Suppose g0, g^ are two maps P -* X such that f o g0 is homotopic
to/° 0i- This means there exists a map h:Px [0,1] -* Y such that h(z,0) =
f(g0(z)) and h(z, 1) = /(^(z)). Now (P x [0,1],P x {0,1}) is a relative CW­
complex of relative dimension ^ n, and the restriction of h to P x {0,1} is the
map g such that g(z,0) = g0(z) and g(z, 1) = g±(z); by 3, there is a map h':
P x [0,1] -> X such that h'\(P x {0,1}) = #, which means that h' is a
homotopy between g0 and ^.

5. The Whitehead theorem is a corollary of 4. Let X, Y be two CW­
complexes, and suppose/: X -> Y is a weak homotopy equivalence. Then the
corresponding maps

/<x>: [X; X] -> [X; Y], f™: [Y; X] - [Y; Y] (123)

are bijective. Therefore, there is a map g: Y ->X such that /*Y)(M) = [1Y]'
and /ix,([^/])= [/ogo/] = [lYo/] = [/o lx] =/<x»([lx]), hence
[30/] = [lx] or g o f ~ lx; this proves that / is a homotopy equivalence.

6. When the first (§ 5,F) and second Whitehead theorems are combined, the
following useful result is obtained:

If X, Y are two simply connected CW-complexes and /: X -* Y is a continuous
map such that /„,: H.(X;Z) -> H.(Y;Z) is bijective, then / is a homotopy
equivalence.

In his work on cobordism (chap. VII, § 1) Thom proved a variant of
that result: if the continuous map /: X -> Y for two simply connected CW­
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complexes X, Y is such that for every prime p, f*: Hr(Y;Fp) -> Hr(X;Fp) is
bijective for r < k and injective for r = k, then /„.: 7rr(X) -* 7rr(Y) is bijective for
rs= /c- 1.

C. Lemmas on Homotopy in Relative CW-Complexes

In 1951-1953 Blakers and Massey [51] made a thorough study of the relative
homotopy groups 7rr(X, A,x0) when (X,A) is a relative CW-complex (Part 2,
chap. V, § 3,C); this gave rise to many applications to homotopy theory. Their
proofs relied on Eilenberg's obstruction theory (§ 4,C) and can be simplified
by using a few preliminary lemmas which make more extensive use of simplicial
approximation [459].

Since the elements of relative homotopy groups are classes of maps

(D,,,SI1-1)-(X,A)

it is convenient to consider more general maps

(K,L)-(X,A)

where K is a finite simplicial complex and L is a (closed) subcomplex.
The general results rely on the study of the elementary case in which

X = Au/
is obtained by attachment of a single n-cell e" to a Hausdorff space A by a
map g: S„_! -> A. Let p: D„ -> X be the corresponding natural map. Then a
slight variation of the Alexander process of simplicial approximation (Part 1,
chap. II, § 3), which uses induction on the skeletons of K, shows that for any
continuous map /: (K, L) -> (X, A) there is a map f^ : (K, L) -> (X, A), relatively
homotopic to / with respect to a neighborhood of/-1(A) in K, with the
following property.

(SAL) There exist a triangulation T' of D„ and a simplicial map h: (K,T) ->
(D„,T') for a sufficiently fine subdivision T of K such that for any simplex a
of T for which /» c e" and/»np(iD„) # 0,fy\a = p ° (h\a).

As a first consequence, if (X, A) is any relative CW-complex, then for any
n>\,

7rr(X,(X,A)",x0) = 0 forallr^n; (124)
the pair (X, (X, A)") is thus n-connected for any n.

To prove this, a relative homotopy with respect to Sr_i must be found
between / and a map /': Dr -► (X, A)", for any map /: (Dr, Sr_! ) -► (X, (X, A)")
with r < n. The compact set /(Dr) is contained in some skeleton (X, A)m and
only meets a finite number of the cells e{ (with j ^ m) in that skeleton. Suppose
that m> n (otherwise there is nothing to prove) and that there is a cell e™;
property (SAL) yields a relative homotopy with respect to Sr_i between / and
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a map fx: (Dr,Sr_!) -* (X, A) such that there is a point xee" not in /i(Dr).
Since X — e™ is a strong deformation retract of X — {x}, there is another
relative homotopy between j\ and a map f2 such that /2(D,)ne™ = 0.
Repeat the process until, after a convenient relative homotopy, /(Dr) does not
meet any e{ with j > n, so that /(Dr) c (X, A)".

The fact that (X, X") is n-connected for an "absolute" CW-complex X implies
by the homotopy exact sequence (103) that for the injection j: X" -> X the
homomorphism /„. : nr(X", x0) -* nr(X, x0) is bijective for r < n and surjective
for r = n.

An important special case of (124) is the one in which for two spheres (Sp, *)
and (S„, *),

7rr(Sp x S,,SP vS,) = 0 (orr<p + q.

This follows from the fact that Sp x S„ is obtained by attachment of Dp x D^
to Sp v S,.

Another consequence of (SAL) is the possibility of reducing n-connected
relative CW-complexes, up to homotopy type, to the special case in which
(X, A)" = A, so that only cells e™ of dimension m > n are attached to A.

More precisely, it is possible to attach families (e£+1) and (el+2) of cells to
X such that if X" is the union of X and these cells and A' is the union of A and
the cells (el+l\ then:

(R) X is a strong deformation retract of X", A is a strong deformation retract
of A', and the n-skeleton of (X", A') is given by

(X",A')" = A'. (125)
The proof is by induction on n. Since (X, A) is (n — l)-connected, we may

assume that (X, A)"-1 = A. Let (e£) be the family of n-cells of (X, A) and let

/a:(D„,S„_1;*)^(X,A,x0)

be the map such that /a(D„) = e£ and /a(D„) = el. If 7t„(X, A, x0) = 0, then for
each a there is a relative homotopy with respect to S„_j between fa and a map
D„ -* A. If D.J" and D,"" are the hemispheres of S„ respectively defined by
£„+1 ^0and^„+1 ^ 0,/a can be considered a map (D^S.,-!)->(X, A) and the
homotopy a map gx: D„+1 -> X such that

We saw above that (X,(X, A)"+1) is (n + l)-connected, hence we may assume
that gx(Dn+1) c (X, A)"+1. For each a attach D„+1 to X by the map gx\Sn:
S„ -> X; let hx: D„+1 -> X ug^el+l be the corresponding map such that

hx(Vn+i) = eY~\ MÛ,+i) = e."+1, hx\Sn = gx\Sn.

Let X' be the space obtained by the attachment to X of all the el+1, and

A^AujU?1);
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since e£ c e£+1 for all a, (X', A')" = A'; and A' is obtained by attaching the ball
D„+1 to A, for each a, by the map ga|D~. Since D~ is a strong deformation
retract of D„+1, A is a strong deformation retract of A'.

Next, if D++1 and D^+1 are similarly defined, ga may be considered a map
D~+1 -> X' and hx a map D^"+1 -> X'; attach D„+2 to X' by the map ka: S„+1 -> X'
defined by ka\D*+l = ha, kx\D~+1 = ga; if X" is the space obtained by attaching
to X' the cells e£+2 by the maps kx, then, similarly, X is a strong deformation
retract of X", and relation (125) follows from the definitions.

In the particular case of an n-connected "absolute" CW-complex (X,x0), A'
has the homotopy type of a point: it is contractible. Since the injection A' -* X"
is a cofibration, if X0 = X"/A', the collapsing map (X",A')-»(X0,x0) (with
x0 = A') is a homotopy equivalence (§ 2,D); the n-skeleton X£ is then reduced
to the point x0.

D. The Homotopy Excision Theorem

Let A, B be two subspaces of a space X, with x0 e A n B and X = AuB. The
excision axiom of homology theory (Part 1, chap. IV, §6,B) states that if
A = X — U is closed and OcÊ, then the injection of pairs j: (A, A n B) ->
(X, B) induces an isomorphism of relative singular homology

jt:H.(A,AnB;Z)^H. (X, B; Z).

There is no such general result for homotopy; under the same conditions,

jV7rr(A,AnB,x0)^7rr(X,B,x0) (126)
is not always bijective ([51], pp. 9-10). The homotopy groups of the triad
(X, A, B, x0) (§5,C) were invented by Blakers and Massey precisely to
"measure" how (126) "deviates" from bijectivity.

Their most important result [51] was the discovery of cases in which these
triad homotopy groups vanish. Suppose (A, A n B) is an n-connected relative
CW-complex and (B, A n B) an m-connected relative CW-complex. Then

;rr(X, A, B, x0) = 0 for2^r^m + n (127)
or, equivalently, by the exact sequence (112), the map (126) is bijective for
1 ^ r < m + n, surjective for r — m + n.

This can be proved as a consequence of the spectral sequence of a fibration
(chap. IV, §3), but a method of Boardman [459] only uses the elementary
lemmas (SAL) and (R) proved above, by a succession of simple steps.

I. The main part of the proof treats the simplest case, in which the space
A (resp. B) is obtained from C by attachment of a single n-cell e" (resp.
a single m-cell em) to C = A n B. Suppose 2^r^m + n — 2. Elements of
7rr(X, A, B, x0) are classes of maps /: Hr_l x [0,1] -> X such that

/(Sr-2 x [0,1]) c: A, f(Br_, x {1}) c: B, /(Dr_, x {0}) = {x0}
(128)

and f(*,t) — x0 for t e [0,1]. The idea is to show that there exists a point
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p £ em and a point q e e" such that f is relatively homotopic, with respect to
(Dr_i x {0}) u (Sr_2 x [0,1]), to a map /' such that

/'(Dr-,x[0,l])cX-{p} and /'(D,., x{l})cX-|M}. (129)
Now B is a strong deformation retract of X — {q}, so the injection

;1:(X,A,B,x0)-»(X,A,X-{q},x0)

yields an isomorphism for all r:

;1„:7tr(X,A)B)x0)^7tr(X,A)X-{«})x0).

Next the injection

j2:(X - {p},A,X - {p,q},x0)^(X,A,X - {q},x0)

defines a homomorphism for all r:

J2*:^r(X - {p},A,X - {p,<7},x0)->7rr(X,A,X - {q},x0)

and the homotopy between / and /' implies that

7i*([/])=72*([/'])­

But A is a strong deformation retract of X — {p}, so by the exact homotopy
sequence of a triad, 7rr(X — {p}, A, X — {p, q},x0) = 0 for all r, and therefore
7i*([/]) = 0, hence [/]=0.

The construction of/' uses (SAL) (§6,C). Let u:D„->A, v. Dm -> B be
the maps such as u(D„) = e", u(Dm) = em; there is a point p e v(jDm) in
the image v(a) of an m-simplex, and f~l (p) is a subcomplex of Dr_t x [0,1]
of dimension ^ r — m. Therefore pr71(pr1(/~1(p))) is a subcomplex K of
dimension ^r — m+l^n—1, hence f(K) does not contain u(^D„), and
q e u(^D„) is taken such that/_1(ij) n K = 0. It is then easy to find a
homotopy between the identity of Dr_t x [0,1] and a map

g-.B^ x [0,1]-» (Dr_t x [0,1])-/"'(p)

such that h((z, \),t) $ f~l(q)(or all t e [0,1] and h leaves the points of Sr_2 x
[0,1] fixed; there is then a homotopy f °h between / and the requested
/'=/»»■

The general homotopy excision theorem is then progressively reduced to
the preceding case:

II. Using the lemma (R) of §3,C, there is a relative CW-complex (B',C)
such that (B',C')m = C and C (resp. B) is a strong deformation retract of C
(resp. B'); then if A' = A u C, X' = A u B', A (resp. X) is a strong deformation
retract of A' (resp. X'); since 7rr(X, A, B, x0) = 7rr(X', A', B', x0) for all r, it is
enough to consider the case in which (B,C)m = C. A similar application of (R)
allows us also to assume (A,C)" = A.

III. Since/(Dr_j x [0,1]) is compact it only meets a finite number of cells

e"\ e"2, ...,en" with n,- > n for 1 sc j sc h, in (A,C)

[resp. em\ em\...,emk with m; > m for 1 sc i ^ k, in (B,C)].
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It may thus be assumed that

A = Cu«"'ue"!u-u«"", B = C ue"" ue™2 u ••• u<?m\ (130)

IV. Let B0 = C, B; = C u em' u - - • u <?m' for Ui^fc and Xi = Au B;.
The injection u: (A,C) -> (X, B) can be factored in

(A,C) = (X0,B0)^(X1,B1)^(X2,B2)^---^(X„BJ = (X,B)

so that it is enough to prove the theorem for each ut.
V. Suppose that B = Cue™ with m' > m, and define

A0 = C, A,- = C u e"' u • • • u e"j similarly for 1 sj j sc fi

and Xj = B u A-. Consider the commutative diagram of homotopy exact
sequences of triples

7tr+1(Aj,Aj_1,x0) ►7tr(AJ._1,C,.x0) ►7tr(AJ,C,.x0) ►7tr(Aj,AJ_1,x0) ►7tr_1(AJ_,,C,x0)

^.(Xj.X^.^o) >7tr(X(_.,B,x0) ► 7tr(XJ.,B,.x0) >7tr(XJ.,XJ._,,.x0) ► 7tr_1(XJ..,,B,x0)

By I all Wj are bijective for r < m + n and surjective for r = m + n. Use
induction on /: for j = 0, v0 is trivially the identity; suppose vj_l is bijective for
r < m + n and surjective for r = m + n; then the 5-lemma (Part 1, chap. IV,
§ 5,A) shows that i;■ has the same properties.

E. The Freudenthal Suspension Theorems

After Hurewicz had defined the homotopy groups, one of the main problems
of homotopy theory (still only partially solved today) was to determine the
homotopy groups of spheres 7rmfS„) explicitly for m "? n [175]. This became the
main motivation for many of the techniques introduced between 1935 and the
present day, each of which provided more knowledge of these groups.

The Hurewicz isomorphism theorem determined 7r„(S„) ^ Z (§4,A), and in
his study of the homotopy groups of homogeneous spaces (chap. Ill, §2,A),
he obtained a very simple proof of the isomorphism 7r3(S2) — Z, essentially
equivalent to Hopfs theorem of 1930 (§ 1,B).

The next significant advance was made by H. Freudenthal in 1937 [20]. We
have mentioned that in that paper he invented the suspension SX of a pointed
space X (Part 2, chap. V, §2,C) and the homotopy suspension

E:[X,.x0;Y,>>0]^[SX,x0;SY,y0]

(§3,D). In particular, for X = Sr and Y = S„ this gave him group homomor­
phisms

E:7rr(S„)^7rr+,(S„+,) for r > 1, n ^ 1, (131)
and he obtained the striking result that (131) is bijective for 1 < r < In — 1
and surjective for r = 2n — 1 (which is now often called the "easy" Freudenthal
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theorem). He also discovered a remarkable relation between suspension and
the Hopf invariant f\-*y(f) (§§ 1,B and 1,C), considered as a homomorphism

7:t2r+i(S2r)-Z; (132)
he showed that the kernel of y is the image of

E: 7r2r(Sr)->7r2r+1(Sr+1). (133)
He also obtained partial results on the kernel of (131) for r = In — 1; for

instance, the kernel of E: 7r3(S2) -* 7t4(S3) is the subgroup of classes of maps
/ with even Hopf invariant, which showed that

tt4(S3) ^ Z/2Z. (134)
The "easy" theorem showed that

E-' Kr+kV^n+k) ~~* nr+k+l (^n+Jc + l )

is bijective as soon as r + k < 2(n + k) — 1, that is, k > r — In + 1, so that
the infinite sequence FF F

rcr(S„)->7rr+1(S„+1)-> ► nr+k{Sn+k) -» • • ■ (135)

is stationary: for each value of r > 0, only a finite number of homotopy groups
nr+k(Sk) may be distinct. The group nr+k(Sk) for k > r + 1, which is
independent of k (up to isomorphism) is called the r-stem or the r-th stable
homotopy group; this was the first example of "stability" in an infinite sequence
of homomorphisms, which later turned up in many circumstances in algebraic
topology.

Freudenthal's proofs were patterned after Hopfs methods of geometric
constructions for simplicial maps (§ 1), and they used some of Hopfs results.
Suppose /: S2r+1 -* Sr+1 is a simplicial map (for suitable triangulations) such
that the Hopf invariant y(f) = 0. Freudenthal showed that the class [/'] in
7r2r+1(Sr+1) is 0 by considering a point x e Sr+1 and its inverse image f~l{x),
which is a subcomplex of dimension r; he showed that there is a homotopy
between / and a simplicial map /' for which f'~l{x) has only one element.
The proof of [/'] = 0 is then relatively easy, but the definition of/' is long
and difficult.

Freudenthal's theorems attracted much attention from topologists. Simpler
proofs using more refined tools were found later, and we shall have the
opportunity to describe them as well as their generalizations. One of the
earliest generalizations of the "easy" Freudenthal theorem was found by
Blakers and Massey as a consequence of their homotopy excision theorem
(§6,D): if X is any n-connected CW-complex, then the suspension

E:7rr(X,x0)^7rr+1(SX,x0) (136)
is bijective for 1 < r < 2n and surjective for r = 2n + 1.

The proof uses the natural homeomorphism SX ^ CX/X (Part 2, chap. V,
§ 2,C). Since CX is contractible, the homotopy exact sequence (103) shows that
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d: 7rr+1 (CX, X, x0) -* 7rr(X, x0)

is an isomorphism for all r ^ 1. The proof of the theorem is thus reduced to
the same statement for the homomorphism

p«: 7rr+1(CX,X,x0)^7rr+1(CX/X,x0)

deduced from the collapsing map p: (CX, x0) -> (CX/X, x0). This in turn
derives from a more general result concerning a relative CW-complex (X, A): if
A is m-connected and (X/A) n-connected, then

P](.:7rr(X,A,x0)^7rr(X/A,x0) (137)
is bijective for 2 ^ r ^ m + n and surjective for r = m + n + 1. If i: A -> X is
the natural injection, X/A is naturally homeomorphic to (X UjCA)/CA (Part
2, chap. V, § 3,B), but as CA is contractible, the collapsing map

(X uj CA, CA) -»((Xu, CA)/CA, x0)

is a homotopy equivalence (§2,D); the proof is finally reduced to showing that
the map

7rr(X,A,x0)->7rr(Xu;CA,CA,x0) (138)
is bijective for 2 ^ r ^ m + n and surjective for r = m + n + 1. That is a
corollary of the homotopy excision theorem (§6,D) applied to the triad

(XufCA,X,CA,x0);

7rr(CA, A, x0) ~ 7tr_1(A,x0) = 0 for 1 ^ r ^ m + 1 by the homotopy exact
sequence, and (X, A) is n-connected.

F. Realizability of Homotopy Groups

We have already seen (chap. I, §4,B) that Veblen ([474], p. 145) had
constructed simplicial complexes having arbitrary fundamental groups. The
introduction of CW-complexes allowed a considerable extension of that result
to all homotopy groups.

I. First, there is a CW-complex X for any n "^ 1 and any free group F
(commutative if n "? 2) such that

;rr(X) = 0 for r < n, nn(X) ~ F. (139)
This was proved for n = 1 in chap. I, §4,A. Suppose n "? 2 and let F = Z(l);
take for X the "infinite wedge" obtained by attaching a family (e^)aei of n-cells
to a single point {x0}; then that CW-complex satisfies (139). For I = {1,2}
this is a particular case of the isomorphism

;rr(Sm vS.,)^7rr(SJ0 7rr(S„) for r s= m + n; (140)

indeed, if Sm and S„ are considered CW-complexes (Part 2, chap. V, §3,C), the
cells in Sm x S„ are Dm x {*}, {*} x D„, and Dm x D„, so (Sm x S^""1 =
Sm v S„. Now apply (124), which gives



§6F II. Elementary Notions and Early Results in Homotopy Theory 367

;rr(Sm x S„, Sm v S„, (*,*)) = 0 forr ^ m + n

and (140) follows from (108).
For a finite set I, (139) follows from (140) by induction on Card (I). Finally,

if I is arbitrary, it is only necessary to observe that the image of any continuous
map Sr -> X or of any homotopy Sr x [0,1] -> X only meets a finite number
of n-cells.

II. Next suppose G is any group (commutative if n "? 2); it can be written
F/R, where F is a free group (commutative if n ^ 2); then R is also a free group
(chap. I, §4,A). Let (xx)xel [resp. (ry)yeJ] be a family of free generators of F
(resp. R), and use the result of I to construct a CW-complex X" such that

(0 for r < n,
^(X"*<Hf forr = , (141)

There is therefore a map hy: (S„, *) -> (X", x0) for each y e J such that [/iy] = rr
Attach an (n + l)-cell e"+1 to X" by the map hy for each y e J and let X"+1 be
the CW-complex thus obtained. Consider the collapsing map p: X"+1 ->
X"+1/X";by(137)

p«: 7rr(X"+1,X",x0)^7rr(X"+1/X",x0) (142)
is bijective for 2 ^ r ^ n — 1. Since X"+1/X" is obtained by attachment of each
(n + l)-cell p(e"+1) to a single point, by (§6,C)

7rr(X"+1/X",3c0) = 0 forr<n+l, and 7r„+1(X"+1/X",x0) s R. (143)

In the homotopy exact sequence

7T„+1 (X" + 1, X", X0) ^ 7T„(X", X0) -» 7T„(X" + 1, X0) -» 7T„(X"+1, X", X0) = 0

the image of the homomorphism d is identified with R when nn(Xn,x0) is
identified with F, so that

7rr(X"+1, x0) = 0 for r < n and 7r„(X"+1, x0) ~ G

since (X"+1,X") is n-connected by (124).
III. We shall see later (chap. V, § 1,D) how Hurewicz's theorem on aspherical

spaces (§6,A) led Eilenberg and Mac Lane to consider, more generally, the
homology of spaces X for which 7rr(X, x0) = 0 except for one value n of r, which
might be any integer n "> 1 ; but in their first papers on that topic ([ 179], [181])
they do not seem to have tried to prove the existence of such spaces. This was
done in 1949 by J.H.C. Whitehead, using CW-complexes [500].

The proof is by induction on m > n, the inductive assumption being that
there exists a CW-complex Xm such that

CG for r = n,nJXm,x0)~{ „ , (144)ry °' (0 for 1 s= r < m and r # n ( '
(for m = n + 1, this is the result of II above). A CW-complex Xm+1 is
constructed by attaching (m + l)-cells e™+1 to Xm in the following way. Consider
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the group 7rm(Xm,x0) and let [#a] be a set of generators ofthat group, with
3a'(Sm,*)->(Xm,x0)- Attach each e™+1 to Xm by the attaching map ga; it
follows from the definitions that in the homotopy exact sequence

7Tm + 1 (Xm + 1, X", X0) i Km(Xm, X0) - 7Tm(Xm+1, X0) - 7Tm(Xm + 1, X", X0)

the last term is 0 by (124), and [#J = d[/J, where fa: Dm+1 -► Xm+1 is such
that/JSm = gx and/a(Ôm+1) = «»+1. So 0 is surjective, and 7rm(Xm+1,x0) = 0.
The process is repeated indefinitely by induction, and X is defined as the union
of the Xm, with the fine topology (Part 2, chap. V, §3,C).

IV. The CW-complex X having all homotopy groups equal to 0 except for
7rr(X) = G is unique up to homotopy equivalence. This is a consequence of the
following more general theorem:

Suppose (X,x0) is an (n — l)-connected CW-complex and (Y,y0) is a pointed
space such that nr(Y,y0) = 0 for r > n; then, for any homomorphism

<p:7rn(X,x0)-»7rn(Y,y0)

there is a map of pointed spaces /: (X, x0) -* (Y, y0) such that fm = (p.

Up to homotopy equivalence, the (n — l)-skeleton X""1 = {x0} (§6,C), so
that X" is obtained by attaching a family (e£) of n-cells to the point x0. Let
'*' (S„, *) -> (X, x0) be the homeomorphism of S„ onto e£ = e£ u {x0}. Then
q>([_ij) e nn(Y,y0), and there is a map /„": (S„,*) -» (Y,y0) such that [/„"] =
q>(UJ); a map /„: (X",x0) -»• (Y,y0) is then defined by taking fn(ix(z)) = fan(z)
for each a and z e S„. By obstruction theory (§4,C) it is then possible to extend
/„to a map/: (X,x0) -* (Y,_y0)such that/,, = (p, and if two maps//' are such
that /*=/* = (p, they are homotopic.

The uniqueness of homotopy type of a CW-complex X with 7rr(X, x0) =
0 for r # n and nn(X, x0) ~ G is then seen by considering two such CW­
complexes X, X' and applying the preceding theorem to define maps/: X -* X'
and g: X' -> X, with fm and g^ the identity in G; then, for all integers r """s 1,
(/ ° 0)* = /* ° 0* and (g o /)# =0^0/^ are the identity, hence, by the
uniqueness of/ and g up to homotopy, / o g ~ lx, and g ° f ~ lx­

V. An arcwise-connected space X such that 7T;(X) = 0 for i # n is called an
Eilenberg-Mac Lane space. If 7t„(X) is isomorphic to a group II, the space is
of type (II, n), and often written K(II, n). All Eilenberg-Mac Lane spaces of
type (II,n) which are CW-complexes have the same homotopy type.

Interesting Eilenberg-Mac Lane CW-complexes are obtained from the
construction of projective spaces. The real projective space P„(R) can be
defined by attachment of a single n-cell e" to P„_1(R): identify the unit disc D„
with the upper hemisphere D^" of S„, of which it is the orthogonal projection,
and let h„ be the restriction to D^" of the natural map S„ -► P„(R); the restriction
^nlSn-i is then the natural map S„_! -»Pn-^R), and that restriction is an
attaching map of D+ to P^^R), so that the n-cell e" = hn(Ù^). The same
argument as in II then shows that
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7rr(P„(R)) = 0 for 2 s= r s= n. (145)
The infinite-dimensional real projective space P^fR) is defined by considering

the infinite sequence (hn) and taking the fine topology on the CW-complex
thus defined (Part 2, chap. V, §3,C). By (124),

MP.W) = MPiW) = Z/2Z> ^(Poo(R)) = 0 for r > 2

so that P^fR) is an Eilenberg-Mac Lane CW-complex of type (Z/2Z, 1).
With similar constructions, the infinite-dimensional complex (resp. quatern­

ionic) projective space P^fC) [resp. P^fH)] is defined; it is an Eilenberg-Mac
Lane space of type (Z, 2) [resp. (Z,4)].

VI. It is now easy to conclude, with J.H.C. Whitehead, that any sequence
(GJ^, of groups (commutative for n "? 2) is "realizable" as the sequence of
homotopy groups of a space X: consider for each n an Eilenberg-Mac Lane
space X„ of type (G„,n) and take X = n^=i X„.

G. Spaces Having the Homotopy Type of CW-Complexes

All homotopy properties of CW-complexes that do not use the cell structure
in their formulaton are still valid for spaces which have the homotopy type of
a CW-complex, and it is therefore useful to have criteria showing that a space
has that homotopy type. In 1949 [499] J.H.C. Whitehead proved that if a
space X is dominated (§ 2,C) by a CW-complex X' having at most a countable
set of cells, then X has the homotopy type of such a CW-complex. Hanner
showed in 1950 that all (metrizable separable) ANR's have that property
[219]. Another important result already proved by Kuratowski in 1935 [291]
is that if X is an ANR, then for any compact metric space Y the function space
#(Y; X) is also an ANR.

In 1950 J.H.C. Whitehead generalized his result by dropping the restriction
on the cardinal of the set of cells of X'; later Milnor [343] proved that "^(Y; X)
has the homotopy type of a CW-complex when Y is any compact space and
X has the homotopy type of a CW-complex; he also generalized his results to
triads and m-ads.

§ 7. Simple Homotopy Type

A. Formal Deformations

In the 1920s M.H.A. Newman [356] and Alexander [14] developed a notion
of "combinatorial equivalence" for finite combinatorial complexes (Part 1,
chap. II, § 2) based on processes that include the usual barycentric subdivisions
but are more general. Let K be an arbitrary finite combinatorial complex and
a = (a0, «!,..-, ap) be a p-simplex of K. Consider the disjoint union of the set
of vertices of K and a single element b; Alexander defined a process (b, a) called
elementary subdivision, which deduces a new combinatorial complex K' from
K in the following way:
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1. the simplices of K which do not contain a are also simplices of K';
2. every (p + /c)-simplex of K

(a0,au...,ap,cu...,ck)
containing a is deleted, and is replaced by p + 1 new (p + /c)-simplices

(b,a0,...,âj,...,ap,cu...,ck) for 0 s= j < p

in K', and of course the q-simplices (q < p + k) contained in these (p + k)­
simplices are also simplices of K'.

The new notion was to introduce also the inverse process (b, a)'1 deducing
K from K', when it is defined. Two combinatorial complexes K, K' are then
combinatorially equivalent if there is a sequence

K=K0,K1,...,Km = K' (146)
such that KJ+1 is deduced from KJ5 either by an elementary subdivision, or
by the inverse of such a subdivision (when defined). With these definitions
Newman and Alexander were able to show that "combinatorial equivalence"
is the same as "rectilinear equivalence" for euclidean simplicial complexes,
meaning by that the existence of subdivisions* K1 (resp. K\) of K (resp. K')
and of a simplicial bijection of K1 onto K\.

In 1938 J.H.C. Whitehead conceived an ambitious and highly original
program aiming at treating "combinatorially" in a similar way the homotopy
theory of simplicial complexes. Impressed by Reidemeister's theory of
complexes with automorphisms (Part 2, chap. VI, §3,A and Part 3, chap. II, §2,B),
he sought to attach some algebraic object to a simplicial complex K in such
a way that it would be invariant under "combinatorial" homotopy.

Let K be a finite euclidean simplicial complex and a be a p-simplex of K
that is a face of a unique (p + l)-simplex t of K; let K' be the complex obtained
by deleting both a and t from K; Whitehead called the process of passing from
K to K' an elementary contraction of order p + 1 and the inverse process an
elementary expansion of order p + 1. If there is a sequence (146) such that the
passage of each K, to Kj+l is either an elementary contraction (of any order)
or an elementary expansion (of any order), he said K' is obtained from K (or
K from K') by a formal deformation or that K and K' have the same nucleus,
a term that he replaced by simple homotopy type after 1948.

These are purely combinatorial notions, but their geometric meaning is
clear. The box lemma (chap. II, § 2,D), or rather the similar lemma for simplices
instead of cubes, shows that if K' is an elementary contraction of K, there is
a retraction r: K -* K' for which K' is a strong deformation retract of K and
the natural injection K' -* K is a homotopy inverse of r. Applying this remark
to the sequence (146) defining a formal deformation, the injections or retrac­

* The general definition of a subdivision K[ of a cell complex K is that each cell of K
is union of cells of K,.
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tions Kj -> KJ+1 give by composition a homotopy equivalence K -* K'. Such
special homotopy equivalences associated to formal deformations are called
simple homotopy equivalences; the central problem to which Whitehead
addressed himself was whether, for two euclidean simplicial complexes K, K',
a given homotopy equivalence K -* K' is homotopic to a simple homotopy
equivalence, and if not, to classify the simple homotopy types within a given
homotopy type.

In his first paper on the subject [494] Whitehead did not use homotopy
groups in his arguments, but introduced another kind of equivalence between
simplicial complexes: he called the perforation of order n of such a complex
the deleting of one of its n-simplices, and the filling of order n the inverse
process (when defined); he then said two simplicial complexes K, L have the
same m-group if one is deduced from the other by a succession of processes
that may be elementary contractions, elementary expansions, perforations of
order > m, or fillings of order > m. It transpired in his later work [502] that
this is equivalent to saying that the homotopy groups nr(K) and nr(L) are
isomorphic for all r ^ m.

In this first paper Whitehead was still unable to solve the fundamental
problems, but he displayed the combinatorial virtuosity that he had acquired
under Newman in a series of constructions of simplicial complexes too
intricate to be described here in detail. We shall limit ourselves to enumerating his
most significant results:

1. The "nucleus" is the same for "combinatorially equivalent" complexes.
2. Suppose K' is obtained from K by a formal deformation. Then there is a

simplicial complex K0 such that K and a simplicial complex K" deduced
from K' by a succession of "elementary subdivisions" are both obtained from
K0 by a succession of elementary contractions.

3. Suppose K and L are connected simplicial complexes of dimension ^ n that
have the same "n-group"; then there exists a wedge (Part 2, chap. V, § 2,D)
of K and of a finite number of spheres of dimension n that is a formal
deformation of a similar wedge of L and a finite number of spheres of
dimension n (not necessarily the same number as for K).

4. Finally, from 3 Whitehead was able to deduce the first version of what later
became his "second theorem" on homotopy (chap. II, §6,B): if two connected
simplicial complexes have the same "m-group" for every m, then they have
the same homotopy type.

In a second paper published in 1941 [496] Whitehead tackled the problem
of adapting Reidemeister's ideas to his purpose in earnest. He therefore
introduced, for a finite euclidean simplicial complex K, its universal covering
complex R, and considered the p-chains of R as forming a free module over
the group algebra Z^fK)]. He wanted to find algebraic processes on the
"incidence matrices" of K (with elements in ZLtt^ (K)] ) that would correspond
to the processes of elementary contractions, elementary expansions,
perforations, and fillings described in his first paper. The results are very complicated
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and cannot be described in simple terms; they were superseded by his later
work on torsion (see below); however they enabled him to prove his criterion
characterizing the homotopy of lens spaces (chap. II, §2,B).

B. The Whitehead Torsion

Finally, after the war Whitehead returned to the theory of simple homotopy
type and was able to construct an algebraic structure incorporating the
Reidemeister theory, with which he could translate into purely algebraic
terms the properties of homotopy type and simple homotopy type for CW­
complexes. This major achievement was a consequence of the introduction of
both new topological and algebraic ideas [502].

I. In his papers of 1939 and 1940 Whitehead, following an earlier definition
of Aronszajn [32], had considered attachment of simplicial disks to simplicial
complexes by simplicial maps (Part 2, chap. V, § 3). It is thus that he arrived
at the definition of CW-complexes (loc. cit.) and realized their adequacy for
homotopy theory.

He used all properties of CW-complexes described in earlier sections (Part
2, chap. V, § 3,C and Part 3, chap. II, § 6); he also needed a concept that would
replace simplicial maps for CW-complexes. If K and L are CW-complexes, K"
and L" are their n-skeletons, a continuous map /: K -> L is called cellular if
f(K") c L" for every n "? 0. The theorem on simplicial approximation (Part
1, chap. II, § 3) is then replaced by the following one:

Any continuous map/: K -> L is homotopic to a cellular map; any two cellular
maps Qi, g2 that are homotopic are also homotopic by a cellular homotopy,
i.e., a cellular map h: K x [0,1] -> L (K x [0,1] being considered as a CW­
complex).

The first statement is proved by constructing a sequence of maps fr: K -* L
and homotopies hr between /r_j and fr, such that f0 = /,/r(Kr) cr Lr and hr
does not change the restriction of fr_t to Kr-1. This is done by application of
the lemma in step 3 of the proof of the second Whitehead theorem (§ 6,B) with
X = Lr, Y = L, P = Kr, Q = Kr_1. The second statement follows from the
application of the first to a map h: K x [0,1] -> L.

II. Let K be any CW-complex; we have seen (Part 2, chap. V, § 3,C) that
each Z-module H„(K", K""1 ) is free, with a basis equipotent to the set of n-cells
of K. There is also a Z-homomorphism

A,,:HI1(K-,K-1)-HI1_1(K--1,K-2) (147)

such that A.,-! ° A„ = 0 [Part 1, chap. IV, §6,B), formula (94)]. This therefore
defines a chain complex

C.(K): • • • — H„(K",K"-1 jAh,.!(K"_1,K"-2)^'H„_2(K"-2,K""3)— • • •
(148)
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and its fundamental property is that the singular homology H,(K) is naturally
isomorphic to the homology H.(C.(K)) of that complex. This is seen by
considering the map

H,(]):H,(KVH,(K",K"-') (149)
and using the homology exact sequence [^loc. cit., formula (92)] for the pairs
(K"+1,K"), (K^K"-1), and (K""1,^-2); the image of H„(/) is the module of
n-cycles in C„(K), and the image by H„( j) of the kernel of the map H„(K") -*
H„(K) is the module of n-boundaries.

III. These preliminaries allow the application of the Reidemeister method
(Part 2, chap. VI, § 3,A) to connected CW-complexes; in this theory extensive
use is made of the results on chain homotopies and chain equivalences (Part
1, chap. IV, §5,F), generalized to left modules over any ring A instead of
Z-modules, and to A-homomorphisms instead of Z-homomorphisms.

Let K be a connected CW-complex and R be its universal covering space,
made into a CW-complex by taking as n-cells of R those that project on the
n-cells of K (chap. I, § 3,C); then

C„(R) = H„(R",R"-1) (150)
is a free Z[7r1(K)]-mot/u/e, having as basis a set which may be identified with
a set of n-cells of R such that exactly one of them is above each n-cell of K.

If/: K -* L is a cellular map of CW-complexes, it can be lifted to a cellular
map /: R -* L (chap. I, § 2,V); passing to homology, / yields a chain
transformation

C.(/):C(R)^C.(t) (151)
and a homomorphism of groups/^(KJ-ML). (152)
Since a cellular homotopy between two cellular maps / g of K into L lifts to
a cellular homotopy between / and g, C.(f) = C.(g). From I it follows that
for any continuous map /: K -> L it is possible to define C.(/) equal to C.{g)
for any cellular map g homotopic to /. If ^, f2 are homotopic maps of K into
L, then C.^) = C.(/2)- Finally if/: K -> L and g: L -> M are any two
continuous maps of CW-complexes, then C.(g ° f) = C,{g) ° C.(/).

Since C.(/) only depends on the homotopy class of/ in [K;L] when
/: K -> L is a homotopy equivalence, C.(/): C.(R) -> C.(L) is a chain equivalence
when n1(K) and n1(L) are identified by /„,. The first important result is the
converse ofthat statement: if C.(/) is a chain equivalence, then/is a homotopy
equivalence.

Indeed, from the definition it follows that /„,: ^(K) -> ^(L) is an
isomorphism, and

H„(C.(/)):H„(C(R))^H„(C.(L))

is an isomorphism for every n "? 1. But from II it follows that
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H„(/):H„(R)^H„(L)

is also an isomorphism for n "? 1; since R and L are simply connected, the
first and second Whitehead theorems imply that/is a homotopy equivalence
(§6,B) and /„.: 7i„(R) -> nn(L) is an isomorphism for n "? 2, so the same is true
for /„.: 7i„(K) -> 7i„(L) (§3,B); since /„.: ^(K) -> rc^L) is also an isomorphism,
the first Whitehead theorem (§ 5,F) ends the proof.

IV. The problem is now to define among all cellular homotopy equivalences
/: K -* L those which will be called simple. Instead of doing this as he had in
his previous papers by using "formal deformations", Whitehead first attached
to every homotopy equivalence / an element x(f) of a commutative group
depending only on ^(K) [isomorphic to 7t1(L)]; this is called the torsion of
/ and is an extensive generalization of the Reidemeister-Franz-de Rham
torsion. Simple homotopy equivalences are then defined as those for which
t(/) = 0, and only afterward did Whitehead show that this notion can also
be obtained by the use of "formal deformations."

The definition of Whitehead torsion is only reached after a long series of
intricate and ingenious algebraic manipulations.

V. The first algebraic step is a streamlined version of the notion of
"distinguished bases" (Part 2, chap. VI, § 3,A). Given an arbitrary ring A
(commutative or not), all groups GL(n, A) of invertible n x n matrices with
elements in A for variable n may be considered as subgroups of their direct limit
GL(A) for the direct system of injections GL(n, A) -> GL(n + 1, A) defined by

so that GL(A) can also be assumed to consist of infinite matrices (ai!)i^1j^1
of elements of A, for each of which there is an integer n0 depending on the
matrix such that for i > n0 and j > n0, atj = 0 unless i = j, when au = 1.

The "transvection" matrices in GL(n, A)

/„ + 1E0. (i#/,AeA),

where Ey is the matrix whose elements are all 0 except the one at the (ij)-th
place which is equal to 1, generate a subgroup SL(n,A), normal in GL(n,A)
and contained in the commutator subgroup [GL(n, A),GL(n, A)]; when A is
a commutative field with at least three elements this commutator subgroup
is equal to SL(n,A), but this is not true for all rings A. However, Whitehead
showed, by a simple computation of matrices, that

[GL(n,A),GL(n,A)] c SL(2n,A) (153)
so that, if SL(A) is the direct limit of the groups SL(n, A), then

SL(A)= [GL(A),GL(A)]. (154)
Suppose that G is now an arbitrary group and A = Z[G] is its group algebra
over Z; Whitehead considered the subgroup E(G) in GL(A) generated by
SL(A) and all diagonal matrices (a„) e GL(A) such that ±au belongs to G.
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Then E(G) is a normal subgroup of GL(A), and the quotient

Wh(G) = GL(A)/E(G) (155)
is called the Whitehead group of G; it is commutative, since E(G) zd SL(A); for
every X e GL(A) the image t(X) by the natural surjection

t:GL(A)->W/i(G)

is called the torsion (or Whitehead torsion) of the matrix X.
This construction very soon attracted the attention of algebraists as well as

topologists and later came to play an important part in algebraic K-theory
and its relations with vector bundles. The computation of Wh(G) is not easy;
Wh(Z) = 0 and Wh(Z/mZ) = 0 for 2 s= m < 4, but G. Higman showed that
Wh(Z/5Z) is infinite [222].

If C is now a free left Z[G]-module that has a finite basis, the number of
elements of any basis of C is the same ("dimension" of C). A family of
"distinguished bases" of C is such that the matrix with elements in Z[G]
transforming one of these bases into another one always has zero torsion. We
shall say for short that a free Z[G]-module equipped with a family of
distinguished bases is a DB-module. Then, if/: C->C is a Z[G]-isomorphism
where C and C are DB-modules, the matrix of/ with respect to any pair of
distinguished bases in C and in C has a torsion independent of the choice of
these bases; it is by definition the torsion t(/); the isomorphism / is called
simple if t(/) = 0.

A DB-submodule C of a DB-module C is a free Z[G]-submodule of C
having a distinguished basis B' that is part of a distinguished basis B of C; the
Z[G]-submodule C" with basis B" = B — B' is then a DB-module written
C — C; it is independent of B, up to simple isomorphism, and C = C © C".

VI. For short, we shall call DB-chain complex a finite chain complex of
DB-modules

C.:0^C„^C„-.1^---^C1^Co^0 (156)
where the C; are DB-modules; the largest number r for which Cr # 0 will be
called the dimension of C.. A DB-chain subcomplex C[ = (Cj) of C. is by
definition such that each Cj is a DB-submodule of C, as defined in V; with the
notations of V, the DB-submodules C'j = C; — Cj- then form a DB-chain
complex when the boundary operator b'J: C'j -> C^ is defined as pJ^1 o b,,
where py_j is the projection CJ-1 -»CJ'-j; if C" = (Cj'), then one writes
c; = c. - c;.

A simple isomorphism /: C. -> C. of DB-chain complexes is a chain
transformation

0 ► C„ -^ C„_, > ••• > C, -^ C0 > 0
/: /. | /.­

0 , CL —^ CL. .

where the f3 are simple isomorphisms for all indices j [i.e., t(/-) = 0].

t

v

—> cx ­
/,

—» c\ ­

—> c0

/o

TT* Co

(157)
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An elementary trivial DB-chain complex has only two nonzero homogeneous
components

T.-.O^T^T^! ->0
where br is a simple isomorphism. A trivial DB-chain complex is a finite direct
sum of elementary trivial DB-chain complexes. A trivial DB-chain complex
can also be defined as follows:

T.: 0 -» A„ 0 Z„ h A„_, 0 Z.,_x -» • • • -» Ax © Zx ^ A0 © Z0 -» 0

where the A, and Z, are DB-modules, bj(Zj) = 0 and b,| A, is a simple isomorphism

Two DB-chain complexes C., C. are equivalent if there exist two trivial
DB-chain complexes T., T[, and a simple isomorphism

c. © t. ^ c: © t;.

The main result proved by Whitehead concerning these notions is that it is
possible to attach to each acyclic DB-chain complex C. an element t(C.) e
Wh(G) such that t(C.) = t(C|) if an only if C. and C. are equivalent. He first
used the following remark, a special case of the Hopf theorem of Part 1, chap.
IV, §6,F. Since C. is both free and acyclic, the two chain transformations lc
and 0C are chain homotopic; in the notation of (157), there is a chain homotopy
h. = (h}) such that

bJ+1hj + Viby=lc, foralli- (158)
This implies that b[ = (bj) with

b}=hjbJ+1hj (159)
is again a chain homotopy, such that

b,+1b;+ !>;_!by=lc, for ally, (160)
and

b;_!b;. = 0 for allj. (161)
Thus

A. = b. + b[: C. -» C.

is a chain transformation such that A.2 = lc_. This can be expressed by
considering the DB-modules

Cev=©C2i, Codd = ©C2i+1; (162)

Aev = (A2f) is an isomorphism of DB-modules

Aev:Cev2;Codd (163)
and the torsion t(C.) of the acyclic DB-chain complex C. is defined by
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t(C.) = r(Aev). (164)
Of course it must be shown that this element is independent of the choice

of the chain homotopy h„ but this easily follows from the remark that if h[
is another chain homotopy and Aév the corresponding isomorphism, then
1 + h'.h. is a simple isomorphism, and

A;v(l + h[h.) = (1 + h.'h.)Aev.

It now follows from the definition (164) that, if C. and C" are two acyclic
DB-chain complexes,

t(q e c;) = t(Q) + t(c;). (165)
Since t(T.) = 0 for a trivial DB-chain complex T., this proves at once that

if C. and C[ are equivalent acyclic DB-chain complexes, t(C.) = t(Q).
The proof of the converse is done in two steps. First, show that any acyclic

DB-chain complex C. is equivalent to an acyclic DB-chain complex C. with
only two homogeneous components,

C^O-^Cj-^Co-^O, (166)
by induction on the "dimension" n of the DB-chain complex (156): compare
C. to a DB-chain complex C" of "dimension" n — 1. From the acyclicity of C.
it follows that there is an injective Z[G]-homomorphism bô: C0 -»Ci such
that

bj + b^C^Co-C!
is surjective; then C" = (Cf) is such that C'J = C, for; "S 3 and b}' = b, for; "> 4.
Replace the five last terms of (156) by

c3_,^c2eco^^)c1-.o-.o.
It is clear that C" is again acyclic; the fact that C. and C" are DB-equivalent

can be proved by constructing a simple isomorphism /. of the formb3 b, 0 1 b,
o — c„ — c,_, — ••• — c3 — c20co ► c.eco ► c0 — o

o — c„ — c„_, — ••• — c3 —► c2ec0 ——♦ c.ffic, -—- c0 — o.b3 bj + b'0 0+1
The proof is thus reduced to the second step:

C.-.O-Ci-tCo-O,
C.:0-ClirQ-0,

b

with r(b) = r(b'). The DB-equivalence is then proved by constructing in a
similar way a simple isomorphism
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- c.ec; -!^U c„eci
a:­

o ■+ Q e C'i
10 b'

9o

-> 0

0

Whitehead also showed that if C. and C. are acyclic DB-chain complexes,
they are simply equivalent if and only if t(C.) = t(C[), and if C. = C. © C",
then C. is simply equivalent to C| if and only if t(C|') = 0.

VII. The final algebraic step introduces the torsion x{f.) of a chain
equivalence f.: C. 2j C. of two arbitrary DB-chain complexes. Whitehead constructed
the algebraic counterpart of the mapping cylinder of a continuous map (Part
2, chap. V, § 3,A), which may be called the combinatorial mapping cylinder Z,(f.)
of a chain equivalence

0

/.:

0

> C
/.

—» c

n

V

>
/,

—>

b.

bl
C'

V

^

—- cx ­
/,

—- c\ ­

—> c0

/o

T7" Co ­

0

It is the DB-chain complex

o - c; © c„ © c„_! ^ c-i © c„_! © c
^c0ec0-o

n-2 ■ C\ © Cx © C0

where the boundary operator is given by

b;(x;ex,ex,-i) = (b>; +/J-_1(xJ._1))©(bJ.xJ.- x^si-b^x^i (i67>
The first property is that C" = Z.(f.) — C is trivial, hence the chain

transformation r.: Z.(/.) -<■ C; a simp/e equivalence. Indeed Cj = Cy © Cy_!, and the
boundary operator is

b;(X,eX/-l) = 0»yXy - Xy-jeC-by-iXy-i).

Consider the DB-chain complex Cf, having the same homogeneous
components as C", but with boundary operator

b}*(x,exy_1) = x/_1e0.

Each map gy. Cj -» Cy defined by

gj(Xj © Xy_j ) = Xy © (byXy - Xy_j )

is a simple isomorphism, and g. = {gj) a chain equivalence. As Cf is trivial by
VI, so is Q'.

From (167) it follows that C. = (C„) is a DB-chain subcomplex of Z.(/.); the
DB-chain complex

M.(/.) = Z.(/.) - C. = (C © C„_i) (168)



§ 7B II. Elementary Notions and Early Results in Homotopy Theory 379

with boundary operator xj © x,_j -<■ {bjxj + fj^ix^-j))©{-bjXj^) is called
the cone of/.. As /: C. A Z.{f.) -♦ Q and r. are chain equivalences, i. is also a
chain equivalence. From the exact sequence

0->cAz.(/.)-M.(/.)-0
follows the homology exact sequence

H„(C.) k H„(Z.(/)) -> H„(M.(/)) -£. H^iCC.) i* U^ZXf.))

and since i„. is an isomorphism, H„(M.(/)) = 0 for all n, M.(/)) is acyclic.
Therefore its torsion is defined by VI; by definition

t(/.) = t(M.(/.)). (169)
Whitehead proved the following properties of the torsion t(/):

(i) If C. and C' are acyclic,

T(/.) = T(Q) - T(C.).

(ii) If/, is a simple isomorphism (157),

T(/) = 0.

(iii) If there is a chain homotopy between the chain equivalences /: C. -» C|
and a.: C. - Q, then t(/) = T(a.).

(iv) If/: C. -» C|, a.: C' -» C" are chain equivalences, then

T(0.o/.) = T(0.) + T(/.).

VIII. Suppose T. is a rn'w'a/ DB-chain complex, and consider the chain
transformations

C.âc.eT.âT.. (170)r. s.
Then/, p., r„ s., are all chain equivalences, and r(r.) = t(/) = 0. To prove that
/ and r. are chain equivalences, observe that p.s.= 1T ; since T. is free and
acyclic, it follows from (158) that there exists a chain homotopy k. such that

iT = fc.b; + bl'fc. for the boundary operator b;' of T.; (171)
hence

s.p. = s.ik.b: + b:k.)p;, (172)
but since s.b" = b.s. and b"p. = p.b.,

s.p. = (s.k.p.)b. + b.(s.k.p.), (173)
so (171) and (173) show that p. and s. are chain equivalences, each one a
homotopy inverse to the other. Since

lc.©T.-./>. = s.p.

and r./ = lc ,/ and r. are also chain equivalences, homotopy inverses to each
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other. Finally, from the definition,

M.(;.) = M.(1C.)0T.,

therefore t(;.) = t(1c.) + t(T.) = 0, and as 0 = t(1c.) = r(r.) + t(;.), r(r.) = 0.
The main result of the last algebraic part of the proof is that for a chain

equivalence /.: C. -» C', the condition x{f) = 0 is necessary and sufficient for
the existence of two trivial DB-chain complexes T., T' and a simple isomorphism
h.: C. © T 2i C © T[ such that the diagram

/.

c.©t. ► c;©t;
h,

commutes up to chain homotopy (in other words, there is a chain homotopy
between /. and p'.h.j.).

The sufficiency follows from the above properties of (170), since x(j.) =
x(p[) = 0; hence x{f) = r(h.) = 0. To prove the necessity, t(M.(/.)) = x(f) = 0
by definition, and as in VI, this implies that M.(/.) is simply equivalent to 0;
therefore j;. C. -» Z.(/.) is a simple equivalence, and since r.: Z.(/.) -» C. is a
simple equivalence by VII, the same is true for/. = rj,.

IX. Now that we have constructed this heavy algebraic machinery, we can
at last return to the homotopy of CW-complexes. Let /: K -► L be a cellular
map of CW-complexes; its mapping cylinder Zf (Part 2, chap. V, § 3,A) is
naturally given a structure of CW-complex in the following way. Consider the
natural map

p:(Kx [0,1])[JL-Z/
and take for n-cells the images p{e" x {0}), pie"'1 x ]0,1 [), and p{e'n), where
e" (resp. <?'") are the n-cells of K (resp. L) and e"'1 the (n - 1)- cells of K. The
natural maps (chap. II, §2,D) /.K-lz^L (174)
are then cellular; they lift to the universal coveringsf:Kllfll (175)
and L is again a strong deformation retract of 2f for the retraction f. By II,
from (174) are deduced homomorphisms

f,:n1(K-),-**dZf)r**ia<)

and from (175) chain transformations

C.(/): C.(R)-^U 0.(2,)-^+ C.(t). (176)
Suppose the cellular map / is now a homotopy equivalence; then i and r are
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homotopy equivalences, hence i# and rm are isomorphisms and C.(0 and C.(r)
chain equivalences of DB-chain complexes. Whitehead demonstrated that the
DB-chain complex C.(Zy) with its boundary operator is naturally identified
with the "combinatorial mapping cylinder" Z.(C.(/)) defined in VII, so that
M.(C.(/)) = C.^y) — C.(K). The torsion of the homotopy equivalence / is
then defined as

t(/) = t(C.(/)). (177)
From III it follows that this definition can be extended to any homotopy
equivalence /: K -► L by taking x(f) = x{g) for any cellular map g homotopic
to/.

The CW-complexes K and L are said to have the same simple homotopy
type if there exists a homotopy equivalence /: K -► L with x(f) = 0, called a
simple homotopy equivalence.

The first result Whitehead proved is that if the CW-complex K' is a
subdivision* of the CW-complex K, then the identity map i: K -► K' is a simple
homotopy equivalence. To show this he only had to observe that the mapping
cylinder Z; of the map i is a subdivision of the mapping cylinder Zlit =
K x [0,1] (where only the cells of K x {1} are submitted to subdivision,
giving a CW-complex isomorphic to K'). Subdividing one cell of K at a time
as in Part 2, chap. VI, § 3,A, he showed that C.(Z;) is isomorphic to C.(R) © T.,
where T. is trivial, so that t(C.(0) = 0.

X. The last part of Whitehead's ambitious undertaking makes the
connection between torsion and his notion of "formal deformation" (§ 7,A). He first
extended that notion to CW-complexes. The basic definition is the elementary
expansion of a CW-complex K obtained by attaching in succession an (n + 1)­
cell e"+1 and an (n + 2)-cell en+2 in the following way. With the notation of
§6,C, consider a continuous map /': D^+1 -<■ K; if g = f'\S„, attach the cell
e"+1 to K by the map g; there is then a map /": DJ+1 -» e"+1 coinciding with
g in S„ and which is a homeomorphism of the interior of D~+1 onto en+1 ; attach
the cell e"+2toKu, en+1 by the map /: S„+1 - K u9 en+\ equal to /' in D„++1
and to /" in D~+1. The passage from KtoKu, en+1 ur en+2 = Kx is called an
elementary expansion; there is a retraction r: Kx -» K for which K is a strong
deformation retract of K1, and the natural injection;: K -► Kx is its homotopy
inverse. Elementary contractions and formal deformations are then defined
as in §7,A.

Whitehead's final result is that if K, K' are two connected CW-complexes
that have the same homotopy type, a necessary and sufficient condition that
they have the same simple homotopy type is that there exist a formal deformation
of K into K'.

The sufficiency of the condition is easy: it is enough to obtain Kx from K

* The definition of a subdivision K' of K is the same as for classical cell complexes:
each cell of K is a finite union of cells of K'.
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by a formal expansion and check that for the injection;': K -» Kl5 the cone
M.(C.(;')) is isomorphic to M.(C.(1K)) © T., where T. is an elementary trivial
DB-chain complex, hence x(j) = 0.

The necessity is much harder to prove. Again take the mapping cylinder Zf
of a simple homotopy equivalence /: K -► L and the splitting of/:

/:K-lz/-L.
The retraction r can be considered a succession of formal contractions: if
e" is a cell of K of maximum dimension, so that K = K0 u e", then Zf =
Z/ouc'uen+\ with f0 = f\K0 and e"+1 = e" x ]0,1 [, so that Z/o is an
elementary contraction of Zf; the result follows by induction on the number of
cells of K. From the sufficiency proved above, r(r) = 0, and if x{f) = 0, then
r(i) = 0; the hard part of the proof is to show that there is then a formal
deformation of Zf into K.

It is convenient to forget the construction of Zf and to consider more
generally a connected CW-complex P of which K is a CW-subcomplex with
the property that the relative homotopy groups 7i;(P, K) are all 0 for i "^ 1.

(i) The strategy is first to treat a special case, in which P — K is a disjoint
union of cells of only two dimensions, e"+1 (1 ^; ^ t) and e"+2 (1 ^ i ^ s),
with n > dim(K). From the assumption that C.(P) — C.(R) is acyclic and has
zero torsion, we must prove that there is a formal deformation of P to K. The
DB-chain complex C.(P) — C.(K) has the form

0-C„+2-b>C„+1-+0 (178)
where C„+1 (resp. C„+2) is a Z[7i1(K)]-module having as basis cells è"+1 (resp.
è"+2), one above each cell e"+1 (resp. e"+2). Since (178) is acyclic, s = t, and if

bê7+2 = £ x0e/+1 with Xy g Z[Wi(K)], 1 ^ i ^ s (179)

the square matrix X = (x;j) has zero torsion.
Here we must return to the definition oft in V. The assumption means that

the matrix X can be reduced to the empty matrix by a succession of "elementary
operations" of four types:

a. Multiply a row (resp. column) by — 1.
b. Multiply a row (resp. column) on the left (resp. right) by g e rc^K).
c. Change X to the matrix of order increased by 1:

or the inverse operation.
d. Replace the i-th row of X by the sum of the i-th and the fc-th row for i # k.

Whitehead showed that for each of these operations transforming X into
X', there is a formal deformation of P to P', leaving K invariant and such that
the matrix of the boundary operator of C.(P') — C.(I£) is X'. It is only for
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operation (d) that a nontrivial construction is needed. Let T be the union of
K and the e"+1 (1 «S; «S s), and let g} be the attaching map of e"+2 to T; F is
defined by considering the union P" c P of T and the s — 1 cells e"+2 for; # i,
and attaching a new cell e"+2 to T by a map g taken in the homotopy class
[{?,-] + [01.] (i # fc) in tB+1(T). Thus P' = P" u9<?"+2 is deduced from P by a
formal deformation. On the other hand, the relative Hurewicz isomorphism
(§ 5,E) identified in

c.(P')-c.(R):o-c;+2-c;+1-o
the module C'n+1 with 7i„+1(T,K), the module C'n+2 with nn+2{P',T) and the
boundary operator b' with the composite homomorphism

^2(P',T)-7i„+1(T)-+7i„+1(T,K).

The choice of g then shows that X' can be deduced from X by replacing the
i-th row by the sum of the i-th and the fc-th row.

(ii) To prepare for the reduction of the general case to the special one treated
in (i) Whitehead needed two lemmas on formal deformations.

(ii a) Let K0, K1 be two CW-subcomplexes of a CW-complex, with
K = K0nK, a subcomplex, and K,- = KUy.e" for i = 0, 1. Suppose the
attaching maps f{: S„_1 -► K are homotopic in K. There is then a formal
deformation K1 -> K0 leaving K invariant. Suppose that el n e" = 0 and let
K* = K0uK,. Let g: S„_! x [0,1] -» K be the homotopy between f0 and/^
there is then a continuous map

/.•(D„ x WJuCS^! x [0,l])u(D„ x {1})-K*

such that xh-»/(x,0) and x\->f(x, 1) are the maps of D„ onto el and el defining
the attachments, and that f{x, t) = g{x, t) in S„_! x [0,1]. Take /as attaching
map of a cell e"+1 to K; if L = K Uy<?"+1, it follows from the definition that
there are elementary contractions L -» K0 and L -► Kx. If, on the other hand,
el n e" # 0, consider a third CW-complex K' obtained by attaching a new
cell e'" to K by the same attaching map f0, so that now <*'" n e"0 = e'" n e" = 0,
which reduces to the preceding case.

(ii b) The second lemma introduces a general process of "continuation" of
a formal deformation. Consider CW-complexes P d Pc d K, and for every
n "S 0 let fc„(P - P0) be the number of n-cells in P - P0. Let P0 ->• Q0 => K be
a formal deformation leaving K invariant. Then there exists a CW-complex
Q => Q0 and a formal deformation P -► Q leaving K invariant and such that

MP - Po) = MQ - Qo) for all n.

By double induction on the number of cells in P — P0 and on the number of
elementary deformations in the formal deformation P0 -» Q0 the proof can be
reduced to the case in which P = P0 u9 e", and P0 -» Q0 is either an elementary
expansion or an elementary contraction.

In the first case Q0 = P0 u e"'1 u e". If e" n (e"'1 u e") = 0, take Q =
P u e"'1 u e" with the same attaching maps, and Q = Q0 \jge" is clearly an
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elementary expansion of P. If e" n (<?p_1 u e") # 0, apply lemma (ii a) to P
and the CW-complex P' obtained by attaching to P another n-cell e'n by the
same attaching map g, but with e'" n (e"'1 u ep) = 0. _

In the second case, P0 = Q0 u <?p_1 u ep. Consider the map /: D„ ->• e"
corresponding to the attachment of e"; since Q0 is a strong deformation retract
of P0, there is a continuous map /': S„_! -» Q0 homotopic to g = /|S„_1 in
P0. Attach an n-cell é" to Q0 by /', and let P' = P0 ur <?'". By lemma (ii a),
there is a formal deformation P' -► P leaving K invariant, and since/'(S„_1) a
Q0. Q = p' — ep — <?p_1 is deduced from P' by an elementary contraction.
There is therefore a formal deformation P -» P' -» Q with kr(P — P0) =
MQ - Qo) for all r ■> 0.

(iii) To find a formal deformation of P into a CW-complex of the special
kind treated in (i), and leaving K invariant, the method proceeds by double
induction on the smallest dimension p of the cells whose disjoint union is
P - K. Let g: S^ ->• Kp_1 be the attaching map for one of these cells ep;
f: Dp -<■ ep is the map corresponding to this attachment, with /|SP_! = g; it
defines an element of the relative homotopy group np{P, K); but as that group
is 0 by assumption, there is a map h: Dp+1 -<■ Pp+1 such that h\~D~ = f (after
the usual identification of Dp with the southern hemisphere D~ of Sp) and
h(D+) c K. Attach a new cell ep+1 to P by h|Sp, and let u: Dp+1 — ~e~pV[ be the
corresponding map; attach to P u ep+1 a new cell ep+2 by v. Sp+1 -+Pu ep+1
such that v\D*+1 = h and v\D~+1 = u; then

P_P* = Puep+1u<?p+2

is a formal expansion, and

K^K* = Kufe'ul|S/+1
is also a formal expansion. By the "continuation" lemma (ii b) there is a formal
deformation P* -► Q leaving K invariant, such that, for every integer q ^ 0,
Q — K has as many q-cells as P* — K*; therefore

kp{Q - K) = kp(P - K) - 1,

fc,(Q - K) = fc,(P - K) for q ^ p + 3.

The induction then finally yields a CW-complex of the special type considered
in (i), with n = dim(P - K).

XL In the 1950s this prodigious piling-up of algebraic and topological
original devices excited the admiration of topologists, but they sometimes
wondered if Whitehead had not embarked on a quixotic adventure perhaps
leading to a blind alley. The situation changed in the early 1960s when the
relations of Whitehead's torsion with cobordism, K-theory, and their
applications began to appear, and Whitehead's insight was fully vindicated when the
extraordinary progress in the theory of C°-manifolds, both finite dimensional
and infinite dimensional, finally brought in 1972 the proof of invariance under
homeomorphism of the simple homotopy type of CW-complexes (see [436]).



Chapter III

Fibrations

§ 1. Fibers and Fiber Spaces

A. From Vector Fields to Fiber Spaces

The concept of fibration has been one of the most important mathematical
tools in the twentieth century; born in geometry and topology, it has gradually
invaded many other parts of mathematics.

Like sheaves (with which they have close relations), fibrations are
mathematical expressions of the idea of "functions" that associate to every point x
of a space X not a point in a fixed space, but a mathematical object (in this
case a space Yx depending on x, or a point of the variable space Yx) which is
not an element of a previously given set. Such "functions" have been around
for some time, notably in differential geometry: think of the various tangent
lines associated to a point of a surface in R3. With the global theory of
differential equations begun by Poincaré in 1880, emerged the concept of
vector field (already familiar to physicists). As long as the domain of definition
of a vector field is an open subset Q of an R" its definition is obvious: a map
X: Q. -> R", or (in the style of the time) a map

(x1,x2, ...,x„)i—►(X1(x1).. . ,x„),...,X„(x1,.. . ,x„))

where the Xj are ordinary (real-valed) functions. This agrees with writing an
autonomous differential system in Q as Poincaré does:

dx1 dx2 dxn
X1 X2 X„

The situation is not very different when it comes to defining a vector field
on a manifold M embedded in some RN. The vector X(x) (or rather, in the
classical conceptions, that vector translated to have its origin at the point
x e M) has to be tangent to M; the integral curves of (1) are then contained
in M. This is how Brouwer and Hopf worked with vector fields on S„ (Part 2,
chap. Ill, §3).

This easy reduction is not available when a vector field has to be defined
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on a C1 manifold of dimension n, not embedded in some RN. A natural idea
is to consider a chart q>: U -» R", defined in an open subset U of M and to
take a vector field X = (X1,X2,...,X„) on <p(U) in the sense defined above.
However, if q>'\ U -► R" is another chart and \p = q>' o (p'1 is the C1 homeo­
morphism of <p(U) onto <p'(U), the integral curves of the vector field X', the
image of X by \jj, should be the images by \p of the integral curves of X; this
leads to the expression of X' = (X\, X'2,..., X^) by the formulas

" d\l/­XjMy)) = I x^h^ (i^'^")- (2)
These and similar formulas for the expressions of a differential 1-form in

two different systems of local coordinates "explain" in some sense the way
"tensors" (or more accurately "tensor fields") were defined in the traditional
style by Ricci, Levi-Civita, and their successors until an intrinsic definition of
a tangent vector was given in Chevalley's 1946 book [131], probably for the
first time.

Another origin of fibrations in differential geometry was the theory of
moving frames. It had long been known that if M is a smooth curve or surface
in R3, then among the orthonormal systems (e1,e2,e3) of three vectors of
origin xeM, some are invariantly attached to M (the "Frenet frame" for
curves). Ribaucour and Darboux had the idea of expressing the variations of
x and of the e,- along M, not in a fixed system of coordinates in R3, but relative
to the variable frame (e^ e2, e3), so that3 3

dx=Yt <"-Ve.> dei = £ Wifr (* = !.2.3) (3)

where the a; and <u0- are differential 1-forms on M; for surfaces they satisfy
easily written conditions stemming from the relations d{dx) = 0 and d(dej) = 0
for exterior differentiation. Conversely, a system of 1-forms satisfying these
conditions characterizes a surface in R3 up to an isometry of R3.

The frames (x, e1,e2,e3) may be considered the images of a fixed frame
(0, u !, u2, u3) of R3 by a variable isometry of R3. In 1905 E. Cotton generalized
that idea: he replaced the group of isometries of R3 by any Lie group generated
by the translations of R3 and a subgroup leaving the origin invariant, like the
Lobatschefsky group SO(<l>) for a quadratic form <b of index 1 [136].

Cotton's ideas were further elaborated in 1910 by E. Cartan [160], who
applied his earlier results on Lie groups. After 1920 he became interested in
general relativity and riemannian and pseudoriemannian manifolds. It is
possible to associate to a point x in a riemannian manifold M of dimension
n the set R(x) of orthonormal bases in the tangent space at the point x; the
orthogonal group acts in a simply transitive fashion on each R(x). In general
there will be no Lie group acting on M and transforming each R(x) into an
R(>>); the Levi-Civita connection only shows that for any path y joining x to
y in M, there is a well-determined linear map R(x) -» R{y) depending in general
on the path y.
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Neither for frames nor for tangent spaces at variable points of a manifold
did it occur to differential geometers at that time to consider a space that
would be their disjoint union. This was perhaps due to the traditional concept
of tangent vectors to a surface embedded in R3: the tangent plane formed by
these vectors at a point was also embedded in R3 !

Before 1935 the closest approach to the necessary "extraction" of tangent
vectors from the ambient space was to be found in a paper by Hotelling [252].
He considered a tangent line D(x) varying continuously with x for each point
x of a surface S, and described on the three-dimensional disjoint union of the
D(x) a differential structure that is not the product structure on the space
S x R.

B. The Definition of (Locally Trivial) Fiber Spaces

The words "fiber" ("Faser" in German) and "fiber space" ("gefaserter Raum")
probably appeared for the first time in a paper by Seifert in 1932 [420], but
his definitions are limited to a very special case and his point of view is rather
different from the modern concepts. He is interested in the topological
structure of three-dimensional manifolds, particularly those that can be considered
spaces of orbits of properly discontinuous groups G of isometries of the sphere
S3, such as the lens spaces or the Poincaré space (chap. I, § 1 and §4,D). Each
circle yz: th^ze" in S3 in these examples is transformed by an isometry s e G
into another circle ys.7, so that the images of these circles in S3/G are again
homeomorphic to a circle and they form a partition of S3/G. When G is
reduced to the identity, these "fibers" are all the circles yz, also defined as the
inverse images of the points of S2 by the Hopf map (chap. II, § 1); the union
of those fibers that meet a small open neighborhood of a point of S3 is
homeomorphic to the three-dimensional "open torus"T = D2xS1. (4)

This led Seifert to study in general what he called a fiber space in his paper
a three-dimensional connected C° manifold M, equipped with a partition (Tx)
into "fibers" consisting of closed Jordan curves, each of which has a
neighborhood homeomorphic to the "open torus"; there are in general, however,
"exceptional" fibers Tx, such that there is no homeomorphism of a
neighborhood Ta of rx sending each fiber rß contained in Ta onto a circle {y} x Sj of
the "standard torus" (4). The main difference from the present day conception
of a fiber space, however, was that for Seifert what is now called the "base
space" of a fiber space E was not a part of the structure, but derived from it
as a quotient space of E.

The first genuine "fiber space" was only defined by Hassler Whitney in 1935
[505] under the name "sphere-space." In 1940 Whitney changed the name to
"sphere-bundle" [513] and gave two expository lectures on that topic (with
sketches of proofs) in 1937 [508] and in 1941 [514]; he intended to write a
book on the theory, but it never materialized. His interest was mainly focused
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on the "characteristic classes," which he and Stiefel defined independently (see
chap. IV, § 1), and on their application to the topology of differential manifolds,
so that for him fiber spaces were primarily a tool; hence his definitions were
not spelled out in every detail, but his meaning is quite clear.

The central idea is that a "sphere-space" is a disjoint union of subspaces
{x} x Sm, where x is any point of a "base space" K (for Whitney, usually a
simplicial complex or a differential manifold) and the dimension m is fixed;
the "total space" is "locally" a product of an open subset of K and the sphere
Sm. To give a precise meaning to this idea, Whitney, in his 1935 Note,
considered an open covering (U,) of K and, for each index i, the product space
U,- x Sm; these spaces had to be "glued together" in such a way that for any
point xeU,n U,-, the "fibers" {x} x Sm in U, x Sm and in IL x Sm could be
identified. He did this by using "charts" in a way similar to the definition of
a C°-manifold. For each pair (i,j) such that U,- n IL # 0, there is given a
"transition" homeomorphism q>tJ of (IL n Uy) x Sm onto itself, which has the
special form

(pif(x,y)\->(x,Ç,j(x,y)), (5)
where £y is a continuous map of (IL n U,) x Sm into Sm (Whitney assumed it
to be C1 when K is differentiable); then, for each xeU,-n U,-,y^£,ij(x,y) (6)
is a homeomorphism of Sm onto itself. There is an additional condition implicit
in Whitney's definition: for any three indices i,j, k such that IL n IL n \Jk # 0,
the "cocycle condition" is required:

(Pik(x, y) = (pij{x, q>Jk{x, y)) for (x, y) e (U, n Uy n Uk) x Sm. (7)

Immediately following that definition Whitney introduced a more
restrictive class of "sphere-spaces," which he called "regular": those for which the
maps (6) are orthogonal transformations of Sm. In fact, he only considered that
class of sphere-spaces in the remainder of the Note. He mentioned that the
study of these "regular" sphere-spaces is equivalent to what was later called
vector bundles (see below), and his first examples were the tangent bundle and
the normal bundle of a C2 manifold embedded in an RN (see section C, III).
In his 1940 Note he was again mainly interested in characteristic classes, but
mentioned at the beginning that in his 1935 definition, the sphere Sm could be
replaced by any topological space F, and the orthogonal group by any group
of homeomorphisms of the "typical fiber" F; he also observed that when F is
a discrete space, the fiber space is just a covering space of K.

Meanwhile, Ehresmann was studying E. Cartan's notions of "connections"
on his "generalized spaces" and was trying to unify them under a general
notion derived from the concept of fiber space. In Notes written partly in
collaboration with his pupil Feldbau ([159], [166]), he drew attention to
Whitney's definition of a fiber space in the case where the "fiber" is a topological
group G and the maps (6) of G into itself are left translations
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ti-»sy(x)t (8)
of the group G; the "cocycle condition" (7) then boils down to

Sik(x) = Sij(x)sjk{x) for x e U; n Uj n Ut. (9)
He called these principal fiber spaces with structural group G. He observed
that in Whitney's 1940 definition, if G is a topological group acting faithfully
on F by (s, y) h-» s . y, then to any fiber space E with typical fiber F and base
space B is associated a principal fiber space of structural group G and base
B, provided that the maps (6) may be written

y\->ÇiJ(x,y) = giJ(x).y (10)
where gtj is a continuous (resp. C1) map of U( n U, into G; this is done by
taking Sij = gtJ in (8).

Conversely, given a principal fiber space P with base space B and structural
group G and a topological space F on which G acts by (s, y) h-» s . y, the maps

(Pij(x,y) = (x,sij(x).y) (11)
define a fiber space of base space B and typical fiber F, which Ehresmann says
is associated to P and to the action of G on F. It was by this two-way
association that Ehresmann could later give his general definition of
"infinitesimal connections" [165], taking as principal fiber spaces the spaces of
"moving frames" used by E. Cartan in his conception of "generalized spaces."

Another important example of fiber space was later discovered by Ehres­
mann: let M and N be two C°° manifolds, and /: M -» N be a submersion; if
N is connected and, for every y e N, /_1(y) is compact and connected, then
(M, N,/) is a fiber space [163]. In particular, the maps S3 ->S2, S7 ->S4,
Sj 5 -» S8 defined by H. Hopf (chap. I, § 1 ,C) define fiber spaces with respective
fibers Sj, S3, and S7.

C. Basic Properties of Fiber Spaces

During the period between 1940 and 1950 the usefulness of fiber spaces in
many problems concerning homotopy, homology, and differential geometry
began to be realized. In order to make them available to larger segments of
the mathematical community, efforts were made to systematize the basic
notions of the theory; at first some confusion of the different notations and
definitions adopted by various mathematicians was probably unavoidable,
but at the end of that period things settled down in the 1949 1950 Seminar
of H. Cartan [423] and in Steenrod's textbook of 1951 [450].

I. Whitney's definition introduced the "total space" E, the "base space" B,
and the "fibers" Eb attached to each point b e B; the latter may be considered
the inverse images n~l{b) of the points of B by a surjective map n: E -» B.
Although Whitney did not explicitly say so, he knew the map n (later often
called the "projection") to be continuous. Whitney's definition is at the same
time a construction of fiber spaces by choice of an open covering and of
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transition homeomorphisms (5), but a simpler definition is possible: to each
point b e B, there exists an open neighborhood U of b, a space F, and a
homeomorphism

<p:U x F~w-1(U) (12)
such that

n{q>{y, r)) = y for all y e U and t e F. (13)
This implies that n is an open map and that the space B can be identified to
the quotient space E/R, where R is the relation n{x) = n{y). All fibers 7i_1(è),
also written Eb, for b in the same connected component of B, are homeo­
morphic; when B is connected, the space F is called the "typical fiber" of the
fiber space.

It is convenient to write a fiber space as (E, B, n), (E, B, F, n), or (E, B, F) if
all fibers are homeomorphic, but these notations are often simply replaced by
E (the total space) when no confusion arises.

Although before 1950 the "categorical" notions (Part 1, chap. IV, §8) were
not yet widespread, "morphisms"

(/,a):(E,B,7i)-(E',B',7i') (14)
were soon defined; g: B -► B' and /: E -► E' are continuous maps, such that

n'{f(x)) = g(n{x)) for all xeE. (15)
For each fceB, the restriction fb = f\Eb: Eb -> E'g(b) is a continuous map;
Whitney (and even Seifert) had already considered isomorphisms (/, g), which
are morphisms such that both / and g are homeomorphisms. A morphism in
which B' = B and g is the identity is called a ^-morphism.

If (/, 1B) is a B-morphism (E, B, n) -» (E', B, n') such that E and E' are locally
compact, then, if for each fceB, fb: Eb -» EJ, is a homeomorphism, (/, 1B) is an
isomorphism.

A fiber space (B x F, B, prx) is called trivial; a fiber space (E, B, n) is trivial­
izable if it is isomorphic to a trivial one; a B-isomorphism

(E,B,7i)~(Bx F,B,pri)
is called a trivialization.

In 1935 Whitney hinted at a definition of the pullback (or inverse image) of
a fiber space X = (E, B, n) by a continuous map g: B' -► B as a fiber space
(E', B', 71') such that for every V e B' the fiber EJ,. is homeomorphic to E^.,.
This can be defined intrinsically by taking as "total space" the fiber product
E' = E x B B', which is the subspace of the product E x B' consisting of the
points (x, b') such that g(b') = n(x); if n' is the restriction to E' of the second
projection pr2: E x B' -<■ B', the pullback, written g*{X), is (E', B', n'). If/is the
restriction to E' of the first projection pr^E x B'-> E, the pair (/, g) is a
morphism g*(l) -» I of fiber spaces such that for any V e B', fb.: EJ,. -» E^., is
a homeomorphism; g*(l) has the "universal property" (Part 1, chap. IV, § 8,C)
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that any morphism

(U,a):(E",B',7i")-+(E,B,7i)

corresponding to the same map g, factorizes uniquely into

(E", B', 7i") (P'1*'). (E', B', n') if'9) » (E, B, n).

In particular, if B' is a subspace of B and ;': B' -► B is the natural injection,
thenj*(X) is called the restriction to B' of X; its total space is identified with
7t_1(B') and its projection with the restriction of % to 7c_1(B').

In his 1937 address Whitney also introduced (under the unfortunate name
"projection") what is now called a section (or cross-section) of a fiber space
(E, B, n) over the base space B, namely, a continuous map s: B -► E such that
n{s{b)) = b for all b e B. For the tangent bundle of a manifold this is the
classical "vector field" defined in the whole manifold; the example of the
"sphere-space" over S2 whose fibers are the circles of radius 1 in the tangent
planes shows that sections over the whole "base space" may not always exist.
If s is a section over B, it is a homeomorphism of B onto a subspace s(B) of E
that is closed if the fibers are Hausdorff spaces. For any pullback g*(X) =
(E', B', n') of / = (E, B, n) and any section s of X over B the map b'i—► s(g(b'))
is a section of g*{X) over B'.

For any subspace A of B a section s: A -» 7t_1(A) of the restriction of X to
A is also called a section of X (or of E) over A.

If B is paracompact and the typical fiber is homeomorphic to some RN, any
section of E over a closed space A can be extended to a section of E over the
whole space B (a generalization of the Tietze-Urysohn theorem); in particular,
taking for A a single point, there always exist sections over B.

Finally, if X' = {E',B',n')andX" = (E",B",ti") are two fiber spaces, X' x X" =
(E' x E", B' x B", li x n") is a fiber space. In particular, if B' = B" = B,
consider the pullback X = 5*(k' x X") by the diagonal map S: b *->(b, b) of B; it can
be identified with the fiber product E' xBE", and each fiber is naturally
homeomorphic to E'b x EJ,'.

II. From the definition by charts of a principal fiber space (P, B, G, n) with
structural group G it follows that G acts on the right on P; indeed (with the
notations of § 1,B) since it acts on each product II x G by (b, t).s = (b, ts), it
need only be shown that

{b,S,ii(b,ts)) = (b,S,ij(b,t)s\

which is true because S,ij(b,t) = Sij{b)t in G. The action of G on each fiber
7i 1(fo)is simply transitive. An intrinsic definition of a principal fiber space may
therefore be attempted by considering, as Seifert did, a space P on which a
topological group G acts freely (without fixed points; z.s = z implies s = e).
The base space should then be the space of orbits G\P, quotient space of P.
For any point b e G\P, there must exist a local section of P above a
neighborhood of b. However, even if P and G are locally compact, G\P is not
necessarily Hausdorff (hence there may not exist a local section). A sufficient
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condition for G\P to be Hausdorff is that the subset R of P x P consisting
of the pairs (u, v) such that u and v belong to the same orbit, be closed in P x P.
Even when P and G as well as G\P are compact, there do not necessarily exist
local sections of P. An example is given by the infinite product P = (SO(3))N,
on which the subgroup T = S^ acts by right translations ([55], p. 38)

Gleason showed [207] that if P is a regular space and G a Lie group, there
are local sections for every point of G\P. This is always the case when P is a
locally compact group and G a closed subgroup of P which is a Lie group
acting by right translations.*

A type of principal fiber space that occurs frequently is (G, G/H, H, n), where
G is a Lie group, H is a closed subgroup, and G/H is the homogeneous space
of left cosets rH, H acting on G by right translations.

The definition of morphisms for principal fiber spaces is more restrictive
than for general fiber spaces: a morphism

(/,a):(P,B,G,7i)-(P',B',G',7i')

must satisfy (15) and there must exist a continuous homomorphism p: G -► G'
such that

f{x. s) = fix). pis) for x e P, s e G. (16)
The trivial principal fiber space with base B and structural group G is

the product B x G on which G acts by ((b, r), s) i—» (b, ts). A B-isomorphism
(P, B, G, n) ~ (B x G, B, G,pr,) is called a trivialization of (P, B, G, n); when
such a B-isomorphism exists, (P, B, G, n) is called trivializable. A necessary and
sufficient condition of trivializability for a principal fiber space with base space
B is the existence of one section over B.

The pullback of a principal fiber space (P, B, G, n) by a continuous map
g: B' -» B is again a principal fiber space (P', B',G,7t'), the action of G on the
total space P' = B' x B P being given by

ib',x).s = ib',x.s).

III. The most widely used fiber spaces are the vector bundles considered by
Whitney in 1935. In such a fiber space £ = (E, B, F,7t), also called a vector
fibration, the typical fiber F is a real (resp. complex) vector space of finite
dimension (called the rank of the vector bundle), each fiber Eb is a real (resp.
complex) vector space of same dimension as F, and each fceB has an open
neighborhood U for which there exists a homeomorphism

<p: U x F-tT'OJ)

such that niçiy, t)) = y for all y e Ü and r e F, and which has the additional
property that 11—» (piy, t) is an R-linear (resp. C-linear) bijection of F on Ey for

* The existence of local sections when P is a Lie group and G a closed subgroup of P
had already been mentioned in Ehresmann's thesis of 1934 ([155], p. 398).
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all y e U. If n is the rank of E, an equivalent condition is the existence of a
system of n continuous sections Sj (1 ^y ^ n) above U (also called a frame
over U) such that

(y,ç1,ç2,...,ç„)^ç1s1(y) + --- + Lsn{y)

is a homeomorphism of U x R" (resp. U x C") onto 7i_1(U).
Morphisms of vector bundles are again more restrictive than for general

fiber spaces; (/, g): (E, B, F, n) -<■ (E', B', F', n') must be such that /b: Eb -► E'g(b)
is an R-linear (resp. C-linear) map for every b e B. The map / is often called
a bundle map; it defines g uniquely, since if b = n(x), then g(b) = n'{f(x)).

A pullback of a vector bundle (E, B, F, n) by a continuous map g: B' -► B is
naturally equipped with a structure of a vector bundle. Since fb. is a bijection
of EJ,. onto E9(6), the structure of a vector space on EJ,. is defined by
"transporting" the structure of a vector space of Ea(b.) by the map fb~l.

The usual constructions of linear algebra (or, in categorical language,
functors that associate a vector space to one or several vector spaces) can be
"transferred" to vector bundles. If E', E" are two vector bundles with the same
base space B, their direct sum E' © E" (also called Whitney sum) is a vector
bundle E with base space B such that each fiber Eb is the direct sum EJ, © EJ,';
its topological structure is uniquely determined by the condition that if
s', s" are, respectively, sections of E', E" over an open subset U c B, then
b i—► s'(b) © s"(b) is a section of E over U.

The definitions of the tensor product E' ® E" and the bundle of B­
morphisms Hom(E', E"), whose fiber at b e B is Hom(EJ,, EJ,') are similar; the
dual E* of a vector bundle E is Hom(B, E x R) [resp. Hom(E, B x C)]. The
exterior power /\m E and the exterior algebra /\ E are also vector bundles
whose fibers at b are /\m Eb and /\ Eb, respectively.

A vector subbundle E' of a vector bundle (E, B, F, n) is a subspace of E such
that for each b e B, E' n Eb = E'b is a vector subspace of Eb and for each b e B
there is an open neighborhood U of b and a homeomorphism

<p:U x F~7t_1(U)

as above, such that 7i_1(U) n E' is the image <p(U x F'), where F' is a vector
subspace of F. If E' is a vector subbundle of E, let E" be the disjoint union of
the quotient vector spaces Eb = Eb/Eb for b e B; then there is on E" a unique
structure of vector bundle of base B such that the map p: E -» E", which, when
restricted to each fiber Eb, is the natural surjection Eb -► Eb/Eb, is a B­
morphism. The vector bundle E" is called the quotient vector bundle of E by
E' and is written E/E'. If B is a paracompact space, E splits into a direct sum
E' © N such that the restriction of p: E -► E" to N is a B-isomorphism.

If u: E -» F is a B-morphism of vector bundles with base space B, the disjoint
union u(E) of the images Ib = u(Eb) c Fb of the fibers of E is not necessarily a
vector subbundle of F. In general, the dimension of the vector space Ib is only
a lower semicontinuous function of b; for
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fceB

to be a vector subbundle of F, a necessary and sufficient condition is that
bt-^dim{lb) be constant in B; I is then written Im(u). The kernels Nfc = u^'(0)
are then also the fibers of a vector subbundle N of E, written Ker(u), and the
quotient bundle F/Im(u) is written Coker(w).

A sequence of B-morphisms of vector bundles of base BE-^fAg (17)
is called exact if for each b e B the sequence of linear maps

is exact; u(E) is then a vector subbundle of F, equal to v'1 (G).
Examples. The tangent bundle of a C1 manifold M is the disjoint union T(M)

of the tangent vector spaces TX(M) at each point xeM, which are the fibers
of T(M), and the projection maps every tangent vector in TX(M) to the point
x. If N is a submanifold of M, the tangent bundle T(N) is a vector subbundle
of T(M); the quotient T(M)/T(N) is called the normal bundle of N in M. When
M is a riemannian manifold and T^N)1 is the subspace of TX(M) orthogonal
to TX(N) for each x e N, these vector spaces are the fibers of a vector bundle
isomorphic to the normal bundle.

The passage of "regular" sphere bundles to vector bundles, mentioned by
Whitney, can simply be done by starting from an open covering (U,) of the
base space B and the transition homeomorphisms (5) for which the maps
yi—► £,ij(x, y) are orthogonal transformations of Sm; such a transformation
extends uniquely to a map y i—► >/y(x, y) belonging to the orthogonal group
O(m), and the vector bundle is defined by the transition homeomorphisms
(x, y) i—► (x, t\ij{x, y)). Conversely, if (E, B, n) is a vector bundle and B is para­
compact, it is easy to define on the set of pairs {x, x') of points of E such that
n{x) = n{x') a continuous function d(x,x') such that its restriction to Efc x Efc
for each b e B is a euclidean distance. The corresponding sphere bundle is
then the union of the unit spheres in the fibers Efc.

IV. Ehresmann's conception of a fiber space associated to a locally compact
principal fiber space (P, B, G, ri) can be presented in an intrinsic way: suppose
there is given an action (s, y) h-» s . y of G on a locally compact space F; then
G operates (on the right) on the product P x F by

(x,y).s = (x.s,s~1 .y). (18)
The space of orbits G\(P x F), written P x GF, is locally compact; let
p:P x F->P x GFbe the natural projection, and writex.y = p(x,y) (19)
so that

x. y = {x. s). (s '. y) for s e G (20)
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and the relation x. y = x'. y' means that there exists s e G for which x' = x. s,
y' = s~l. y. For z = x. y, let

nv{z) = n{x) e B, (21)
which does not depend on y e F. If U c B is open and a: U -► 7i~'(U) is a
section of P above U, the map

{b,y)\-^a{b).y

is a homeomorphism of U x F onto 7ip'(U) such that
nv(a(b).y) = b\ (22)

this shows that (P x GF, B, F,nr) is a fiber space with base B and typical fiber
F associated to the principal fiber space P and to the given action of G on F.

With the same notations the sections of P x GF above U can be written in
a unique way b^a{b).^j(b) (23)
where \\i is a continuous map of U into F. For every x e n~l (U) and b = n{x),
o{b) = x.s for a unique s e G, hence o(b). \jj{b) = x.(s. ^(b)), and s. \jj(b) only
depends on x. If / is a section of E = P x GF above the whole space B, there
is therefore a unique map q>f: P -» F such that

f(n{x)) = x.cpf(x); (24)
(pf is continuous and satisfies

(pf{x. s) = s~l. (pf(x) for (s, x) e G x P. (25)
Conversely, a continuous map (p: P -» F such that

<p(x. s) = s "'. <p(x) for (s, x) e G x P (26)
defines a section / of E above B by f(b) = x. cp(x) for x e 7i_1 (b).

Suppose (P', B',G',7i') is a principal fiber space and that the group G acts
on the left on that space in such a way that

s.{x'.s') = {s.x').s' for s e G, x' e F, s' e G'. (27)
Then 7i'(s. x') = n'{s. (x'. s')), hence that element only depends on s and n'{x')
and can be written s.n'(x'); this defines an action of G on B', easily proved
continuous. Then the map

p':x.x'i-^x.7t'(x') (28)
of P x GP' into P x GB' is well defined, and (P x GP',P x GB',G',F) is a
principal fiber space. If G' now acts on a space F', G acts on the left on P' x G F'
by s. (x'. y') = (s. x'). y'; then the map

(x.x').y'i-^x.(x'./) (29)
is well defined and is a homeomorphism
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(P x GF) x G'F' ~ P x G(F x G'F') (30)
(note that the left-hand side is a fiber space with base P x GB', whereas the
right-hand side is a fiber space with base B).

The construction of an associated fiber space P x GF is particularly
important in the following cases.

(i) Let H be a closed subgroup of G that operates on P on the right by
restriction of (x, s) i—► x. s to P x H. Then P is also a principal fiber space with
structural group H and base space the space of orbits H\P, because H\P is
naturally homeomorphic to P x G(G/H). If %: H\P ->• G\P is the map that
to each orbit for H associates the unique orbit for G which contains it,
(H \ P, G \ P, 7t) is a fiber space with typical fiber G/H; if H is normal in G, H \ P
is a principal fiber space with structural group G/H.

(ii) Let (P, B, H, n) be a principal fiber space, and suppose H is a closed
subgroup of a Lie group G. Then H acts freely on G by left translations, and
we may form the associated fiber space Q = P x HG; it again has B as a base
space and is a principal fiber space with structural group G. The action of G
on Q is given by

{{x.s),s')i—>x.{ss') for x e P, s, s' in G,

which is meaningful because for any t e H

(x. f). ((r1 s)s') = {x.t). (f ' {ss')) = x. {ss').

The map x\-*x.e is a homeomorphism of P on a closed subspace of Q
sending each fiber Pfc onto a subspace of Qfc; if y e Pfc, so that Pfc = y. H, then
Qfc = y. G. The principal fiber space (Q, B, G, nG) is deduced from (P, B, H, n)
by extension of the structural group H to G.

A principal fiber space (Q, B, G, p), however, is not always B-isomorphic to
a principal fiber space P x HG. If G is considered as a principal fiber space
with base space {<?}, it follows from (30) that if Q = P x HG, then Q x G(G/H)
is B-isomorphic to P x H(G x G(G/H)), and hence to P x H(G/H). But this
last fiber space has a section above B, because if ë is the class e. H = H in
G/H, the relation x.ë = x'.ë in P x H(G/H) means that there exists an
element t e H such that x' = x.t and ë = t_1 .ë, and therefore n{x) = n{x'),
so that there is a factorization

xi—»7t(x)i—»x.e

and a is injective, hence a section of P x H(G/H) over B.
Conversely, if there is a section a of Q x G(G/H) over B, the inverse image

of <t(B) by the map x i—► x. ë is a principal fiber space with base space B and
structural group H, from which Q is deduced by extension of H to G. That
principal fiber space is then said to be obtained by restriction of the structural
group G to its subgroup H.

An important case in which restriction is possible is when G is a connected
Lie group and H is a maximal compact subgroup of G, because in that case
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G/H is homeomorphic to a space RN, and there exists a section over B for any
fiber space of base B and typical fiber G/H.

(iii) Ehresmann's conception of associating a principal fiber space to a
vector bundle (§1,B) can be presented intrinsically: suppose (E,B, F,rc) is a
vector bundle, and consider the vector bundle Hom(B x F, E), whose fiber at
the point b e B is Hom(F, Efc); then GL(F) acts on the right on this vector
bundle, the action on a fiber being (u,s)huoS for s eGL(F). Then the
subspace Isom(B x F, E) may be defined such that, for b e B

Isom(B x F, E) n Hom(F, Eb) = Isom(F,Efc),

the subspace consisting of the bijective linear maps F ~ Efc. This is a dense
open subspace of Hom(B x F, E); it is stable under the action of GL(F), and
the action of that group on each fiber Isom(F, Efc) is simply transitive, so
R = Isom(B x F, E) is a principal fiber space with base space Band structural
group GL(F); it is the fiber space offrantes for the vector bundle E. The space
F may always be identified with an RN by choice of a basis; then Isom(RN, Efc)
is identified with the set of all bases of Efc, each isomorphism v: RN 2; Efc being
identified with the basis

(i>(e i ),..., i>(eN))

image by v of the canonical basis. A section s of Isom(B x RN, E) above an
open set U c B is therefore a map

J"-^(si(J'),...,Sn(J'))

where each Sj is a continuous map of U into E such that (s^y),..., sN{y)) is a
basis of the vector space Ey for all y e U; this is what has been called a "frame"
for 7i_1(U). The action of a matrix

t = (r0.)eGL(N,R)

on a fiber Isom(RN, Efc) is then

Conversely, any linear representation p: G ->GL(F) enables us to define,
for a principal fiber space R of base B and structural group G, an associated
fiber space R x GF, which is a vector bundle of base B and typical fiber F.
Take G = GL(F) and for R the fiber space of frames defined above; then there
is a natural isomorphism of vector bundles

E ~ R x GL(F)F

and similarly one has an isomorphism of /\m E onto R x GL<F>( /\m F), etc.
In the principal fiber space of frames of the vector bundle E it is possible

to restrict the structural group GL(N, R) to the orthogonal group O(N), that
is a maximal compact subgroup of GL(N, R). Every real vector bundle may
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thus be considered as associated to a principal fiber space whose structural
group is the orthogonal group.

V. The whole theory described in this section can be developed by replacing
topological spaces everywhere by C00 manifolds (resp. real analytic
manifolds, resp. holomorphic complex manifolds) and continuous maps by C00
maps (resp. analytic maps, resp. holomorphic maps); topological groups are
replaced by Lie groups and definitions and proofs are transcribed according
to that dictionary. The only point that requires some care is the structure of
the orbit space X/G, where X is a C00 manifold, and G is a Lie group acting
on X by a C00 action (s, x) i—► s. x. Then, in order for X/G to have a structure
of C00 manifold for which the natural projection n: X -» X/G is a submersion,
a necessary and sufficient condition is that the subspace R of X x X consisting
of pairs of points on the same orbit is a closed submanifold of X x X.

§ 2. Homotopy Properties of Fibrations

A. Covering Homotopy and Fibrations

In his first Note of 1935 on homotopy groups [256] Hurewicz made a special
study of the space <^(Y;G), where G is a Hausdorff topological group. In
particular he investigated the relations among that space and the spaces
<^(Y;H) and <«f(Y;G/H) for a closed subgroup H of G. Although he only
considered the case in which Y is compact, if Y is Hausdorff and ^(Y; G) is
given the usual compact-open topology (chap. II, § 3,A), then it is a topological
group for the obvious law of composition (f,g)*—>-fg, where (/g) (y) = f{y)g(y);
the neutral element is the constant map Y -> {<?} and the inverse/-1 the map
yi-tfiy)'1­

If H is a closed subgroup of G and HAG-5» G/H are the natural maps,
they define maps

<«f (Y; H) i %(Y; G) -^ %(Y; G/H)

were/(/) = j o/and p(g) = p o g;j and the map

~i: tf (Y; G)//(«(Y; H)) - tf (Y; G/H) (31)
deduced from p are injective.

The main result Hurewicz stated was that if G is a compact Lie group and
Y is a compact space, the image of i is open and closed in ^(YjG/H). This
implies that if #(Y; G/H) is arcwise-connected and #(Y; G) locally arcwise­
connected, the map i is bijective, so that every arcwise-connected component
of #(Y;G) must contain an element of j(<^(Y;H)). In other words (chap. II,
§3,A), if p of is homotopic to the constant map Y -> {ë0} = p(H), then/must
be homotopic to a map g: Y -> H.

Disregarding covering spaces, where such a "lifting" of a homotopy is
unique (chap. I, § 2,V), this was the first appearance (in a very special case) of
what became known as the covering homotopy problem: given a continuous
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map n: E -* B, a continuous map /: X -* E and a homotopy

Ji:X x [0,1]-»B

such that h{x,0) = n(f(x)) for x e X, does there exist a homotopy

k:X x [0,1]->E

such that n ° k = h and fc(x, 0) = /(x) for x e X?
A system (X, E, B, n) has the covering homotopy property if the preceding

problem has at least one solution for every continuous map / and every
homotopy h. When (X, E, B, n) has the covering homotopy property, the same
is true for (X, E', B', n'), where E' = E x B B' is the "fiber product" defined by
a continuous map g: B' -> B, and n'\ E' -> B' is the second projection of the
product E' x B'.

Hurewicz did not publish any proof of his theorem on groups before 1940;
it then became a consequence of his joint Note with Steenrod (see B, below)

In the meantime, in 1937 Borsuk published a result on spaces of continuous
functions [75] that later was seen to imply a covering homotopy property.
Let X be a locally compact ANR (chap. II, §2,B), A be a closed subspace of
X which is also an ANR, and Y be an arbitrary space, and let

E = <-f(X;Y), B = «'(A;Y) (32)
with the usual compact-open topology (chap. II, §3,A). Let n: E -> B be the
continuous "restriction map"

Jt:/i-/|A.
Then for any space Z, (Z, E, B, n) has the covering homotopy property. Using
the fundamental property of the compact-open topology (loc. cit.), what is to
be proved is the following: suppose given two continuous maps

u: Z x [0,1] x A -► Y, t:ZxX-»Y
such that u(z,0, x) = v(z,x) in Z x A. Then there exists a continuous map

w:Z x [0,1] x X->Y
such that

w(z, t, x) = u(z, t, x) for x e A, w(z, 0, x) = v(z, x) for x e X. (33)

Borsuk had proved the existence of a retraction r of the space [0,1] x X on
its subspace

T = ([0,1] x A)u({0} x X)

(chap. II, §2,D); then

(z,t,x)\-*(z,r(t,x))

is a retraction of Z x [0,1] x X on its subspace Z x T, hence

w{z, t, x) = u(z, r(t, x))
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satisfies (33). The result extends to the case in which X is a locally compact
space and j: A -> X a cofibration (chap. II, § 2,D).

The work of Serre on homotopy groups (chap. V, § 5,A) brought to light
the most important case of Borsuk's theorem (although the theorem itself is
not mentioned in Serre's thesis [429]). Y is an arbitrary arcwise-connected
space, X = Dj = [- 1,1], and A = S0 = {- 1,1}; E = «([-1,1]; Y) is then
the space of all paths between two points of Y, also written PY*; B =
CS({ — 1,1}; Y) is naturally identified with the product Y x Y, and the map
7i : E -> B is simply

y->(y(-iXy(i)).

For a fixed point y0 e Y, any subspace M of Y may be identified with the
subspace B' = M x {y0} of B, and E' = 7t-1(B') is the space Cl(Y,M,y0) of
paths with origin at y0 and extremity in M [chap. II, § 5,A), formula (95)]. If

jïM.n(Y,M,;y0)->M,

defined by 7tM(y) = y ( — 1), is the restriction of n, (X, £2(Y, M, y0), M, 7tM) has the
covering homotopy property for every space X.

After Serre showed that the homotopy and homology of fiber spaces only
used the covering homotopy property it became customary to call fibration
any continuous map n: E -> B such that (X, E, B, ri) has the covering homotopy
property for every space X; Serre even noted that he only needed the case in
which X is a finite simplicial complex, which does not imply that n is a fibration
(it is often called weak fibration, or Serre fibration). The subspaces 7t-1(b) are
still called fibers, but they are no longer homeomorphic to a fixed space in
general [see below (35)]; if B is arcwise-connected, it can only be said that all
fibers have the same homotopy type. Often [as in the case of £2(Y, M, _y0)] there
is a privileged point b0 in the case space B; F = n'1 (b0)is then called (by abuse
of language) the fiber of the fibration, and the fibration is also writtenFiE^B (34)
where j: 7t-1(b0) -> E is the natural injection. For E = £2(Y, M,_y0), "the" fiber
F = Ci(Y,y0) is the space of loops of origin y0 in Y. Borsuk's theorem then
justifies the name "cofibration," if the map <^(X; Y) -* <&(A; Y) in (32) is
considered as a "transposed" map of the injection A -> X.

This kind of "duality" extends to other notions. Let/: Y -> X be a
continuous map; as X x X -^-* X is a fibration, the same is true of the map

p: PX -► X

defined by p(y) = y( — 1) for every path y e PX. Then let

Pf = /*(PX) = PX x XY

* To keep general notations (chap. II, § 5,A), paths y: [— 1,1] -» X are considered as
having y(l) as origin and y( — 1) as extremity.
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be the pullback ofthat fibration, equal by definition to the subspace of PX x Y
consisting of the pairs (y, y) such that

v(-i) = f(y)­

The space Pf is called the mapping path fibration off and may be considered
as the "dual" of the notion of mapping cylinder Zf (Part 2, chap. V, § 3,A).

There are two natural maps

p':Pf^Y, p'-.P^PX x Y-^>Pxix
(j being the natural injection) that are fibrations. This is obvious for p', which
is the pullback of p. For p" the proof of the covering homotopy property runs
as follows. Consider

1. a continuous map g: W -* Pf and
2. a homotopy G: W x [0,1] -»• X such that

G(w,O) = p"(0(w)).

A homotopy H: W x [0,1] -* Pf has to be constructed so that

p"(H(w, t)) = G(w, t) for (w, t) e W x [0,1],

H(w,0) = a(w) forweW.

Write g(w) = (G"(w),a'(w)) e PX x Y, where G"(w) is a path «h»G"(w)(u)
defined in [-1,1] for each w e W, with G"(w)(- 1) = f(g'(w)). A variant
of the "box lemma" (chap. II, § 2,D) defines a retraction (u, t) h-» r(u, t) of
the rectangle [—1,1] x [0,1] on the union of its sides [-1,1] x {0} and
{-l}x[0,l]:

f((2« - t)/(2 - 0,0) for m •> t - 1,
r(u,t) ^_12(u_ t+ ])/(„_ i)) foru^t-1.

Then take for H the homotopy such that

f(G"(w)((2u - 0/(2 - t)),g'(w)) for t - 1 < u «c 1,
H(w,0(w) \fß(Wt2(u - t + l)/{u - l)),g'(w)) for - 1 «c u < t - 1.

Next, there is a section s: Y -> Pf such that/ = p" o s; it is defined by taking
for s(y) the pair (œf(y),y), where <of(y) is the constant path u\-^f(y); s is a
homotopy equivalence, and p' ° s = 1Y. Define F: P7 x [0,1] -> P7 by

F((y,y), 0 = (y„y) with y,(«) = y((i - t)u - o;

clearly

F((V, y), 0) = (y, y) and F((y, y), 1) = (o)/(y), y) = s{y).

The "duality" is then that the passage from one to the other of the two
diagrams
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(Xx[0,l])TTY * PX x Y

(notations of chap. II, §2,D for the first diagram) consists in "reversing the
arrows" and exchanging "retractions" with "sections" and "cofibrations" with
"fibrations." The decomposition

p"/■Y­ ->X

shows that any continuous map can be multiplied on the right by a homotopy
equivalence such that the product is homotopic to a fibration.

For a map /: (Y, y0) -> (X, x0) of pointed spaces, use the subspace PXoX =
£2(X, X, x0) of paths with origin x0 instead of PX; the pullback is then Py,yo,
the space of pairs (y,y) such that y(l) = x0 = f{y0) and y(- 1) = f(y); the
restriction of p" to P/yo is again a fibration. The fibers p"~1(x0) and p'~1(y0)
are the space of loops £2(X, x0).

Consider also the map q: Py->X such that q(y,y) = y(l); an argument
similar to the one proving that p" is a fibration shows that the same is true
for q (the retraction is then on the union of [— 1,1] x {0} and {1} x [0,1]).
The fiber q~1(x0) is then the space P/yo considered above.

B. Fiber Spaces and Fibrations

Borsuk's proof of a special case of the covering homotopy property does not
seem to have immediately attracted the attention of the topologists who at
that time were beginning to investigate fiber spaces (as defined by Whitney).
This is not too surprising, since the properties of the "fibers" of a fibration are
generally very different from these of the "fibers" of a fiber space.

In 1940, however, Hurewicz and Steenrod published a Note [260] in which
they introduced conditions on a map n: E -> B implying the covering
homotopy property (given that name for the first time) for (X, E, B, n) when X is a
compact space. They supposed B to be a metric space with distance d and
assumed that there exists a number r > 0 such that if Vr is the open subset of
E x B consisting of the pairs (x,b) for which d{n{x),b) < r, there exists a
continuous map (p: Vr -> E such that

n((p(x, b)) = b and (p(x, n(x)) = x for all (x, b) e Vr (35)

They called (p a "slicing function"; for each x0 e E, if Ur(x0) is the open ball
of center n{x0) and radius r in B, the map b\—>(p(x0,b) is a homeomorphism
of Ur(x0) on its image in E, if E is Hausdorff, and the image of 7t(x0) by this
map is x0. So these "slices" fei-» (p(x0,b) look like the "local sections" of a fiber
space for all x0 in the "fiber" 7t-1(7t(x0)). The "fibers" are not generally
homeomorphic to a fixed space; this is seen in the example given by Hurewicz
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and Steenrod: E is the subspace of R2 defined by 0 < y ^ x < 1, B = [0,1],
and n is the first projection; then

(p{{x,y),x ) = <l(x,y) tor x'> y
is a slicing function.

The existence of "slicing functions" makes the proof of the covering homo­
topy property for compact spaces X almost trivial. Given the homotopy
li:Xx[0,l]-»B, and a map /: X -»• E such that n(f(x)) = h(x,0) for x e X,
there is a S > 0 such that \t — t'\ ^ S implies

d{h{x, t\ h{x, t')) < r for all x e X.

Then [0,1 ] is divided in small intervals [th ti+1 ] of length < S and the covering
homotopy k: X x [0,1] -> E is defined inductively by

k(x,0) = f(x),

k(x, t) = (p(k(x, tt), h(x, t)) for t, ^ t ^ ti+1.

In their Note Hurewicz and Steenrod proved the existence of slicing functions
for the natural map n: G -> G/H, where G is a compact Lie group and H is a
closed subgroup; they used the exponential map, as Ehresmann had already
done in 1934 ([155], p. 398) to define (p{e,b) in a neighborhood of e = n(R)
in G/H, and then took (p(x, b) = xcp(e, x~l. b) in G x (x. U).

Although Hurewicz and Steenrod had not yet formulated the complete
homotopy sequence of a fibration (see C below), it was for the purpose of
computing relative homotopy groups 7t;(E, F) that they used the covering
homotopy property. It was for the explicit purpose of proving the exactness
of that sequence (not yet written with arrows) that in 1941 the covering
homotopy property was also formulated in two independent papers, one
by Ehresmann and Feldbau [166] and the other by Eckmann [148], both
without knowledge of the Hurewicz Steenrod Note, communications having
been disrupted by the war. Ehresmann and Feldbau stated the theorem for
locally trivial fiber spaces (E, B, F, n) where B is a finite simplicial complex;
they merely indicated in a few lines that the proof is by subdivision of the
complex B and induction on its dimension.

Eckmann, like Hurewicz and Steenrod, took a more general viewpoint,
closer to the case investigated by Borsuk. He considered a compact metric
space E and the compact metric space 9Î of nonempty closed subsets of E
(with the Hausdorff "Abweichung" for distance). For a fixed number r > 0
and every set A e % U(A, r) is the open neighborhood of A defined by
d(x, A) < r. Eckmann called a subspace 3 c "^ retractible if there is a
continuous map

Q: Vr - E

[where V, c 3 x E consists of the pairs (A,x) such that x e U(A, r)] having
the property of retracting U(A, r) on A for each A e 3, i.e.,
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Q(A, x) e A for x e U(A, r),

Q(A, x) = x for x e A.

In this general setup the following property corresponds to the covering
homotopy property: for any continuous path

r:[0,l]-«(X;3)
with r(0) = F e <£(X; 3) and any map fe <£(X; E) such that

f(x) e F(x) for every x e X,

there exists at least one continuous path y: [0,1] -> <^(X; E) such that y(0) = /
and y{t)(x) e T(t)(x) for 0 ^ t < 1 and x e X. The proof is again almost trivial,
by subdivision of [0,1] in small intervals [th ti+i ] such that the oscillation of
T in each of them is < r, and then taking

y(t){x) = Q(r(t),y(t,)) for t, s= t < ti+1.

To recover the usual covering homotopy property for a continuous map
7t: E -> B of compact metric spaces, Eckmann took for 3 the set of "fibers"
n~l(b) for b e B, and assumed the natural map 3 -* B to be a homeomorphism.
F then becomes a map X -> B and F is a homotopy between F and another
continuous map X -> B, and the relation f(x) e F(x) for each x e X means that
F = n of. The proof that 3 is "retractible" is not given in general, but only
when E is a Riemannian manifold and n is a submersion (in fact Eckmann
was only interested in the case E = G, B = G/H, where G is a compact Lie
group and H is a closed subgroup).

In 1943 Steenrod [446] gave a proof that the Whitney fiber spaces (E, B, F, n)
are fibrations when B is compact; it is relatively simple, since B may be covered
by a finite number of open sets over each of which the fiber space is trivializ­
able. The extension to locally compact and paracompact spaces B at first
involved a much longer and more intricate proof; Ehresmann gave one in 1944
[161] (for simplicial complexes) and H. Cartan gave another in his 1949-1950
Seminar [423].

After 1950 Serre's work renewed the interest in criteria for the validity of
the covering homotopy property. The most general one (implying Cartan's
result), which is at the same time the most elegant proof, was given in 1955 by
Hurewicz [257], and independently by Huebsch [255]. The space B is any
paracompact space, and n: E -> B is assumed to be a local fibration, meaning
that each point fceB has an open neighborhood U such that the restriction
7t-1(U) -> U is a fibration; the conclusion is that n is a fibration. The proof
was based on a new idea, namely, that just as in the case of covering spaces
(chap. I, § 2,B, V), it should be enough to prove the existence of the lifting of
paths m: [0,1] -* B, provided they "vary continuously" with <u (this is
automatic for covering spaces). More precisely:

I. Suppose the covering homotopy property (X, E, B, n) holds for all spaces
X. Consider the subspaceQ of the product E x <^([0,1];B) x [0,1] consisting
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of all triples (x, co, s) such that co{s) = n(x). Then there exists a continuous map

A:Q->tf([0,l];E)
such that

7t(A(x, co, s)(t)) = co(t) for 0 < t < 1 and A(x, co, s)(s) = x (36)

[in other words A(x, co, s) is a path that lifts co and is equal to x for t = s]. This
is shown by applying the covering homotopy property to the homotopy
Ji: Q x [0,1] ->B such that

h((x, a>, s), t) = co(t) for t e [0,1] and h((x, co, s), 0) = n(x).

If k: Q x [0,1] -► E is such that n°k = h, take

A(x, co, s)(t) = k((x, co, s), t).

We shall say that a continuous map A satisfying (36) is a general lifting
function.

II. Conversely, consider the subspace Q0cEx ^([0,1];B) consisting of
the pairs (x, co) such that co(0) = n(x). Suppose there exists a continuous map
A: Qo -» #([0,1]; E) such that

7i(A(x, oj)(t)) = oj(t) for t e [0,1] and A(x, cu)(0) = x (37)

[so that À{x, co) is a path which lifts co and is equal to x for t = 0]. The covering
homotopy property (X,E,B,7t) then holds for all spaces X: if/: X -> E and
h: X x [0,1] -> B are maps such that h(x,0) = n(f(x)) for all x e X, define
fc:X x [0,l]-»Eby

fc(x,0 = A(/(xl/i(x,. ))(*)•

The continuous maps X satisfying (37) will be called special lifting functions.
III. Suppose B now is paracompact. There is then a locally finite open

covering (Ua) of B such that each Oa is the support of a continuous function
fx: B -> R+. For each finite sequence \i = (al5..., aj of indices let W„ be the
subset of ^([0,1];B) consisting of the paths co such that

co{t) e Ua for —-— < t s= (■ and 1 sc / < k.' k k
The W„ form a locally finite open covering of the space ^([0,1]; B) (owing to
the fact that any compact subset of B has a neighborhood that only meets a
finite number of the sets UJ; the function

/„(<»)= inf ( inf L(co(t)))

has support equal to W„. Now suppose n: E -> B is a fibration aboue eac/î Ua.
Then, by I, there is a general lifting function for every a

A*:Qa^([o,i];-'r1(iL.))
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with

Qa = Q n (TT-1 (UJ x tf ([0,1]; U«) x [0,1]).

The aim of that part of the proof is to define a general lifting function

AM:QM-^([0,1];E)
with

Q„ = Qn(Ex WMx[0,l]).

Take a point (x,<y, s) e QM, and let a>j be the continuous map [0,1] -> B equal
to <u(t) for (j - l)/k ^ r <j/fc and constant in the intervals [0,{j — l)/fc] and
[j/k, 1]. Define t = AM(x,<u, s) as follows: suppose (n — l)/k < s ^ n/k, and
take

T(t) = A^coJlJ^, s)(t) for (n - l)/fc s= t s= n/k,

then extend it left and right of the interval [(n - l)/k,n/k] by

*W = K„-M(n ~ IV^.to.-ilU«,,_,,(n - l)/*)(t) for "^ ^ t ^ ^=­

*W = Aan+i(T(n/k),a)„+1|Uan+i,n/k)(t) for JU t s= ­

The verification that AM is continuous and satisfies (36) is immediate.
IV. To end the proof, it remains to find a special lifting function l(x,(a)

defined in the whole set Q0, using the general lifting functions AM. It may be
assumed that the set S of all finite sequences \i is totally ordered. Consider an
element (x, <y) e Q0 and let

Mi <Hi < '•• <Hk

be the indices \i such that <u e W„; let

«» = (I/m,m)/(|/m,m) for 1 *= r ^ k
and define the path t = X{x, <u) by

r(t) = AMi(x,o),0)(t) for 0 s= t s= 4l(to),

t(0 = AM.+1(T(qf(œ)),co,q,(a.))(t) for «,(tu) s= t s= <Z.+i(co).

The verification that X is a special lifting function is again immediate.

C. The Homotopy Exact Sequence of a Fibration

In his first Note of 1935 [256] Hurewicz specialized his general results on the
groups <^(Y;G) (see above, section A) to the case Y = S„, in order to obtain
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relations between the homotopy groups 7t„(G), 7t„(H), and 7t„(G/H). Suppose
for simplicity that G is a connected compact Lie group and H is a closed
subgroup of G; if H is not connected, n„(R) is, by definition, equal to 7t„(H0),
where H0 is the neutral component of G. From the relation (39) of chap. II,
§ 3,A and from chap. I, § 4,C it follows that for the group law on

r = <-f(S„,*;G,e)

the homotopy class of the product fg in T is the product of the homotopy
classes of/and g [chap. II, §3, formula (40)] in il(<^(S„_1,*;G,e),a„). By
induction on n the group law on n„(G, e) = 7t0(r) = r/ro (ro being the neutral
element of T) is the quotient of the group law of T. This was the first theorem
stated (but not proved) by Hurewicz. Next he stated results that we would
now express as the exactness of the sequence

nn{H,e) -^ nn{G,e) -^ 7r„(G/H,ë0) I nn^{U,e\

This was the first appearance of the homotopy exact sequence of a fibration,
in a special case. Although in his 1935 Notes Hurewicz did not define in
general the homomorphism /„.: 7t„(X,x0)->7t„(Y,y0) for a continuous map
/: (X, x0) -> (Y, y0) of pointed spaces, it is clear that the natural homomorphism

;:^(S„,*;H,e)^^(S„,*;G,e)

sends each arcwise-connected component of the first group into a well­
determined arcwise-connected component of the second, hence the map _/„, in
(38). The definition of p^ is obvious, and for us the equality Ker p^ = Im j^ is
a consequence of the covering homotopy property (see below), but the latter
was not yet formulated in Hurewicz's Notes.

In their 1940 Note [260] Hurewicz and Steenrod did not explicitly
formulate the exact homotopy sequence of a fibration (E, B,p) satisfying their
axioms, but they derived from the covering homotopy property the main
ingredient ofthat sequence, namely, the fact that, for a fiber F = p~l(b0), the
map p defines an isomorphism p^: nn(E, F, x0) 2", nn(B,b0) for any x0 e F. To
prove injectivity of p^, observe that if g: (S„,*) ->(B, b0) is homotopic to
the constant map S„ -> {b0}, lifting that homotopy gives a continuous map
/: S„ -* E homotopic to a map f0: S„ -* F and such that p °f = g- To prove
surjectivity, consider a loop y in

that can be considered a map

/r.[0,l] xS.-x-B
with/!(t, *) = b0 for all t e [0,1] and h{0, x) = h(\,x) = b0iorx eS^.By the
covering homotopy property, that map is lifted to a map

fc: [0,1] x SB-1-»E

such that k(t, * ) = x0 for all t e [0,1] and k(0, x) = x0e F, and k(l, x) e F for
all x e S„_!. This can be considered a map k: D„ -> E with k(Sn-!) c F and
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k(*) = x0; its homotopy class u e nn(E, F,x0) is therefore such that p^{u) = z,
the homotopy class of y.

This result and the homotopy exact sequence [chap. II, § 5,B, formula (103)]
give the homotopy exact sequence of fibrations

► n„(F,x0) -!*-> 7t„(E,x0) -^-> n„(B,b0) -► n„^{F,x0)

^■■■^no{F)^no{E)-^no(B)^0. (38)
In the preceding notations d(z) is the homotopy class of kIS,,-!.

As special cases, if there is a section s: B -> E, it follows from the relation
P* ° s* = Id that

7t„(E) c^ 7t„(B) 0 7t„(F) for n>2.

If there is a homotopy in E of j: F -> E to the constant map F -> {x0}, then
jm = 0 and

nn(B)^nn(E)®nn^(F) forn>2. (39)
In particular, if the total space E is contractible, it follows that

;r„(B) ~ nn^(¥) iorn>2. (40)
So, if B is an Eilenberg-Mac Lane space K(ILn) for n ^ 2, F is then an
Eilenberg-Mac Lane space K(II,n — 1).

Under some restrictions, there is also a "covering" theorem for relative
homotopy. Let (E,B,F,7t) be a fibration. Suppose (X,A) is a relative CW­
complex of finite dimension; let g: X -> B and /: A -* E be two continuous
maps such that n of is the restriction g\A. Then if h: X x [0,1] -* B is a
homotopy relative to A and h(x, 0) = g(x) in X, it can be lifted to a homotopy
H: X x [0,1] -> E relative to A and such that n°H = h. This is easily seen
by "climbing" along the skeletons of (X, A) ([254], p. 64) and applying the
covering homotopy property at each step.

Application of this result gives a convenient criterion for the existence of a
section over the whole base space B of a fibration (E, B, F, n). The assumptions
are:

(i) The fiber F is (n — l)-connected (chap. II, §4,B).
(ii) There is a closed subspace A of B such that (B, A) is a relative CW-complex

of relative dimension ^ n.

Any section of E over A can then be extended to a section of E over the
whole space B.

The proof relies first on the lemma in the proof of the second Whitehead
theorem (chap. II, §6,B). The homotopy exact sequence shows that n: E -* B
is an n-equivalence (chap. II, § 5,F). Let s: A -> E be a section of E over A. Then
the lemma establishes the existence of a continuous map s':B->X that
extends s and is such that n ° s' is relatively homotopic to 1B with respect to
A. The preceding "relative" covering homotopy property provides a
continuous map s": B -> E that coincides with s in A and is such that n ° s" = 1B.
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D. Applications to Computations of Homotopy Groups

As with practically every new device in algebraic topology, the covering
homotopy property of fibrations was harnessed to bring some progress in the
persistent and thorny problems of computing homotopy groups, particularly
homotopy groups of spheres.

In his first 1935 Note [256] Hurewicz already used his study of the
homotopy properties of topological groups to give two simple proofs of the relation
^3(82) — z, which Hopf had obtained with great difficulty in 1930 (chap. II,
§1).

His first argument was based on his study of the group ^(Y; G) for Lie
groups G (see above, section A). Suppose G is a connected compact Lie group,
and K # G is a closed connected subgroup: let j: K -* G be natural injection.
Then the arcwise-connected component of 1G in <?(G;G) does not meet
JC$(G; K)). Otherwise, there would exist a continuous map a: G -> K for which
jog would be homotopic to 1G, hence g* oj* = 1H.(G) in cohomology; but this
is absurd, since, if n = dim G, dim K < n, and H"(G) # 0 but H"(K) = 0. From
his general results on Lie groups Hurewicz concluded that the class [p] of the
natural surjection p: G ->G/K cannot be 0. Taking in particular G = S3
(group of unit quaternions) and K = Sx yielded Hopfs theorem.

A second argument is even simpler: since tt^S^ = 0, the natural injection
p~l(x) -> S3 of a fiber for p: S3 -> S2, is homotopic in S3 to a constant map;
hence relation (39) gives

7r„(S2)^7r„(S3)®7r^1(S1) forn ^ 2 (41)
and in particular

7t3(S2) =z 7t3(S3) c* Z,

and the map p^ is a generator of 7t3(S2). When Freudenthal later proved that
7t4(S3) ^ Z/2Z [chap. II, §6,E, formula (134)], relation (41) also gave

7t4(S2) a. Z/2Z. (42)
The same argument applies to the two other Hopf fibrations S7 -> S4 and

S15 -> S8 (§ 1,B), the fibers being homeomorphic to S3 in the first case and to
S7 in the second, so that

7r„(S4)^7r„(S7)®7r„_1(S3), (43)
nn(S8)^nn(S15)®nn^l{S1). (44)

Stiefel (and independently Whitney [505]) had defined the Stiefel manifolds
S„ p (Part 2, chap. V, § 4,C) to use their homo logical properties in their theory
of characteristic classes (chap. IV, § 1 ). However, for his criteria on existence
of systems of tangent vector fields {ibid.), Stiefel also needed homotopy
properties of the S„ p. Using his decomposition S„,p = S^ p u S^' p (Part 2, chap.
V, §4,C), in order to apply induction on n, he had to investigate the possibility
of extending a continuous map Sr->S„P to the ball Dr+1. He could not
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mention homotopy groups, since Hurewicz's Notes were published at the
same time as Stiefel's paper; but the theorems he proved in a direct way
amount to the computation of the homotopy groups 7tr(S„ p); using his
determination of the homology groups Hr(S„p) for r < n — p (he. cit.), he showed
that for these values of r, 7tr(S„p) ^ Hr(S„,p) [of course this amounts to a
special case of the absolute Hurewicz isomorphism theorem (chap. II, §4,A)].

Eckmann [149] and independently J.H.C. Whitehead [498] took up the
computation of the groups 7tr(S„iP) by other means. Whitehead used the
structure of CW-complex that he had defined (Part 2, chap. V, § 3,C) while
Eckmann applied the fact that by definition S„P(F) (for F = R, C or H) is a
homogeneous space U„(F)/U„_P(F) for the unitary group U„(F). From the fact
that the grassmannian G„ P(F) is homeomorphic to the homogeneous space
U„(F)/(UP(F) x U„_P(F)), it follows that S„P(F) is a principal fiber space with
structural group UP(F) and base space G„ p(F). Another fibration stems from
the inclusions U„(F) z> U.^F) = U„_P(F). applying (§ 1,A,IV a), S„,P(F)
appears as a fiber space with typical fiber SB_ljP_1(F) and base space S„_! when
F = R (resp. S2„_1 when F = C and S4„_! when F = H).

It is this last fibration that was used by Eckmann for F = R, via the
homotopy exact sequence

•••-»• 7r,-+1(S„_1) -»• MS„-i,p-i) -»• ^.(S„,p) -»• nSßn-i) -»•••• (45)

For p = 1, S„a = S„, and 7t,(S„) = 0 for 2 ^ i < n - 1. Induction on n then
gives back Stiefel's results for 1 ^ i ^ n — p; for i = n — p + 1, Eckmann used
the determination of 7t„+1(S„) due to Hopf and Freuden thai (chap. II, §6,E).
Freudenthal had also proved that 7t4(S2) ^ Z/2Z, and in 1938 Pontrjagin had
announced, without a complete proof, that 7r„+2(S„) = 0 for n ^ 3; Eckmann
and Whitehead used these values to compute 7t„_p+2(S„,p). Their results had
to be corrected when later G. Whitehead [487] and Pontrjagin himself [382]
showed that in fact 7t„+2(S„) = Z/2Z for all values of n ^ 2.

The first homotopy groups of the classical quasisimple compact Lie groups
SU(n, F) can also be deduced from the fibrations

SO(n + l)/SO(n) = S„ for n ^ 1,
SU(n + l)/SU(n) = S2„+1 for n > 1, (46)

^ SU(n + 1, H)/SU(n, H) = S4„+3 for n > 0.

Use of the homotopy exact sequence shows that

nk(SO(m)) = nk{SO{n)) for m,n^k + 2,

nk{SU{m)) = nk(SU(n)) for m,n^ k/2, (47)
_ 7i*(SU(m. H)) = nk(SU{n, H)) for m,n^{k- 2)1 A.

In particular the fundamental groups of SU(n) and SU(n,H) are 0 for all
n ^ 1 and those of SO(n) are equal to Z/2Z for n > 3; the second homotopy
groups 7t2(G) are 0 for all these groups [103]. The determination of 7t3(G),
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7t4(G), and 7t5(G), in addition to the homotopy exact sequence, needs special
arguments using geometrical properties of spheres; they were developed by
Pontrjagin, Eckmann, and J.H.C. Whitehead ([55], p. 426).

Finally, the homotopy exact sequence gave the first (negative) results on the
possibility of considering spheres as fiber spaces in cases other than the Hopf
fibrations [485].

E. Classifying Spaces I: The Whitney-Steenrod Theorems

In his 1935 Note [505] Whitney had already put in the forefront the problem
of classifying the "sphere bundles" with given base space and given typical
fiber, up to isomorphism. In his 1937 address [508] he introduced a new idea.
Without giving precise definitions he considered "the space S[/i, v] of v-great
spheres in the sphere SM" and sketched a not very clear proof (restricted to the
case v = 1) that for any locally finite simplicial complex B of finite dimension,
any sphere bundle (E, B,p) with base space B and typical fiber Sv, is B­
isomorphic to the pullback of a sphere bundle S[/i, v] for \i = v + dimB, by
a suitable continuous map of B into the base space of S[/i, v].

In 1943 [446] Steenrod took up the idea, supplied the complete proof of
Whitney's assertion, and completed it by a fundamental criterion for the
existence of a B-isomorphism between two pullbacks of the same S[/i, v], with
base space B. The same results were obtained independently by Pontrjagin
[379].

Although Whitney did not give any precise definition in [508], it is clear
that he intended S[/i, v] to be a sphere bundle with typical fiber Sv and
base space equal to the grassmannian G,.+1 v+1, having as elements the vector
subspaces of RM+1 generated by the "v-great spheres"; the projection n:
S[/i,v] -»G„+ljV+1 maps each such "great sphere" to the vector subspace it
generates.

In his paper Steenrod introduced a principal fiber space, which he denotes
N(TV; in fact it is identical to the Stiefel manifold S„+1>v+1, although he makes
no mention of Stiefel. Since a sequence of p mutually orthogonal vectors in S„
uniquely determines a map Sp -> S„ preserving orthogonality, it is as the set
of such maps that Steenrod defined S„p. His definition of Whitney's sphere
bundle S[/i, v] then amounted to considering it the fiber bundle associated
(§1,C,IV) to the principal fiber space S„+ljV+1 of base space G„+1.v+1 and
structure group the orthogonal group 0(v + 1), for the natural action ofthat
group on Sv. The space S[/i, v] can be identified with the image of the map

ip: SM+1>V+1 x Sv -»G„+1>v+1 x S„ (48)
defined by

where n{w) is the vector subspace of RM+1 generated by w(Sv).
The proof of Whitney's assertion then proceeded as follows. First Steenrod

established as a lemma the fact that 7tj(S„.m) = 0 for i < n — m without men­
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tioning the previous proofs (analyzed above in E). Not even Eckmann's proof
in the paper [149] is listed in Steenrod's Bibliography!

A morphism (f,g): (E,B,p) ->■ (E',B',p') of "regular sphere bundles" in the
sense of Whitney is submitted to the condition that for every fceB, the map
fb: Eb -> E'g(b) preserves orthogonality [it corresponds to a morphism of the
vector bundles deduced from the given sphere bundles (§ 1,C,III)]. To show
that there is a B-isomorphism of (E, B,p) onto a pullback g*(S[/u, v]), it is
enough to prove the existence of a continuous map /: E -> SM such that for
every b e B, the restriction fb: Eb -> SM is injective, preserves orthogonality, and
maps Efc onto a "v-great sphere" of SM.

Steenrod's method was to define, for each b eB, the map fb as a composite/ij tj/ pr2
Jb- Eb >^,. + .,v + l X 5*v —* *J/. + l,v+l X SM > SM

with hb(y) = {(ob,pb(y)) for y e Eb, where pb is a bijection Efc 2; Sv preserving
orthogonality and œb is an element of SM+lv+1 independent of y. Each fb then
has the required properties, and the crux of the proof is to show that <ufc and
pb may be chosen in such a way that the map h coinciding with hb on each Efc
is continuous in E. Then g: B -* GM+1 >v+1 is defined as the map that associates
to b e B the vector subspace of RM+1 generated by fb{Eb); g is continuous, and
it follows from the "universal" property of a pull-back (§ 1,C, I) that the natural
factorization of

(■>oÄ,ff):(E,B,p)-(S[Ai,v],G#1+1.v+1,Jt)

defines a B-isomorphism of (E,B,p) onto g*(S[/u, v]).
By suitable subdivision it may be assumed that E is trivializable above a

neighborhood LL of a for each simplex a of B. There is therefore a homeo­
morphism for each a

(pa:p-\ô)~>ô x Sv

with (pa{p~l(b)) = {b} x Sv. For every simplex t contained in a — a, and any
b e t, the map

0„(b): x^>vr2(<pz(<p;l{b,x)))

is an element of the orthogonal group 0(v + 1), and b\-*0„(b) is continuous
in Ua n Ut.

For each simplex a of B Steenrod defined a continuous map la: a -> SM+1 v+1
by induction on the dimension of a in such a way that it verifies the condition
that if t is a simplex of B contained in ä — a and be-:, then

Ub) = K(b).e„(b) (49)
so that A„(fe)(Sv) = 2t(b)(Sv). The induction then consists in taking arbitrary
A„ for the vertices v of B; once the kz are defined for all simplices t c ä — a,
condition (49) shows that together they define a continuous map of ä — a into
SM+1 v+1; if the dimension of B is < p. — v, that map can be extended
continuously in the interior a of a [although when be a tends to a point b' e z, X„(b)
does not tend to Xz(b') in general].
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Once the ka have been defined for all simplices in B, cob and pb(y) are defined
for b e a and y e Efc by

cob = ;.„(&), pfc(y) = Aff(fe). pr2(%(y))

[pfc determines A„(fe)]; h is then defined as the map

y^((Dp(y),pp(y)(y));

its continuity in E is easily verified.
Steenrod added to Whitney's theorem the fundamental fact that if

\i > v + 1 + dim(B) and two continuous maps g', g" of B into G„+1>v+1
give B-isomorphic pullbacks (E',B,p') and (E",B,p") of S[/i, v], then g' and
g" are homotopic. The proof uses the product E = E' x [0,1] which may
be considered as a sphere-bundle over B x [0,1], the fiber E(iM) being
the image of EJ, by the homeomorphism y\-^{y,t). Steenrod showed that
(E, B x [0, l],p) is isomorphic to a pullback h*(S[p, v]) by a continuous map
h: B x [0,1] -»• G„+ljV+1 such that

h{b,0) = g'{b), h{b,l) = g"{b) forfceB, (50)
thus establishing the required homotopy.

Let (1B, v): (E', B, p') 2; (E", B, p") be the given B-isomorphism. Denote by p'b
the map EJ, -> Sv corresponding to the pullback of S[/i, v] by g', by p'b the
similar map E^' -> Sv. Having taken a fine enough subdivision of the complex
B x [0,1] [of dimension 1 + dim(B)], such that B x {0} and B x {1} are
subcomplexes, Steenrod proceeded as in the previous proof, with the following
difference: when a simplex <r of B x [0,1] is contained in B x {0} or in
B x {1}, the maps p(b,0) and p(bl) are not constructed by induction on the
dimension of a but are already determined in a, namely:

(i) if o- c B x {0}, P(bi0) is the map (y, 0) -► p'b(y);
(ii) if a c B x {1}, p(b 1( is the composite

{y,l)^p'b\vb{y)).

The remainder of the construction is the same, and the map h thus obtained
satisfies (50).

Finally, Steenrod proved a converse to the preceding result: if the simplicial
complex B is compact, and two continuous maps g0, g1 of B into G„+1>v+1 are
homotopic, then the pullbacks öf*(S[/i, v]) and âfî(S[/i, v]) are B-isomorphic.
It is enough to show that there is a number e, > 0 such that the conclusion
holds as soon as

sup d(g0{b),gi{b))< 8 (51)
fieB

for a distance d on GM+1 v+1. Then, if h: B x [0,1]->GM+lv+1 is a homotopy
between two maps g0, gu the compactness of B allows [0,1] to be divided in
small intervals [t;,ti+1] such that (51 ) holds for any pair h{.,ti), h(.,ti+l).

The result under assumption (51), however, follows from the geometry of
the Stiefel manifold SM+1 v+1. More generally, consider a homogeneous space
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G/H, where G is a compact Lie group and H is a closed subgroup. The
exponential map then shows that, for the principal fiber space (G, G/H, H, n),
there is a neighborhood V of the point x0 = 7t(H) of G/H, and a section cp of
G over V such that <p(hxh~l) = (p(x)(orh e Hand* e V. Then, for x, = g.x0
and x2 s g. V for a g e G, define

r(x1,x2) = g-1(p(g.x2)g.

This is independent of the choice of a such that xx = g. x0 and arbitrarily close
to e when V is taken small enough.

Apply this to G = 0(/u + 1),H = 0(v + 1) x 0(.u - v); observe that G acts
naturally (on the left) on the Stiefel manifold S„+1>v+1, hence also on S[/u, v].
Define the map \fy of B x S [,u, v] into itself by

iP{b,y)^{b,r{g0{b),gi{b)).y)­

Then, if e is taken small enough, so that g^(b) belongs to g0{b). V for all fceB,
\j/ defines a B-isomorphism of g*(S[/u, v]) onto g*(S[/u, v]).

These theorems of Steenrod showed that for given // > v .""s 1, and any
simplicial complex B of dimension ^ \i — 1, there is a canonical bijection of
the set of classes of B-isomorphic sphere bundles with base space B and fibers
of dimension v, onto the set [B;GM+1 v+1] of homotopy classes, associating to
the homotopy class of a map g: B -> G„+1>v+1 the B-isomorphism class of the
sphere bundle a*(S[/u, v]); G„+ljV+1 is called the classifying space for the sphere
bundles under consideration and S[/u, v] the corresponding universal bundle.

The sphere-bundles with base space B thus depend only on the homotopy
type of B, up to B-isomorphism; in particular, if B is contractible, every
sphere-bundle with base space B is trivializable, a result proved directly in
1939 by Feldbau [196], but already known to Whitney in 1937 ([508], p. 788).

The Whitney Steenrod theorems immediately extend to the category of
pointed spaces; the point associated to S„+ljV+1 (resp. G„+ljV+1) is then the
image of the neutral element of 0(/u + 1), and the point associated to S[/u, v]
is the image of the pair of points associated to S„+1>v+1 and Sv, respectively.

F. Classifying Spaces: II. Later Improvements

The preceding results soon began to be studied and applied in several contexts
in algebraic and differential topology, and were extended to more general
situations, in which the base spaces are not necessarily simplicial complexes.

If P is a principal fiber space with base space B and structural group G, and
F is a space on which G operates, there is a natural B'-isomorphism

«*(P x GF)2;a*(P) x GF (52)
for any continuous map g: B' -> B. This reduces the problem of classifying
fiber spaces to the principal fiber spaces (at least for those bundles that can be
associated to a principal fiber space, such as vector bundles or sphere bundles).
Most papers therefore were mainly concerned with principal fiber spaces.
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For the family of principal fiber spaces (P, B, G, p) with fixed structural
group G, the search for classifying spaces is part of the more general study of
the existence of morphisms

(/,a): (P,B,G,p)^(P',B',G,p') (53)
for two such fiber spaces, since when such a morphism g exists, P is
automatically B-isomorphic to g*(P').

These morphisms are in one to one correspondence with the sections over
B of a fiber space associated with P, by the following argument [423]. The
group G may be considered as operating on P' on the left, by (s, x') i—► x'. s~l.
Consider the associated fiber spaceE = P x GP' (54)
with base space B. We have seen (§ 1 ,C) that sections <p of E over B are in
one-to-one correspondence with continuous maps /: P -> P' such that

f{x.s) = s'1 . f{x) = f{x). s

for x e P, s e G, and these are exactly the maps / defining a morphism (53),
since g is then defined by the relation

g(p(x)) = p'(/(x));

recall that / is obtained from (p by the relation

x. f(x) = (p(p(x)) for x e P

[loc. cit., formula (24)].
We may therefore apply the criterion for existence of a section over B,

described in § 2,C, to the following situation:

The base space B is a CW-complex of dimension < n, and the principal fiber
space P' is n-connected.

This yields three general results, of which the Whitney-Steenrod theorems
are very special cases:

I. The criterion applied to E defined by (54) shows that there always exist
exist morphisms (53), generalizing Whitney's theorem.

II. Let h: B x [0,1] -> B' be a homotopy between two maps g0, g^ of
B into B'. Consider the principal fiber space g*{P') x [0,1] with base space
B x [0,1]; the criterion establishes the existence of a morphism

(/,/!): Grë(P') x [0,1], B x [0,l],G,(jt,Id))-(P',B',G,p')

which extends the natural morphism

(08(F), B,G,jt)-(P',B',G,p').

Therefore ag(P') x [0,1] is (B x [0, l])-isomorphic to h*(P'). Let
j: B -»• B x [0,1] be defined by j{b) = {b, 1); then g1 = h °j, so that
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aï(P') =j*{h*{P')) S;*(ffS(P') x [0,1]).

However, the restriction of öf*(P') x [0,1] to B x {1} is isomorphic to g*(P')
[more precisely, it can be written i*(âf*(P')j, where i: (b, 1)i—»-i> is a homeo­
morphism of B x {1} onto B]; so a*(P') and a*(P') are isomorphic. This is
independent of any assumption on the homotopy groups of P' ([459], p. 200).

III. Conversely, suppose two maps g0, a, of B into B' are such that öf*(P')
and a*(P') are B-isomorphic. This can be interpreted as meaning that there
is a section of the fiber space

((ag(P') x GP') x [0,1], B x [0,1], (TT, Id))

over the subspace (B x {0}) u (B x {1}) of B x [0,1], corresponding to the
natural morphism grg(P') -> P' over B x {0} and to the composite of the given
B-isomorphism g*(P') 2>g*(P') and the natural morphism g*(P') -> P' over
B x {1}.

The criterion on the extension of sections proves that this section can be
extended to a section over the whole base space B x [0,1], hence there is a
morphism

(/,/!): (P x [0,1], B x [0,l],(p,Id))->(F,B',p')

which extends both morphisms corresponding to the maps g0 and ax; thus h
is a homotopy between g0 and gt.

These results show that classifying spaces for a principal fiber space
(P, B,G,p) whose base space B is a CW-complex of dimension ^n are found
by constructing a principal fiber space (P',B',G,p') for which 7t,(P') = 0 for
1 < i ^ n; such a fiber space is called n-universal and its base space B' n­
classifying. When G = U(fc,F), with the field F = R, C, or H, the Stiefel
manifolds SB+t+1>t(F) are n-universal and their base spaces G„+k+uk(F) are
n-classifying.

The necessity of limiting the dimension of the base space B for these
classifying spaces is often a nuisance in the applications. This was improved
by the process of taking the direct limit of the n-classifying spaces [a process
already used in the definition of the most general CW-complexes (Part 2, chap.
V, § 3,C), and in the construction of the Eilenberg-Mac Lane spaces (chap. II,
§ 6,F)]. In general, let Y = (J„ Y„ be a union of an increasing sequence Y1 c
Y2c-"cY,c'"of subsets; suppose each Y„ is equipped with a topology
3~n, such that 3~n induces 3~n-\ on Y„_, for each n ^ 2. Then the direct limit ST
of the 2T„ is the finest topology on Y that induces STn on each Y„; its open sets
are the sets U such that U n Y„ is open in Y„ for each n; the space obtained
by taking on Y the topology 3~ is the direct limit of the spaces Y„, sometimes
written Y = lim„ Y„.

The natural injections
T}k(n+k) _^ T}k(n+k + l)

determine injections

Gn+k,k ~* Gn+k+1 ,k (resp. Sn+kyk —► Sn+k+l,k)
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and these spaces and their union

BO(fc) [resp. EO(fc)]

satisfy the preceding conditions, so that on BO(fc) [resp. EO(fc)] the direct
limit topologies can be taken. It can be proved that EO(fc) is a principal fiber
space with base space BO(fc) and structural group O(fc); EO(fc) is universal
and BO(fc) is classifying for every principal fiber space with structural group
0(k) and base space any CW-complex. Using the complex (resp. quaternionic)
Stiefel manifolds in a similar way, we obtain universal principal fiber spaces
EU(fc) [resp. EU(fc, H)] with base space BU(fe) [resp. BU(fc, H)] and structural
group U(fc) [resp. U(fc,H)].

Since any compact Lie group G can be embedded as a subgroup of some
U(fc), there exists a classifying space BG and a universal principal fiber space
EG with structural group G and base space BG; it can be shown that EG is
contractible.

G. Classifying Spaces: III. The Milnor Construction

In 1956 [339] Milnor invented a new method for giving a classifying space
and a universal principal fiber space for principal fiber spaces (P, B, G, ri) where
G is any topological group, and the only assumption is:

(D) There is a sequence (u„)„>0 of continuous maps B -> [0,1] such that the
open sets U„ = u~1(]0,1]) form an open covering of B and P is trivializable
over each U„. Such fiber spaces are sometimes called numerable.

The universal fiber space EG is defined as the "infinite join"

G*G*"""*G*'­

and may be considered a direct limit: simply define the finite join
A x * A2 * • • • * A„ as for n = 2 in Part 2, chap. V, § 2,E, and then by induction
on n as (Ax * A2 * • • • * A„_x) * A„. It is just as simple to give direct definitions.

Consider the set GN x A^ of infinite sequences

(x, t) = ((x0, t0), (*i, ti), • • •, (x„, tn),...), (55)

where the xt are arbitrary elements of G and (tn)n^0 is a sequence of numbers
t„ :> 0 that have only a finite number of terms t„ # 0 and satisfy £„ t„ = 1 (so
that A^ may be considered the direct limit of the standard simplices A„).
Consider in that set the equivalence relation(x,t)s(x',t') (56)
which means that t' = t and x[ = xt for all indices such that tt # 0. The quotient
set of GN x A^ by that relation is written EG, and <x, t> denotes the
equivalence class of (x, t). The group G acts on EG by

<x,t>.y = <x.y,t> fory eG, withx.y = (x0y,x1y,...,x„y,...). (57)
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To define a topology on EG, consider, for each i ^ 0, the maps

t,: EG -► [0,1] defined by T,«x,t» = tt; (58)
^:Tr1(]0,l])-G defined by ^,«x,t» = xI (59)

[by definition of the equivalence relation (56) they make sense]. The topology
on EG is the coarsest for which all functions t; and £; are continuous. It is clear
that for any a £ EG and any y e G,

T.(a • y) = T,(a) and £,(a. y) = É,(a)y, (60)
and this shows that the action of G on EG is continuous; it is without fixed
point.

Next consider the space of orbits BG = EG/G and the projection
p: EG -> BG. First prove that each point of BG has a neighborhood over which
EG has a section. Consider the sets t,~1(]0, 1]), that are open in EG, invariant
under G, and cover EG; then the V, = p(t,-1(]0, 1])) form an open covering of
BG. In the open set t,~1(]0, 1]), the maps,':a(-^a.^(a)-1 (61)
is continuous, and for every y e G

s,'(a. y) = (a. y). (£((a. y))"1 = (a. y). {y'1 ^(a)"1) = s;(a),

so s'i = s, o p. where s, is a section of EG over V;.
Let R c EG x EG be the set of pairs (u, v) belonging to the same orbit, so

that v = u.p(u,v) with p(u,v) eG. In each set (p-1(Vf) x p_1(V,))nR the
map p is continuous, because in that set p(u,v) = ^(u)-1^,^). From this and
the existence of the section s„ EG is a locally trivial fiber space with base space
BG; indeed (pi{2,y) = si(z).y (62)
is a continuous map of V, x G onto p-1(V,), and

uh^(p(u),p(s,.(p(u)),u)) (63)
is the inverse of (pt.

Finally, let (P, B, G, n) be any numerable principal fiber space with
structural group G. By assumption (D) there is a homeomorphism

V^XG-TT-^UJ
for each n, such that for (b, s) e U„ x G,

n(h„{b,s)) = b and hn{b,s).s' = hn{b,ss') for s' e G.

A continuous map /: P ->• EG is then defined by taking f(z) equal to the
equivalence class of

((Pr2(^ô1(2)), u0(n(z))),..., (pr2(/i;1(2)), un{n{z))\...)

with the convention that, when n(z) $ U„ [so that h^1(z) is not defined, but
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u„(n{z)) = 0] the meaningless element pr2(h~l(z)) is replaced by the neutral
element e. It is readily verified that f(z, s) = f(z). s for s e G, so that the map
g: B -* BG can be defined by g(n{z)) — p{f{z)), and

(/,ff):(P,B,G,jt)-(EG,BG,G,p)

is a morphism of principal fiber spaces.

H. The Classification of Principal Fiber Spaces with
Base Space S„

As a consequence of his theorem on the triviality of fiber spaces with a
contractible base space Feldbau [194] reduced the classification of principal
fiber spaces (P, S„,G,p) with given base space a sphere S„ (for n "> 2) to a
problem in homotopy theory (see [450]).

His starting point was the fact that there is a covering of S„ by two open
contractible sets, Vx defined by x„+1 > — j and V2 defined by x„+1 < \. Any
principal fiber space (P,S„,G,p) is thus trivializable over Vx and V2, and is
therefore defined by "gluing" together two spaces V, x G, V2 x G by a
transition homeomorphism \p12 of (Vx n V2) x G onto itself, such that

ij/12(x,s) = (x,a12(x)s)

where gl2 is any continuous map of Vx n V2 into G [there are no "cocycle
condition" (9)]. Furthermore two principal fiber spaces over S„ with same
structural group G defined by two maps gl2, g\2 are isomorphic if and only
if there are two continuous maps k{. \t -> G, l2: V2 -* G such that

g'12(x) = A1(x)-1ffl2(x);.2(x) for x e Vx n V2. (64)

A first reduction allows the assumption that for the point ex = * of S„-lf
gl2{*) = e: if g12{*) = a e G, then take Ax(x) = a and l2(x) = e in (64).

A second step allows us to work only with the restriction T = öf12|S„_1,
which is a continuous map of pointed spaces

T:(S„_1,*)^(G,e).

This map can be chosen arbitrarily, since there is a retraction
r. Vx n V2 -> Sn-1 mapping x to the point where the great circle through x and
e„+1 meets Sn^1. Then define g12 = Tor. For two principal fiber spaces
corresponding to T, T' to be isomorphic, it is necessary and sufficient that
there exist a e G such that T' and aTa^1 are homotopic. The necessity follows
from the fact that if T'(x) = l1(x)~1T(x)l2(x), then A2(*) = ;n(*) = a e G.
There is a homotopy in G between Â1 and the constant map Vx -► {a} and
another one between l2 and the constant map V2 -* {a} (both leaving * fixed);
so T' is homotopic to a-1 Ta. To prove sufficiency, one may replace T by aTa'1
without disturbing the isomorphism and assume that T' and T are homotopic;
therefore T'T-1 is homotopic to the constant map S,,^ -► {e}. This implies
that'T'T-1, defined in Sn^l7 can be extended to a continuous map v of the
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upper hemisphere D+ of S„ (defined by x„+1 $; 0) into G. Let V2 c V2 be
defined by x„+1 < 0, and let/12,/i'2 be the restrictions of gl2,g\2 to Vx n V2.
The elementary theory of fiber spaces shows that the principal fiber space
defined by f12 (resp. f[2) is isomorphic to the one defined by g12 (resp. g'12).
However f[2fri can be extended to a continuous map //^ Vx -► G equal to
v in D+, so that /i2(x) = /U!(x)/12(x) for xeV, nV'; this proves that the
principal fiber spaces defined by g12 and g\2 are isomorphic.

The group G acts on the homotopy group ^-^G, e) by (a, [F]) -* [aFa-1].
The conclusion is that the set of orbits in rt„_1(G,e) for that action is applied
bijectively on the set of isomorphism classes of principal fiber spaces (P, S„,G,p).
When G is arcwise-connected, [F] = [aFa-1] for every a £ G, and therefore
there is a bijection of ^-^G-e) on the set of isomorphism classes of principal
fiber spaces (P, S„, G, p).



Chapter IV

Homology of Fibrations

§ 1. Characteristic Classes
A. The Stiefel Classes

In 1935, at the instigation of Hopf, his student Stiefel undertook in his
dissertation [457] to extend Hopfs work on vector fields (Part 2, chap. Ill,
§ 3). Given an n-dimensional compact C00 manifold M, the problem was to
investigate whether there exists on M, not only one nowhere vanishing vector
field, but a system of m vector fields Xj(l <j^ m) for some m ^ n, subject to
the condition that at each point x e M, the m tangent vectors Xj(x) are linearly
independent (hence ^ 0). The case m = n is particularly interesting in
differential geometry, because the existence of such systems of n vector fields is
equivalent to the existence of a parallelism on M.

It was in order to attack that problem that Stiefel first defined and studied
what are now called the Stiefel manifolds S„ m (Part 2, chap. V, §4,C). He also
defined the manifold V„ m <= (R")m consisting of sequences of m vectors of R"
that are linearly independent; clearly S„m <= V„ m, and the Gram-Schmidt
orthonormalization process shows that S„m is a strong deformation retract of
V„m, hence has the same homotopy type.

Stiefel first considered what he called m-fields in R": a continuous map
X<™): A -+ V„m defined in some part A of R". For his later arguments he needed
the case in which A is homeomorphic to a ball Dr+1 : if B is the image by that
homeomorphism of the frontier Sr of Dr+1, can an m-field X<m) defined in B be
extended to A? It was enough to take A = Dr+1 and B = Sr; we have seen
(chap. Ill, § 2,D) that in that case Stiefel proved two lemmas. The first one is
that such an extension is always possible for r < n — m; for r = n — m,
the condition of possibility for the extension is that the homotopy class
ae 7t„_m(S„m)ofthe m-field be 0 [recall that for m = 1 orn — meven, 7t„_m(S„,m)
is isomorphic to Z, and for n — m odd and m # 1,7t„_m(S„,m) is isomorphic to
Z/2Z]. Stiefel called a the "characteristic"* of the m-field X{m\

* The words "characteristic," "regular," and "normal" are unfortunately overworked
terms used without restraint by so many mathematicians that it is almost impossible
to understand what they mean without an explanatory context.

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-418,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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The second lemma is that if two m-fields in D„_m_j have restrictions to
S„_m_2 that are homotopic, then they themselves are homotopic.

After these preliminaries Stiefel turned to the central theme of his
investigations. He chose a triangulation T on M such that every simplex of T is
contained in the domain of definition of a chart. Using his first lemma on
m-fields in balls, he showed that on the skeleton T"-m of T it is always possible
to define m-fields of vectors tangent to M.

Recall that cohomology was defined precisely at the time Stiefel was writing
his paper (Part 1, chap. IV, § 3), and it is unlikely that he had heard of it before
the paper was printed. Nevertheless, what he did amounts, in our language,
to associating to each m-field Xim) of vectors defined on T"~m a cochain

z<m> e c--»+i(T;G) = Hom(C„_m+1(T),G)

with values in G = 7r„_m(S„m); for each (n — m + l)-simplex a of T, the value
of x<m)(<7') is the "characteristic" of the restriction of the m-field X(m) to the
frontier of a. Next he showed that x(m) vanishes on (n — m + l)-boundaries,
i.e., it is a cocycle (in present day language). From his second lemma Stiefel
deduced that for another m-field X'(m) on T"~m, the difference of the
corresponding cocycles x<m) — x'<m) 1S a coboundary. Using Poincaré duality, he
finally obtained a homology class Fm_t e Hm_j(M;G), depending only on the
differential structure of M.

As an application, Stiefel showed that any compact orientable three­
dimensional C00 manifold is always parallelizable; the proof uses a
triangulation and is complicated (see section B for a simpler proof). He also showed
that the homology class F1 is #0 for the projective spaces P4([+1(R).

B. Whitney's Work

In the language of fiber spaces, Stiefel had only considered the tangent bundle
T(M) of a differential manifold (or rather the corresponding sphere bundle);
for any m < dim M, he had associated to T(M) a homology class in Hm(M; G).
In his first Note of 1935 on "sphere spaces" Whitney independently applied
a very similar strategy to an arbitrary sphere bundle (E, B, p) where the base
space B is a locally finite simplicial complex. He only used the homology
groups of the Stiefel manifolds (with coefficients in Z), and, without proof,
stated that Hn_m(S„m) is isomorphic to Z for m = 1 or n — m even, and to
Z/2Z = F2 for n — m odd and m # 1. Then, again with only a sketch of a
proof, he showed that after a sufficiently fine subdivision of B, it is possible to
define for r < m (by induction on r) on the skeleton Br, a continuous map

The restriction of (p to the frontier of an r-simplex a of B defines a singular
homology class X(a, <p) in H^^Sn^-r+j) = G. Following the same pattern as
Stiefel, he obtained a homomorphism

wr: Hr(B) -» G
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for every r ^ inf(n,m) and stated that this homomorphism only depends on
the isomorphism class of the fibration (E, B,p).

In his 1937 address [508] Whitney used the language of the newly
defined cohomology to describe the classes wr. In 1940 [513] he returned
to these cohomology classes stating without proof that for a continuous
map g: B' -+ B, if E' = g*{E) is the pullback of E, then

wr(E') = 0*(wr(E)). (1)
In this formula G depends on r and is equal to Z or Z/2Z = F2. Already

in his 1935 Note Whitney considered the images wr e Hr(B; F2) of the classes
wr by the homomorphism

Hr(B;G)-Hr(B:F2)

induced by the natural homomorphism G -+ Z/2Z; it is these classes that are
now called the Stiefel-Whitney characteristic classes of the sphere bundle
(E, B, p) or of the corresponding vector bundle £; they are written wr(£) or wr(E).

The methods of Stiefel and Whitney may be subsumed under the general
theory of obstructions (chap. II, §4,C). On the pattern of the association of
the fiber space of frames to a vector bundle, for a vector bundle £ = (E, B,p)
of rank n and for every k ^ n, a fiber space (Fk, B,S„j([) with base space B, with
fibers Stiefel manifolds S„jt is more generally defined. A /c-field on B is just a
section over B of the fiber space Fk. Taking a simplicial complex for B, the
construction of Stiefel defines a section of Fk over the (n — /c)-skeleton of B.
For the extension of that section to the (n — k + l)-skeleton, there is an
obstruction cocycle whose class belongs to the group

H"-*+1(B;(Gx))

where (Gx) is the local system (Part 1, chap. IV, §7,A) consisting of the
homotopy groups nn-k((Fk)x), isomorphic to nn-k(S„tk). Using the natural
homomorphism of 7t„_k((Fk)x) onto F2, we obtain an obstruction class
o„_l+,(OeH"^+1(B;F2), and one can show that this class is exactly the
Stiefel-Whitney class wn_k+l(Ç) ([347], pp. 140-141).

The most remarkable result of Whitney's 1940 Note is the formula giving
the classes wr(E' © E") of the "Whitney sum" of two vector bundles E', E" over
the same base space B:

wr(E' © E") = X w.(E')~ wr_;(E") (2)
i

(in the Note the formula is written for sphere-bundles). He said that his proof
for r ^ 4 was "very hard," giving only a few indications of how he proceeded
by "climbing" along the skeletons of B, and using deformations as well as
modifications of the cup products. In his 1941 lecture [514] he only detailed
a proof for E' and E" of rank 1 ("line bundles,,), using the special features of
that case.

For a vector bundle E of rank r, the Stiefel-Whitney classes Wj(E) are only
defined for 1 ^ j < r; in his 1940 Note Whitney introduced the formal power
series with coefficients in H'(B; F2)
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w(E;t)= I Wj{E)tJ (3)
j=o

with Wj-(E) = 0 by convention for; > r, so that (3) is in fact a polynomial. Then
formulas (2) take the simple form

w(E' 0 E"; r) = w(E'; r)^ w(E"; t). (4)
The first published proofs of Whitney's formula (2) are due to Wu Wen Tsiin

[521] and Chern [126] (both in the same volume of the Annals of
Mathematics). We shall deal with Chern's proof in section D. For convenience Wu
Wen Tsiin worked with vector bundles instead of sphere bundles. His idea
was to consider two vector bundles (E^B^pJ, (E2,B2,p2) with two not
necessarily identical base spaces B1; B2 (he limited himself to finite simplicial
complexes); the product (Ex x E2,Bi x B2,pt x p2) is then defined as a
vector bundle, and he proved the formula

w(Ej x E2;r) = w(Ei;t) x w(E2;t), (5)
for that product, H-^ x B2;F2) being identified to H*(B1;F2) x H-(B2;F2)
by the Kiinneth formula. He then derived (4) and (5) by the usual
"Lefschetz trick" of identifying E' © E" to the pullback by the diagonal map
ô: B -+ B x B of the product E' x E" over B x B as base space.

Wu Wen Tsiin's proof of (5) used a construction of Stiefel ([457], p. 237)
generalizing the concept of "m-field" to "m-field with singularities." He
considered a vector bundle (E, B, p) of rank v over a simplicial complex B and for
every m ^ v, showed that it is possible to define systems

<P = («Pi» <iP2. ■■■»</> J

of "canonical" sections of E over B which have the following properties for
every skeleton Br of B:

(i) if r ^ v — m, (p1, (p2, ■ ■ ■, (pm are linearly independent over Br;
(ii) if r > v — m, there exists an index i such that 0 ^ i ^ m — (v — r)+, for

which (p1,(p2,..., <pi+(v-r)+ are linearly independent over Br, while all other
sections (pi+^-r)++1,..., (pm are identically 0 on a proper subcomplex of the
first barycentric subdivision of B.

To prove (5), Wu Wen Tsiin assumed that the vector bundles have ranks
Vj, v2, respectively; for m ^ v1 + v2, he defined m sections of Ex x E2 over
Bi x B2 by

<PiO>ub2) = {(pi,dbi),(Pm-i+u2(b2)) for I < i ^ m, (6)

where the (pu x and cpj 2 are the "canonical" sections of E1 and E2 defined above.
The (pi are linearly independent at each point of B1 x B2. There follows a long
argument, the purpose of which is to deform the <p, in such a way that the
proof of (5) is reduced to the product formula for the degree of a map fx x f2,
for two maps f1:B1->- E1 and f2: B2 ->■ E2 (Part 2, chap. I, § 1).
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Applications. From formula (1) follows that if E is a trivial vector bundle,
then Wj(E) = 0 for allj, since there then exists a map g : B -> {x0} on a singleton
such that E is the pullback of a vector bundle with base space reduced to one
point. From (4), if E" is a trivial bundle, then

w(E'®E";r) = w(E';r).

This result already shows that Stiefel-Whitney classes may give useful
information on vector bundles. Suppose E has rank r and has k linearly
independent cross sections; they generate a trivializable subbundle E'; therefore (chap.
Ill, § 1,C), if B is paracompact, E = E' © E" where E" has rank r — k, and this
yields the necessary conditions

wr-).-H(E) = wr_k+2(E) = ■ ■ ■ = wr(E) = 0.

A large part of Whitney's 1940 Note and his 1941 lecture was devoted to
the case in which B is a C1 manifold, and the vector bundles he considered
are the tangent bundle T(B) = T and the normal bundle N(B) = N when B is
a submanifold of some larger C1 manifold. In particular, if B is embedded in
some R", T © N is the restriction to B of the trivial tangent bundle T(R");
hence, for the formal power series w(T; t) and w(N; t),

1 = w(T © N; t) = w(T; r)^ w(N; t).

This proves that if w( = w,(T), the Whitney classes vv; = w,(N) are given by
the formula

(1 + wtt + ■■■ + wmtm + ■■■)-1 = 1 + Wit + ■■■ + wjm + ■■■ . (7)

Whitney called the vv( "dual classes" of the w; in H'(B; F2) and formula (5)
the "duality theorem".

Formula (7) gave the first results on the immersion problem. For a given
smooth manifold M of dimension n, determine the smallest k such that there
is an immersion of M in Rn+k (k < n by Whitney's immersion theorem). If there
exists such an immersion, the normal bundle N has rank k, so wf(N) = 0 for
i > k, and formula (7) implies restrictions on the wh since vv, = 0 for i > k. The
computation of the Stiefel-Whitney classes for the tangent bundle to P„(R)
shows that P8(R) cannot be immersed in R14; on the other hand, if P2r(R) can
be immersed in R2r+k, then k "> 2r — 1, which shows that Whitney's theorem
cannot be improved for general n.

Another application is to a simple proof of Stiefel's theorem on the parallel­
izability of any orientable compact three-dimensional manifold M (chap. IV,
§ 1,A). It is enough to prove the existence of two linearly independent vector
fields Xx, X2 on M, since if a third vector X3(x) is defined for each x e M
orthogonal to Xt(x) and X2{x) (for a riemannian structure on M) and such
that the sequence X1(x), X2(x), X3(x) is direct (for a given orientation on
M), then there is a system of three linearly independent vector fields. Since
7t!(S3 2) — Z/2Z, there is an obstruction to defining a 2-field on the 2­
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skeleton of M; but since M is orientable, w1(T(M)) = 0 (section C), so that
obstruction is 0. To extend that 2-field to the whole manifold M, check
that 7t2(S32) = 0; but S32 is homeomorphic to SO(3), which is itself homeo­
morphic to P3(R), quotient of the unit quaternion group S3; and since
7r2(S3) = 0, jt2(P3(R)0 = 0.

C. Pontrjagin Classes

Although he was the first to characterize up to isomorphism the vector
bundles (E, B, p) having a simplicial complex B as base space, by the pullback
process from Stiefel manifolds (chap. Ill, § 2,E), Whitney does not seem to have
thought of defining the Stiefel-Whitney classes as images of the cohomology
classes of Grassmannians with coefficients in F2. This idea was introduced by
Pontrjagin ([379], [381]). In his first Note [379] (later developed in [381])
he only considered orientable C1 manifolds M and their tangent bundles
T(M); he also supposed M embedded in some R" [due to Whitney's embedding
theorem (Part 1, chap. Ill, §1), this does not restrict the generality]. The
novelty in his approach was that instead of taking the Grassmannian Gnm =
G„m(R) consisting of the vector subspaces of dimension m in R", he considered
the special Grassmannian G'nm consisting of the oriented vector subspaces of
dimension m in R" (Part 2, chap. V, §4,B). He constructed a cellular
decomposition of G'nm that projects onto the one constructed by Ehresmann for
G„ m, using Schubert varieties (loc. cit.). That construction was presented in a
simpler way by Wu Wen Tsiin in his thesis in 1948 [524]. Slightly changing
Schubert's notations, Pontrjagin and Wu Wen Tsiin considered functions

o.:{l,2,...,m}->{0,l,2,...,n}
such that

0 s= co(l) < oi(2) < ■ ■ ■ < (o(m) < n, (8)
and they attached to each <y the m-dimensional oriented vector subspace Xro
of Rm+n having as basis the vectors

^ro(l)+l> 6ro(2) + 2> ■ ■ ■ > &<o(m)+m

of the canonical basis of Rm+", that order defining the orientation. They
considered the set U+ (resp. U+) of oriented vector subspaces V e G'm+nm for
which the canonical projection on Xro is bijective and preserves (resp. reverses)
orientation and for which

dim(V n Rro«>+i) ;> j for 1 s= i s= m. (9)
Both U+ and U~ are homeomorphic to an open ball in Rä(<0) with

md((0) = X «(I). (10)
i=l

and when œ varies in the set of functions satisfying (8) they constitute a cellular
decomposition of G'm+nm.

Pontrjagin also determined the boundary operator ofthat cell complex, and
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used that result to compute some of the homology groups of G'm+„ m; Wu Wen
Tsiin, using cohomology instead of homology, put Pontrjagin's results in a
simpler form.

The cohomology group Hj(G|„+njm(R); Z) for) ^ m is a direct sum of a free
Z-module and a vector space over F2. Pontrjagin selected chainsRro = u:±u- en)
for suitable choices of the sign ± (depending on m): when considered as chains
with coefficients in F2, they are d(cu)-cycles, and when considered as chains
with integer coefficients, they are d(cu)-cycles for some of the functions cu.

During the period 1935-1950 many topologists identified p-cochains on
an n-dimensional combinatorial manifold with the (n — p)-chains of a dual
cellular decomposition, the bilinear form <£,£'> being identified to the
intersection product. Wu Wen Tsiin did this to obtain cocycles from chains of type
(11) by a careful study of a dual cell decomposition; in particular he singled
out the following functions cu:

(a) (o(j) = 0 for 1 ^ j < m — k, cu(j) =1 for m — k + 1 < j;^ m, which he
wrote a>k, for all k < m; then d(u)k) = k. The corresponding cochains are
cocycles in Zk{G'm+nm: F2), and a>Z is even a cocycle in Zm{G'm+„tm, Z);

(b) co(j) = 0 for 1 sc j < m - 2k, m{j) = 2 for m - 2/c + 1 s= j < m, which he
wrote a>2k,2k' f°r an ^ ^ m/2; then d(a>2k,2k) = 4k. The corresponding
cochains are cocycles in Z4't(G'm+„jm; Z).

To each cu™ corresponds a cohomology class in Hk(G'm+n m; F2); they are the
Stiefel-Whitney classes for the sphere bundle S'[n + m — l,m — 1], which is
the pullback of Whitney's sphere bundle S [n + m — l,m — 1] (chap. Ill, §2,E)
by the natural projection G'm+„,m -► Gm+„,m.

However, the cohomology classes pk e H4'c(G'M+„jm;Z) deduced from the
u)2k,2k f°r 2fe ^ m, and e = em e Hm(G'm+nm; Z) deduced from a.™, had never
been considered before Pontrjagin; the pk are now called the Pontrjagin classes
and e is the Euler class of S'[n + m — l,m — 1]; the relation

^m— cm = Pm' if m = 2m' (12)
holds in the cohomology algebra H'(G^+„ m;Z).

Pontrjagin also studied the natural involution p: G'm+nm -*G'm+n<m which
exchanges the two points of GJ,,+„ m above the same point of Gm+„ m; he proved
in substance the important results written by Wu Wen Tsiin as

P*{Pk) = Pk> P*(em)=-em, (13)
which show that the pk are natural images of classes in the cohomology algebra
H'(Gm+„ m; Z), which are also written pk.

The spherical fibrations (S'[n + m,rn],G'm+n+lm+1,n') are the "universal"
ones for what are called oriented spherical fibrations £ = (E, B, p); these can
be defined by replacing, in Whitney's definition of "regular" sphere bundles
(chap. Ill, § 1,B), the orthogonal group 0(m + 1) by the special orthogonal
group (or group of rotations) SO(m + 1). The Stiefel manifold Sm+„.m can be
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written as the homogeneous space SO(m + n)/SO(n) for m "> 1, n "> 1, and
Gm+nm as the homogeneous space SO(m + n)/(SO(n) x SO(m)), so that (chap.
Ill, § 1,C) S„+m>m is also a principal fiber space with base space G'm+nm and
structural group SO(m). Therefore S„+m+1>m is n-universal and its base space
G'n+m+i,m is n-classifying for principal fiber spaces with structural group
SO(m). Using the natural injections G'n+Kk -> G'n+k+uk and Sn+ktk -> Sn+k+uk,
define the direct limits BSO(/c) and ESO(/c) of those spaces (chap. Ill, § 2,F);
ESO(/c) is universal and BSO(/c) is classifying for every principal fiber space
with structural group SO(/c) and base space any CW-complex.

The sphere bundle S'[n + m — 1, m — 1] is then associated to the principal
fiber space (S„+m,m, G'm+„m, SO(m)) and to the natural action of SO(m) on Sm_t.
The Whitney-Steenrod therems (chap. Ill, §2,E) apply to oriented spherical
fibrations, by considering pullbacks of (S„+mm, G'm+nm, SO(m)) instead of pull­
backs of (S„+m,m,G„+mim,0(m)).

In the same way that vector bundles correspond to Whitney's "regular"
sphere bundles, oriented vector fibrations <!; = (E, B, F, p) correspond to
oriented spherical fibrations; the fibers of such a fibration are oriented vector
spaces over R, and the typical fiber F is also oriented. The homeomorphisms

ç>:U x F-+p_1(U) (14)
defining the fiber space structure must be such that, for each b e U, the map
ti—► (p{b,t) of F into Efc is a linear bijection preserving orientation. If

(p':U' x F->p_1(U') (15)
is another such homeomorphism and UnU'#0, the transition homeo­
morphism in U n U' can be written

(y,t)^{y,A{y).t) (16)
where A(y) e GL(m) and det{A{y)) > 0 for y e U n U'.

Given a vector bundle (E, B, F, p) of rank m, it is not always possible to find
an open covering (UJ of B for which there exist homeomorphisms (14) for
each Ua satisfying the preceding condition. A necessary and sufficient
condition is that for the m-th exterior power /\m E (which is a line bundle) there
exist a section w over B for which w(b) # 0 for each fceB; the vector fibration
Ç = (E, B, F, p) is then called orientable. Any two sections wx, w2 of /\m E over
B that are #0 at every point are such that w2 = lwx, where b\-^l(b) is a
continuous map B -+ R that is # 0 in B; wt and w2 are called equivalent if
X(b) > 0 in B; the equivalence classes for that relation are called the
orientations of {,. If w belongs to an orientation of (J, then the orientation to which
— w belongs is opposite to the one to which w belongs.

A trivial vector fibration (B x Rm, B, prt) is always orientable. To say
that a C00 manifold M is orientable means that the tangent fibration t =
(T(M), M,p) is orientable and the orientations of M are in one-to-one
correspondence with those of t. When a vector fibration £, = (E, B, F, p) has a C00
manifold B as base space, the "total space" E is also a C00 manifold, and care
must be taken not to confuse the property "<!; is orientable" with "E is
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orientable." If M is any C00 manifold, then the "total space" T(M) is always
orientable, even if M is not; and the trivial fibration (M x Rm, M, prj is
orientable even for nonorientable manifolds M.

In more recent work on characteristic classes, the sphere bundle
S[m + n — l,m — 1] of Whitney was replaced by the corresponding vector
bundle Um+„ m(R) = Um+nm with base space Gm+„ m; it can be defined as the
subspace of Gm+„ m x Rm+" consisting of the pairs (V, x), where V is an m­
dimensional vector subspace of Rm+", and x e V; it is often called the
tautological bundle with base space Gm+„ m, and it can also be considered the associated
vector bundle to the Stiefel principal fiber space Sm+nm, for the natural action
of O(m) on Rm. Similarly, S'[m + n — l,m — 1] is replaced by the double
covering Vm+n m of Um+„ m, defined by replacing, in the preceding definition,
m-dimensional vector subspaces by oriented m-dimensional vector subspaces.
This is again associated to Sm+„ m, this time for the natural action of SO(m)
on Rm.

For every vector fibration (resp. oriented vector fibration) £ =(E, B,p),
which is a pullback of (Um+„m,Gm+„m,7t) [resp. of (U^+„m,G'm+„m,7t')] by a
continuous map g: B -+ Gm+„ m (resp. g: B -► G'm+„ m), the cohomology class

Pk{Q = g*(pk)eH"(B;Z) for 2/c *= m

[resp. e(<f) = 0*(e)eHm(B;Z)]

is called the k-th Pontrjagin class (resp. Euler class) of £. (The motivation for
the name "Euler class" will appear below in section E.) From (13) it follows
that if the orientation of an oriented vector bundle is replaced by its opposite,
the Euler class changes sign. For an oriented vector bundle £ of odd rank,
there is an automorphism of £ reversing orientation, so 2e(£) = 0. If £ is an
oriented vector bundle of even rank m = 2m',

e(Z)~ e(Z) = pmit). (17)
The relation between Pontrjagin classes and Stiefel-Whitney classes was

later shown to be the following: if pk is the image of pk by the natural
homomorphism H4,t(B; Z) -► H4,t(B; F2), then

Pk = W2k— ">2k (18)
in the algebra H'(B; F2); similarly, the image ë of e in Hm(B; F2) is the top Stiefel
-Whitney class wm(i). In his first Note on "sphere spaces" [505] Whitney had
shown directly from his definition that the condition wt = 0 is necessary and
sufficient for the restriction to the 1-skeleton B1 of the vector fibration £ to be
orientable. Using the definition of orientable vector bundles as pullbacks of
universal bundles with base G'm+„ m, Wu Wen Tsiin showed that the condition
Wj = 0 implies that £ itself is orientable ([524], p. 45).

The Euler classes e(£) can also be related to the obstruction class defined
in section B for the case k = 1; that class belongs to Hm(B;(Gx)), and since £
is oriented, there is a natural isomorphism of nm^1((F1)x) onto Z; this gives
an obstruction class om(0 e Hm(B; Z) equal to e{£) ([347], p. 147).
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D. Chern Classes

In 1945 S.S. Chern extended Pontrjagin's idea to complex vector bundles (or
their corresponding sphere bundles), to which the Whitney-Steenrod
theorems generalize immediately; the real Stiefel manifold S„m(R) [resp. the real
Grassmannian G„ m(R)] is replaced by the complex Stiefel manifold S„m(C)
[resp. the complex Grassmannian G„ m(C)]. At first Chern only considered
tangent bundles of complex manifolds and worked from the start with co­
homology instead of homology [125]. Here again, Wu Wen Tsiin in his thesis
[524] generalized Chern's paper to arbitrary complex vector bundles over
arbitrary finite simplicial complexes. Both Chern and Wu Wen Tsiin used
Ehresmann's cellular decomposition of Gm+„ m(C) by Schubert varieties. In
Wu Wen Tsiin's notation the vector space Xro <= Rm+" of section C is replaced
by its complexification Zro <= Cm+", U+ and U~ are replaced by the set Wro of
m-dimensional complex vector subspaces of Cm+" that project bijectively on
Zro; the Schubert varieties are the closures Wro, and the dimension of the cell
Wro is 2d(oj). He then introduced the special functions <y for which

œ{j) = 0 for 1 ^ ;' ^ m — 1, <u(m) = k,

which he wrote cök, so that 2d(cök) = 2k; the corresponding cochains
are in fact cocycles in Z'(Gm+„ m(C). Z) and the cohomology classes
ckeH2k(Gm+nm(C);Z) corresponding to the côk are by definition the
Chern classes of the tautological vector bundle Um+nm(C), defined as Um+„ m(R)
by replacement of real vector spaces by complex ones. From this definition,
one gets by the usual pullback process the Chern classes of any complex vector
bundle.

In 1947 [126] Chern determined the cohomology algebra H'(Gm+„>m(R); F2)
and proved that the Stiefel-Whitney classes wk of Um+nm(R) form a system
of generators for that algebra. Without going into details, Wu Wen Tsiin
stated that similarly the Chern classes ck are generators of the algebra
H'(Gm+nm(C);Z); this had earlier been proved by Chern, using differential
forms (see section E); Wu Wen Tsiin also mentioned that similar properties
hold for the quaternionic Grassmannian Gm+„ m(H).

The fact that all Chern classes belong to even-dimensional cohomology
groups implies that H2j+1(Gm+„m(C);Z) = 0 for) "> 0, a property known to
Ehresmann for homology ([155], p. 418).

It was later shown [347] that there are no polynomial relations

P(c1,c2,...,cj = 0

for P # 0 and v1 + 2v2 + ■ ■ ■ + mvm < n if vk is the degree of P(Tt,..., Tm) with
respect to Tk (the coefficients of P being rational).

In his thesis Wu Wen Tsiin simplified the proof he had given earlier of the
product formula (4) for Stiefel-Whitney classes; he extended it to Chern
classes:

c(E' 0 E"; t) = c(E'; t)— c(E"; t) (19)
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where for a complex vector bundle E, the total Chern class

c(E;r) = XCi(E)r\ (20)
i

For a complex vector bundle (E, B, p), he defined the conjugate vector bundle
E+ by taking on each fiber Efc the complex structure for which the scalar
multiplication is (l,z)\—>Xz. Wu Wen Tsiin showed ([524], p. 43) that for
Chern classes

cfc(Et) = (-l)"cfc(E). (21)
If (E, B,p) is a real vector bundle, E(C) = E ®R C is a complex vector bundle

with base space B, having a complex rank equal to the real rank of E. Consider
the Chern classes

Cfc(E(C))eH2k(B;Z); (22)
it is easily seen that (E(C))+ is isomorphic to E(C), hence

cfc(E(C)) = (-l)kcfc(E(C)) (23)
so that 2ck(E(C)) = 0 for odd k. Wu Wen Tsiin showed that the Pontrjagin
classes are given by

P;(E) = (-iyc2j.(E(C)) (24)
so that properties of Pontrjagin classes can immediately be deduced from
those of Chern classes. In particular, for two real vector bundles E', E" with
same base space,

2p(E' 0 E"; t) = 2p(E'; t) ^ p(E"; t). (25)
Wu Wen Tsiin also proved for total Pontrjagin classes a formula similar to
the formula (5) for Stiefel-Whitney classes.

If E is no w a complex vector bundle of complex rank m, it can be considered
a real vector bundle of real rank 2m (using the canonical injection R -+ C); it
is then written ER. It has a privileged orientation, and for that orientation,
the Euler class

e(ER) = cm(E)eH2m(B;Z). (26)
Furthermore, (ER)(C) is naturally isomorphic to E © E+, hence the relation

p(ER;t) = c(E;r)~c(E;-r) (27)
or equivalently

1 - P!(ER) + p2(ER) + ■■• + (- l)mpm(ER)

= (l-c1(E) + c2(E)---+(-ircm(E))^(l+c1(E) + c2(E)+-+cm(E))
(28)

in the algebra H'(B; Z).
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E. Later Results

Using the principal fiber spaces with the unitary group U(m) as structure
group, Hirzebruch [235] gave a new proof of the product formula (19) for
Chern classes. Any complex vector fibration Ç = (E, B,p) of complex rank m
can be considered as associated to a principal fiber space (P, B, U(m), n) and
to the natural action of U(m) on Cm (chap. Ill, § 1,C, IV). In U(m), consider a
maximal torus Tm; P is also a principal fiber space with base space

X = Tm\P ^ P x U(m>(U(m)/Tm)

and structural group Tm (chap. Ill, § 1,C, IV); if p: X -+ B is the projection,
then p*(£) is a complex vector fibration over the base space X associated to
the principal fiber space (P, X,Tm,7t'), hence a direct sum of complex line
bundles

K © ^2 © ■ ■ • © K\

this is due to the fact that any unitary representation of Tm splits into one­
dimensional representations. From results of A. Borel on the cohomology of
principal fiber spaces with compact Lie groups as structure groups (see § 4) it
follows that the cohomology homomorphism

p*:H-(B;Z)^H-(X;Z) (29)
is injective, and the total Chern class

mc(p*(è);t) = Heß-,;!) (30)
i=l

in the cohomology algebra H'(X; Z).
If (E', B,p'), (E", B,p") are two complex vector bundles of respective ranks

p, q over the same base space B, there is a continuous map g: X -+ B such that
a*: H-(B;Z) -> H'(X;Z) is injective and that

«*(E') = 0l;, «*(E") = ©l;i=i 7=1
where the L' and Lj-' are complex line bundles, so that

«♦(F e E") = fe l;W© lA

and

c{g*(E' 0 E"), t) = F] c(L;.; r)~ Ei ^ t)i j
= c(a*(E');0~c(a*(E");t);

using the injectivity of the cohomology homomorphism g*, the product
formula (19) follows. The method yields more relations, for instance,
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g*{E ® E") = 0 l; ® l;, (31)

i.j

g*(/\v) = © (L;,Cg)L'i2®-®L;v) (32)\ / i,<i2<-<ir
and for two complex line bundles L', L"

c1(L'®L") = c1(L') + c1(L"). (33)
Hence formulas (31) and (32) allow the computation of c(E'®E";r) and
c(/\rE';r) for complex vector bundles.

The Chern character of a direct sum Lx © L2 © ■ • • © Lp of complex line
bundles is defined as*

expMLj)) + exp(Cl(L2)) + ■ ■ ■ + exp(Cl(Lp)) in H'(B;Q).

The Hirzebruch method allows the transfer ofthat definition to any complex
vector bundle; writing ch(E) or ch(t^) for the Chern character of a complex
vector fibration Ç = (E, B,p); then

ch(E' © E") = ch(E') + ch(E"), (34)
ch(E' ® E") = ch(E')~ ch(E") (35)

in the algebra H-(B; Q).
Earlier Wu Wen-Tsiin had made computations with Stiefel-Whitney

classes by using "phantom" indeterminates tl,..., tm for a vector bundle t, of
rank m such that its Stiefel-Whitney classes are formally elementary symmetric
polynomials in tl,..., tm:

wi = * i + t2 + ■ ■ ■ + tm,

w2 = ttt2 + ■■■ + tm^tm,

wm = ti^-" tin­

Polynomials in the w} with integer coefficients can be more easily handled as
symmetric polynomials intl,...,tm. This can also be done for Pontrjagin classes
and Chern classes; for the latter, the indeterminates t} can be interpreted as
the Chern classes cx{kj) defined above. For instance, it is useful to consider
the symmetric polynomial

sk=tï + --- + C

which is a polynomial sk(c(Ç)) in the Chern classes Cj(Ç); with that notation
the Chern character can be written

* This is meaningful since the Chern classes are nilpotent elements in H'(B; Q) when
B has finite dimension.
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k=o k\

(cf. chap. VII,§2,A).
Other proofs of the product formula (19) are to be found in [347] and [262];

all these proofs also apply to Stiefel-Whitney and Euler classes.
In 1944 Pontrjagin [380], studying the tangent bundle of a Riemannian

manifold M, showed that the images of Pontrjagin and Euler classes, in the
de Rham real cohomology H'(M;R), could be expressed as cohomology
classes of explicitly determined closed differential forms, computed by means
of the Riemann-Christoffel tensor; he proved in particular that, for an
oriented compact C00 manifold M, the Euler-Poincaré characteristic is given
by the formula

<e(T(M)),[M]>=*(M) (36)
(hence the name "Euler class" later given to e(Ç)).

This method was extended by Chern [125] to the Chern classes of the
tangent vector bundle of a complex manifold, using a hermitian metric on the
manifold and working with E. Cartan's connexion differential forms instead
of the Riemann-Christoffel tensor. Later A. Weil showed ([482], pp. 422-436
and 567-570) that this method of computation can be extended to an arbitrary
principal fiber space X with base space a C00 manifold B, and a Lie group G
as structural group. To a principal connexion (invariant under G)

P:T(B)xBY^T(X) (37)
and any p-linear complex form F on g (the Lie algebra of G), invariant under
the adjoint action of G on g, associate the exterior 2p-formF(Q,Q,...,Q) (38)
where Q is the curvature 2-form of the connexion P; this form is closed, and
from the invariance of F it follows that it only depends on the fibers X;,, so
that it defines a closed exterior 2p-form FB(Q) on B; the remarkable thing is
that the cohomology class of FB(Q) in H'(B;R) is independent of the chosen
connexion P on X; so that this finally defines the Weil homomorphism

I(G)-H'(B;R)

of the real algebra of multilinear forms on g, invariant under G, into the
cohomology algebra H'(B;R). When G is a complex Lie group, the same
process applies to complex multilinear forms and to the algebra H'(B; C). The
Chern and Pontrjagin classes are obtained when this process is applied to
the corresponding principal fiber spaces to which the vector bundles are
associated [347]. For Euler classes it is necessary to restrict the connexion to
those compatible with a Riemannian structure on B ([347], pp. 312-314).

Hirzebruch showed that Chern classes can be characterized by a system of
axioms (in the style of Eilenberg-Steenrod) including the product formula
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([235], pp. 60-63); this later proved very useful in defining similar notions in
categories other than the category of topological spaces.

We shall return to the characteristic classes in §2 for their relations with
the Gysin sequence, and in chap. VI for the relations between the Stiefel­
Whitney classes and the Steenrod squares.

§ 2. The Gysin Exact Sequence

In his work on mappings of spheres into spheres (chap. II, § 1) Hopf had
defined, for two compact, connected, orientable combinatorial manifolds
X, Y of same dimension n, and for a simplicial map /: X -+ Y, a group
homomorphism

<p: H.(Y) -► H.(X)

which is also an algebra homomorphism for the intersection products on X
and Y (Part 1, chap. IV, §4,A). He did not try to define this
"Umkehrhomomorphismus," as he called it, when X and Y have different dimensions;
if n = dim X > dim Y = m, his method would have produced a map (p
increasing the dimension of homology classes.

Hopf was certainly aware ofthat possibility, for in his 1931 paper on 7r3(S2)
he refers to the "Umkehrhomomorphismus" in a footnote ([243], p. 45). Recall
that, at the beginning of that paper, he precisely considered a simplicial map
/: X -+ Y for m = 2, n > 2, and for any Ç e Y belonging to a two-dimensional
simplex, he showed that f~l(£) could be considered an (n — 2)-cycle. But he
also was interested in other maps: when n = 3 and H t (X) = 0 (which is the
caseforX = S3),/-1(iJ), beinga 1-cycle, is also a 1-boundary. If K is a 2-chain
having f~l{£) as boundary, f(K) is a 2-cycle, hence a multiple c[Y] of the
fundamental cycle of Y, and it is that integer c that became known as the Hopf
invariant of f.

In 1941 Gysin, a student of Hopf, investigated in his dissertation [216]
whether similar maps could be constructed in the general case m < n
mentioned above, which would reduce in the case m = 2 to those defined by Hopf
for his special purposes. Recall that, for n = m, Freudenthal had defined the
"Umkehrhomomorphismus"

*.:H.(Y;Q)-H.(X;Q)

using the cohomology algebra homomorphism

/*:H-(Y;Q)-H-(X;Q)

and Poincaré duality [Part 1, chap. IV, § 4, formula (26)]. Although Gysin did
not mention Freudenthal, he followed exactly the same procedure for m < n.
Consider the Poincaré isomorphisms

jp. H*(X;Q) ~ H„_p(X;Q), j'q: H«(Y;Q) ~ Hm_,(Y;Q). (39)

Then, for d = n — m, <$>p is defined as the composite
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Hp(Y; Q) -^U H"-'(Y; Q) -^— Hm-*(X; Q) -^- Hp+d(X; Q). (40)

In fact, Gysin (like many topologists of the same period) identified p­
cochains on an n-dimensional orientable combinatorial manifold with the
(n — p)-chains of the dual triangulation, the bilinear form <£, Ç > between p­
chains and (n — p)-chains being the intersection product (§ 1,C). This allowed
him to deduce /* in (40) from a cochain transformation / assigning to each
(n — p)-cell a' of the dual triangulation of Y the sum (with suitable signs) of
the (n — p)-cells of the dual triangulation of X that are mapped bijectively onto
a' by the simplicial map /. This generalized Hopfs construction of the 0-chain,
which Hopf wrote <?„{£) (chap. II, § 1), except that, in contrast with Hopf,
for whom £, was variable, Gysin only considered inverse images by /of dual
cells of a fixed triangulation of Y. The map <$>p is thus deduced from a
homomorphism

<pp:Zp(Y;Q)^Zp+(i(X;Q) (41)
at the level of cycles in Y.

This method enabled Gysin to follow the argument that led Hopf to his
invariant: he considered the homology classes z e Hp(Y; Q) that belong to the
kernel of <$>p. At the level of p-cycles (ez this means that (pp{Q is the boundary
ofa(p + d + l)-chainT. Continuing to follow the pattern of Hopfs argument,
the boundary of the (p + d + l)-chain f(T) is a degenerate (p + d)-chain, hence
f(F) is a (p + d + \)-cycle. Furthermore, if T0, F1 are two (p + d + l)-chains
that have the same boundary <pp(Q, then

/(r1)-/(r0) = /(Z),
where Z is a (p + d + l)-cycle. Passing to homology, the image of f(F) in
Hp+d+1 (Y; Q) is thus only determined modulo the image /#(Hp+d+1(X; Q)); this
defines a homomorphism

V- Ker<Dp - Cokerf.,p+i+1. (42)
Gysin's chief concern was the case in which X is a sphere-bundle with base
space Y and typical fiber Sd; his main theorem was that in this case, hp is an
isomorphism. The proof is long and intricate, based on the local study of the
complex f~l{a') considered as a product for small enough simplices a' in Y.

Exact sequences were not yet used in 1941, but Gysin's main theorem can
be expressed as the exactness of a homology sequence

■ ■ ■ - Hp(X) -A» Hp(Y) -^ np_d^{\) -% Hp_t(X) - ■ ■ • (43)

where the map *?,, is the composite

Hp(Y) - Coker /„ -^ Ker •$,_„_! - H,.,., (Y). (44)
After 1947 there was a renewal of interest in Gysin's paper, from several

directions. In 1947 Steenrod [448] defined maps in cohomology that, for
sphere-bundles (X, Y, p), gave an exact co homology sequence (which he did
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not write explicitly)

► Hp(Y) -► HP(X) -^* H'-^Y) -► Hp+1 (Y) -► ■ ■ ■ (45)

In 1948 A. Lichnerowicz [326] considered in general a fiber space (E,B,F,p),
where E, B, F are C00 manifolds of respective dimensions m + n, n, m, and p
is a C00 map. Using de Rham cohomology, he defined homomorphisms

HJ+m(E) -► HJ'(B) (46)
that, at the level of cocycles [i.e., closed (;' + m)-forms on E], are given by the
process called integration along the fiber. For a trivial fiber space E = B x F,
after fixing a point b e B and a tangent j-vector ze/\JTfc(B), an (m + ;')-form
co on E naturally defines a tangent m-covector

u i—► co{(b, y), z a u) (47)
for u e /\m T(6,y)(Efc), where z (resp. u) is identified with its image in /\ T(fc y)(E);
these m-covectors are the values of an m-form cob on Efc = {b} x F, and the
integral

CI: b\-> cob
Je,,

is a^'-form on B, "co integrated along the fibers Efc," sometimes written jFco.
The map co i—» Q commutes with exterior differentiation, and therefore yields
the homomorphism (46) in the usual way.

When the slant product was later defined (Part 1, chap. IV, §5,H) it was
realized that if (with the same notations) u is the cohomology class of co, then
the cohomology class of Q. is the slant product u/[F].

When F is a sphere Sd, the homomorphism (46) turns out to be the
homomorphism »F, of the cohomology exact sequence (45). This was seen
independently in 1950 by Thorn [462] and Chern and Spanier [128]. The latter two
extended the definition of "integration along the fiber" to the more general
case in which B is a finite simplicial complex and m is the largest integer for
which Hm(F) ^0; their method used the relative cohomology sequence for the
successive skeletons of B and their inverse images in E.

Thom derived the exact sequence (45) for sphere bundles from a general
result on fiber spaces that behave like products in cohomology: the "Leray­
Hirsch theorem" (see § 3,A), applicable to oriented vector fibrations t, =
(E, B,p) of rank m (§ 1,C). This is due to two properties of these fibrations:

1. If E° is the open set in E complementary to the zero section (which can
be identified with the base space B), then for each fiber Efc the relative
cohomology H'(Efc, Efc n E°; Z) is reduced to the single module

Hm(Efc,EfcnE0;Z) a. Hm(Rm,Rm - {0};Z) a. Z.

2. The existence of an orientation for £, implies that there is a unique element
u in Hm(E,E°;Z) such that for all linear bijections ii,:Rm->Ei> preserving
orientation for each b e B, i*(u) is the fundamental class of relative cohomo­
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logy in Hm(Rm,Rm - {0};Z) (Part 2, chap. IV, §3,A); this class u is called the
orientation class oft, (or of E), or the fundamental class of relative cohomology
in Hm(E, E°;Z). The proof of the existence of such a class is done by steps,
starting with the case of a trivial bundle BxR" and then taking an open
covering of B by sets above which E is trivializable; the Mayer-Vietoris
sequence concludes the proof.

From that definition, it follows that if g: B' -+ B is a continuous map,
Ç = g*(£) = (E',B',Rm,p') the pullback of £ by g, and /: E' ->E the
corresponding bundle map, then £,' is orientable and u' = f*(u) is an orientation
class of <!;'.

If jb: Efc -+ E is the natural injection for each b e B, j*{u) is a generator of
the Z-module Hm(E,,,EfcnE0;Z), and the Leray-Hirsch theorem can be
applied: the Z-homomorphism®u:ch^p*(c)^u (48)
of HJ'(B; Z) into HJ+m(E, E°; Z) is bijective for all ; e Z; <D„ is called the Thorn
isomorphism. For a pullback £,' = g*{S,), the diagram (with the above notations)

HJ+m(E',E'°;Z) f* » HJ+m(E,E°;Z)

H'(B';Z) -— H'(B;Z)
9*

is commutative.
Now consider the cohomology exact sequence

• • — Hr(E, E°; Z) - Hr(E; Z) -^ Hr(E°; Z) - Hr+1(E, E°; Z) -» ■ ■ ■

where h: E° -+ E is the natural injection. The Thom isomorphism (48) and the
fact that

p*:H-(B;Z)-H-(E;Z)

is an isomorphism give rise to the Gysin cohomology exact sequence

• ■• -> Hr-m(B;Z)-^- Hr(B;Z) -^ Hr(E°;Z) - Hr-m+1(B;Z) -» ■ ■ ■ (49)

where p0: E° -► B is the restriction of the projection p, and g: ct-^c—^ eu{Ç) is
the cup product with the Euler class of Ç (§ 2,C).

For an unoriented vector fibration Ç = (E, B, Rm, p) of rank m similar
arguments prove the existence of a unique element u e Hm(E, E°; F2) such that i*(u)
is the unique element # 0 in Hm(Rm, Rm — {0}; F2); u is called the fundamental
class of relative cohomology in Hm(E, E°; F2); the map <I>„ of (48) is now an
isomorphism HJ(B; F2) 2; HJ+m(E, E°; F2), again called the Thom isomorphism.
The Gysin exact sequence is

• • • -> Hr-m(B; F2) -^ Hr(B; F2) -^ Hr(E°; F2) - Hr-m+1(B; F2) -» • ■ ■ (50)

where g: ci-^c^ wm(Ç) is now the cup product with the top Stiefel-Whitney
class of £,.

«\
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From the exact sequences (49) and (50) the structure of the cohomology
algebras of the complex and real Grassmannians may be deduced, and, in
consequence, the properties of Chern classes and of Stiefel-Whitney classes
[347]. In particular, let U„+1 A(C) be the tautological complex line bundle with
base P„(C) (defined as above for the real Grassmannians). The cohomology
algebra of the projective space P„(C) over Z is generated by the Chern class
a = C!(Un+li j(C)) e H2(P„(C); Z). Since am = 0 for m > In, H-(P„(C); Z) is
isomorphic to Z[a] = Z[T2]/(T2").

There is also a Thom isomorphism in homology for an oriented vector
fibration: *.:zi-P>-z) (51)
mapping HS(E, E°; Z) onto Hs_m(B: Z). From this isomorphism we deduce as
above the Gysin homology exact sequence

■ ■ ■ - Ht(E°; Z) Ä Ht(B; Z) - H^^B; Z) - H^rE0; Z) - ■ ■ ■ (52)

for orientable vector bundles, and a similar exact sequence for homology with
coefficients in F2 for unoriented vector bundles.

The Wang Exact Sequence

In 1949 [481] H. Wang considered fiber spaces (E, B, F, n), where the base
space B is homeomorphic to a sphere S„ and the typical fiber F is a finite
simplicial complex such that HS(F) = 0 for s "> n — 1. He then obtained an
exact homology sequence

■ ■ ■ - Hr_..+1 (F) - Hr(F) - Hr(E) - Hr_„(F) - ■ ■ ■ (53)

by the following very simple argument. Consider a fiber F0 = Ebo and the exact
homology sequence

■ ■ ■ - Hr+1(E, F0) - Hr(F0) - Hr(E) - Hr(E, F0) - ■ ■ ■. (54)

However (Part 1, chap. IV, §5,A), Hr(E,F0) ~ Hr(E - F0), and E - F0 is a
fiber space with a contractible base space B — {b0}, hence E — F0 is trivializ­
able by Feldbau's theorem, and

Hr(E - F0) =* Hr_„(F)

by Kiinneth's theorem.
The Wang and Gysin sequences were later obtained as consequences of the

spectral sequences of a fibration (§ 3,A and C).

§ 3. The Spectral Sequences of a Fibration

A. The Leray Cohomology Spectral Sequence of a
Fiber Space

When Leray invented the spectral sequence of a continuous map (Part 1, chap.
IV, § 7,E), he chiefly had in mind the case of a projection n: X -+ B of a (locally
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trivial) fiber space; almost immediately after his 1946 Notes defining sheaf
cohomology and spectral sequences he published two Notes ([316], [317])
announcing the results obtained by applying these notions to fiber spaces; he
gave the detailed proofs of these results in his 1950 papers ([321], [322]).

The assumptions on the fiber space (X, B, F,7t) are that X, B, F are locally
compact and arcwise-connected and B is locally arcwise-connected. Let A be
a principal ideal ring and M is a A-module, and consider the Alexander­
Spanier cohomology with compact supports and with coefficients in M. In the
formation of Leray's spectral sequence for n the sheaf 3#"{n; M) has at each
point b e B a stalk isomorphic to H'(X6; M) [hence to H'(F; M)]; it can
therefore be identified to the local system (H'(X6; M)) (Part 1, chap. IV, § 7,A).
Leray's spectral sequence then has E2 terms given by

EC« = H"(B; (H«(X6, M))). (55)
When the fundamental group ^(B) acts trivially on H'(X6; M) for one point
b e B (hence for all b e B), one says the system (H'(X6; M)) is simple, and (55)
may be replaced by

ES« = H"(B;H«(F;M)). (56)
If, in that case, M is also a field,

E£« ^ H"(B; M) (g) H«(F; M) (57)
and similarly, when B or F has no torsion and M = Z,

ES« ~ H"(B; Z) ® H«(F; Z). (58)
The homomorphisms n* and i* in cohomology (where i: F -+ X is the

natural injection for a fiber F) can be related to the M-modules E^° and E°«:
ES" ~H"(B;M), (59)

and the elements of E^0 are dr-cocycles, so E^;° is a quotient of Ef ■", and n*
can be written as a composite of surjective homomorphisms

H"(B; M) = E"2-° -> E§-° -►■■■-► Ejtfi = E£° c H"(X; M). (60)

Similarly, EJ« = H«(F;M)7, the submodule consisting of the elements of
H«(F;M) fixed under the action of tt^B). The elements of E°-« cannot be
coboundaries for dr, so E°v*i is the submodule of E°'« consisting of its dr­
cocycles; there is a succession of inclusions

H«(F;M)/ = EJ« =d E°3« =>■■■=. EJf2 = E^«, (61)

and E£« is a quotient of H«(X; M).
An important special case is when the homomorphism

i*:H-(X;M)->H-(F;M)

is surjective; then one says F is totally nonhomologous to 0. If in addition X is
compact and M = K is a field, then Tt^B) acts trivially on H'(F;K), all
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differentials dr are 0 for r ^ 2, so that

Ef = HP(B; K) ® H«(F; K) ~ Ep«, (62)
and the vector space H'(X; K) over K is isomorphic to the tensor product
H'(B; K) ® H'(F; K). This result was independently obtained by G. Hirsch in
1948 [228] as a special case of a different approach to the study of H'(X; K);
working at the level of cochains, he defined an increasing sequence of
subgroups of H'(F; K) by induction, and then a boundary operator on the vector
space C'(B; K) ® H'(F; K), such that the corresponding homology is
isomorphic to H-(X;K) (see [231]).

This Leray-Hirsch theorem for fibers totally nonhomologous to 0 has since
been proved in a more elementary way [262]: for each p ^ 0, there is in
HP(X; K) a family (ap_ 1, ap2, ■ ■ ■, apr ) such that the elements

J*(aP)1),i*(aP)2),...,i*(ap,rp)

form a basis of HP(F; K) over K; it is then proved that for the map

(c, a) t—> n* (c) -^ a (63)
H'(X; K) is a H'(B; K)-module which is free and has the basis

if HS(F; K) = 0 for s > n. This is first done for a trivial fiber space B x F and
next for an open covering (UJ of B such that X is trivializable over each Ua,
using induction and the Mayer-Vietoris sequence. The argument works when
K is replaced by any ring M, provided H'(F; M) is free.

The fact that i* is surjective implies that n* is injective, but not necessarily
the converse. G. Hirsch gave an example in which n* may be injective and i*
not surjective ([57], p. 56).

In the general case, assuming that 7tj(B) acts trivially on H'(F; M), if two of
the cohomology modules H'(B; M), H'(F; M), H'(X; M) are finitely generated,
the same is true for the third one. If M = K is also a field, then the Betti
numbers of X, B, F satisfy inequalities

MX) < MB x F) (64)
(also proved independently by Hirsch), giving the relation between Euler­
Poincaré characteristics

*(X) = x(B)z(F). (65)
Another application of the Leray spectral sequence is the determination of

all possible locally trivial fibrations of a space R" with connected fibers;
A. Borel and Serre showed that the base space and the typical fiber must have
the same homology as an Rp and an R"-p, respectively, for some p < n [67].

Finally, the cohomology exact sequences of Gysin and Wang (§ 2) can be
deduced from Leray's spectral sequence; it is enough to assume, first that nx (B)
acts trivially on H"(F; M), and second, that H'(F; M) = H"(Sk; M) for the Gysin
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sequence and H'(B; M) = H'(Sk; M) for the Wang sequence. This follows from
the fact that the only differential dr in the spectral sequence which is # 0 is
dk+1 for the Gysin sequence and dk for the Wang sequence. Leray also observed
that when M is a principal ideal ring, the homomorphisms

0: H'(F; M) -► H'-"*1 (F; M) (66)
in the Wang sequence are derivations if k is odd, antiderivations if k is even
[for the ring structure of H'(F; M)].

B. The Transgression

The first step in the construction outlined in G. Hirsch's 1948 Note [228] is
[for a locally trivial fiber space (X, B, F, tt)] the definition of a submodule of
HS(F; M), a quotient module of HS+1(B; M), and a homomorphism of the first
into the second. At the same time Koszul [286] was working on the cohomo­
logy of homogeneous spaces G/U of compact Lie groups for his thesis; but,
using E. Cartan's method (Part 2, chap. VI, § 1), he exclusively considered the
Lie algebras and the cohomology groups of these algebras as they had been
defined a little earlier (independently of the theory of Lie groups) by Chevalley
and Eilenberg ([113], [134]). Koszul's study therefore actually belonged to
homological algebra, although the inspiration derived from Lie group theory
was everywhere apparent.

The algebraic counterpart of the relation between the cohomology groups
of G, U, and G/U was the relation between the cohomology of a Lie algebra
a and a Lie subalgebra b. It is beyond the scope of this historical survey to
analyze Koszul's results in detail; it is enough to mention that, besides the
cohomology algebras H'(a) and H'(b), he introduced a "relative" cohomology
algebra H'(a, b), the counterpart of H'(G/U) in Lie algebra theory. He also
defined a spectral sequence, in which the E2 term is

H*(b)®H-(a,b)

and the abutment is a filtered module associated to H'(a).
Koszul finally introduced notions that corresponded in Lie algebras to

those considered by Hirsch: for each p, he defined a subgroup Tp of Hp(b),
a quotient group of Hp+1(a, b), and a homomorphism xp of Tp into that
quotient and said that the elements of Tp are transgressive, calling xp the
transgression (for dimension p). He also observed that xp could be identified with a
homomorphism

in his spectral sequence, namely, the restriction of the differential dp+1.
In 1949 Chevalley, H. Cartan, and A. Weil joined Koszul in the development

of his methods, and applied them to the cohomology of principal fiber spaces
with compact Lie groups as structure groups. Like Koszul they worked with
Lie algebras, and their results only dealt with cohomology with real
coefficients (see § 4).
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In his thesis ([429], p. 434) Serre gave a definition of the transgression for
the spectral sequence of a general graded differential module M. (Part 1, chap.
IV, § 7,D), under the single assumption that Mq = {0} for q < 0, and that if
w(x) is the largest integer p such that the homogeneous element x e FP(M),
then 0 ^ w(x) ^ deg(x).

Finally A. Borel, in his thesis [58], made extensive use of the transgression
to obtain his results on cohomology of the classifying spaces of Lie groups
(see §4). He returned to the situation originally considered by Hirsch: for
any locally trivial fiber space (X, B, F, n), an element x e H',(F; M) is
transgressée if there exists a cochain c e 0(X; M) such that the image T(c) (where
i: F -+ X is the natural injection) is a cocycle of class x and dc = n(b), where
b e C+1(B; M). This implies that b is a cocycle; its class in H',+1(B; M) is only
defined modulo a submodule Ns+1 of H',+1(B;M). It turned out that the
submodule T',(F; M) of transgressive elements in H',(F; M) is naturally
isomorphic to the module E°fi of the cohomology spectral sequence, and its
image in H',+1(B; M)/N,+1 is naturally isomorphic to EJ+l'0; the transgression
t,: T«(F; M) -► H«+1(B; M)/N,+1 is then identified with the restriction to E^
of the differential dq+1.

C. The Serre Spectral Sequences [429]

We shall see in chap. V that after the Eilenberg-Mac Lane spaces K(II, n)
were defined (chap. II, § 6,F), the determination of their cohomology became
an important problem. Serre observed that the Leray spectral sequence might
give information about that problem, provided he could define a fibration
(X, B, F), where B is a space K(II, n) and X is contractible. He then had the
idea of considering, for any arcwise-connected space B, the fibration (P, B, Q),
where P = Q(B, B, b0) is the space of paths in B with origin b0 and arbitrary
extremity in B; it is easy to see that P is contractible, but (chap. Ill, § 2,A) it is
not a locally trivial fiber space with base space B, and it is not locally compact,
so that Leray's spectral sequence, using Alexander-Spanier cohomology, is
not applicable. To achieve his purpose Serre had to use singular cohomology
(with an arbitrary group of coefficients G), and to show that for all fibrations
there exists a spectral sequence, based on that cohomology, having the same
properties as the Leray spectral sequence.

Serre also wanted to have a spectral sequence for singular homology.
He first had to define the spectral sequence of a differential module (M, d)
equipped with an increasing filtration (Mp) such that d(Mp) a Mp; if Z =
Ker d, B = Im d, the Zp = Mp n Z (resp. Bp = Mp n B) are increasing filtra­
tions on Z and B, respectively; Zp is then defined as the submodule of Mp
consisting of the elements z such that dz e Mp_r, and Bp is the submodule
d(7Ip+r). He then introduced the modules

E^ZpAZ-i+B-1); (67)
d defines in Ep a homomorphism
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<*r:Ep^Ep_r (68)
such that dr° dr = 0; if E' = ©p Ep, (E') is the spectral sequence defined by
the increasing filtration (Mp), and for all p,

Hp(E'p)=Ep+1. (69)
The homology module H(M) is filtered by the images Zp/Bp of the Zp, and
the corresponding graded module gr.(H(M)) has as homogeneous
components the

E« = ZPI{ZP.X + Bp)

so that the Ep may be considered as approximations of the Ep ; gr.(H(M)) is
again called the abutment of the spectral sequence (E').

In most cases the process again starts with a graded differential module
M' = ©„M*, with d{M") c M*"1 and a filtration compatible with the
grading, so that Mp = 0,(M« n Mp). Then, if

Zpq = Z'p n Mp+", Bpq = Bp n M"+",
the

Ep« = Z^/(Zp_li4+1 + BM )

form a grading of Ep.
Serre elected to work with cubical singular homology and cohomology

(Part 1, chap. IV, § 6,C), which he found more convenient than simplices when
dealing with product spaces. As he only considered arcwise-connected spaces,
he could restrict the singular cubes I" -+ X to those for which the images of all
the vertices of I" are always equal to a fixed point x0 e X; we shall again write
Q.(X; Z) the chain complex of these singular cubes, and Q.(X; Z) is its quotient
by the degenerate cubes (loc. cit.).

For a fibration (X, B, F, n), the starting point is the definition of an increasing
filtration (Tp) on Q.(X; Z); Serre's definition is

TP = 0TM

where TM is the subgroup generated by the singular cubes u: lp+q -+ X such
that7r(u(r1,...,rp,rp+1,...,rp+,))is independent of tp+1,..., tp+q. The filtration
on the chain complex Q.(X;Z), from which the spectral sequence is
constructed, then consists of the images Ap of the Tp.

The main technical point Serre had to establish was the expression of the
terms Epq of the spectral sequence. Following the pattern of Leray's spectral
sequence, he showed that Ep(J is naturally isomorphic to

QP(B;Z)®H,(F;G), (70)
by first considering the case G = Z and showing that there is a chain
equivalence (Part 1, chap. IV, §5,F) of the chain complex E° = kp/kp_x onto the
chain complex
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JP = QP(B;Z)®Q.(F;Z). (71)
In one direction, it is natural to associate to a singular (p + q)-cube u e TOT
the pair consisting of:

a. the singular p-cube Bu of B defined by

Bu(t1,...,tp) = n(u(t1,...,tp,y1,...,yq)

where the y, are fixed arbitrary numbers in I;
b. the singular q-cube Fu of F defined by

Fu(r1,...,g = u(0,...,0,r1,...,g
(F is identified to 7r_1(x0)).

There is thus a chain transformation

<p:Ep-Jp.

More technique is required to define a chain transformation in the opposite
direction

«Mp-E»
such that q> o t/. = Id, and then to prove the existence of a chain homotopy
(Part 1, chap. IV, § 5,F) between i]/ o q> and Id; the details are straightforward
but fairly long, using induction on q, and it is there that the covering homotopy
property is a crucial ingredient ([429], pp. 459-464). Once the chain
equivalence of E° and Jp has been constructed, it is extended to a similar one
between the term E° corresponding to the filtration of Q.(X; Z) ® G, and the
chain complex Jp ® G, for any group of coefficients G; finally the expression
(70) is obtained, from which (using the chain transformations <p and ifr)

E^^Hp(B;(H,(Xfc;G))) (72)
the coefficients being the local system (Hq(Xb;G)) as in the Leray spectral
sequence.

The corresponding properties for cubical singular cohomology are easily
deduced by duality: on the cochain complex Hom(Q.(X;Z),G) define a
decreasing filtration (Mp) by taking for Mp the subgroup of cochains vanishing
on all singular cubes belonging to the Aq for q ^ p — 1. If Jp = Hom(Jp,G),
the maps <p' = Hom(<p) and i// = Hom(t/.) define a chain equivalence, which
enabled Serre to show that in the spectral sequence for singular cohomology,

Ef ~ HP(B; (H«(Xfc; G))) (73)
as in Leray's spectral sequence. When G is a commutative ring, Serre also
showed how to define cup-products in cubical singular cohomology, and
proved that this yields a structure of graded algebra on each E". (p + q being
the degree of Ef ) that is anticommutative.

Once these foundational preliminaries were out of the way Serre could
extend the results established by Leray for locally trivial fiber spaces to his
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cohomology spectral sequence, and he proved similar ones for the homology
spectral sequence.* He also pointed out that when %x (B) acts trivially on H.(F)
and one has Hf(B) = 0 for 0 < i < p and H,(F) = 0 for 0 < j < q, then there
is a natural exact sequence (often named the Serre exact sequence)

Hp+,-!(F) - H^.^X) - H^-AB) - Hp+,_2(F) ­
► H2(B) -^ HjCF) -► HjCX) -► H^B) ->0 (74)

where t is the transgression.
Serre's main applications of his spectral sequences in his thesis were to the

space of paths P = Q(X, X, x0) of fixed origin x0 in an arcwise-connected space
X and to the fibration (P, X, n), where %: P -+ X is the map that to each path
y e P assigns its extremity in X; the fiber 7r_1(x0) is the space of loops CI =
Q(X, x0) of origin x0 and P is contractible.

As general results on the homology of Q. when X is simply connected, Serre
showed that if A is a principal ideal ring and the H,(X; A) are finitely generated
A-modules, then the same is true for the Hf(Q; A), due to the Leray theorem
mentioned in part A, generalized to singular homology. Next, if X is again
simply connected, k is a field, H,(X; k) = 0 for i > n > 2 and H„(X; k) # 0, then
for any dimension i ^ 0 such that H,(Q; k) # 0, there is a; such that 0 < j < n
and Hi+J(Q;k) # 0. The proof is by contradiction. Since

E„2_r,«+r-i =* nn_r{X;k)®ni+r^(Çi;k),

one would have E^_(.il.+r_1 = 0 for 2 ^ r < n, hence Er„.r i+r_1 = 0; this is also
true of course if r > n, so that dr(ErnJ) = 0 for all r > 2; the elements of E^ f
cannot be boundaries for dr, so all Er„ t are isomorphic, hence E*; ^ ErnJ;
however, as Hf(Q;/<) # 0, E£, =* H„(X;fc) ® Hf(Q;/<) # 0. This implies E*, # 0,
which is absurd since fl.(P) = 0.

In particular, under the same assumptions H;(Q; k) # 0 for infinitely many
values of i. Since Q. has the same homotopy type as the space of paths Px y
joining two distinct points x, y of X, application of a result of M. Morse gives the
result that there are infinitely many geodesic arcs [0,1] -+ X joining x and y}

Serre was especially interested in the space of loops of the spheres S„ (n > 2),
in relation with the applications to the homotopy groups of S„ (see chap. V,
§ 5,A). Using Wang's homology exact sequence, he first gave a much simpler
proof of a result of Morse, namely,

H;(Q; Z) ä Z for i = 0 (mod. n - 1),
H;(Q; Z) = 0 for the other indices j.

* A slight difference with the Leray spectral sequence is that the relation x(X) =
X(B)x(F) is not always true when ^(B) does not act trivially on H.(X,,; G); a
counterexample has been given by A. Douady ([425], p. 3-02).
^ The example of X = S„ shows that the images of these arcs in X may only consist in
a finite number of curves; the only exception to that in S„ occurs when x and y are
antipodal points.
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In addition, using the fact [formula (66)] that in the Wang cohomology
sequence, the maps

0:H''(Q;Z)->H;-"+1(Q;Z)

are derivations when n is odd and antiderivations when n is even, Serre showed
that for each integer p^O there is an element ep e HP("_1)(Q;Z) which is a
basis for that module and satisfies the multiplication rules

(76)

where

cpq = (p + q)\/p\ q\ when n is odd,
^ cpq = 0 if n is even, p and q odd, (77)

cpq = l(P + ?)/2]!/[p/2]! [tf/2]! in the other cases

([x] integer such that [x] ^ x < [x] + 1).
A little later Bott and Samelson [83] applied the homology spectral

sequence (with a slight change in the filtration) to determine the structure of
the ring H.(£2; Z) (for the Pontrjagin product, see Part 2, chap. VI, § 2,B) when
X is a wedge of a finite family of spheres (Part 2, chap. V, § 2,D).

§ 4. Applications to Principal Fiber Spaces

The second of Leray's Notes on fiber spaces in 1946 [317] was concerned with
applications of the spectral sequence of fiber spaces to the particular case
(G, G/T, T), where G is a classical connected quasisimple compact Lie group,
and T is a maximal torus in G; Leray was able to determine the cohomology
H'(G/T;R) with real coefficients explicitly in these cases. Then in 1949 [320]
he considered more generally (for the same group G) a closed connected
subgroup U of G such that TcUcG(so that G and U have the same
rank I = dim T), and he studied the relations between the cohomology with
real coefficients of G, U and G/U.

G. Hirsch was interested in the same problem at the same time. By Hopfs
theorem (Part 2, chap. VI, § 2,A), the Poincaré polynomials of G and U can
be written

P(G;r) = (1 + r2""-1)--^! + r2""-1), (78)
P(U;r) = (l + t2"1_1)---(l +r2"'-1), (79)

for two increasing sequences of integers m1 ^ m2 ^ • • • ^ mh n1 ^ n2 ^ • • • ^ n,;
Hirsch conjectured that

p(G/u;f)=W44^f (80)
For the classical quasisimple groups G, Leray proved the Hirsch formula
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(80) as an application of the spectral sequence of the principal fiber space
(G,G/U,U) [320]. At the same time the formula was proved by H. Cartan
and Koszul ([109], [287]) in the context of their work (jointly with Chevalley
and A. Weil) on reductive Lie algebras over R, and using the corresponding
transgression (§ 3,B).

It would be too long and difficult to examine in detail the contributions of
each of these mathematicians, especially since many of them are stated either
without proof or with very sketchy ones.* Fortunately, in his thesis [58] and
in several subsequent papers ([59], [61]), A. Borel built up a unifield theory
that incorporated as particular cases all the previous results; we shall restrict
ourselves to a description of the most salient features ofthat theory. The main
tool is the transgression in the spectral sequence of an n-universal principal
fiber space (PG, BG, G) for a given compact Lie group G, and for large enough
n (chap. Ill, §2,F).

The central result is a purely algebraic investigation of "abstract" spectral
sequences (Ef ) that are not even supposed to be constructed by the Leray­
Koszul method from some filtration. They are only assumed to satisfy the
following axioms:

1. (E'r,dr) is a differential algebra, bigraded by the Ef, anticommutative for
the total degree p + q, such that

d,(Ef)cEf+,1,-'+1;

2. Ef = 0 for p < 0 or q < 0 ("first quadrant sequence");
3. H-(E;) = E;+1 for dr.

By 3, there is a projection krr+l of the module of cycles in E', onto E*+1. A
cycle x e E". is called a permanent cycle if it satisfies the infinite sequence of
relations

drX = o,dr+1K+1{x) = o,..., d.*:"1*:-!2, •••> K+i(x) = o,...

and E^ is defined as the direct limit of the modules of permanent cycles, for
the maps krr+1.

Finally, the transgression is defined for every r as above, being the restriction
Eo,r cr+l,o
r + 1 —' Er+1

of the differential dr+1.
With these definitions, the assumptions of Borel's main theorem are as

follows."

(i) The ring of coefficients is a field K.
(ii) One has

El« = B»®{/\{xu...,Xj,...n (81)

* For a thorough exposition of the work of the "quartet" Cartan-Chevalley-Koszul­
Weil, with complete proofs, see [211], vol. III.



§4 IV. Homology of Fibrations 449

where B' is an anticommutative graded algebra with grading (Bp) and B°
has the unit element of B' as a basis; /\ (x t,..., Xj,,... ) is the exterior algebra
of a graded vector space having a basis consisting of homogeneous
elements x, (of odd degree if K has a characteristic #2), such that
deg.x, < degxj if i < j, and only finitely many Xj can have the same
degree; then /\ (xj,..., Xj,... ) is a graded algebra where (/\ (xx,..., x,-,...))*
is the vector subspace having as basis the products x;.xJ2-x;m with
ii ^ i2 ^ '"" < imand

degx,-. + --- + degx,m = q.

(iii) E™ = K and E£ = 0 if p + q > 0.

The conclusion is that there are transgressive homogeneous elements xj with
deg X- = degx; generating /\ (xj,..., x^,...), and that

B-^K^!,...,^,...] (82)
is an algebra ofpolynomials in the ys, where y} is the image of xj by transgression
(so that deg y, = 1 + deg Xj).

The proof is long and intricate, a succession of inductive arguments (for
other approaches to similar results, see [187] and [426], exp. 7).

The main application of this algebraic method is to the universal principal
fiber space (PG,BG,G) having as structural group G an arbitrary compact
connected Lie group. Elements of H'(G; K) which are transgressive for that
fiber space are called universally transgressive.

We now describe Borel's principal results:
I. If H'(G;K) = /\(xj,...,xm), where the Xj are homogeneous elements

forming the basis of a vector subspace of H'(G; K) and having odd degrees [by
Hopfs theorem this is the case when K has characteristic 0 (Part 2, chap. VI,
§2,A)], then there are universally transgressive elements x\,..., x'm such that
Xj and xj have the same degree and H'(G;K) = /\(x\,...,x'm). Furthermore,
if yj is the image of xj by transgression (so that degy,- = 1 + degx,-)

H-(BG;K) = K [>>!,...,>>,„] (83)
where, in the ring of polynomials K [ylt..., y„], Hq(BG; K) is the vector space
generated by the monomials y^yl1 ■■■y^" such that YJ=\ ^jdegyj = q.

The spectral sequence of the principal fiber space (PG, BG, G) has for E2
terms

E-2^H-{BG;K)®H-{G;K)^Klyu...,yml®/\(x'u...,xJ. (84)
This is the algebra that Weil had introduced in 1949 ([482], p. 434) and that
became the central concept in the "quartet's" work on the Koszul
transgression. Borel acknowledges ([58], p. 124) that this work influenced his ideas on
the cohomology of principal fiber spaces; relation (84) puts the "Weil algebra"
in a context more natural than its rather arbitrary introduction by Weil, and
is valid for fields K of arbitrary characteristic.
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II. Conversely, if H'(BG;K) = K[_y1,...,_ym], where the ys have even
degrees, then H'(G;K) = /\(x1,...,xm), where the x, are universally
transgressée elements whose images by transgression are the y}.

The results of I and II extend to cohomology with integer coefficients when
G has no torsion.

III. If K has characteristic p > 0, a necessary and sufficient condition for
G to have no p-torsion is that

H-{G;K)^/\{xu...,xm)

where the Xj have odd degrees; then BG also has no p-torsion.
IV. When K has characteristic 2, there is a more special result. One says

H"(G; K) has a simple system of generators Xj when the Xj are
homogeneous and the products x,.xi2-xlr with ij < i2 < ■■■ < ir form a basis of
H'(G; K) (it is not assumed that xj = 0). Then if H'(G; K) has such a simple
system of generators, and if these generators are universally transgressive,
H'(BG; K) = Kfj*!,...,y„], where yj is the image of x} by transgression.

The assumption on the Xj is often satisfied even when G has 2-torsion, but
there are examples of the contrary ([55], pp. 367 and 704).

V. An important part of Borel's thesis was the general study of the relations
between the cohomology of BG and of Bv when U is a closed subgroup of a
compact connected Lie group G. U acts naturally on the universal principal
fiber space PG, and B,j can be considered the space of orbits for that action,
so that (PG, Bv, U) is a universal principal fiber space for U; the map p =
p(U,G), that to each orbit in B,j assigns the unique orbit in BG in which it is
contained, defines (Bv, BG, G/U, p) as a fiber space [chap. Ill; § 1,C, IV, (i)].

When no further assumptions are made on U, but the field of coefficients
K has characteristic 0, Borel gave a topological proof of a theorem first proved
by H. Cartan in the context of Lie algebras ([109], p. 65), using the Hirsch
construction (see § 3,A) modified by Koszul. H'(G/U; K) is isomorphic to the
cohomology of the tensor product

H-(Bu; K) ® H'(G; K) (85)
for a cohomology operator A, which is explicitly determined by p(U,G) and
the transgression in PG. Cartan's result was later generalized to fields K of
arbitrary characteristic.

VI. Borel completed the investigation of the cohomology of G/T begun by
Leray when T is a maximal torus in G. He considered the principal fiber space
(PG, BT, T) and the action on PT = PG of the Weyl group W of G, defined as
follows. Since W is the quotient N(T)/T of the normalizer N(T) of T, an element
of N(T) acts on PT by permuting the cosets xT in a fiber, and the action only
depends on the class mod. T of that element. Thus W acts naturally on the
orbit space BT, and on the spectral sequence of PT. Since T ~ (SJ' has no
torsion, the E'2 term of that sequence is given by

E-2~H-(BT;Z)®ZH-(T;Z).
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H'(T;Z) is the exterior algebra /\(*!,...,x,) of a free Z-module with /
generators Xj of degree 1, which can be taken transgressive; as in the spectral
sequence the differential dr = 0 for r ^ 3, the transgression t maps HX(T;Z)
isomorphically onto H2(BT;Z); so, by I,

H-(BT;Z)=Z[t;1,...,t;,]

where Vj = t(xj) have degree 2. If IG is the ring of polynomials belonging to
Z[u,,..., u,] and invariant under W, it is a direct summand in H'(BT; Z); so,
for a field K, IG ®z K is canonically embedded in H'(BT; K); it is contained in
the ring of polynomials in H'(BT;K) invariant under W, and is equal to it
when K has characteristic 0, but may be different from it otherwise.

The ring IG is related to the cohomology of the classifying space BG by the
following theorem. If H"(G; K) is the exterior algebra of an s-dimensional
subspace, having a basis consisting of homogeneous elements of odd degree,
then s = dim T (the rank of G) and p*(T, G) maps H'(BG; K) isomorphically
onto IG ® K; the field K can be replaced by Z when G has no torsion.

The assumptions ofthat theorem are satisfied by Hopfs theorem when K
has characteristic 0; so the ring IG has / algebraically independent generators,
which are polynomials of degrees 2m1,..., 2mh if

H'(G;K) = A (*i, •••.*.)

and Xj has dimension 2mj — 1. When G is quasisimple, the m-s are the integers
such that the complex numbers

are the eigenvalues of the Coxeter transformation (of order h). The Weyl group
W can then be considered to be acting on the universal covering R' of T, and
it is generated by reflections (symmetries with respect to hyperplanes of R').
By purely algebraic methods Chevalley proved that for any finite group T
generated by reflections in a space R", the subring of K[rl5..., r„] consisting
of polynomials in n variables invariant under T is generated by algebraically
independent polynomials [133].

VII. Suppose G is a semisimple connected compact Lie group and U is the
centralizer of a torus S in G (not necessarily a maximal one). Borel found that
if Gc is the complexification of G, G/U can be identified with Gc/V, where V
is a complex Lie subgroup of Gc which contains a maximal connected solvable
subgroup B of Gc (the first appearance of what later will be called a Borel
subgroup). Then the orbits of B acting on Gc/V constitute a decomposition of
Gc/V into cells, each of which is biregularly equivalent to a complex affine
space Ck. This generalizes the cellular decomposition of the complex Grass­
mannians described by Ehresmann (Part 2, chap. V, § 4,B). M. Goto,
independently of Borel, had also considered [210] such a decomposition. This cellular
decomposition implies that G/U has no torsion.

In particular, for a maximal torus T (equal to its centralizer) G/T is homeo­
morphic to Gc/B; in that case the cells of the preceding decomposition are
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in one-to-one correspondence with the elements of W, so that the Euler­
Poincaré characteristic x(G/T) = Card(W), a result first proved by A. Weil in
1935 ([482], p. Ill) and found again in 1941 by Hopf and Samelson [251].
The fact that G/T has no torsion also derives from Bott's work on the
application of Morse theory to homotopy (chap. V, § 6,B). Another older result
of Leray [ 317] is a consequence of Borel's methods: the natural representation
of W into the vector space H'(G/T; R) is equivalent to the regular
representation of W.

VIII. Finally, suppose the connected closed subgroup U of G has the
same rank as G. By considering the spectral sequence of the fiber space
(G/T,G/U,U/T) for a maximal torus T of G such that TcU, Borel showed
that if G and U have no p-torsion and Kp is a field of characteristic p,
H'(G/U; Kp) is isomorphic to the quotient of lv ® Kp by the ideal generated
by the homogeneous elements of degree >0 in the ring IG ® Kp. This proves
Hirsch's formula (80) and extends it to fields of coefficients of arbitrary
characteristic.

These papers of Borel's were later completed by investigations on the
Steenrod reduced powers in Lie groups and homogeneous spaces by himself,
Serre, and several other mathematicians (chap. VI, § 4,D).

All these results finally made possible the complete determination of the
cohomology ring H'(G; Z) for all compact connected Lie groups. Recall that
the Betti numbers of the quasisimple classical groups had been determined
before 1940 (Part 2, chap. VI, § 1); for the five exceptional groups, the values
of the Betti numbers were announced by Chih-Tah Yen in a Note in 1949
[525], with only sketches of proofs, based on the Hirsch formula; complete
proofs were later given in a joint paper by Chevalley and Borel [64]. The
computation of the torsion coefficients took much longer, their values are
explicitly given in [191] and [55], pp. 420-421. Similar methods also have
given the cohomology of some homogeneous spaces of compact Lie groups;
for noncompact Lie groups, some results on homogeneous spaces are known
([55], p. 429).



Chapter V

Sophisticated Relations between
Homotopy and Homology

§ 1. Homology and Cohomology of Discrete Groups

A. The Second Homology Group of a Simplicial Complex

The last of the most important papers written by Heinz Hopf on algebraic
topology date from the period 1941-1945. By their originality, they exerted
the same considerable impact on the theory as his preceding ones on
homotopy groups of spheres (chap. II, § 1) and on the homology of H-spaces (Part
2, chap. VI, § 2,A), and opened up entirely new fields of research.

The first paper ofthat series [248] is devoted to the structure of the second
simplicial homology group H2(K) of an arcwise-connected locally finite
simplicial complex K. It was known that in general the image h2(7r2(K)) of the
second homotopy group by the Hurewicz homomorphism (chap. II, §4,A)
is not the whole group H2(K). Hopfs remarkable discovery was that the
quotient

H2(K)/h2(7r2(K)) (1)
only depends on the fundamental group 7Tj(K) and can be described explicitly
by a purely algebraic construction that applies to any group G. This
construction is based on the expression of G "by generators and relations," i.e.,
G = F/R, where F is a free group and R is a normal subgroup of F. Hopf
considered the commutative group

Gf = (Rn[F,F])/[F,R] (2)
and proved, first that this group only depends on G and not on its particular
expression F/R, and second that for G = n1 (K) there is a natural isomorphism
of the group (1) on Gf. This presentation of his results obviously does not
correspond to the way they were conceived; it was by displaying the same
wonderful geometric imagination as in his work of 1926-1935 that he
discovered the relation between the group (1) and the fundamental group ^(K)
and was led to the algebraic construction (2).

Although Hopf was aware of the connections between his procedure and
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the Hurewicz Notes, he used neither the homotopy group n2(K) nor the
Hurewicz homomorphism h2 directly.* He dealt with simplicial homology,
and probably had in mind some sort of "map" from the Z-module C2(K) of
2-chains to the space Q(K,, x0) of "edge-loops" in K (chap. I, § 3,B) with fixed
origin at a vertex x0 of K. There is no clear way of defining such a "map";
Hopf turned the difficulty by considering, instead of C2(K), the set A2(K) of
all simplicial maps f: D2 -+ K2 of the disk D2 in the 2-skeleton of K, such that
/(*) = x0, for arbitrary triangulations T of D2 for which Si is a union of
1-simplices and O-simplices of T (i.e., a subcomplex of D2). Then /ISj is an
element of Q(K, ,x0), which Hopf calls a "Homotopie-Rand"; by definition of
edge-loops, it has a well-defined image in the fundamental group F = n1 (K, ).

We have seen (chap. I, § 4,A) that F is a free group and that there is a natural
surjective homomorphism p: F -+ %x (K) (chap, I, § 3,B). Let R be the kernel of
p, so that 7ti(K) ~ F/R. The first key observation made by Hopf was that for
/ e A2(K), the image in F of y |S, belongs to R, and conversely all elements of
QfKj.Xo) that have images in R are "Homotopie-Ränder."

Let A'2(K) be the subset of A2(K) consisting of maps / such that the
edge-loop /ISj is homotopic to a constant map in K2; Hopfs second result
was that the images in R c F of these loops belong to the group [F, R]
generated by commutators of an element of F and an element of R; conversely
any element of [F, R] is such an image.

The third step is the connection with homology. Each simplicial map
f e A2(K) corresponding to a triangulation T of D2, gives rise to a
homomorphism /: C2(T)->C2(K) of 2-chain modules; Hopf showed that each
2-chain in C2(K) is an image /(D2) for a suitable triangulation T of D2. The
elements f e A'2(K) are those for which /(D2) is homologous to a 2-cycle
g(S2) for a simplicial map g: S2 -+ K2 relative to some triangulation of S2;
let £2(K) c C2(K) be the subgroup consisting of these "spherical" 2-cycles.
Finally, /(D2) is a cycle if and only if the image of /|Sj in F is in the
commutator subgroup [F, F].

Hopf carefully proved all these statements using geometrical arguments
which occupy seven pages of the paper; putting them together, he defined a
surjective homomorphism u:C2(K)-R/[F,R] (3)
whose kernel is £2(K); as £2(K) is contained in the subgroup Z2(K) of 2-cycles,
there is a surjective homomorphism

«|Z2(K):Z2(K)-(Rn[F,F])/[F,R] (4)
hence an isomorphism

(u|Z2(K)f : Z2(K)/Z2(K) * (R n [F, F])/[F, R]. (5)
But £2(K) contains the subgroup B2(K) of 2-boundaries; in the homology

* In what follows, we translate Hopfs terminology into modern terms.
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group H2(K) = Z2(K)/B2(K), 22(K)/B2(K) is exactly the image /i2(7r2(K)) of
the Hurewicz homomorphism; this finally gives the Hopf isomorphism

H2(K)//(2(7r2(K))^G* (6)
B. The Homology of Aspherical Simplicial Complexes

In his 1941 paper Hopf naturally wondered if there were theorems similar to
his for homology groups H„(K) with n > 3. He had observed that obvious
generalizations certainly do not exist, because he easily found examples of
simplicial n-dimensional complexes K with arbitrary fundamental group
7r,(K) and arbitrary homology groups H-(K) for j > 3 [whereas one
consequence of Hopfs theorem is that if, for instance, n1 (K) is a free commutative
group of rank p, the second Betti number must be ^p(p - l)/2].

Nevertheless, the quotient groups H„(K)//i„(7r„(K)) still had topological
significance for any n. In 1942 Hopf observed that for any n > 2 the set of
"spherical" n-cycles, that is, the images g(S„) for simplicial maps g: S„ -+ K (for
all triangulations of SJ, form a subgroup £„(K) of the group Z„(K) of n-cycles
of K *; he showed that the group Z„(K)/2„(K) is isomorphic to

Q„(K) = H„(K)/h„(7r„(K)). (7)
This brought him in contact with Hurewicz's results on aspherical simplicial

complexes (chap, II, §6,A), Hurewicz had observed in a footnote ([256], IV,
p. 219) that his characterization of the homotopy classes [/] in [X;Y] still
holds if the dimension of X is <n and if 7t;(Y) = 0 for 2 < i < n only, Hopf
applied this to simplicial maps /: K„ -+ K'n between the n-skeletons of two
simplicial complexes K, K': if n,(K') = 0 for 2 < i < n - 1, the homomorphism
Q„(K) -+ Q„(K') defined by / is entirely determined by the homomorphism
/„.: ni(K)->-ni(K'). In particular, if ^(K) and ^(K') are isomorphic, and
tt;(K) = jii(K') = 0 for 2 < i < n - 1, then Q„(K) and Q„(K') are isomorphic.
Under the assumption nt(K) = 0 for 2 < i ^ n — 1, Q„(K) is thus determined
by the fundamental group n^K), but at that time Hopf could not find a purely
algebraic construction deriving Q„(K) from n^K) for n ^ 3.

The breakthrough came 2 years later [249] when Hopf had the idea of
considering free resolutions (finite or infinite) of left P-modules (Part 1, chap.
IV, § 5,F) for an arbitrary ring of scalars P, and proved their existence and
uniqueness up to chain equivalence. His idea probably stemmed from an
"iteration" of the presentation of a group as quotient F/R of a free group F,
obtained by applying it to R and repeating the process indefinitely. This idea
was essentially the same as the one Hilbert had used to build the chain of
"syzygies" in invariant theory, but at that time this was not mentioned by
Hopf.

* In 1940 [ 167] Eilenberg had already shown that the homology classes of the elements
of £„(K) formed a subgroup of H„(K).
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For his purpose, he considered a left P-module J and a two-sided ideal a of
P; he took a free resolution of J

o^j«i_x0£-xAx2«---«h-x1I^--- (8)
and formed the chain complex

0<— aX0 <^-aXt <^-aX2 <— •••-£-aX,,«— ••• (9)
where b^ is the restriction of b„ to the submodule aX„; he took the homology
of that complex, namely, the groups

(aX„nZ„)/aZ„ (10)
where Z„ = Im b„+1 = Ker b„. Since aXj is isomorphic to a ®P X; and b} can
be identified with 1 ® b}, the general construction of chain homotopies from
a free chain complex to an acyclic one (loc. cit.) shows that these groups are
independent of the choice of the resolution (8) of J; in the later development of
homological algebra these groups were writtenTorfoJ). (11)
Hopf then specialized the previous construction to the case in which P =
Z[G] is the algebra of an arbitrary group G, and the ideal a is the kernel of
the homomorphism S: Z[G] -+ Z such that

s(çW) = Z^- (12)
In that case he named the group (10) G", later to be identified with the
homology group H„(G; Z) (see below, section C).

That specialization of course was dictated by the way Hopf intended to use
this algebraic machinery. Inspired (as J.H.C. Whitehead was at the same time,
with different purposes) by the Reidemeister device (Part 2, chap. VI, § 3,A),
he considered, for any locally finite simplicial complex K, a Galois covering
complex R with projection p: R -+ K so that the group C„(R) of n-chains in
R becomes a free Z[G]-module, where G = AutK(R). The Z-homomorphism
p: C„(R) -+ C„(K) is surjective and has a kernel equal to aC„(R). It is then clear
that p(Z„(R)) c Z„(K) for the n-cycles, and the surjectivity of p implies that
p(B„(R)) = B„(K) for the n-boundaries. From this it follows that

H„(K)/P](.(H„(R)) ~ Z„(K)/p(Z„(R)). (13)
His main result was an isomorphism

Z„(K)/p(Z„(R)) z (aC„_t(R) n B^^/aB^^R). (14)
Suppose that K is now aspherical up to dimension N, that is

7r;(K) = 0 for2<i<N. (15)
Then if G = Tti(K), it follows from Hurewicz's absolute isomorphism theorem
(chap. II, §4,A) that the chain complex of Z[7r1(K)]-modules
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o^z^c0(R)^-c1(R)^---^-cN(R) (16)
is free and acyclic. Applying (14), Hopfs determination of the homology (10)
of the chain complex (9) yields the result

H„(K)/P](.(H„(K)) ~ G" for 1 < n < N (17)
and as H„(K) = 0 for 1 < n < N - 1,

H„(K)~G" forl<n<N-l. (18)
C. The Eilenberg Groups

As soon as the first papers of Hopf on the second Betti group were published
they attracted the attention of Eilenberg and Mac Lane, who announced in
1943 [179] a solution to the problem of the determination of the homology
of an aspherical space one year before the publication of the Hopf paper [249]
we analyzed in B, This solution was based on an algebraic construction
different from Hopfs, but which later turned out to be equivalent.

Eilenberg and Mac Lane worked with singular homology, which enabled
them to deal with arbitrary spaces instead of simplicial complexes. Their
fundamental idea was a relation between singular homology and homotopy,
published without proof by Eilenberg in 1940 [169], and for which he
provided proofs in his foundational paper on singular homology [172] (partly
described in Part 1, chap. IV, §2).

In the chain complex S.(X) of all singular chains in an arcwise-connected
pointed space (X, x0), he considered a descending sequence of subchain
complexes

S.(X) = S0.(X) ^ S,.(X) ^ ■•■ ^ S„.(X) o ■•■ (19)

where S„P(X) is the subgroup of SP(X) having as Z-basis the set of singular
p-simplices s: Ap -+ X such that for all q < n, all q-simplices in Ap — Ap are
mapped by s onto the point x0. The natural injection

wS„.(X)^Sm.(X) form<n (20)
is a chain transformation satisfying

Inm ° 1ml = Inl for / < m < /I, (21)
and for any continuous map /: (X, x0) -+ (Y, y0) of pointed spaces, the chain
transformation/: S.(X) -+ S.(Y) maps each S„.(X) into S„.(Y); its restriction to
S„.(X) is a chain transformation.

Eilenberg's main result was a "reduction theorem": if n„(X) = 0, then the
chain transformation

^+1.„:S„+1,.(X)-S„.(X) (22)
is a chain equivalence (for n = 0, the assumption is merely that X is arcwise­
connected). The problem is to find a chain transformation
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£:S„.(X)-S„+1,.(X) (23)
such that £ o rj„+1„ = lSn+i (X) and rj„+1„ o £ is chain homotopic to l^x)- The
solution starts with the consideration of the "prism" Ap x [0,1] (Part 1, chap.
II, § 3) for each p > 0; preceeding as Lefschetz did [loc. cit., formula (16)], it
is enough to define a continuous map Fs: Ap x [0,1] -+ X for each p and each
continuous map s: Äp -► X such that s e S„P(X), satisfying Fs(_y,0) = s{y) and
such that y\-> Fs(y, 1) belongs to S„+lp(X).

If s e S„+1,p(X) already, take Fs{y, t) = s{y) for all t e [0,1], If not (which can
only happen when p "^ n), proceed by induction on p; the crucial step is p = n,
where Fs(y, 1) is taken to be the constant x0, and the extension of F to the
interior of A„ x [0,1] is possible because nn(X) = 0. For p > n the inductive
assumption enables Fs(z, r) to be defined for z in any face of Ap in such a way
that z \-> Fs(z, 1) belongs to S„+1 p_i(X). An application of the box lemma (chap,
II, §2,D) defines Fs in Äp x [0,1].

In particular, if for q > 1, n-XX) = 0 for all i < q, then r\qi0 (simply written
t]q) is a chain equivalence; hence for any commutative group G

^:H,(S,.(X);G)-H,(X;G) (24)
is an isomorphism.

The importance of the Eilenberg groups stems from the fact that, by Cech's
definition of homotopy groups, the elements of nXX, x0) are the homotopy
classes of the elements of Sq q(X). As two homotopic elements of Sq q(X) are
homologous, there is a natural homomorphism

v,:tt,(X)-H,(S,.(X)) (25)
and from the definition of the sum in nq(X), it follows that [bg] = 0 for any
singular (q + l)-simplex g e Sq q+1 (X); this proves that vq is an isomorphism for
q>\.

In particular, this leads to a simple proof of Hurewicz's absolute
isomorphism theorem: it is an immediate consequence of the fact that vq is an
isomorphism, and (24) is also an isomorphism when nXX) = 0 for all i < q.

From the fact that vq is an isomorphism under the preceding assumptions
Eilenberg also deduced (independently of Hopf) that the image hq(nq(X)) in
HS(X) is the subgroup ~Lq(X) of the classes of spherical q-cycles.

D. Homology and Cohomology of Groups

In their work on aspherical arcwise-connected spaces, Eilenberg and MacLane
used only the chain equivalence, a special case of the chain transformation (22):

S.(X)^S,.(X)

so that there is a natural isomorphism

H.(X)^H.(S,.(X)). (26)
All vertices e; of Ap are now mapped on x0 by s for a singular p-simplex
s: Ap -+ X belonging to S! P(X), hence every ordered 1-simplex {e;, e,-} for i # j
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is mapped onto a loop

ri->s((l - t)et + tej) forO<f<l

belonging to fi(X,x0); let uy be its class in 7r,(X,x0), Define uu = e [neutral
element of nl{X)']; then the elements ui} for 0 < i, j < p satisfy the relations

Ujt = u~j\ U[jUjk = ulk. (27)
Let [/(s)bethe(p + 1) x (p + 1) matrix {uij)oiiij<p with elements in ^(X);

if U"(s) is the principal submatrix of L*(s) obtained by erasing the ith row and
ith column, then for the boundary bps

U(bps)=i(-\)lUil(s). (28)
i=0

This motivated Eilenberg and MacLane to define, for an arbitrary group
II, a chain complex

K.(II): 0 «- K0(n) ^K.p^-i K„(n) ^ • ■ • (29)
where K„(II) is the free Z-module with a basis of all (n + 1) x (n + 1) matrices
with elements My in II satisfying (27), for which the boundary operator is given
by

b„t/= £(-l)'l/". (30)
;=o

They also gave simpler equivalent definitions. First they observed that (27)
implies "y = "ö.luoj (31)
so that a matrix U e K„(II) is entirely determined by its first line (1, xt,..., x„),
where the x} are arbitrary elements of the group II. Therefore K„(n) can also
be considered as the free Z-module having as a basis the product set II", and
the boundary operator corresponding to (30) is easily computed to be

n-\
■>„(X1,X2, . . . ,X„) = (X2,. . .,X„) + 2_, (_l)("'lv •>-"C.-l>-;C.-X.+l>-;C.+ 2> • ' ■iXn)

1=1+ (-l)"(x1,,..,x„_1). (32)
This description of K„(II) is the one Eilenberg and MacLane called "non­
homogeneous." They also used a third "homogeneous" description, in which
the basis of K„(II) consists of the equivalence classes [x0, x i,..., x„] of (n + 1 )­
tuples of elements of II for the equivalence relation in the set II"+1

(x0,Xi,. ,.,x„) = (xx0,xx!,.. .,xx„) forxell; (33)
the boundary operator then takes the simple form

b1,[x0,x1,...,xj = X (-l)J'[x0,...,xJ-_1,xj+1,...,x„] (33)
j=0

(also written Yj"j=o (— l)J[xo» • • • •> */> • ■ • > xnl the "hat" meaning "omission").
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In contrast with Hopf, Eilenberg and MacLane were active propagandists
of cohomology; so, having defined the chain complex K.(II), they also
introduced the cochain complex

K-(n;G)=Hom(K„(n),G))00

for any commutative coefficient group G (Part 1, chap. IV, §3); K"(II;G) is
thus the free Z[G]-module having as basis the maps /: II" ->G, with co­
boundary given by

(à„f){xl,...,xn+l) = f{x2,...,xn+l)«-i (34)
+ Z (-l)!/'(x1,...,xl_1,xixi+1,xl+2,...,xII+1)-|-(-l)"+y(x1,...,xII).

i — \

Of course they also considered the chain complexes K.(II; G) defined by the
usual procedure (Part 1, chap. IV, §2).

With these definitions Eilenberg and MacLane created the concepts oi
homology and cohomology groups H„(II;G) and H"(II,G) for an arbitrary
group II and an arbitrary commutative coefficient group G; this was the
starting point of the new mathematical theory called homological algebra,
which has played an ever increasing part in the evolution of contemporary
mathematics. We shall not try to retrace the history of the tremendous
expansion of that discipline and of its numerous ramifications not directly
associated with topology; we refer the reader to the books and papers [113],
[215], and [330].

We only mention here the enlargement of the concepts of the joint Note of
1943 made by Eilenberg in an announcement of 1944, with detailed proofs
published in 1947 [173], He considered the case in which the group II acts
linearly on the commutative group G (written additively). Then, in order to
define the cohomology group H"(II; G), he only considered equivariant co­
chains, namely (for the "homogeneous" description of chains), the maps
/: IT+1 -► G such that

w.f{w0,..., w„) = f(w. w0,..., w. w„) (35)

for all elements w and wj in II. In the same paper* Eilenberg directly checked
that Hopfs groups written II" in his notation coincided, up to isomorphism,
with the homology groups H„(II; Z) (with trivial action of II on Z).

Eilenberg and Mac Lane determined the homology and cohomology of an
aspherical space by a procedure different from Hopfs (which was only
published a year later). They used Eilenberg's chain equivalence S.(X)^S,.(X)
and the chain transformation

K.:Sl.{X)^K.(nl(X)) (36)

* This seems to have been the first paper in which cohomology was written with upper
indices H"; previously, H" meant homology, and H„ cohomology.
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defined by the map si—► L*(s) considered above. They showed that in general
the group £„(X) = ^(S^X)) of homology classes of spherical cycles is
contained in the kernel of k„, and when X is aspherical, they showed that k.
is a chain equivalence.

To prove this last property, they defined a chain transformation

■CK.MX^-S^X)
and showed that k. o k. and k. ° k. are chain homotopic to the respective
identities.

The maps
Jc11:K1I(Kl(X))-S1,11(X)

are defined by induction on n. For n = 1, a 1-simplex of Yil{nl{X)) is a matrix

K' Ü
with u e nl{X); k^U) is a singular 1-simplex (i.e., a loop of origin x0 in X)
whose class in n^X) is u. Next assume that the maps kp for p < n — 1 have
been defined in such a way that, for a matrix U = {uiJ)eKn-i{nl{X)), if
ov A„_2 -+ A„_! is the standard affine map of A„_2 on the i-th face of A„_1(
then for each principal minor U",

K„-dU) ° ffi = Kn-2(U") for 0 s£ i < n - 1. (37)
The equation ul2u23 = u13 for n = 2 shows that the juxtaposition of the
three loops ^(u^), k1(u23), and k1(u7]) is homotopic to the constant
map [0,1] -+ {x0}; hence there is a continuous map s: A2 -+ X such that
s° ak= KiiUjj) for {i, j, k} = {1,2,3}. For n > 2, using (37) and the assumption
7r„(X) = 0, we can proceed in the same way.

This construction proves that k. is a chain transformation and that k.°k.=
lK(7l (X)). The crux of the proof is to show that k. ° k. is chain homotopic
to ls,.(X). the construction of the chain homotopy is quite similar to the
one in Eilenberg's "reduction theorem" (see section C above) using
"singular prisms." Here, for a singular p-simplex seSlp(X), a continuous map
Fs: Ap x [0,1] -+ X must be defined with

Fs(y,0) = s(y), Fs(y, 1) = {Kp{Kp{s))){y).

It is then easy to apply induction on p, the "lateral sides" of a singular prism
being themselves singular prisms of lower dimensions, and all vertices being
mapped to x0; the relation 7rp+1(X) = 0 must be used to extend Fs from the
frontier of Ap x [0,1 ] to its interior.

Eilenberg and MacLane observed that their method also works for spaces
"aspherical up to dimension r," i.e., such that 7r;(X) = 0 for 1 < i < r. then

and
H,(X;G)/Sr(X;G)ÄHr(Kl(X);G).

H.IJQGJäH.Ih^G)
H"(X;G)~H"(7r1(X);G)

for n < r (38)
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By using (38) they determined the groups H„(II,G) for various groups II.
They took a connected graph for X such that Tti(X) = II when II is a free
noncommutative group (chap. I, §4,B) and obtained H„(II;G) = 0 for n > 1,
and H^njG) s. Hom(II,G). If II = Zr, X is the torus T, and H„(II,G) = 0
forn >r, H„(II; G) = G<«) for n < r. If n = Z/mZ, X is a suitable lens space,
and

H2„(n;G) = G/mG, H2„+1(II;G) = mG

where mG is the subgroup of elements g e G such that mg = 0.
At the end of their paper, as a kind of afterthought, they gave a sketchy

description of the generalization of their results when aspherical spaces are
replaced by spaces X for which nt(X) = 0 for i > m. They then considered the
chain complex Sm.(X) instead of S1#(X), and for any commutative group II,
written additively, they replaced the chain complex K.(II) by the
generalization K.(II, m), defined as follows. The n-simplices are now the maps

L/:{0,l,...,n}",-n
written (a0,a1,...,am)\-^uaoai...am [which for m = 1 can be considered as
(n + 1) x (n + 1 matrices], subject to the two conditions:

"ooa. •••<>„. = 0 if two of the arguments as are equal (39)

(this is of course always the case when n + 1 < m);
mI(-lK,-<-.-am = 0 (40)

i=0

[for m = 1, this is condition (27) written additively].
The boundary operator is defined by

bnU:{b0,bu...,bJ^£{-iyubo...bm (41)
i=0

where in the ith term of the sum

bj = üj if i > aj, bj = üj — 1 if i ^ a;- — 1

[by(39)thenumbersi>yforwhichu6o...fcm # 0 take their values in {0,1,..., n — 1},
so that b„ maps K„(II,m) into KII_1(n,m)].

The chain transformation Km.: Sm.(X)-> K.(7rm(X),m), which generalizes
k.( = ku), is then defined by associating to a singular p-simplex s e Smp(X) the
map

t/(s):{0,l,...,p}m^7rm(X)
defined as follows:

(i) u0o0l ...„m = 0 if two of the as in {0,1,..., p} are equal;
(ii) if not (which implies p "S m), consider the restriction of s to the simplex

"W,.,„CAP-A,
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which is the image of Âm by the affine map sending each e; (0 ^ j ^ m) to ea..
As all faces of aaoai...am are mapped on the point x0 by s, s can be identified
with a continuous map Dm -> X sending Sm_t onto x0; this map therefore has
a well determined image in nm(X), and that image by definition is «„„„....am.

Without entering into details, Eilenberg and MacLane stated that their
arguments for m = 1 could easily be generalized to any m, yielding the
following result: if n^X) = 0 for i > m, then

Km.:Sm.(X)^K.(7rm(X),m)

is a chain equivalence, hence the isomorphisms

H„(Sm.(X);G) * H„(K.(,m(X),W);G)
H"(Sm.(X);G)2iH"(K.(7rm(X),m);G) " l '

Finally, at the very end of their paper the Eilenberg-MacLane spaces (chap.
II. §6,F) made their first appearance: if nn(X) = 0 for all n except for n = m,
then the homotopy group nm(X) explicitly determines all homology and co­
homology groups of X with arbitrary coefficients: indeed Sm.(X) -> S.(X) is a
chain equivalence, so

H„(X;G)^H„(Km(7rm(X),m);G),

H"(X;G)^H"(Km(7rm(X),m);G)

for all n ^ 1.
In this chapter and the following ones we shall see how these spaces became

the focus of extensive research between 1950 and 1960 that greatly increased
our knowledge of homology and homotopy groups.

One of the most important properties of the Eilenberg McLane spaces is
the existence of a natural bijection

[X,K(n,n)]^H-(X;n) (43)
for any commutative group n and any CW-complex X. This is essentially a
special case of Eilenberg's obstruction theory (chap. II, § 4,C, VIII and IX).
7r„(K(II,n)) is naturally identified with II, and H"(K(II,n);G) is naturally
isomorphic to Hom(II,G); if i is the element of H"(K(II, n); II) [called the
canonical cohomology class of K(II, n)] that corresponds to the identity in
End(II) by that isomorphism, the map (43) is just[/.WO) (44)
by loc. cit..

E. Application to Covering Spaces

Let B be an arcwise-connected space and X be a Galois covering space of B
(chap. I, § 2,VIII) with automorphism group II. Then II acts on the singular
complex S.(X), hence on the homology H.(X;A) and cohomology H'(X;A)
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with coefficients in any ring A. Leray and H. Cartan [114] showed that there
is a cohomology spectral sequence with E2 terms consisting of cohomology
groups of the group II

E5«~H"(n;H«(X;A))

and abutment H*(B; A) with a suitable filtration. There is a similar homology
spectral sequence with

E^H^ILH^XjA))
and abutment H.(B; A).

If H"(X; A) = 0 for 0 < q < n, the spectral sequence gives isomorphisms

H«(B; A) ~ H«(II; A) for q < n

and an exact sequence

H"(II; A) -» H"(B; A) -» (H"(X; A))n -» H"+1 (n; A) -» H"+1 (B; A) (45)

where (H"(X; A))n is the subgroup of elements of H"(X; A) fixed under the
action of II. Similarly, if HS(X; A) = 0 for 0 < q < n, there are isomorphisms

H,(B; A) ~ H,(II; A) for q < n

and an exact sequence

H„+1 (B; A) -> H„+1 (IL A) -> (H„(X; A))n - H„(B; A) -> H„(II; A) -> 0 (46)

where (H„(X;A))n is the quotient of the group H„(X;A) by the subgroup
generated by the elements s.a — a with a e H„(X;A) and s e II. Particular
cases of these properties had already been obtained by Eckmann [150] and
Eilenberg and Mac Lane [ ].

The spectral sequences of Leray-Cartan yield exact sequences when II = Z:

0 - (H"_1(X; A))n - H"(B; A) - (H"(X; A))n - 0,

0 -> (H„(X; A))n -> H„(B; A) -> (Un_y(X; A))n -> 0.

If X is an n-dimensional manifold such that H0(X; Z) m Z, and Hq(X; Z) = 0
for q > 0 (for instance X = R"), then Hp(B;Z) a. Hp(n;Z) and H"(B;Z) ^
H"(II; Z) for all p, Tl acting trivially on Z. Since B is also an n-dimensional
manifold, H',(B; Z) = 0 for q > n, which imposes limitations on the action of
II on X; in particular, II cannot be finite: for instance, R" cannot be a Galois
covering space with finite group.

Finally, the Leray Cartan spectral sequences give information on the
(necessarily finite) groups II that can be properly discontinuous groups of
homeomorphisms of an odd-dimensional sphere S„ *; one must have

* The only automorphisms of an wen-dimensional sphere S„ that have no fixed point
must have degree —1 (Part 2, chap. Ill, §1); in a properly discontinuous group of
automorphisms of S„, two elements s, s' other than the neutral element e must be such
that ss' = e; the only properly discontinuous group of automorphisms of S„ not
reduced to e thus consists of e and the symmetry x\—> — x.
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H"(II; Z) = 0,

H"+1(II; Z) ^ Z/qZ if q = Card(II),

H'+"+1(II;Z) ^ H'(n;Z) for i ^ 1. ([113], p. 358)

This has been the starting point of the determination of all such groups II,
which has prompted a large number of papers using all sorts of different
theories, and which is not yet complete [337].

§ 2. Postnikov Towers and Eilenberg-MacLane Fibers

A. The Eilenberg-MacLane Invariant

In 1946 Eilenberg and MacLane observed that although by Hopfs theorem
the quotient

H2(X)/h2(7T2(X))

only depends on nl = n^X), it is not true that h2(n2{X)) only depends on nt,
ni = niQ^) and on the action of ti1 on n2 (chap. II, §3,F). They constructed
two spaces X, Y with same first and second homotopy groups, the action of
7it on 7r2 being trivial in both cases, but H2(X) = 0 and H2(Y) = Z/2Z([183],
p. 50). They showed that to determine H2(X) completely up to isomorphism,
additional information is necessary, namely, an element of the cohomology
group H3(7r1;7r2) of the group nl acting on 7r2. In the same paper they
generalized that result to the case in which X is "aspherical up to dimension
q — 1" [i.e., 7ij(X) = 0 for 1 < j < q]; then the additional element belongs to
H*+1(7ri; 7r„) [remember HJ'(X;G) ~ Hj'(tt,(X); G) for j <q and all
commutative coefficient groups G (§ 1,B)]. They used, as had Hopf, the passage to the
universal covering space X in order to reduce the problem to an algebraic one
on chain complexes with operators.

The next year [184] they enlarged their investigation further by considering
an arcwise-connected space X with

7t,(X) = 0 for i < n and n < i < q. (47)
They simplified and generalized their method to show that H"(X; G) is entirely
determined by nn = n„(X), nq = nq(X) (and, for « = 1, the action of nl on nq),
and a cohomology class

*,+leH'+1(t„;it,). (48)
Their starting point was the same as in their earlier paper defining the
cohomology of groups (§ 1,D): the chain transformation

K„.:S„.(X)^K.(7r„,n)

defined in that paper. This time it was not a chain equivalence. They
constructed a "minimal" chain subcomplex M„. of S„.(X) such that

H-(M„.; G) ~ H-(S„.(X);G) =* H(X;G)
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and showed that there is a simplicial map k. of the q-dimensional skeleton
K"f(7r„(X), n) into M„. such that

k.(k.(o-)) = o­

for all /-simplices a of K.(7r„(X), n) with ;' ^ q. There is then an obstruction to
extending k. to each (q + l)-simplex a of K.(7r„(X),n): there is a map f{a) of
the frontier Aq+l — Aq+1 into X, coinciding with k.(<7() on each q-simplex a{
opposite to the vertex e,- for 0 ^ i ^ q + 1, but in general that map cannot be
extended to the interior Aq+1, hence it determines an element

*«+:V)ev
These elements define a cochain fc*+1 in C+l(K.(nn(X),ri);nq) with values in
nq. Eilenberg and MacLane showed that k%+1 is in fact a cocycle and that its
cohomology class k%+l(X) is an element of W+l{nn;nq) independent of the
choices made in its definition.

Next, an analysis of the construction of the subcomplex M„. led them to a
purely algebraic construction, starting with data which consist of three
commutative groups II, T, G, and a cocycle

fceZ«+1(K.(n,n);r)

where 0 < n < q. They constructed the group Zq(k;G) of pairs

(p,r)eHom(T,G) x C(K.(II, n); G)

such that dr = po k. The group of cocycles Z«(K.(II,n);G) is a subgroup of
Z'^G), and they considered the quotient

E«(k;G) = Z«(fc;G)/B«(K.(n,n);G)

by the subgroup of coboundaries; they proved that E"(k; G) only depends on
the cohomology class k of k in H*+1 (K.(JI, n); G). Returning to the cohomology
of the space X satisfying (47), their main result was that if k is any cocycle in
K+1{X), then , taking II = nn and Y = nq in the definition of E«(fc; G),

H«(X;G)^E«(fc,G); (49)
this shows that H',(X;G) is determined by nn, nq, the action of n1 on nq for
n= 1, and/t«+1(X).

B. The Postnikov Invariants

The method used by J.H.C. Whitehead to prove the "realizability" of a
sequence of groups by the homotopy groups of some space (chap. II, § 3,F)
can immediately be applied to prove the following result:

For each n^O and arcwise-connected space X, there exists a continuous
injection i: X -» Z such that (Z, X) is a relative CW-complex (Part 2, chap. V,
§ 3,C) having cells only in dimension n + 1 and
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(a)7r„+1(Z) = 0;
(b) i^: nm(X) -> nm(Z) is an isomorphism for 1 ^ m ^ n.

Attach (n + l)-cells e"+1 to X by maps ga: S„ -> X such that the homotopy
classes [#a] generate n„+1 (X); since 7tm(Z, X) = 0 for m < n + 1 [chap. II, § 3,C,
formula (124)], the homotopy exact sequence shows that i^ is bijective for
m ^ n and surjective for m = n + 1; but the definition of the gx shows that
»*([#*]) = 0, hence nn+1(Z) = 0.

Now iterate the process, obtaining an increasing sequence

Z = Zj c Z2c"'Zk_t c Z

such that nn+k(Zk) = 0 and nm(Zk) ~ ^(Z^.J for m < n + fc. Then the space
Y", union of all the Zk with the fine topology (Part 2, chap. V, § 3,C) is such that

(i) 7r„(Y") = 0 for q > n;
(ii)7«*: ^(X) -» i,(Y") is an isomorphism for 1 < q < n, ;„ being the

composite injection X -4 Z -> Y";
(iii) ( Y", X) is a relative CW-complex with no cell of dimension < n.

If X is a CW-complex and is simple, this construction enables us to define for
each n > 1 a continuous map /„: Y" -> Y""1 for which the triangle

is commutative; all such maps are homotopic with respect to jn-l(X). This
follows from the above properties and from obstruction theory (chap. II, § 4,C).
Indeed, to extend the natural homeomorphism h:j„(X) -> ./„^(X) by "climbing"
along the skeletons, only cells of dimension ^ n + 1 must be considered in
(Y", X), so the possible obstructions are in

H«+1(Y",L.(X);7r(,(Y"-1))

which is 0 for q "> n since ^(Y"-1) = 0; similarly the fact that any two
such maps are homotopic with respect to ;„(X) follows from the fact that
H"(Y",/„(X);7r,(Y"-1)) = 0 for q =s n.

Thus, to X is associated a sequence of maps

determined up to homotopy; it is called a homotopy resolution of X.
A well-determined cohomology class can also be defined for each n,

generalizing the Eilenberg Mac Lane invariant:
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&"+2eH"+2(Y";7r„+1(X)) (50)
such that the map f„+l is determined, up to homotopy equivalence, when the
pair (Y",X), the homotopy group n„_1(X) and the invariant k"+2 are known.
This was first shown by Postnikov [383], and can be presented in the following
way [490].

Consider, in the mapping cylinder Z/n+i of/„+1: Y"+1 -> Y", the image of the
subspace y„+i(X) x [0,1] of Y"+1 x [0,1]; it is homeomorphic to X x [0,1]
since fn+l o jn+l = jn. We define a space Y" by attaching Z/n+i to X along
X x [0,1] by the map q: (x, t)i-> x (Part 2, chap. V, § 3); the space Y" is still a
strong deformation retract of Y", so that nq(î") ~ nq(Y") for all q > 1. The
homotopy exact sequence

-•-^+1(Y"+1)-7r,+1(Y")^7r,+1(Y",Y"+1)^7r,(Y"+1)^7r,(Y")^--­

together with properties (i) and (ii) of the injections ;'„, shows that

tt,(Y",Y"+1) = 0 ifq^n + 2, (51)
ö:7r„+2(Y",Y"+1)-^7r„+1(Y"+1) is an isomorphism, (52)

and therefore so is the composite

rc„+2(Y", Y"+1) I tt„+1(Y"+1) Üü£. tt„+1(X).

From (51) it follows that the relative Hurewicz homomorphism

p:7r„+2(Y",Y"+1)^H„+2(Y",Y"+1)

is bijective, and this yields an isomorphism

«n+2: H„+2(Y", Y"+1) -LU 7r„+2(Y", Y"+1) °"+')*'°a, W„+1(X).

On the other hand, H„+1(Y", Y"+1) = 0, again by the relative Hurewicz
isomorphism; hence [Part 1, chap. IV, § 5,D, formula (66)] the map

H"+2(Y",Y"+1;G)->Hom(H„+2(Y",Y"+1),G)

is bijective for any commutative group G. In particular k„+2 is the image of a
well-determined cohomology class

&S+2eH"+2(Y",Y"+1;7r„+1(X))

which itself, by the cohomology exact sequence, and the fact that Y" is a strong
deformation retract of Y", is mapped on a well-determined cohomology class

&"+2eH"+2(Y";7r„+1(X));

this class is the Postnikov invariant of X, of dimension n + 2.
Given a commutative group II, a CW-complex Y, and a cohomology class

&eH"+2(Y;n);

there is a general process of amplification that associates to these data a
fibration (W, Y,F,q) with F = K(II,n + 1) as fiber, well determined up to Y­
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isomorphism. Indeed, the fundamental property (43) of Eilenberg Mac Lane
spaces associates to k a continuous map

h: Y -» K(n, n + 2)

whose homotopy class is well determined. Consider the fibration
(PXoK(n,n + 2),K(iLn + 2),F,p) of the space of paths PXoK(II,n + 2) in
K(II, n + 2) with fixed origin x0 whose fiber F = Î2(K(II, n + 2); x0) is a space
K(II, n + 1) [chap. Ill, §2,C, formula (40)]. The amplification of k is the
pullback (W, Y, F, q) of that fibration by h, and is determined up to Y­
isomorphism by II. Y, and k (chap. Ill, §2,A). The homotopy exact sequence
of that fibration shows that

g„:7r,(W)->*,(¥) (53)
is an isomorphism for i # n + 1, n + 2, and there is an exact sequence

0 -> 7T„+2(W) -> 7T„+2(Y) -> n -> 7T„+1(W) -> 7T„ + 1(Y) -> 0. (54)

Furthermore, any continuous map /: Z -> Y can be "lifted" as
/: Z h W X Y. (55)

Consider the "mapping cone" CYu;Z of / (Part 2, chap. V, §3,B): if
j: Y -> CY Uy Z is the injection, the map j o /is homotopic to a constant map;
h can be chosen as a composite

YiCYu;zi K(II, n + 2).
By the covering homotopy property, h° f = ht °(j ° f) can be lifted to
u: Z -> P K(II,n + 2), so that p° u = h° f. But since W is the fiber product
of Y and PXoK(II, n + 2) for the maps h and p, there is a map a: Z -> W such
that q o g = f.

Returning to the Postnikov invariant k"+2 of X, consider its
amplification (W"+1, Y",F,q„+l) and apply the preceding "lifting" to the map
fn+l: Y„"+1 -> Y", so that /B+1 = q„+1 o 0„+1. Since tt„+1(Y") = tt„+2(Y") = 0,
the exact sequence (54) shows that 7r„+2(W"+1) = 0 and 7r„+1(W"+1) ^ II;
together with (53), this proves that a„+1 is a weak homotopy equivalence, so
that/„+1 is determined by Y", II, and kn+2 up to weak homotopy equivalence.

C. Fibrations with Eilenberg-Mac Lane Fibers

The amplification (W, Y, F, q) defined in section B is a special case of fibrations
with Eilenberg-Mac Lane spaces as fibers. The interesting thing about such
fibrations (Y,X, F,p) is that the knowledge of the homology H.(Y) gives
information on the Eilenberg groups H.(S„.(X)) (§ 1,C), and in particular on
the homotopy groups 7t„(X), due to the isomorphism (25) (loc. cit.). This follows
from a general lemma:

If a continuous map /: Y -> X of CW-complexes is such that

/*:*<(Y)->ws(X)
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is an isomorphism for i > n, then

/:S„.(Y)^S„.(X)

is a chain equivalence.

The proot consists in reducing this to the case in which / is injective, by the
consideration of the mapping cylinder Zf. One then defines a chain
transformation g: S„.(X) -> S„.(Y) by induction on the skeletons of X of dimension
>n; the assumptions on the homotopy groups of X and Y makes it possible
to construct homotopy operators establishing the necessary chain homo­
topies, in the same way as in the proof of Eilenberg's "reduction theorem"
(§1,Q.

In 1952 G.W. Whitehead and Cartan and Serre in a joint note [115]
independently described a method to "kill" homotopy groups of an arcwise­
connected space X: just as a universal covering space X of a space X is such
that 7r,(X) ~ 7t;(X) for i > 2, and ^(X) = 0 (i.e., the first homotopy group
is "killed") (chap. II, § 3,B), they demonstrated the existence of a fibration
(W„+1,X,p) such that 7r,(W„+1) = 0 for i < n, and p#: 7t;(W„+1) -> 7r,(X) is bijec­
tive for i > n.

The starting point is the same as in Section B above, namely, the
construction of an injection /„: X -> Y" satisfying properties (i), (ii), (iii) in section B. If
x0 eX and y0 = j„(x0), consider the fibration £, = (W^+1, Y",p") defined in
chap. Ill, §2,A, where W„'+1 is the space of paths P,n,^o; its restriction j*{0 =
(W„+1,X,F,p) with base space X has the same fiber equal to the space of loops

F = p-l{x0) = p"-\y0) = n{Y",y0). (56)
From the commutative diagram of homotopy exact sequences

••• ^ Vl(X) ^ nq(F) -+ *,CW„+1) ^ nq(X) i tv^F) -+ ViO*U)UÏ II 1 Ul II 1
••• ^ *,+1(Y") 7 VF) - *,(W,:+1) -i nq(Y") -+ Vl(F) -» ^-ifW^)S II P* S II0 0

(57)

the following results can be derived:

(a) for q > n, nq(Yn) = wt+1(Y") = 0, hence nq(F) = 0, jn*(nq(X)) = 0, and
d{nq{X)) = 0, so p#: nq{Wn+1) -»■ nq{X) is bijective;

(b) for q ^ n, jnm: ^„(X) -> nq(Y") is bijective, and since d: nq(Y") -> t^-^F) is
also bijective by (57), d: nq(X) -> nq_1(F) is bijective. If q — n, as k„+i (Y") =
0, nq(F) = 0 by (57); as 7r„(X)-> rc,._i(F) is bijective, (57) shows that
nnÇNn+i) = 0; if q < n, nq+1{X) -»■ rc^F) is bijective, hence again nq(Wn+1) = 0.

The conclusion is that (W„+1,X, F,p) is the fibration which "kills" the
homotopy groups nq(X) for q ^ n.

That construction can also be made by steps, applied in succession to
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W1 = X, n = 1, giving a fibration (W^W^Fj), then to W2 and n = 2, giving
a fibration (W3, W2,F2), and so on. Since ni(W„+l) = 0 for i ^ n and the map
7r((W„+1 ) -> 7t;(W„) deduced from the projection is bijective for i > n, the
homotopy exact sequence shows that the fiber F„ is such that 7r,(F„) = 0 for all
i # n — 1, and n^^FJ ~ 7t„(X); in other words, the fiber F„ is an Eilenberg­
Mac Lane space K(7r„(X),n — 1).

It follows from chap. Ill, §2,A that there is also a fibration
(P}n,K(7r„(X),n), W„+1) with PJn of same homotopy type as W„ and fiber W„+1.

Another example of Eilenberg-Mac Lane fibers is given by the fibered
Postnikov systems, which can be associated to any homotopy resolution of a
space X (section B) with contractible space Y°. First apply the method of chap.
Ill, §2,A to ft: Y1 -► Y° to obtain a fibration (Z\ Y1,^,^) with a section
ji'. Y1 -> Z1 that is a homotopy equivalence and a fiber Ft ^ K^^X), 1); then
by induction, construct a sequence (Z", Y", F„, q„) of fibrations and a
commutative diagram

X.

-> Y'71+1 ■>" +i-> Y"

Z"Pn+l Pi
where ;'„ is a section that is a homotopy equivalence, and the fiber
F„ ~ K(7r„(X), n); this is obtained by applying the method of chap. Ill, § 2,A to
each map ;'„ o fn+l : Y"+1 -» Z" in succession.

The maps pi define fibrations (Z„, Z„_1; F„_1; p'^) with Eilenberg-Mac Lane
fibers, constituting the fibered Postnikov system of X. Consider the inverse
limit Z = lim Z" for the maps p^'; the injections jn o j„ form an inverse system
of maps defining a continuous map g:X->Z that is a weafc homotopy
equivalence.

It is possible to use the fibered Postnikov systems to present the question
of extension of continuous maps and the theory of obstructions in a different
way (chap. II, §4,C). Let us keep the preceding notations and suppose X is
n-simple for every n; let r/. X -> ZJ be the composite map defined in (58). Let
(W, A) be a relative CW-complex (Part 2, chap. V, § 3,C) and F: A -» X be a
continuous map. Suppose Z° is reduced to a single point, so that r0 oF:A-> Z°
has an extension F0: W -> Z°. Then consider the maps r„ o F: A -* Z" and
try to extend r,oF to F„: W-> Z", such that pi ° F„ = F.,.^ the
obstruction to the extension of r,+1 « F to a lifting of F„ is a cohomology class
in H"+2(W,A;tt„+1(X)) (chap. II, §4,C); let &„+2{F) be the set of these
obstructions.

On the other hand, if W„ is the n-skeleton (W, A)" and G: W„+1 -> X is an
extension of F to W„+1, there is an obstruction ß(G) e H"+2(W, A; tt„+1(X)) to
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the extension of G to W„+2 (loc. cit., IX); let &'„+2(F) be the set of these
obstructions; then one can prove that

<P.+2(F) = &n+2{¥)

([490], pp. 450-453; see also [440], pp. 437-452).

D. The Homology Suspension

In their study of the homology of the chain complex K.(II, n) (see below, § 3)
Eilenberg and Mac Lane introduced ([185], I) a chain transformation

S.:K.(n,n)->K.(n,n + l) (59)
which they considered an "analog" to Freudenthal's "suspension" (chap. II,
§ 6,E) and to which they therefore gave the same name; they deduced from it
homomorphisms in cohomology

S*: H"+k(K.(n,n + 1);A)- H"+*_1(K.(n,n);A) (60)
and proved that S* is bijective for k ^ n and injective for k = n + 1.

Serre greatly generalized that definition in his thesis [429]. He first showed
that a "suspension" can be defined in cubical homology for any fibration
(X, B, F,p) with F = p_1(b0). Consider the homology exact sequence for the
pair (X, F) and the injection ;': F -> X

■■■-»H(1(F;A)-»H(1(X;A)^H(1(X,F;A)-^H(1_1(F;A)-»---. (61)

If HJ,(X,F;A) = Coker;',,. and H^_t(F;A) = Im d, then d can be considered an
isomorphism

oiHiPCFjAJ-^Hi-^FjA).

The projection p: X -> B also defines a homomorphism at the level of singular
chains

p:C.(X,F;A)^C.(B;A)

commuting with boundary operators, hence a homomorphism of graded
homology modules

p«,:H.(X,F;A)->H.(B;A)

such that p# o jm = 0. The suspension defined by Serre is the composite

a: H^^F; A) -^ H'q(X, F; A) A H,(B; A).

The most interesting case is when Hs_t(X; A) = HS(X; A) = 0; then ô is
an isomorphism in (61) and the suspension becomes a homomorphism in
homology

<r.Hrl(F;A)^Ht<P;A). (62)
Furthermore, the spectral sequence of the fibration yields a diagram
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p« I y F«n«,o * Eo,«-i

H,(B;A) ^— H.-^FjA)

where a is injective, Im(a) = Im(<r), ß is surjective, and Ker(jß) = Ker(<r). Since
dq is the transgression (chap. IV, §3,B), the suspension appears as a kind of
"inverse" of the transgression.*

In particular, using the Serre exact sequence [chap. IV, § 3,C, formula (74)],
if H;(X; A) = 0 for all i "^ 1 and Hf(B; A) = 0 for 0 < i < p, then the suspension
(62) is bijective for 1 < q < 2p — 1, surjective for i = 2p — 1, and H((F; A) = 0
for 0 < i < p — 1.

In the particular case of a fibration (P, B, F, n) of a space of paths in B with
fixed origin x0, where n~l(x0) = F = £2(B, x0), the suspension is defined in the
whole group HS_1(F; A) for every q > 1; Serre showed that it could be derived
from a homomorphism at the level of singular cubical chains. He defined a
chain transformation

K: Q.(P) - Q.(P)

in the following way. if u: [0,1]" -* P is a singular n-cube so that
t\-^u(t1,...,tn)(t) is a path in B with origin x0, then (kn o u)(tt,...,tn+1)is the
path in B

r^u(r2,...,r„+1)(rri).

It is easily checked that kn-l o (bu) + b(fc„ o u) = u. From k deduce a chain
transformation

s.= no k.: Q.(F) -> Q.(B)

such that

(s„ o U){tl,...,r„+1) = u{t2,...,tn+l)(tt), (63)
and s„_! o (bu) + b(s„ o u) = 0 if u e Q„(F) with n > 0.

Since s. transforms degenerate cubes in F into degenerate cubes in B, it
defines a homomorphism in homology

s<.:H,(F)->H,+1(B) (64)
for all dimensions i > 0, that coincides with the suspension (62) defined for
general fibrations. In this special case of a space of paths the definition (63)
shows that the image by s„ o u of the cube [0,1]"+1 may be considered a
continuous image of the reduced suspension of the cube {^} x [0,1]" in the

* Serre also defined the suspension for the spectral sequence of a filtered differential
group ([429], p. 434).
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sense of Freuden thai (Part 2, chap. V, § 2,C). This gives a more precise meaning
to the "analogy" mentioned by Eilenberg arid Mac Lane, since the definition
(64) applies in particular to B = K(II, q + 1) and F = K(TI,q) and coincides
with the homomorphism defined by them.

The properties obtained by Eilenberg and Mac Lane for the maps (60)
were generalized by Serre to the fibration (PXoB, B, F, p) of the space of paths
PXoB with fixed origin in any arcwise-connected space B. If H,(B;A) = 0
for 0 < i < q, the suspension (64) is bijective for 0 < i < 2q — 2 and surjective
for i = 2q — 2.

§ 3. The Homology of Eilenberg-Mac Lane Space

Application of the spectral sequences of fibrations to fibrations with Eilen berg­
Mac Lane fibers (§ 2,C) immediately called for the determination of the
homology of the spaces K(II, n) in order to compute the E2 terms of these sequences.
This thorny problem engaged the efforts of several mathematicians between
1950 and 1954, and was finally completely solved by H. Cartan in 1954.

The abridged notation H^II^G) is used for H,(K(n,n);G), and similarly
for cohomology. The problem depends very much on the nature of the group
G of coefficients.

A. The Topological Approach

In his thesis [429] Serre applied to the problem the homology spectral
sequence of the fibration

(PXoK(lLq + l),K(ILq + l),K(lLq),p)

of the space of paths in K(II, q + 1) with fixed origin; the E2 terms are given by

E2s=Hr(n,q+l;Hs(n,q;G)) (65)
and the abutment is 0.

This yields a method of computation of H.(II,q;G) by induction on q,
starting from the H„(II, 1; G), which, when II is commutative, are the homology
groups H„(II; G) of the group II acting trivially on the group G. As particular
cases, this method shows that, if II is finitely generated so are the H,(n, q; Z)
for all values of i and q; if II is finite and k is a field such that II ®z k = 0,
then Hi(TI,q;k) = 0 for all q > 0 and i > 0; in particular H,(n,q;Z) is finite.
Since K(II, q) has the homotopy type of the space of loops £"2K(II, q + 1) [chap.
II, § 3,C, formula (50)], it is a H-group (loc. cit.); hence its cohomology algebra
H'(II, q; k) is a Hopf algebra for any commutative field k, when II is
commutative and finitely generated. In particular, when k has characteristic 0, Serre
showed that when q is even (resp. odd), H'(Z,q;k) is a polynomial algebra
(resp. an exterior algebra) generated by 1 and a single element of degree q.

In 1952 Serre used the same method, together with properties of the
Steenrod squares, to determine the cohomology H'(II,q;F2) for finitely
generated commutative groups II ([431]; see chap. VI. § 3,B).
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B. The Bar Construction

Meanwhile, in 1950 Eilenberg and Mac Lane [185] had begun to attack the
problem of determination of H.(II, n; A) for general rings A by using algebraic
methods applied to the chain complex K.(II, n) which they had defined earlier
[181]. Their idea was to substitute for that chain complex another with the
same homology, but more easily computable. We can only give here a rough
sketch of the intricate algebra used by them and later by H. Cartan.

The simplified presentation given by Cartan starts from an arbitrary
associative differential graded augmented anticommutative (DGA for short) A­
algebra A: A is the direct sum of A-modules Ak for k ^ 0, with unit element
1 e A0 and injective map X i-> X. 1 of A into A0, so that A is identified with its
image in A0; the Ak and A form an augmented chain complex (Part 1, chap.
IV,§5,F)

n<_A<iA £a Sa <----<-a Sa <-•••
with the conditions

d(xy) = (dx)y + (— lfx(dy) forxeAk, (66)
e(xy) = £(x)s(y) for x, y in A0, (67)£od = 0 inAj. (68)

The augmentation £ is extended to the whole algebra A by taking s{x) = 0 for
x e Ak when k ^ 1.

Finally, A/A c A„+k, (69)
yx = ( — l)hkxy for x e Ah, y e Ak. (70)

From relation (66), a A-algebra structure on the homology graded group H.(A)is deduced. _
Let A be the graded quotient A-module A/A, [a] the image in A of a e A;

define Â®° = A, A®k the fc-th tensor power of the A-module Â for k ^ 1, and

J(A) = 0 Ä®"; (71)
' 1.3=0

the element [at] ® [a2] ® ••• ® [ak] for k ^ 1 is written [a1,a2,...,ak]; it is
0 when one of the a,- is in A c A0; â$(A) is graded by the graduation

k

deg[a1,a2,...,ak] = k + £ deg(a.) for fc ^ 1, (72)i-i

the elements of A®° having degree 0.
Cartan's addition to that definition was to consider also the direct sum of

tensor products

@(A) = © (A ®A A®"); (73)
it is an A-module and the tensor product
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a ® D3! ] ® fe] ® ' ' ' ® [ûfc]

is written a[at, a2,..., ak]; 38(h) is graded by

deg(a [a !, a2,..., ak] ) = deg(a) + fc + £ deg(a,-) (74)
i=i

and an augmentation £ is given by

£(a®l) = £(a), s(a[al,a2,...,ak]) = 0 if fc ^ 1. (75)
The differential d in ^(A) is defined in two steps: first an A-endomorphism s:
43(A) -» #(A) of degree + 1 by

s(a[al,a2,...,ak]) = [a,al,a2,...,ak] eäk+l(A% (76)
s(l) = 0 and s o s = 0. Then d is an endomorphism of degree — 1 which on
430(A) is the differential of A, and which satisfies

d(ax) = (da)x + ( - l)ha(dx) for a e Ah, x e 43(A), (77)
d(s(x)) + s(dx) = x- e(x) for x e #(A). (78)

It has to be checked that this defines d on every 43k(A) by induction on k, and
that d o d = 0; the main property is that the augmented chain complex 43(A)
is acyclic (Part 1, chap. IV, §5,F).

An anticommutative multiplication can be defined on 43(A), for which it is
a DGA algebra, in which 43(A) is a subalgebra [the multiplication on 43(A)
had been defined directly by Eilenberg and Mac Lane, using operations which
they called "shuffles"]. If I is the two-sided ideal Ker £ in A, the natural
homomorphism 43(A) -> 43(A)/143(A), restricted to 43(A), is an isomorphism of
graded A-algebras of 43(A) onto 43(A)/143(A); this defines by transport of
structure a differential d on 43(A) for which 43(A) is a DGA algebra. The
original definition of d by Eilenberg and Mac Lane was more complicated.

The algebra 43(A) was called the bar construction by Eilenberg and
Mac Lane. Since it is also a DGA algebra, the bar construction 43(43(A)) on
43(A) may be considered, and more generally the iterated bar constructions

43(n\A) = 43(43(n-1 >(A)) (79)
for any integer n > 1. To each one is associated an acyclic DGA algebra

43(n\A) = A ®A 43(n)(A). (80)
The goal pursued by Eilenberg and Mac Lane in the bar construction stems

from their discovery that if A = A [II], the group algebra of the commutative
group II with coefficients in A in which all elements of A are taken of degree
0 and d = 0, there exists an isomorphism of graded homology algebras

H.(J(B)(A [II] )) -2J H.(K.(lï, n); A). (81)
Using this isomorphism they were able to compute the homology groups

Hn+q(Z,n;Z) with n > q, for q s£ 10 [185].
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C. The Cartan Constructions

H. Cartan generalized the bar construction in the following way. He called
construction on A a triple (A, N, M), where A is a DGA algebra over A,
N = @O0N4 a graded anticommutative A-algebra, with N0 = A. 1; finally,
on the skew tensor product M = A g®A N of A and N over A, which is an
anticommutative graded A-algebra, there must exist a differential d such that,
together with the augmentation e(a ® 1) = e(a), M becomes an acyclic DGA
algebra, and the map j: a\—»a® 1 is an injective homomorphism of DGA
algebras. Then the homomorphism p: a ® n\—>s{a)n identifies N with a
quotient algebra M of M, and N is equipped with the image d by p of the
differential of M; the kernel of p contains j(A).

If there is a sequence of constructions

(A, A(1), B(1)), (A(1), A(2), B(2)),..., (A«"-1», A<">, B<">)

we say (A(""u, A(n), B(n)) is an iterated construction on A.
The Cartan constructions constitute a kind of algebraic counterpart of a

fibration (X, B, F, p) of a contractible space X, where M corresponds to the
chain complex C.(X), N to C.(B), and A to C.(F). To the classical homology
exact sequence derived from

0 -> C.(F) -> C.(X) -> C.(X)/C.(F) -> 0

corresponds the homology exact sequence derived from

0 - A -4 M - M/A - 0,

•••-»Ht+1(M)-»H(1+1(M/A)^H(1(A)-»H(1(M)-»•■•, (82)

where ô is an isomorphism for q > 1 since M is acyclic.
Consider, on the other hand, the homomorphism

p*:Ht+1(M/A)-»H(1+1(N)

deduced from p; the suspension homomorphisms in the constructions were
defined by Cartan as

S, = P* » r1: H,(A) - H,+1(N) for q ^ 1
(cf.§2,D).

Cartan called a construction special if there is a A-algebra endomorphism
k of M [which corresponds to the chain transformation k, defined by Serre
for fibrations (§ 2,D)], such that

(i) d(kx) + k(dx) = x — ex;
(ii) fc(l) = 0, k{Mj) c MJ+l,k o k = 0;

(iii) for n e N,-, j > 1, 1 ® n e fc(M).

From k [still following Serre's definition of the suspension for spaces of paths
(§2,D)] Cartan deduced the composite homomorphism

s: A -+ M A M ■£ N;
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in N, s(da) + d(sa) = 0 for a e Aq, q ^ 1, so that s defines a homomorphism
in homology

s<,:H.(A)->H.(N) (83)
which is the suspension defined above.

In particular, the bar construction is special and the suspension (83)
coincides with the one defined by Eilenberg and Mac Lane.

Cartan's main result was that, for a construction (A,N, M) and a special
construction (A',N', M'), any DGA algebra homomorphism /: A-> A'
extends to a homomorphism g: M -> M', such that, if /„.: H.(A) -> H.(A') is an
isomorphism, and if g: N -> N' is the homomorphism deduced from g by
passage to quotients, then the map g^. H.(N) -> H.(N') is also an isomorphism.
This shows in particular that, for any iterated construction (A(""u, A'"', B("))
the homomorphism

A<»> -» J<")(A)

deduced from the identity isomorphism of A, yields isomorphisms

H.(A<">) 2i H.(J(n)(A)).

Taking A = A [II], it follows from the Eilenberg-Mac Lane isomorphism (81)
that there is an isomorphism

H.((A[n])(">)2; H.(K.(ILn);A) = H.(iLn;A)

compatible with the suspensions.
This is how, by a clever choice of the construction (A[ITJ,N, M), Cartan

succeeded in determining H.(IL n;A); he defined the successive algebras A'"'
for n ^ 2 in his construction by using exterior algebras and polynomial
algebras with only one generator as "building blocks" (which was to be
expected from Serre's earlier results). The details are very lengthy and intricate
[424].

§ 4. Serre's ^-Theory

A. Definitions

In his thesis ([429], p. 491) Serre proved results from which could be deduced,
for the spaces of class (ULC) (see definition in § 5), a far reaching extension of
Hurewicz's absolute isomorphism theorem (chap. II, § 4,A): if such a space X
is arcwise-connected and simply connected, and if the group 7t,-(X) is finitely
generated (resp. finite) for 2 ^ i < n, then the homology groups H;(X) are also
finitely generated (resp. finite) for 0 < i < n.

In 1953 [430] he showed that these results could be derived from a general
theory based on a concept that covered both concepts of finite commutative
groups finitely generated commutative groups, as well as many others, which
he called the c€- classes. In modern language # can be considered a subcategory



§4A V. Sophisticated Relations between Homotopy and Homology 479

of the category Ab of all commutative groups, that satisfies the following
condition:

(I) In an exact sequence L -> M -> N of commutative groups, if L and N are
in cë, so in M.

In the (abusive) notation Ae'f, axiom (I) is equivalent to the statement that
{0} e cë, that subgroups and quotient groups of groups of ^ are in cë, and that
an extension of two groups of <t# is in c€.

Examples of ^-classes are finitely generated groups, finite groups, and
torsion groups (which are finite or infinite direct sums of p-groups for a finite
or infinite number of primes p).

In applications of ^-theory to homology and homotopy groups, the groups
belonging to <t# appear most of the time as objects that can be somewhat
neglected, just as meager sets in topology or sets of measure 0 in measure
theory. This leads to the definitions:

1. a %,-null group is a group belonging to cë;
2. a W-injective (resp. <&-surjective) homomorphism /: A -> B of commutative

groups is a homomorphism such that Kerf" (resp. Coker/) is ^-null;
3. if / is both ^-injective and ^-surjective, it is called ^-bijective or a <€­

isomorphism.

Serre used these notions to examine theorems in which the assumption is
the vanishing of homology or homotopy groups and see what could be said
when "zero" is replaced by "^-null."

He first considered fibrations (X, B, F, p), and for later uses he had to extend
the machinery of spectral sequences to relative homology: when B' is a sub­
space of B and X' = p_1(B')> so that (X',B',F,p|X') is the induced fibration,
relate H.(X, X'; A) to H.(B, B'; A) and to the local system (H.(Xfc; A)). The fact
that for any b e B' and F = p~l(b) the map

p#:7r,.(E,F)^7r,.(B,b)

is bijective for alii > 0 (chap. Ill, §2,C) is generalized to the fact that

p#:7r,(X,X')^7r,(B,B')

is also bijective for all i ^ 0; this follows from the 5-lemma applied to the
commutative diagram of exact sequences

7t,(X', F) -+ 7t,(X, F) -+ 7T,.(X, X') -+ Tt^X', F) -+ TT.-.^X, F)11111
n;(B',b) -+ 7r,.(B,b) -+ tt,.(B,B') -+ n^iB^b) -+ n^^b).

The construction of the spectral sequence for relative homology starts by
introducing on the chain complexes C.(X') and C.(X, X') = C.(X)/C.(X') the
filtrations deduced from the filtration on C.(X), and similarly for C.(B), C.(B')
and C.(B, B'). Using the exact sequences
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0 -» Ct(B') ® C.(F) -» Ct(B) ® C.(F) -» C,(B, B') ® C.(F) -» 0

the computation of the terms E1 and E2 in the spectral sequence of C.(X)
(chap. IV, §3,C) is easily transferred to the spectral sequence of C.(X, X') and
yields the fundamental isomorphism

Er2,s^Hr(B,B';(Hs(Xfc;A))) (84)
and the fact that Ef is the graded group associated to a filtration on
H.(X,X';A).

The consequences of that method concern properties of the homomorphism

p«,:H.(X,X')->H.(B,B') (85)
when B, B' are arcwise-connected spaces and ^(B) acts trivially on H.(Xfc; A).
There are two principal theorems, under different assumptions on <g and B,
B, F.

Theorem A: # satisfies the additional axiom

(IIA) If M and N are in <€, so are M ® N and Tor(M, N).

The assumptions on B, B', F are:

(i) H^B, B') = 0, H,.(B, B') e <ë for 0 s£ i s£ q.
(ii) H,(F) e <ë for 0 < ; < r.

The conclusion is that if s = inf(q,r + 1), the map (85) is ^-bijective for i ^ s
and ^-surjective for i = s + 1.
Theorem B: <é satisfies the additional axiom

(IIB) If M e (ê, then M ® N e ^ for any commutative group N.

The assumptions on B, B', F are:

(i) H,.(B, B') e <€ for 0 s£ i < q;
(ii) Hj-(F) e <€ for 0 < ; < r.

The conclusion is that, if s = q + r — 1, the map (85) is ^-bijective for i ^ s,
^-surjective for i = s + 1.

The proofs consist in looking at the E2„ terms (84) for suitable values of m,
n, and applying the machinery of the spectral sequence to deduce the needed
properties of E„„.

Observe that (IIA) [but not (IIB)] is satisfied when ^ is the category of finite
commutative groups; (IIB) is satisfied when <t# is the category of torsion groups.

Taking B' as a one point set, these theorems give relations between the
homology of X, B, and F in ^-theory. A space X is ^-acyclic if H,(X) e ^ for
all i > 0. Axiom (IIA) implies that if two of the spaces X, B, F are ^-acyclic,
so is the third one. Axiom (IIB) implies that if the base space B is ^-acyclic,
the homomorphism H,(F) -> H,(X) is W-bijective for all i "> 0 ("Feldbau's
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theorem" modulo ^); and if F is ^-acyclic, the homomorphism H,(X) ■
is ^-bijective for all i "? 0 ("Vietoris' theorem" modulo (€).

Another additional axiom for <€ is:

H,(B)

(III) For each group M e '
(§ 1) are in <€.

?, the homology groups H,(M; Z) of the group M

This is satisfied by finitely generated groups and by torsion groups.
If <€ satisfies (IIA) and (III), then, for any group ïle<g, the homology groups

H;(II, n; Z) of Eilenberg-Mac Lane spaces (§ 3) are in '€ for all n "? 1, i > 1.
The most useful results in ^-theory are analogs of both absolute and relative

Hurewicz isomorphism theorems and of the first Whitehead theorem (chap.
II, §4,A, §5,E, and§5,F).

B. The Absolute "^-Isomorphism Hurewicz Theorem

Axioms (IIA) and (III) are assumed. If X is an arcwise-connected and simply
connected space, and if ti,-(X) e <g for i < n, then H,(X) e <g for 0 < i < n, and
the Hurewicz homomorphism 7r„(X) -> H„(X) is ^-bijective.

There are two proofs. The first one assumes X is a (ULC) space (see § 5) and
therefore applies in particular to ANR's. Use induction on n; it is only
necessary to show 7r„(X) -> H„(X) is ^-bijective.

Let (P, X, SI, p) be the fibration of paths in X with origin at x0 and SI =
p~l(x0). The idea of the proof is to consider the commutative diagram

-i(")

H.-,(n) ­

nn(P,Sl)

Hn(P,Sl)

t.(X)

H„(X).

If the horizontal arrows are proved ^-bijective as well as the Hurewicz
homomorphism n„_l(Sl) -> H„_1(il), the result follows.

1. By general properties of fibrations, n„(P,Sl) -> nn(X) is bijective (chap. Ill,
§2,C).

2. From the fact that P is contractible and the homotopy exact sequence, it
follows that d: n„(P,Sl) -> n^^Sl) is also bijective.

3. By the hypotheses, theorem A above can be applied for B = X, B' = {x0},
F = SI, q = n, and r = n - 1 provided H,-(f2) e <tf for 0 < i < n - 1. It will
establish that H„(P,il) -» H„(X) is ^-bijective.

4. The remaining part of the proof shows at the same time that H;(SÏ) e <£ for
0 < i < n — 1 and that n„_l(Sl)^> H„_1(il) is ^-bijective. The universal
covering space Ù, of SI exists and is (ULC) since X is (ULC), and n^Ù) =
ni+l(X) for i "? 2. The inductive assumption applied to 0. shows that
H((d) e <€ for 0 < i < n - 1 and that n^^Ù) -»■ H^^ß) is ^-bijective.
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The Cartan-Leray spectral sequence of the covering space Ù has E2 terms

El ~ Hr(II) ® US{Ù) 0 Tor(H,_, (II), H,(fi))

with II = 7ij (ß) = n2{X), because £2 is simple (chap. II, §3,F). Axiom (IIA)
shows that E2S e <€ for r "> 0,0 < s < n — 1 and for s = 0, r > 0; thus E2, „.j =*
H.,_j(ft) is the only term of total degree n — 1 for which proof that it is in #
is needed. An inspection of the differentials dm shows that H„_1(ß) -> H„_1(il)
is ^-bijective and H,(Î2) e # for 0 < i < n — 1. Finally nt(ù) -> 7t,-(fi) is bijective
for i """s 2 and ^-bijective for i — 1, hence nn_l(ÇÏ) -» H„_1(il) is ^-bijective.

When # consists of the one-element groups {0}, this argument gives a new
proof of the original absolute Hurewicz isomorphism theorem (chap. II, §4,A),
and since £2 is then simply connected, it is unnecessary to assume in that proof
that X is (ULC).

A second proof of the absolute ^-isomorphism Hurewicz theorem uses the
sequence (W„) of spaces "killing" the homotopy groups of X (§2,C); here
W2 = X by assumption, and X is not necessarily (ULC). The original Hurewicz
theorem shows that H„(W„) ^ ft„(W„) ^ n„(X). As in the first proof, use
induction on n, and show that n„(X) -> H„(X) is ^-bijective. Consider the
commutative diagram

-%(W„) ► H„(W„)

tt„(X) ► H„(X)
where the vertical arrows are deduced from the projection W„ -> X. The
maps 7t„(W„) -> H„(W„) and nn(Wn) -> nn(X) are bijective; what remains to
be seen is that H„(W„) -> H„(X) is ^-bijective. n{(Wj) e # for ;' <n, i < n,
hence H,.(W;) e ^ for these values of i, j by the inductive assumption. The
proof is concluded by showing that the map H,(W;+1) -> Ht(W;) is (€­
bijective for j <n, i <n and ^-surjective for j <n, i = n + 1. This is a
consequence of theorem A applied to the relative fibration consisting in the
fibration (W;+1, W}, K^X), ;' — 1)) and one of its fibers, with q = n and r = oo;
the assumptions of theorem A are satisfied because from the fact that 7t;(X) e ^
for ; < n it follows that Ht(K(7i;(X),; - 1)) e <ë for all i > 0.

It follows as a corollary, that if n^X) = 0 and H,(X) e <€ for 0 < ;' < n, then
7r,.(X) e ^ for i < n; use induction on n.

Serre also mentioned without detailed proof an improvement of the
absolute ^-isomorphism Hurewicz theorem in the following special case: X is
a finite CW-complex with rc,.(X) = 0 for 1 < i s£ k - 1, with k > 2. Then
if <t# is the class of finite commutative groups the Hurewicz homomorphism
nr(X) -> Hr(X; Z) is ^-bijective for r < 2k — 1. Serre indicated a possible proof
by cohomotopy theory ([430], p. 202) and Milnor sketched a direct proof in
([347], p. 207): using Serre's finiteness theorem for the 7rm(S„), it is clear that
the result is true for X = S„ with n ^ k. From the Kiinneth formula and the
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relative Hurewicz theorem, the result follows for a wedge of spheres. Finally,
using maps Sr. -» X whose classes are generators of the nr (X), and combining
these maps into a single map

/: S„ v S,2 v ■ ■ • v S,p - X

the validity of the result for wedges of spheres and the first Whitehead
^-theorem (section D) conclude the proof.

C. The Relative "^-Isomorphism Hurewicz Theorem

This time it is assumed that axioms (IIB) and (III) are satisfied; X and AcX
are arcwise-connected and simply connected spaces and the injection;': A -> X
is such that ;'„.: 7t2(A) ->7r2(X) is surjective. Then if ni(X,A)e'ë for i < n,
H,.(X, A) e <^ for 0 < i < n, and the Hurewicz map n„(X, A) -» H„(X, A) is
^-bijective.

The strategy again consists in using induction on n and considering the
space of paths P in X with fixed origin x0 e A, and the usual fibration
(P,X,F,p) with F = p-1(x0) = Q(X,x0). Let P' = p_1(A), so that nt(X,A) ^
nt(P, P') =* Tij-^P') by the preliminary result on relative fibrations, using the
fact that P is contractible. From the homotopy exact sequence for the pair
(X,A) and the assumptions it follows that n^X,A) = 7r2(X,A) = 0, hence
7r0(P') = n^P') = 0; since by assumption 7r,-(P') e '€ fori < n — 1, the absolute
^-isomorphism Hurewicz theorem shows that n^^P')-* ^.^P') is (€­
bijective. Consider then the commutative diagram

t.-i(P') « t.(P,P') ► t.(X,A)
(86)

H^^P') « H„(P,P') ► H„(X,A)
Application of theorem B with q = n, r = 1 shows that the map
H„(P, P') -> H„(X, A) is ^-bijective; in (86) all horizontal arrows and one
vertical arrow are '^-bijective, hence the other vertical arrows are also ^-bijective.

It may also be shown that n„+l(X,A)-* H„+1(X,A) is ^-surjective. In the
relative ^-isomorphism theorem the axioms (II„) and (III) may be dropped
when Hj(X) and H/A) are finitely generated for all j.

D. The First Whitehead "^-Theorem

From the relative ^-isomorphism Hurewicz theorem the same argument as
in the proof of the first Whitehead theorem (chap. II, § 5,F) yields the following
generalization in ^-theory.

Suppose that <g is a class satisfying (II„) and (III); X and Y are arcwise­
connected and simply connected spaces and /: X -* Y is a continuous map
such that /„.: 7r2(X) -* ft 2 00 is surjective. Then the two following properties
are equivalent:
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(i) /,.: H,(X) -> H,(Y) is ^-bijective for i < n, ^-surjective for i = n.
(ii) /„.: 7t,-(X) -> 7t,-(Y) is ^-bijective for i < n, ^-surjective for i = n.

The method consists of reducing the proof to the case in which A is a
subspace of X and /: A -> X the natural injection, by means of the mapping
cylinder of/. Then (i) and (ii) are respectively equivalent to:

(i')H,.(X,A)e<«f fori^n.
(ii') 7r,.(X, A) e <€ for i < n.

The equivalence of (i') and (ii') follows from the relative ^-isomorphism
Hurewicz theorem.

Serre applied these theorems to homotopy theory mainly in cases in which
<& is the class of finite groups, or the class of finite groups whose order is only
divisible by prime numbers belonging to some fixed set of primes. Then
assumption (i) in the Whitehead ^-theorem can be replaced by assumptions
on the homology groups with coefficients in a field.

When <€ is the class of finite groups, (i) is equivalent to

(i0) For a field k of characteristic 0, /„.: H,(X;fc)-> U:(Y;k) is bijective for
i < n, surjective for i = n.

When %? is the class of finite groups whose order is not divisible by p, (i) can
be replaced by

(ip) For a field k of characteristic p > 0, /„. : H;(X; k) -> H,-(Y; k) is bijective for
i < n, surjective for i = n.

There is also a theorem in ^-theory which generalizes the Blakers-Massey
homotopy excision theorem (chap. II, §5,D); see ([5], pp. 102-112).

§ 5. The Computation of Homotopy Groups of Spheres

We have already mentioned several times (chap. II, §6,E; chap. Ill, §2,D) the
challenge that polarized the efforts of many topologists, namely, the
computation of the homotopy groups of spheres nm(Sn) for m> n. After slow and
painful beginnings, the veil of mystery shrouding these groups began to be
partly lifted in the early 1950s, with general theorems going much beyond the
determination of individual groups; however, even now the problem is far from
being completely solved.

A. Serre's Finiteness Theorem for Odd-Dimensional Spheres

The principle of Serre's method for the determination of the nm(Sn) is to use
the original Hurewicz definition of homotopy groups to reduce the
computation of homotopy groups of an arcwise-connected space X to the homology
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groups of iterated loop spaces over X (chap. II, §3,C). The most useful results
Serre obtained on the homology of a loop space £2(X) = £2(X;xo) assumed
that X is simply connected (chap. IV, § 3,C); so he had to modify the iteration
process slightly by defining two sequences of spaces:

X0 = X,

T. = X0, universal covering space of X0«X^OtJt), (87)
T2 = Xl, universal covering space of Xl

In this sequence the Hurewicz definition gives

rc.(X„) = ni+l(T„) fori>l;

hence, by induction,

11(X.) = nH+l(X),..., tt,.(X„) = tt,.+„(X), ... (88)

and since ^(X,,) is commutative,

tt„+1(X) = H1(X„;Z). (89)
The formation of the sequence (87) assumes that each space X„ does possess
a universal covering space (cf. chap. I, § 2,IX). Serre showed that this is implied
by a property which he called (ULC), a kind of "uniform" local contracti­
bility*: there exists a neighborhood U of the diagonal A in X x X and a
continuous map F: U x [0,1] -> X such that

1. F(x,x,t) = x for all t e [0,1];
2. F(x,y,0) = x, F(x, y, 1) = y for any (x,y) e U.

This is in particular satisfied if X is an ANR.
The study of the homology of the spaces X„ and T„ then proceeds in several

steps; in each of them the results are translated by (89) into properties of the
homotopy groups of X. The space X is always assumed arcwise-connected,
simply connected (so that Tj = X0), and (ULC).

I. If all the H;(X; Z) are assumed finitely generated, the same is true for all
the H;(T„; Z) and H;(X„; Z). The proof is by induction on n; to pass from T„
to X„ = £2(T„), it is enough to apply the general result on fibrations that
extends Leray's theorem on the relations among the homology of the base
space, the fiber, and the total space (chap. IV, § 3,C). To pass from X„_i to
T„ = X„_i, use the Leray-Cartan spectral sequence of a covering space (§ 1,D);
since X„_i is an H-space, II = n^ÇX^^) = H1(X„_1;Z) operates trivially on

* The notation recalls the local property LC of Lefschetz (chap. II, § 2,B), and the q-ulc
property of Wilder (Part 2, chap. IV, § 3,B) relative to homology instead of homotopy.



486 3. Homotopy and its Relation to Homology

H.(X„_! ) (chap. II, § 3,F), so that the E2 term is given by

E2, = Hp(n; Z) ®z H,(T„; Z) 0 TorCH^ (n; Z), H,(T„; Z)).

Since II and the H1(X„_1;Z) are finitely generated, the same Leray-Serre
theorem may be applied. In particular the n„+1(X) = Hj(X„;Z) are finitely
generated.

II. Along with assumptions in I, assume now that for a field k, H;(X; k) = 0
for 0 < i < n. Then the conclusion is that:

(i) Hr(X;; k) = 0 for i > 0, i + j < n;
(ii) Hi(Xj;k) ~ H„(X;fc) for i > 0, i + j = n.

The proof is done by induction on j. The passage from Xj_j to T) = X7_j
follows from the inductive assumption that for II = ^(X^) = H^X^jZ),
II ® k = Hl(Xj-1;k) = 0, and since II is finitely generated by I, II is finite
with order prime to the characteristic of k if it is >0. Using the Leray-Cartan
spectral sequence of covering spaces and the values of H.(II; k) for a finite
commutative group (§ 1,D), the isomorphism Hi(T}; k) 2j H,(X/_1 ; k) follows for
each i ^ 0.

The passage from T) to Xj = fi(T}) then appeals to Serre's
generalization to spaces of paths of properties of the homology suspension (§2,D)
H;(Xj;Z)^H;+1(T,;Z).

Since 7r,(X) ® k = H1(Xi_1; k), the conclusion of II implies that

7r;(X)®fc = 0 for0< i < n,nn(X)®k~Hn{X;k). ( '
III. The next step comes closer to the loop spaces of spheres. The crux of

the matter is the determination of the cohomology algebra of the space fi(S„)
[chap. IV, §3, formulas (76) and (77)]. These formulas show that if n is odd
and K a field of characteristic 0, H'(Î1(S„); K) is isomorphic to an algebra of
polynomials K[e„_!], where en-1 has degree n — 1. To use the sequence (87)
with X0 = S„, n odd ^3, take Tj = X0, X! = fi(S„); since T2 = Xj, evaluate
H'(n(X!); K). This is settled by the following general lemma:

Let Y be an arcwise-connected and simply connected space such that
H'(Y; K) ~ K[u], where u e H2p(Y; K) (here K may have any characteristic).
Then H-(fi(Y); K) is an exterior algebra /\ (v) with v e H2p_1(n(Y); K).

The proof first shows that H'(£"2(Y); K) = 0 for 0 < i < 2p - 1; this is due
to Serre's version of the Eilenberg-MacLane suspension theorem (§2,D):
H''(Î1(Y); K) -» H'+1 (Y; K) is an isomorphism for i < 4p - 2. What remains to
be shown is that H'(Q(Y); K) = 0 for i ^ 2p. Serre considered the cohomology
spectral sequence of the fibration (P, Y,£2(Y)) of the space of paths in Y with
fixed origin; its E2 term is

E2^H-(Y;K)®H'(n(Y);K).
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The proof is by contradiction; starting from a homogeneous element w of
minimum degree ^ 2p among those which are # 0 in H'(Œ(Y); K), an
examination of the differentials drw shows that they are all 0, hence w would define an
element # 0 in E'^, and this is absurd since E'^ = 0, P being contractible.

IV. With the help of the lemma in III it is now possible to compute the
cohomology algebras H"(Xm;K) and H*(Tm;K) when X = S„ (with n odd) for
m ^ n - 1. Indeed, H'(X2;K) is an exterior algebra generated by a single
element of degree n — 2; in other words, H'(X2; K) ~ H'(S„_2; K). Formulas
(76) and (77) of chap. IV, § 3 are still applicable to a space having the same
homology (with coefficients in K) as a sphere (a "homology sphere"), since the
Wang sequence only uses the homology of the base space of the fibration. So
the argument can be repeated on X2 instead of X0; by induction, H'(Xm; K)
(with m < n — 1) is an algebra of polynomials, generated by a single element
of degree n — m if m is odd, and an exterior algebra generated by a single
element of degree n — m if m is even; this ends with H'(X„^. ; K), an exterior
algebra generated by a single element of degree 1. As n1(Xn-1) ~ nn(Sn) ~ Z,
the spectral sequence of covering spaces (§ 1,D) may be applied, and this shows
that H;(T„; K) = 0 for i > 0. Hence, II proves that tt;(T„) ®z K = 0 for all
i > 0. Since 7tj(T„) = ni+n^l(Sn), the conclusion is that

7r((S„) ® K = 0 fori> n.

But as 7t;(S„) is finitely generated by I, we finally arrive at the celebrated Serre
theorem: the homotopy groups w;(S„) for n odd and i > n are finite [429].

V. Using ^-theory, where <£ is the class of finitely generated commutative
groups, the proof of the preceding theorem can be simplified ([254], p. 317).
Consider the fibration (W„+1, S„, F, n) that "kills" the homotopy groups nq(Sn)
for q ^ n (§2,C). Since n^: nq(W„+i)-* nq(Sn) is bijective for q > n, it follows
from the homotopy exact sequence that nq(F) = 0 for q # n — 1, and ^„-^F) ~
nn(Sn) — Z; in other words, F is a K(Z, n — 1). On the other hand, since nm(S„)
is finitely generated, the absolute ^-isomorphism Hurewicz theorem shows
that Hm(W„+1) is also finitely generated for all m.

Since n — 1 is even, for any field K of characteristic 0, H'(F; K) is a
polynomial algebra K[u„_j] with u„_j e H"_1(F;K). Consider the Wang
cohomology sequence

► Hm(W„+1 ; K) -» Hm(F; K) -^ Hm "+1 (F; K) -» Hm+1(W„+1 ; K) -» • • •.
(91)

Since n is odd, 6 is a derivation (chap. IV, §3,A), and since H"(W„+1;K) =
H"~1(W„+1;K) = 0, by the absolute Hurewicz isomorphism theorem, 8 is
bijective for m = n - 1, hence 0(un_i) e H°(F;K) ~ K is not 0. On the other
hand, HP<"_1)(F; K) is a one-dimensonal K-vector space with basis u^l; since
8 is a derivation,

ÖK-i) = P"ri1Ö(u„-i)/0,

hence 8: Hp("-1)(F; K) -» H(p-1)("-1)(F; K) is bijective for all p. From the Wang
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sequence (91) and the fact that Hm(F; K) = 0 for all m that are not multiple of
n - 1 it follows that Hm(W„+1 ; K) = 0 for all m > 0. But since Hm(W„+1 ; K) is
finitely generated, and K is a field,

0 = Hm(W„+1 ; K) = Hom(Hm(W„+1 ; K), K) (Part 1, chap. IV, § 5D, formula (65))

and this is only possible if Hm(W„+1 ; K) is 0, hence Hm(W„+1;Z) is finite for
all m > 0; the absolute ^-isomorphism Hurewicz theorem then shows that
7rm(W„+1) is finite for all m, and the same is true for 7tm(S„).

A third short proof can be obtained as a special case of a general result
stated by H. Cartan and Serre in their second Note of 1952 [116]. It
concerns an arcwise-connected and simply connected space X; it is assumed that
H'(X; Q) is a tensor product of an exterior algebra generated by elements of
odd degree and a polynomial algebra generated by elements of even degree,
the number dn of generators of degree n being finite for every n; the conclusion
is that the rank of every group n„(X) is equal to d„. The short sketch of a proof
uses the fibration (W„,W„_1,K(7r„_1(X), n — 2)) in order to compute the
cohomology algebra H'(W„;Q), using the expression of the cohomology
H'(IL n;Q) of the Eilenberg-MacLane spaces.

B. Serre's Finiteness Theorem for Even-Dimensional Spheres

Study of the map /: S2m-i -> Sm defined by Hopf for even m (chap. II, § 1,C)
shows that the group n2m-i (Sm) contains an infinity of elements p[/] for p e Z;
this had to be taken into account in the structure of the group w2m_1(Sm). Serre
thought to use the Stiefel manifold Sm+12 (of dimension 2m — 1), which can
be identified with a sphere bundle having Sm as base space and Sm_i as fiber:
simply identify a pair (u,v) of orthogonal unit vectors in Rm+1 with the pair
consisting of a point u in Sm and a unit tangent vector v to Sm at the point u.
There is therefore a homotopy exact sequence

• '" -* rc.(Sm-i) -» ^i(Sm+lj2) -»■ nt(Sm)-»■ 7T;_1(Sm_1) -»■ 7r;-i(Sm+1-2)-»•••.

If i > m, the groups ni(Sm^1 ) and nt^ (Sm_i ) are finite by A, hence the group
7T;(Sm) will be finite if 7t,(Sm+12) is finite, and, more generally, the rank of nt(Sm)
will be equal to the rank of ^i(Sm+12).

If m = 2, Sm+1 2 is homeomorphic to P3(R), so w;(Sm+lj2) is finite for all
i "> 4. The information needed on the groups ni(Sm+u2) tor m ^ 4 can be
obtained by mimicking the procedure of section A, IV, replacing Sm (with m
odd) by Sm+12 (with m even) in the formation of the sequence of spaces (87).
The basic fact is that the homology of Sm+lj2 computed by Stiefel (Part 2,
chap. V, § 3,C) is "almost" the same as the homology of a sphere, namely,

H0(Sm+i,2) — Z, H2m_i(Sm+1 2) =. Z, Hm_1(Sm+12) ^ Z/2Z

and all other H;(Sm+lj2) = 0. The homotopy groups of Sm+1 2 are
finitely generated; for K a field of characteristic 0, H;(Sm+1 2;K) = 0 for
0 < i < 2m — 1, so that
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rc.(Sm+i,2)®K =0 fori<2m-l,
i(S,2m-H0™+ 1,2 ) ® K ~ K.

To obtain the other homotopy groups Serre observed that the Wang co­
homology sequence with coefficients in K is the same for Sm+1 -2 as for a sphere.
So the arguments of section A, IV can be repeated, and w;(Sm+1 2) ® K = 0
for i > 2m — 1.

The conclusion is the finiteness theorem for spheres of even dimension: for
n even, the groups 7rf(S„) are finite for i > n, with the exception of 7r2„-i(S„),
which is a direct sum of Z and a finite group.

C. Wedges of Spheres and Homotopy Operations

Serre's finiteness theorems give no information regarding the structure of the
homotopy groups nm{Sn) for m> n. Until 1950 the only groups n„+k(Sn) that
were known were the nn+1(Sn), isomorphic to Z for n = 2 (Hopfs theorem in
1930) and to Z/2Z for n "> 3 (Freudenthal's theorems) (chap. II, § 1 ,B and § 6,E).

After 1946 topologists started renewed attacks, using more refined tools
applied to the Freudenthal suspension, the Hopf invariant, and the Whitehead
product.

In these papers the wedges Sm v S„ of two spheres (Part 2, chap. V, § 2,D)
were used in several contexts. One of the reasons for their intervention is that
the pair consisting of S„ v Sm and an element a e 7tp(S„ v Sm) represents a
functor Ç: P7-> Set defined by the conditions that*

£(X) 6 Hom(7T„(X) X 7Tm(X), 7Tp(X)) (92)
and that for any continuous map v. X -* Y of pointed spaces the diagram

7T„(X) X 7Tm(X)

C(X)

-4 7T„(Y) X 7Tm(Y)

S(Y) (93)

7Tp(X) —-— 7Tp(Y)
v*

is commutative (Part 1, chap. IV, § 8,C).
Consider the natural injections

i„:xi-v(x,*), im: y !-»(*,}■)

of S„ and Sm into S„ v Sm, and their homotopy classes

.„e[S„,S„ v SJ = tt„(S„ v SJ, /me[Sm,S„ v Sm] = nm{S„ v SJ. (94)
Let

* A map between sets is here identified to its graph, hence is an object of the category
Set.
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a = £(S„ v Sm)(t„, im) e ttp(S„ v SJ. (95)
Consider two arbitrary elements for any pointed space X:

ßsnn{X), ysnm{X).

They are classes ß = [a], y = [h] of maps g: S„-> X, h: Sm -> X. From these
maps, define a map

v: S„ v Sm -» X

such that !)ojn = 3,Do jm = h. Now use the diagram (93) with X replaced by
S„ v Sm and Y by X;

Z(X){ß,y) = »„«(S. v Sm){in,im)) = »„(a)

for any v; this proves that (S„ v Sm, a) represents the functor £.
The same argument applies to a functor

X^^(X)eHom(7r„i(X) x tt„2(X) x ••• x n„k{X),np{X))

for an arbitrary integer k ^ 1. If k = 1, the functor is represented by (SB.,a)
with a e 7tp(S„.); for arbitrary k, by the wedge

W = S„, vS„- v-vS„„ (96)
and an element a e np(W).

The determination of the homotopy groups np(W) was therefore a problem
that was considered by several mathematicians between 1941 and 1955. After
partial results had been obtained the general problem was completely solved
by P. Hilton in 1955 [226], using iterated Whitehead products (chap. II, § 3,E)
of the elements ij (1 ^ ./' ^ k), which are the homotopy classes of the natural
injections

if- S„y ->• SBl v S„2 v • • v S„k for l^j^k.

As a preliminary to the statement and proof of Hilton's theorem it is
necessary to select a subset of the set of iterated products; the elements of that
subset are called basic products, an order is defined on the subset, and an
integer assigned to each basic product, called its weight. These objects are
defined inductively in the following way. The i„. have weight one and are
ordered by jnj < j„2 < • • • < i„k. When the basic products of weight < w have
been defined and ordered, the basic products of weight w are all products [a, b]
where a and b are basic products such that: (1) the weights u of a and v of b
must be such that u + v = w; (2) a < b; (3) if b itself has the form [c,d], then
c ^ a. Such restrictions are imposed in order to introduce only linearly
independent basic products, owing to the Jacobi identity [chap. II, §3,E),
formula (62)]. If k = 2,

[*!, j2] is the only basic product of weight 2;

['î.Di.'î]] an<ï [*2> [*i> »2]] are the basic products of weight 3;

[ii.[ii,Di.»2]]]. [»2>[»i,[»i>»2]]], [*2,[»2,[»i>»2]]] the basic
products of weight 4.
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Once the basic products of weight w have been enumerated they are
arbitrarily ordered among themselves and are all taken greater than the basic
products of weight < w.

Each basic product a belongs to a well-determined homotopy group
7rm(0)(W), where the dimension m(a) is determined inductively by m(in) = nj7
and for a = [b, c], where b and c are basic products, m{a) = m(b) + m(c) — 1.*

Each basic product a is now the homotopy class of a map

9a'- *m(0) —► W

and therefore defines a homomorphism

fa = (da)*- np(ßm(a)) ^ Wp(W)

which can be written

using the composition product in homotopy (chap. II, § 3,B). Finally, define
from these homomorphisms

/ = 0 /.: 0 MS»w) - VW) (97)a a
[this is meaningful because only a finite number of integers m(a) are ^p].
Hilton's theorem is that for every p, the map (97) is bijective.

The strategy of the proof is to use the spaces of loops in the following way:
1. The homology algebra H.(£2(W)) (for the Pontrjagin product, cf. Part 2,

chap. VI, § 2,B) is given by the theorem of Bott and Samelson mentioned in
chap. IV, § 3,C; it is the free associative algebra generated by the elements x1,
x2,..., xk corresponding by transgression in the space of paths in W (chap.
IV, § 3,B) to the fundamental classes of the spheres S„.,..., S„ .

2. For each weight w let Tw be the product of all spaces il(Sm(a)) for the basic
products a of weight ^ w. They form a direct system of spaces by inclusion;
let T be their direct limit. Since H.(£"2(Sm(<J))) Js a polynomial algebra generated
by a single element ya of degree m{a) — 1 (chap. IV, § 3,C), H.(T) has a basis
consisting of the products

yra\®yra\®--®yra's (98)
for all choices of j, of (fli)i<.<j> an<^ of the exponents r,- > 0. The map
9a'- Sm(0) -* W for each basic product a defines a map ua: y t—> ga o y of il(Sm(a))
into £2(W). Derive the product map uw: Tw -> £2(W) from the maps ua for
each weight w, and by going to the direct limit, a multiplicative map
u: T-> £2(W). Let za = u^yj, so that the image of the element (98) by u^
is the product K&~ •*.',- (")

3. The crucial point in the proof is to show that the elements (99) form a

* The number m(a) has been explicitly computed by Witt [520].
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basis of H.(il(W)). Use is made of a relation given by Samelson [405] between
the Whitehead product and the Pontrjagin product in the homology of the
H-space £2(W) (Part 2, chap. VI, § 2,C) which we write x.y: consider the natural
maps (for an arcwise-connected space Y)

V ttp+1 (Y) * np(Çl(Y)) \ Hp(il(Y)).

Then for ß e np+1 (Y), y e nq+1 (Y),

WIM) = (- l)p(TP()8).T,(y) - (- l)-\(y).tp(ß)). (100)
This shows that if the operation [x, y] in H.(£2(W)) is defined by

lx,y]=(-mx.y~{-iry.x) (101)
for x e Hp(Œ(W)) and y e H„(i"2(W)), then each za is obtained from the elements
x1,x2,--,xkby the same algebraic process as the basic product a is obtained
from iy, i2, -.., ik, the preceding product [_x,y~\ in H.(£2(W)) replacing the
Whitehead product. The argument Hilton used to prove that the products
(99) form a basis of H.(£2(W)) was patterned after similar arguments for the
free Lie algebras due to P. Hall and W. Magnus.

4. Once this had been done Hilton proved that u^ : H.(T) -> H.(£"2(W)) is
bijective. Next he considered the map u: T -* (fi(W)) of the universal covering
spaces lifted from u (chap. I, § 2,IX) and showed that ù^ : H.(T) -> H.(Q(W)~)
is also bijective. He first generalized Serre's result on the simplicity of H-spaces
(chap. II, § 3,F): if X is a H-space and Y is a covering space of X, then Y is also
a H-space and the quotient n^Xyn^Y) acts trivially on H.(Y). The proof of
the bijectivity of ü^ was patterned after an argument of Serre's thesis ([429],
p. 503).

Finally, the relative Hurewicz isomorphism theorem applied to the
mapping cylinder of u showed that the map / of formula (97) is bijective for all
p>h

Of course the Hilton theorem implies that all homotopy operations on k
variables are generated by composition of homotopy classes, Whitehead
products, and addition.

D. Freudenthal Suspension, Hopf Invariant,
and James Exact Sequence

We have seen [chap. II, § 3,D, formula (55)] that Freudenthal's homotopy
suspension can be derived from a natural injection of pointed spaces,
s:(Y,y0)-*(ÇîSY,yi).

Beginning in 1950 several mathematicians took up the study of the
homotopy suspension by new methods. The exact homotopy sequence of the space
Î1SY and its subspace s(Y) can be written

• • • -> 7rt+1 (ÎÎSY, s(Y)) -^ Kf(Y) ^ 7r,(ilSY) ^ nq(QSY, s(Y)) 4- „rl (Y) -> • • •
(102)

and since 7rs(ilSY) ~ nq+1 (SY), s^ is the homotopy suspension E.
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Many investigations, which we cannot describe in detail, were concerned with
the groups 7i,(ßSY,s(Y)) ([491], p. 10). linq(Y) = Oforq < n, nq{QSY, s(Y)) =
0 for q < 2n, and there is an explicit isomorphism

nn{Y)®nn{Y)^n2n(ÇlSY,s{Y)).

Hence the exact sequence (102) shows that for q < n, the suspension
7rs(Y) -> nq(QSY) is bijective; furthermore, if

W.nn{Y)®nn{Y)^n2n_1{Y)

is the Whitehead product map (oc,/.)i—> [a,j8], the sequence

7T„(Y) ® 7T„(Y) ^ *,.._, (Y) -> *,.,_, (OSY) - 0

is exact; this gives back Freudenthal's theorems [chap. II, § 6,E, formula (136)]
with a slight generalization.

For Y = S„, Î1S(S„) ~ il(S„+1 ) (Part 2, chap. V, § 2,C), and

7r,(n(S„+1),S„) = 0 forq<2n,

^2«("(S„+i),S„) = Z,

so that (102) and the fact that nq(Çl(S„+ï )) — nq+1 (S„+1 ) yield an exact sequence

and Freudenthal had shown that H (a) is the Hopf invariant (chap. II, § 1,C)
of a map / such that [/] = a.

Equivalent definitions of the Hopf invariant have been given by Steenrod
[448] and Serre [430]. Steenrod's definition of the "functional cup-product"
(Part 1, chap. IV, §4,B) had been inspired by the desire to find a process that
would generalize Hopfs construction of his invariant for a map S3 -> S2 (chap.
I, §2), translated from homology to cohomology. Consider a continuous
map /: S2„_i -> S„; for any element u e H"(S„), u—, u = 0, f*{u) = 0, and
/*(H2"_1(S„)) = 0. Steenrod's definition of the functional cup-product then
showed that u-^fu is defined for every element u e H"(S„) and is not a coset
but an element of H2"_1(S2„-1). Taking u — s„, write s„—^fsn = y(f)s2n-1
with y(f) e Z. Steenrod showed that y(f) is indeed the Hopf invariant H(/).

An equivalent definition follows from the way Steenrod linked his definition
of the functional cup-product to the mapping cylinder Zf (Part 2, chap. V,
§3,A). The relative cohomology algebra H*(Z/,S2„_1;Z) is a free Z-module
with a basis of two elements v e H"(Zy, S2„_! ; Z) and w e H2"(Z/,S2„_1; Z);
Steenrod showed that

v-^v = H(f)w. (103)
Starting from that definition, and using the Hurewicz definition

7r2„_j(S„) = 7r2„_2(il(S„)), it follows from the structure of H.(il(S„)) (chap.
IV, §3,C) that H2„_2(il(S„)) ~ Z, so the Hurewicz homomorphism
h'- w2„_2(il(S„)) -> H2„_2(il(S„)) can be considered a homomorphism into Z.
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Identifying [/] as an element of 7r2„_2(îl(S„)), Serre showed that h([/]) =
H(/), the Hopf invariant as defined by Steenrod. The proof is quite intricate;
it uses the fibration (P, Zy, il(Zy), p) of the space of paths with fixed origin in
Zy and the spectral sequence for the "relative" fibration corresponding to the
subspace P' = p_1 (S2„_! ) of P (§ 4).

Returning to the groups 7r,(il(S„+1),S„), I. James discovered a remarkable
isomorphism for all values of q when n is odd [265]:

7T,(il(S„+1),S„) ~ 7T,(n(S2„ + 1)) ~ 7lq + 1{S2n+1), (104)

giving in that case the infinite James exact sequence

► 7r,(S„) -► nq+1(Sn+1) -► tt,+1(S2„+1) -► 7r,_!(S„) -►•••. (105)

James also showed that if n is even, the sequence (105) remains exact if the
groups are replaced by their 2-components. James' proof used a construction
(independently found by Toda) of what he called a "reduced product," a
CW-complex obtained by successive attachment to S„ of one cell of each
dimension 2n, 3n,..., pn,... with the same homotopy type as £2(S„+1 ). Another
proof may be found in [424]; both use spectral sequences of suitable fibrations.

Earlier, G. Whitehead had shown [488] that for all n, the sequence (104) is
exact from the term ^3n-2(S„) on. His idea was to consider the natural homo­
morphism g: S„ -> S„ v S„ when the wedge S„ v S„ is considered to be the
space S„/S„_! obtained by collapsing the equator S„_! to a point (Part 2, chap.
V, § 2,A). Whitehead already knew at that time that for q ^ 3n — 2,

-%(S« V S«) - n<l(Sn) © "%(S„) © ^,(S2„-!)

(a special case of Hilton's theorem of section C); hence there is a natural
projection nq{S„ v S„) -> 7r,(S2„_1 ); when composed with g^ : nq(Sn) -> 7t„(S„ v S„),
it gives a homomorphism H: nq(S„) -> 7rs(S2„_1) that is the same as the homo­
morphism H in James' sequence (104). This was called the generalized Hopf
homomorphism by G. Whitehead.

Hilton generalized that idea, using his theorem to decompose np(Sn v S„)
into a direct sum

ttp(s„ v s.) =* ttp(s„) e ttp(s„) e w1,(s2ll_1) e 7rp(s3„_2) e • • • (io6)

for all values of p and n; he defined generalized Hopf homomorphisms H0, H!,
H2,..., as the composites of g^ with projections on the components of the
direct sum (106). This gives the general expression of a^(a) for the map g and
a e 7rp(S„):

0*(a) = »i ° a + t2 o a + [jj,j2] o H0(a) + [/i,[/!,/2]] ° Hj(a) + •••.

For any space X and two elements ß, y in n„(X), this implies the expression

()ß + y)oa = )ßoa + yoa+ [ft y] o H0(a) + \_ß,\_ß,yj] o H^a) + •••

giving a solution to the problem of "distributivity on the right" for the
composition of homotopy classes, which had puzzled topologists for some time.
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E. The Localization of Homotopy Groups

In the part of his thesis devoted to homotopy groups Serre introduced a new
idea, namely, to evaluate, not the groups 7tm(S„) themselves, but their p­
component for a prime number p. His approach was to compute nm(S„) ® K,
where K is now a field of characteristic p; he reiterated the method he had
followed when K has characteristic 0 (section A), namely, the computation of
the cohomology H'(Xm; K) for the spaces Xm of the sequence (87). He needed
to refine his former results on the cohomology algebra H'(Œ(S„)) [chap. IV,
§ 3,C, formula (77)], and more generally to obtain bases for the cohomology
spaces H',(X; K) when K has characteristic p and all that is known on X is that

for some values of i. The technique used as before is the fibration (P, X, £2(X))
of the space of paths in X with fixed origin. The main results are as follows:

If m "? 3 is odd, then

rc.(Sm) ® Fp = 0 for m < i < m + 2p - 3,

rc.(S J ® Fp ~ Fp for j = m + 2p - 3.

If m """s 2 is even, the p-components of nt(Sm) and 7ri_1(Sm_1) are isomorphic if
2m - 1 < i < 2m + 2p - 4.

In his paper on ^-theory [430] Serre improved on the results of his thesis,
also using the Freudenthal suspension and his own definition of the Hopf
invariant (section D). He showed that for odd n the iterated suspension

is a ^-isomorphism for m < p(n + 1) — 3 when <é is the class of finite
commutative groups of order not divisible by the prime p. From this he deduced
that if n is odd, p is prime, and m < n + 4p — 6, the p-components of 7tm(S„)
and 7rm_„+3(S3) are isomorphic.

He also gave a different proof for a result which follows from H. Cartan's
determination of the homology groups of the spaces K(II, ri) (§ 3): if n is odd
and p is prime and # 2, then the p-component of w,(S„) is 0 if i < n + 2p — 3
orn + 2p—3<i<n + 4p — 6 and equal to Z/pZ if i = n + 2p — 3.

Serre proved that for even n, nm(Sn) is ^-isomorphic to the direct sum
nm(S2n-1) ® nm-1(Sn-1), where <€ is the class of finite commutative 2-groups.
This implies that for p # 2 the p-components of nm{Sn) and 7rm_1(S„_1) are
isomorphic if 2n — 1 < m < 2n + 2p — 4. These results may be considered as
constituting the first step in what later became the localization theory of
spaces.

F. The Explicit Computation of the jrB+k(SB) for k > 0.

The first advance beyond k = 1 was independently made in 1950 by Pontrjagin
[382] and G.W. Whitehead [487]: the groups tt„+2(S„) are Z/2Z for all n $s 2.
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Then in 1951-1952 the group 7t6(S3) became the focus of active research
by Cartan-Serre [116], Blakers-Massey [51], G. Whitehead [488], and
Barratt-Paechter [45]; they first proved that the group has order 12, and then
that it contains an element of order 4, so that it must be the cyclic group
Z/12Z. Using the Steenrod squares (chap. VI, § 1), Serre then computed all
groups nn+k(S„) for 3 ^ k ^ 8 ([431], [432]); they also were computed for
k = 3 by Rokhlin [399].

After 1953 the structure of the groups nn+k(Sn) was systematically
investigated by Toda and his school [469]. Tables giving all these groups for k ^ 22
have been published; by 1983 they had been enlarged to k ^ 30. No regularity
is apparent in these tables, not even for the stable groups (chap. II, §6,E).

Among the tools used by Toda are the general results of Serre described
above in sections A, B and E and the James exact sequences (section D); the
2-components require much more work than the p-components for odd
primes p. Toda also used what are now called Toda brackets <a, ß, y> (or
secondary homotopy operations). In general, when there are three homotopy
classes a e [Y;Z], ß e [X; Y], and y e [W;X] satisfying the composition
relations a o ß = 0 and ß o y = 0, <a, ß, y > is a double coset in the group [SW; Z]
with respect to the subgroups a o [SW; Y] and [SX;Z] o Sy ([491], p. 17).
Special elements of the groups nm(Sn) also play a part, such as n2 e 7r3(S2) and
v4 e 7t7(S4) defined by the Hopf fibrations, and the suspensions n„ = E"~2n2;
for example, the element of order 4 in 7t6(S3) determined by Barratt-Paechter
is <^3,2j4,j74>.

Of course, the larger k is, the more intricate are the computations; for
k > 14, the Toda school also has to use Serre's methods bringing in the
Steenrod squares.

§ 6. The Computation of Homotopy Groups of Compact
Lie Groups

A. Serre's Method

Before 1950 the only general results on the homotopy groups 7T;(G) for a
compact, connected, semisimple Lie group G were:

1. 7t! (G) is commutative and finite, a result proved by H. Weyl in 1925, and
2. tt2(G) = 0, proved by E. Cartan in 1936 [103];

both of these results use the fact that the "singular" elements in a compact Lie
group (those belonging to more than one maximal torus) form a set having
codimension ^3 (see [103], p. 1314);
3.7r3(G) is isomorphic to Z if G is almost simple, which had been noted by

E. Cartan without proof.

Serre's approach [430] to the computation of the nt(G) was through a
refinement of the Hopf theorem (Part 2, chap. VI, § 2,A). The latter simply says
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that if k is a field of characteristic 0, the cohomology algebra H'(G; k) is
isomorphic to H'(XG; k), where

■^G = 'm, X ^m2 X • • • X amj,

/ being the rank of G and the m,- being odd integers (chap. IV, § 4). Serre defined
a continuous map f:G^XG (107)
such that /* : Hf(XG; k) -> H'(G; k) is bijective for every i ^ 0; this follows from
preliminary properties of the homology and homotopy of spheres S„ for n odd.

I. Using Hopfs construction of a continuous map (x, y) i—> x. y of S„ x S„
into S„ such that yt—>x.y has degree 1 for all x, and x\->x.y has degree 2 for
all y (chap. II, § 1,C), Serre first proved the existence of a map

u: (S„)m -» S„ for arbitrary m (108)
such that if jq is the natural injection of the q-th factor S„ in the product,
u ° jq- S„ -* S„ has degree 2 for each q. Composing with the diagonal
ô: S„ -* (Sn)k, he concluded that for any continuous map h: S„ -> S„ of degree
2/c and for any homotopy class a e 7rt.(S„) (with arbitrary i) such that ka. = 0,
then hja) = 0.

II. His next step was to define, for any finite simplicial complex K and any
element z e H"(K; Z), where n is odd, a continuous map

/:K->S..
such that if s„ is the fundamental cohomology class of S„, f*(sn) = N.z
for some integer N # 0. The proof is done by "climbing" along the skeletons
K, of K for i ^ n + 1. Identify H"(K) to H"(K„+1); it then follows from
obstruction theory (chap. II, §4,C, VI and X) that there exists a continuous
map /„: K„+1 -> S„ such that f„*{s„) = z. Let rt be the number of elements of
the finite group 7rf(S„) for i > n; by I, for a map gt: S„ -> S„ of degree 2r„
(a.)*(a) = 0 for all a e 7r;(S„). Define /f: K(+1 -» S„ by induction on i > n such
that fi|K,- = gt ° fi-x. This is possible because if a is an (i + l)-simplex,
the restriction of /j_j to its frontier defines an element aa e 7r;(S„), and
(ffi)*(«.) = 0. Since /,*(».)=/A (fff(s.)) = 2ri/i?1(s11)> for m = dimK,
/m*(s„) = N.z with

m-l
N = 2m-"-1 n ri­

i=n+l

This implies that if k is a field of characteristic 0, for each z e H"(K; /c) with
odd n, there exists a map/: K -> S„ and an element u e H"(S„; k) ~ k such that
/*(«) = z.

III. Hopfs theorem shows that for a field /c of characteristic 0, H'(G; k) is
an exterior algebra generated by / elements zx, z2,..., z, of odd degrees m,,
m2,..., m, (Part 2, chap. VI, § 2,A). By II, there is a map /> G -> Sm, and an
element ut e H""(S„.) for each i such that /;*(u;) = z;. Then the map (107)
constructed by Serre is simply the product
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SI-»/(s) = (/,(s),/2(s).---./l(s))­

IV. Serre used this result to obtain information on the homotopy groups
nt(G); since the universal covering group G is semisimple and compact,
H-(G; k) = H-(G; k) and tt;(G) = 7r,(G) for i ^ 2. From the Whitehead <€­
theorem (§ 4,C), for 'ë equal to the class of finite commutative groups it follows
that /„.: 7t;(G) -> ft;(XG) is a '^-isomorphism for all i > 0 (§4,C). In particular,
the rank of 7r,(G) is the number of integers j such that nij = q. If q is even, nq(G)
is finite; this is obvious for XG and follows for G by the previous theorem.

V. This raised a further question: for a prime p, is the p-component of 7r,(G)
isomorphic to the direct sum of the p-components of the groups nq(Sm.)? Serre
showed by a similar method that this is indeed the case when G has no

n
p-torsion and 2p — 1 ^ rrij for all j; in particular it is true if 2p — 1 ^ -- — 1,
where n is the dimension of G.

VI. These results are helpful when trying to reduce the computation of
the homotopy groups of compact Lie groups to the computation of the
homotopy groups of spheres. For the classical groups there are also the usual
diffeomorphisms

U(m+ l)/U(m)^S2m+1, (109)
SO(m+ l)/SO(m)^Sm, (110)

U(m+ l,H)/U(m,H)~S4m+3. (Ill)
Each one defines a fibration, hence a homotopy exact sequence; for example,
(109) gives the exact sequence

■■■-»7ti(S2lll+1)-»Ki_1(U(fn))-»Ki_1(U(fn+ l))^7r^(S2m+1)^---. (112)

This shows in particular that the map

7r^1(U(m))^7ri_1(U(m+ 1)) (113)
is bijective as soon as 2m "? /', and that the map

n2JV(m))^n2m{V{m+ 1))

is surjective. All isomorphic 7rj(U(m)) for 2m "? i + 1 are called the stable
homotopy groups of the unitary groups. They are written n^U) and may be
considered the homotopy groups of the direct limit U = lim U(n). Similar
remarks may be made for the groups SO(m) and U(m + 1, H).

B. Bott's Periodicity Theorems

Computations of the homotopy groups ^(G) of compact Lie groups G for
small values of i were carried out by several mathematicians in the early 1950s,
using the preceding methods and the value of homotopy groups of spheres.
From the tables thus obtained for the classical groups of low dimension (see
for instance [55], p. 433) it appeared that the unitary groups U(n) became very
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irregular for i ^ In, but exhibited a remarkable regularity for i < 2n: for
2 < i < In the groups were alternatively 0 and Z *; similar periodicities
appeared for the groups SO(n) and U(n, H) [also written Sp(n) in spite of
possible confusion with the symplectic group]. By very ingenious and entirely
new methods, Bott showed in 1956 these facts to be valid for all dimensions
([79], [80]).

Whereas all preceding results on spheres and Lie groups made no use of
the natural riemannian structures on these manifolds, Bott showed that these
structures can contribute much more information on the spaces of loops on
these manifolds. In particular, since 1953 he had become convinced that
Morse theory (Part 2, chap. VII, § 3) could yield more topological results than
those derived from the Morse inequalities (Part 2, chap. V, § 5).

We shall give brief descriptions of Bott's main contributions, going into
detail only for the unitary groups U(m); we will essentially follow Milnor's
exposition [345].

I. The first step is the interpretation of Morse's results on the critical points
of a Ca function / on a smooth manifold M in terms of CW-complexes, which
we gave in Part 2, chap. V, § 5, and which seems to have first been proposed
by E. Pitcher [363] and Thorn [461]. We only mentioned there the
consequences for homology, but in fact we may say more: if f has only non­
degenerate critical points in finite number, then M has the same homotopy type
as a finite CW-complex having one cell of dimension k for every critical point
of index k ([345], p. 22).

Using Morse's "reduction" theorem (Part 2, chap. VII, § 3), this
interpretation is transferred to the metric space Cïc(M;p, q) of piecewise smooth paths
w on M with extremities p, q and an energy E(a>) < c. Suppose M is complete
and that for some a < c,p and q are not conjugate along any smooth geodesic
of length ^y/a. Recall that there is a subset B c Çlc consisting of broken
geodesies, equipped with a structure of smooth manifold, on which the energy
function is Cx and the critical points are the smooth geodesies joining p and
q of length < y/c ; these critical points are nondegenerate since p and q are
not conjugate on any of these geodesies. Then the subset B° c B of broken
geodesies of energy ^ a is compact and is a deformation retract of £2C for c
close to a. By the finite-dimensional theorem, Qc has the homotopy type of a
finite CW complex with one cell of dimension k for every geodesic in £2C along
which the hessian E^ has index k.

II. The next step is to relate the usual space £2(M;p, q) of all continuous
paths from p to q in a riemannian manifold M to the space of piecewise smooth
paths from p to q, which we now write ^"(M; p, q) instead of £2(M; p, q), and
which is the union of all spaces £2C(M; p, q) for c > 0.

* In the tables reproduced by A. Borel the groups nl0 seemed to deviate from this
pattern; it was found by Borel and Hirzebruch [65] that this was due to an error in
Toda's computations.



500 3. Homotopy and its Relation to Homology

The natural injection j: ilco(M; p, q) -* £2(M; p, q) is continuous by definition
of the topologies; in fact, it is a homotopy equivalence. This can be
demonstrated by arguments similar to those used in the proof of Morse's reduction
theorem (Part 2, chap. VII, § 3): compare an arbitrary path in £2(M; p, q) to an
"inscribed polygon" whose sides are sufficiently small minimal geodesies
([345], p. 94).

On the other hand, the structure of ilco(M;p, q) is obtained by a passage to
the limit on the spaces ila(M;p, q) when a tends to +oo, by a simple device
using Whitehead's second theorem (chap. II §6,B) ([345], pp. 149 153). The
conclusion is that £2(M; p, q) has the homotopy type of a countable CW­
complex having one cell of dimension X for every geodesic from p to q of index
L The same is true of the loop space £2(M; p), since both £2(M; p, q) and £2(M; p)
are fibers of the fibration of the space of paths in M with fixed origin at p.

III. Having thus related homotopy theory of riemannian manifolds to
Morse theory, Bott's first observation was that for a symmetric space G/K,
where G is semisimple and K is a maximal compact subgroup, the index of a
geodesic has a very simple expression. From Lie theory it first follows that
the geodesies in G/K are the natural images by the projection G -> G/K of
the translates of one parameter groups in G. The differential equation of Jacobi
fields along a geodesic y [Part 2, chap. VII, § 3, formula (47)] has very special
properties here. In the same notation as loc.cit., the linear map

Kvm: WnR(V(t) a W).V(f)

in the tangent space Ty(()(M) is self-adjoint. Consider an orthonormal frame
(Uj(f),..., U„(f)) along y moving by parallel translation such that for t = 0, the
vectors U;(0) are eigenvectors of KY(0), so that

*v«»(U.(0)) = e.U^O) for 1 ^ i ^ n,

with real numbers e(. Then for every t,

Kvo)(U.(0) = «iU,(0 for 1 < i < n.

Hence, given a Jacobi field

J(f) = w1(f)U1(f) + --- + w„(f)U„(f),

the Jacobi equation is equivalent to a system of n second-order linear
differential equations with constant coefficients

d2w:
-~ + e;W; = 0 with w;(0) = 0 for 1 < j s£ n. (114)

If et ^ 0, Wj(t) only vanishes for t = 0, but if e; > 0, the zeros of W; are the
integral multiples knj^jet. This shows that the points of y that are conjugate
to p are the y(kn/y/ei) for et > 0 and the multiplicity of such a point y(t) is the
sum of the integers \iki for all pairs (k, i) such that knjyJei = t, nkJ being the
multiplicity of the eigenvalue et of KV(0).

IV. Now take as symmetric space a compact, simply connected, semisimple
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Lie group G, considered as a space of orbits for G x G. It can then be assumed
that the origin p of a geodesic is the neutral element e, so that the tangent
space Ty(0) is the Lie algebra g of G. Lie theory then shows that for V(0) = X
ing,

Kx(Y) = i[[X,Y],X]

or equivalently Kx = — iad(X) o ad(X). Now ad(X) is skew symmetric for the
natural riemannian metric on g, i.e.,

<ad(X). Y, Z> = - <Y, ad(X). Z>

for X, Y, Z in g. There is therefore an orthonormal basis in g, such that the
matrix of ad(X) for that basis has the form

\
0 a2

— a2 0
'••/

hence the matrix of Kx is diagonal

{* ' < )
and therefore the nonzero eigenvalues of Kx are all >0 and occur in pairs.
This implies Bott's first result [78]: the loop space £2(G) has the homotopy type
of a CW-complex with no odd-dimensional cells and only finitely many cells of
each even dimension. In particular, this was the first proof that H,(£2(G)) = 0
for odd j and that Hj-(f2(G)) is a free Z-module of finite rank for even j.

By similar methods Bott also gave a proof that for the centralizer U of a
torus in G, G/U has no torsion, without having to use the classification of
simple Lie groups, and he showed how to compute the Betti numbers of G/U
(chap. IV, §4, VII).

V. To approach homotopy problems, Bott introduced a new device, the
consideration of the subspace £2min(M; p, q) of f2°°(M; p, q) consisting of all minimal
geodesies joining p and q in a complete riemannian manifold M. For simplicity
we shall only give details on the arguments for the homotopy groups
7rj(SU(m)) of unitary groups as presented in [345]. Consider the space
£2min(SU(2m); I2m, —I2m) of minimal geodesies joining the unit matrix I2m to
its negative — I2m; the program is divided in two steps:

(a) proof that the injection £2min -> il00 determines isomorphisms for
homotopy groups in dimension ^2m, and

(b) computation of homotopy groups of ilmin(SU(2m);/2m, — I2m).
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VI. The first step is deduced from a more general statement concerning
ilmin(M; p, q) for a complete riemannian manifold M, using the following (in
appearance very restrictive) assumptions:

(i) ilmin(M; p, q) is a C00 manifold, and
(ii) the nonminimal geodesies joining p and q have an index ">A0.

The conclusion is that the relative homotopy groups

ni{^{M;p,q),Çîmin{M;p,q)) = 0 for 0 ^ i < V (115)

Hence, by the homotopy exact sequence

7r;(n-(M;p,a))~7r;(nmin(M;p,a)) for 0 < i < /0 - 2. (116)

The method is to perform a "reduction" using the construction in the proof
of Morse's "reduction theorem" (Part 2, chap. VII, § 3). For c large enough,
the space £2min(M; p, q) is contained in the open subspace B of £2C(M; p, q)
defined in I, and B is a deformation retract of £2c(M;p, q). As it is enough to
prove that

7r;(n'(M; p, q), nmin(M; p, q)) = 0 for i < l0

when c is large enough, we finally need to prove that

7r;(B,nmin(M;p,q)) = 0 for i < V (117)
Recall that the energy function E on B (loc.cit.) has as critical points the

smooth geodesies joining p and q; its minimum value d in B is the energy of
minimal geodesic arcs from p to q, so that E(B)=[d, c[ and E~1(d) =
£2min(M; p, q). It is convenient to introduce a diffeomorphism F of [d, c[ onto
[0, + oo [ and to consider the composite function /=FoE:B->R. The proof
is then reduced to establishing the following general property.

Let M be a smooth manifold and /: M -> R be a C"° function defined on M
such that for all c> 0, /_1([0,c]) = Mc is compact and M° = f~1(0) is a
smooth submanifold of M. Then if each critical point of / in M — M" has an
index >A0, 7r;(M,M°) = 0 for i < A0. (118)

For the proof, consider a continuous map
h: T->M with I = [0,1] (119)

such that h{Fr(Y)) c M°; it must be shown that for r < X0,h is homotopic
relative to Fr(Ir) to a continuous map/î".r->M°. (120)

Let U be a tubular neighborhood of M° in M such that M° is a strong
deformation retract of U (Part 1, chap. Ill, § 1); let

c= sup/(x)>0, 3(5= inf f{x) > 0. (121)xefc(lr) xeM-U
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The idea of the proof is to construct a Cx function

g: Mc+2*-»R

approximating / in the C2 topology in such a way that:

(i) |/(x) - g(x)\ <ô for x e MC+2S;
(ii) g has only nondegenerate critical points;
(iii) the index of every critical point of g that lies in the compact set

/-1([o,c+2o])is^0.
Consider an arbitrary neighborhood W of / in the space of C2 functions

on MC+2S for the C2 topology and cover the set /~'([<5, c + 2<5]) by finitely
many compact sets K;, each of which lies in the domain U; of a chart of M.
Replacing the functions by their expressions in local coordinates in each Uh
it must be proved that if two Cx functions /, g in a neighborhood V of a
compact set K in R" are such that the differences

32f d2g
dxjdxk ôxjôxk

are all <£ in K, if all critical points of/in K have an index ">A0, and if £ is
small enough, then all critical points of g in K also have an index "? A0. To
see this, let

m*) = i

and write

the n eigenvalues of the symmetric hessian (d2g/dxjdxk); finally, let mg(x) =
sup(kg(x) — eg°(x)). If all critical points of a have index "? A0, then mg(x) > 0
in K. Using the fact that the eigenvalues of a matrix depend continuously on
the matrix, it follows that if mf(x) > 0 in K and £ is small enough, then
mg(x) > 0 in K. This takes care of conditions (i) and (iii) when W is small
enough, and Morse showed that any neighborhood W off for the C2 topology
contains Cx functions with only nondegenerate critical points (Part 2, chap.
V, § 5), so (ii) is also satisfied.

Now h(Y) is contained in a~'(]—oo,c + <5]). But by I, a_1(]—oo,c + <5])
has the homotopy type of the space obtained by attaching cells of dimension
"?A0 to gr^1(] — oo,2(5]); since r < A0, h is homotopic, relative to M°, within
the space a_1(]—oo,c + <5]), to a map

h'-.Y^g-iQ-co,^)
coinciding with h in M°. Since g~1Q—co,2S^) c U and M° is a strong
deformation retract of U, h' is homotopic, relative to M°, to a map (120).

In passing, note that part of the Freudenthal suspension theorem (chap. II,
§ 6,E) is a consequence of the isomorphism (116) when M = S„+1 and p and q

\m - g(x) ox, dx.

8g_

dx.
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are antipodal points on S„+1. Then clearly £2min(M; p, q) is diffeomorphic to S„
and the nonminimal geodesies in £2(M;p, q) are paths along a great circle
winding at least one and a half times around S„+1 and so contain at least two
conjugate points to p in their interior, each of multiplicity n; so Â0 "? 2n, and
since 7r;(£2(S„+1)) ~ 7ri+1(S„+1), it is thus shown that 7r;(S„) is isomorphic to
ni+i{Sn+i) for i ^ 2n — 2.

VII. The next step in the study of the homotopy groups of unitary groups
is a study of the space £2min(SU(2m);/2m, — I2m). The Lie algebra su(2m)
consists of 2m x 2m complex skew hermitian matrices A (i.e., A + A* = 0) with
trace 0; the geodesies in SU(2m) issued from I2m are the one parameter
subgroups of SU(2m)

y:fh->exp(f/l)= £ tkAk/k\

for A e su(2m); the length from t = 0 to f = 1 is (Tr(AA*))112. We are only
considering the geodesies for which eA = — I2m. By a suitable choice of basis
in su(2m)

lia1

ia-, 0

0
ia-,

where the a, are real and a1 + a2 + • • • + a2m = 0. Then eA = —I2m if and
only if

ktin
k-,in 0

0
(122)

k2min]

where k1 "? k2 > • • • "? k2m are odd rational integers such that Yj=i ^ = ®­
The length of the corresponding geodesic from I2m to — I2m is
(fej + k\ + ■ ■ ■ + k2m)112, hence it is minimal if and only if k} = ± 1 for all j and
YJ=i kj = 0. This means that A has only two distinct eigenvalues + in, and
that the corresponding eigenspaces E+ and E_ in C2m are orthogonal for the
hermitian scalar product Yj=i zï^'h an<* both have complex dimension m.
Clearly A is thus entirely determined by the subspace E+, which can be an
arbitrary subspace of complex dimension m. The conclusion is that the space
Qmin(SU(2m); I2m, —l2m) ,s homeomorphic to the complex grassmannian
G2m.m(C). Thus condition (i) of VI is verified.

To check condition (ii) of VI for a nonminimal geodesic of SU(2m) joining
I2m and — I2m, use the results of III. For the matrix A given by (122), one must
compute the eigenvalues of the self-adjoint operator

KA:Y^-\IA, IA, y]] in su(2m).

If yis the matrix (yn), a short computation gives
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V"4 /lsü.ls,sS2m

This shows that a basis of su(2m) consisting of eigenvectors of KA is the set of
matrices:

(i) the matrices Ejt with >>,■, = 1, ytj = — 1 for j < I, yrs = 0 for other pairs of
indices; the corresponding eigenvalues are

e;. = ^-fc|)2; (123)
(ii) the matrices iEjh with the same eigenvalues;
(iii) the matrices forming a basis of the subspace of diagonal matrices

belonging to su(2m), with eigenvalues all 0.

The nonzero eigenvalues of KA are thus the numbers (123), for kj > kt, each
counted twice. This corresponds on the geodesic y:tt-*etA to the values
rn/^/ej, for integers r "> 1, i.e.,2 4 2r
Their number in the open interval ]0,1[ is ?(kj — kt) — 1, hence (by III) they
give a contribution (kj — kt) — 2 to the index of 7, and finally

A= I (kj-k,-2). (124)
If 7 is nonminimal, there are two possibilities.

a) At least m + 1 of the kj are ^ — 1. Then at least one kj must be ^3 since
YjTi kj = 0, and therefore

m + l

X> Ç (3-(-l)-2) = 2(m+l).
b) There are exactly m of the kj ^ — 1 and exactly m that are "> 1, but not all are

+ 1. Therefore, one of the kj is "> 3 and another is ^ — 3; hencem — 1 m —1
A^ £ (3-(-l)-2)+ £ (i_(_3)_2) + (3-(-3)-2)1 1

= 4(m - 4) + 4 = Am "> 2(m + 1).

This ends the proof of condition (ii) in VI for k0 = 2m. Returning to IV, we
therefore have isomorphisms

*.(G2m,m(C)) ~ 7ri(Q(SU(2m);/2m, -I2J)

~7r;(Q(SU(2m);/2J

=, 7ri+1(SU(2m)) (125)
for i ^ 2m.



506 3. Homotopy and its Relation to Homology

VIII. Now recall that the complex Stiefel manifolds are homogeneous
spaces

S2m,m(C) = U(2m)/U(m)

and therefore give rise to a homotopy exact sequence

•••-^(S2m,m(C))^7ri_1(U(m))^7r(_1(U(2m))^7r>_1(S2m,m(C))---. (126)

We saw in section A that the map

7ii_,(U(m))->7ii_1(U(2m)) (127)
is bijective for i ^ 2m and surjective for i' — 2m + 1 [formula (112)]. Hence
*.(S2m,m(C)) = 0 for i s= 2m.

On the other hand, G2m>m(C) = U(2m)/(U(m) x U(m)), and the fibration
(S2m,m(C),G2m,m(C),U(m)) (chap. Ill, §2,F) gives another homotopy exact
sequence

■ ■ • - ^(S2m,m(Q) - 7r.(G2m.m(Q) ^ Tr.^fUfm)) - 7ri_1(S2m,m(Q) - ■ • ■ (128)

hence the isomorphism

ni(G2m^(C))~ni_1(V(m)) for i s= 2m. (129)
Finally the obvious fibration (U(n), SU(.i), S, ) similarly gives the isomorphism

7Tj(SU(n)) ~ 7Tj(U(n)) for all j ^ 2. (130)
Putting together (125), (127), (129), and (130), we get Bott 's periodicity theorem
for unitary groups

Tr^fUfm)) ^ ni+1(V(m)) for 1 s= i s= 2m. (131)
Introducing the direct limit U of the U(m) (chap. Ill, § 2,F) this can also be

written as an isomorphism

7r^,(U)~7ri+1(U) for alliai. (132)
SinceU(l) = S1,7i0(U(l)) = Oand7i,(U(l))s Z; so the groups tt,(U) are 0 for
i even, Z for i odd.

By a more thorough study of Q(U(m)) Bott also proved that for all m

7T2m(U(m)) ^ Z/m!Z. (133)
IX. With the partial collaboration of Samelson, Bott was able to use Morse

theory to investigate the structure of Qmin(M;p, q), not only for M = SU(2m),
but for symmetric spaces M = G/K, where G is any compact connected Lie
group ([77], [83]). An extension of the finite-dimensional Morse theory (Part
2, chap. V, § 5) is necessary: to consider the case in which the critical points of
a Cx function / on a smooth manifold M are not isolated, but form a set that
is a union of disjoint connected smooth submanifolds of M. Such a submanifold
V is called, nondegenerate for / if for each point x e V, the subspace of the
tangent space TX(M) in which the hessian Hx(f) vanishes is exactly the tangent
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space TX(V) (when V is reduced to a point, the point is nondegenerate); the
index of Hx(f) is then constant in V and is called the index of V. Bott showed
in [79] that it is possible to extend to that situation the description of M as
a relative CW-complex. The usual "reduction" process then transfers that
description to the space Q"(M; p, q) when the set of geodesies of M that belong
to that space is a union of nondegegerate critical submanifolds for the energy.

To apply that description to Q(G/K; p, q), consider the neutral component
Kp, of the subgroup of G leaving invariant p and q, and for any geodesic y
joining p and q, the subgroup Ky of Kp, leaving invariant each point of y.
Clearly Kp, acts on the space Q"(M;p, q), and the orbits of that action are
diffeomorphic to Kp,/Ky for the geodesies y e Q"(M; p, q); in [84] Bott and
Samelson showed that the multiplicity of q as conjugate point of p on y is
dim(Kp,/K}), hence the orbits of Kpq in Q"(M;p, q) are nondegenerate critical
submanifolds for the energy. When y is minimal, Bott also proved that KM/Ky
is a symmetric space by returning to the original definition of these spaces by
E. Cartan: he observed that the midpoint r = y(|) of y is then not conjugate
to p on y, and that this implies Kpr = Ky; from that fact and the existence in
M of an isometric involution leaving invariant r and reversing the geodesies
through r, he constructed an involution of Kpq whose fixed point set contains
Ky; this defines KM/Ky as a symmetric space, hence also the connected
components of Qmin(M; p, q).

Bott then went on to explicitly determine the critical submanifolds and their
index for symmetric spaces G/K of a classical group G, using the method he
had already introduced in [77] and [78]. Let g = f © m be the Cartan
decomposition of the Lie algebra g of G, m being an orthogonal supplement of I.
It is convenient to identify G/K with the subspace M = exp(m) of G; the
geodesies of M with origin e are then the one parameter subgroups of G
contained in M. Let hm be a maximal commutative Lie algebra contained in
m, h => hm be a Cartan subalgebra of g and 2 be a system of positive roots of
G relative to h. The index of the geodesic y: 11—>e'x for X e m, 0 ^ t ^ 1 is
computed by considering only the case in which X e hm, all other geodesies
being conjugate to one of those. Consider then the hyperplanes in hm of
equation

<a, Y> = n for a e X and n e Z; (134)

the index of y is the sum of the numbers of solutions of each equation

f<a,X> = n

in the interval 0 ^ t ^ 1 for all a e 2 and neZ [more intuitively, it is the
number of intersections of the segment joining 0 and X in hm with the hyper­
planes (134), each counted with its multiplicity]. In this way Bott obtained
expressions for the loop spaces of seven symmetric spaces (the notation
Sue,,... means that the space is obtained by attaching to S cells of dimension
>k):
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QU(2n)~U(2n)/(U(n) x U(n))u e2n+2...

QSO(2n) ~SO(2n)/U(n)ue2„_2...

QSp(n)~Sp(n)/U(n)ue2„+2...

Q(Sp(n)/U(n)) ~U(n)/0(n)ue„+1... (135)
Q(U(2n)/0(2n)) ~0(2n)/(0(n) x 0(n))ue„+1...

Q(SO(4n)/U(2n)) ~U(2n)/Sp(n) u e4„_2...

Q(U(4n)/Sp(2n))~Sp(2n)/(Sp(n) x Sp(n))u eln+1...

Since for all these symmetric spaces depending on an integer n, the homotopy
groups are stable (for each dimension i, the homotopy group n^ is the same
for all n large enough), the preceding relations yield the isomorphisms

Kt+1(U)ÄKik(U/(UxU)X 7T,+1(0)^7r,(0/U), etc. (136)

Finally, the theory of classifying spaces gives isomorphisms

**(U) ^ 7tt+1(U/(U x U)), nk(0) =* nk+1(0/(0 x O)),

7rk(Sp)~7rk+1(Sp/(Sp x Sp))

Putting all these together, Bott established three periodicities:

' nk(V) *izk+2{V),

* nk(0)^nk+ASp), (137)
^nk(Sp)~nk+A(0),

so that the periods for U, O, and Sp are
forUand/c = 0, 1, 0, Z,

for O and 0 s= k s= 7, Z/2Z, Z/2Z, 0, Z, 0, 0, 0, Z,

for Sp and 0 s= k s= 7, 0, 0, 0, Z, Z/2Z, Z/2Z, 0, Z.

In addition,

'nk(Sp/U)~nk+1(Sp),

nk(V/0)^nk+2(Sp),
(138)

7T,(0/U)^ + 1(0),

^,(U/Sp)~7T, + 2(0).

From these results and the homotopy exact sequence of fibrations, results on
the classifying spaces can be derived at once; for instance, the spaces QU and
Z x Bv are weakly homotopically equivalent.

C. Later Developments

Bott's periodicity theorems immediately attracted the attention of topologists.
We shall see in chap. VII how these theorems became a central ingredient in
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K-theory; they led to proofs within that theory that did not use Morse theory
at all. Earlier, such a proof had been devised by J.C. Moore and published
with full details in H. Cartan's Seminar [426] (see also [468]). He worked
directly with the limit groups U, O and Sp; they are defined as groups of linear
transformations in a prehilbert space V with denumerable basis. U is the group
U(V) consisting of the linear transformations leaving invariant the scalar
product (x|y) in a complex prehilbert space V, and which are equal to the
identity in a subspace (depending on the transformation) of finite codimension.
The classifying space Bv (chap. Ill, §2,G) is identified with the quotient
U(V)/(U(V + ) x U(V~)), where V = V+ ® V" is a decomposition of V into a
direct sum of two orthogonal subspaces of infinite dimension. Moore's idea
was to define explicitly (by very elementary constructions) a map

/: U(V)/(U(V + ) x U(V-)) - Q(SU(V)) (139)
giving an isomorphism /„. in homology. He had seven such maps in all,
corresponding to the seven maps (135); from the isomorphisms in homology he
deduced the isomorphisms (137) and (138) by an application of Whitehead's
first theorem (chap. II, § 5,F).



Chapter VI

Cohomology Operations

§ 1. The Steenrod Squares

A. Mappings of Spheres and Cup-Products

Recall that by 1937 for a finite euclidean simplicial complex K of dimension n,
the set [K; S„] of homotopy classes of continuous maps K -► S„ had been
completely determined; in the language of cohomology, the Hopf-Hurewicz
Whitney theorem (chap. II, §4,C) gives a natural bijection

[K;S„]^H"(K;7r„(S„))=,H"(K;Z)

in which the element f*(sn) is associated to the class [/] of a map/, where s„
is the cohomology fundamental class (Part 2, chap. I, §3,A) of S„.

Hopfs determination of 7r3(S2) (chap. II, § l,B)followed by the proof of the
isomorphism

nn+i(Sn) — Z/2Z for n ^ 3

by Freudenthal and Pontrjagin independently (chap. II, §6,E) naturally led
to the problem of computing [K;S„] when dimK = n + 1. In a 1938 Note
[376] Pontrjagin announced without proof a solution ofthat problem, which
later was found to be erroneous for n > 3. In 1941 he published a long paper
[378] giving a complete proof of his theorem for n = 2.

The problem is to determine when two continuous maps / g of K into
S2 are homotopic. A first necessary condition is that the restrictions of /
and g to the 2-skeleton K2 be homotopic; by the Hopf-Hurewicz-Whitney
theorem this means f*{s2) = g*(s2)- Assuming this, there is a continuous map
g': K -► S2 homotopic to g and coinciding with / on K2. Then the deviation

y3(/,a')eH3(K;7r3(S2))

is defined (chap. II, §4,C); Pontrjagin found that the condition for/ and g'
(hence / and g) to be homotopic is the existence of a cohomology 1-class
e1 eH^KJsuch that

y3(/a') = 2e1^/*(s2). (1)

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-4 20,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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Steenrod undertook to generalize Pontrjagin's theorem to [K;S„] for
dim K = n + 1 and arbitrary n ^ 3. He found that he could express the
condition for / and g to be homotopic by the introduction of new products(u, v)t—*u^tV (2)
generalizing the cup-product u-^v = u-^0v at the level of cochains and
mapping C(K) x C(K) into CP+,?~''(K) and that these products could give
new maps in cohomology for p = q [447].

We shall postpone to § 4,A details of the methods used by Pontrjagin and
Steenrod in the determination of [K; S„] and shall first describe the
cohomology operations discovered by Steenrod.

B. The Construction of the Steenrod Squares

Steenrod's initial idea was to generalize the Cech-Whitney definition of the
cup-product for a finite simplicial complex K [Part 1, chap. IV, §4, formula
(22)]. Recall that in the latter a (p + q)-simplex £ is decomposed into the join
of a p-simplex a and a q-simplex t having as their intersection a common
vertex; the cup product u^ v for a p-cochain u and a q-cochain v has the
value <u^ v, O = <u, cr><t;, t> in the group of coefficients G. Steenrod
considered a (p + q — i)-simplex £ to be the join of a p-simplex a and a ^-simplex
t having i + 1 common vertices. This may be done in many ways; Steenrod
took, as the value of the .-product u^tv of a p-cochain u and a q-cochain v,

<u~,i>,C> = L± <«,*><«>.*>. (3)
where the sum extends over some of the splittings of £, with suitable signs. To
control the unwieldy formulas Steenrod had to impose a total order on the
vertices of the simplicial complex K and to define, for that order, the splittings
which have to be considered on the right-hand side of (3) and the signs affected
to them. The resulting calculations are quite complicated, and it must be
shown that the cohomology operations they define are in fact independent of
the order chosen on the vertices of K.

In his 1949-1950 Seminar [423] H. Cartan was able to give a simpler
presentation of Steenrod's construction. He worked with the Alexander­
Spanier cohomology of a space X (Part 1, chap. IV, § 3). When that
cohomology has its coefficients in a ring A, the cup product / -^ g of functions
fe C(X; A) and g e C(X; A) is the function f^ge C+<J(X; A) defined by

(/— 9)(x0,...,xp+q) = f(x0,...,xp)g(xp,...,xp+q) (4)
for all points (x0,..., xp+q) e Xp+q+1, the product being taken in the ring A. To
define the Steenrod squares, it is convenient to consider/and g as taking their
values in an additive commutative group G, and f^- g in another additive
commutative group G'; there is also a bilinear map

(a,/?)!-»<? (a,/?)

of G x G into G' that is symmetric, i.e., (p{ß, a) = <p(a, ß). Then, instead of (4),
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for fe Cm(X; G) and g e C"(X; G), a function p0(/, g) e Cm+"(X; G') (instead of
y~— gr) is defined by

) = <P(f(x

In order to get manageable formulas, Cartan introduced the map Ta:
Cm(X; G) -► C"'-1(X; G) for every a e X defined by

(Ta/)(x0, • • •, xm-i) = f{a, x0,xu..., xm_j) (6)
(with Ta/ = 0 if m = 0), and a similar map Cm(X;G')^ C"-1(X;G'). He
observed that to define a function fe Cm(X; G) it is enough to define a function
Ta/e Cm_1(X; G) for euery a e X.

Starting from p0, Cartan defined p,(/,a) e Cm+"-'(X; G') for /e Cm(X; G),
g e C"(X; G) and i > 1 by a double induction on i and m: if m = 0, define
Pt(f>9) — 0 for all i > 1; if m ^ 1 and n ^ 0 is arbitrary, define

Tapi(/,0) = Pi(Ta/,«) + (-ir("+1,Pi-i(Ta«,Ta/) for any a eX. (7)

From this it easily follows that if i > inf(m, n), then pt(f, g) = 0.
The fundamental formula of the theory is the expression of the coboundary

S(P,(f,g)) = p.(#,0) + (-i)mPi(f,èg) + (-ir+"+iPi-Af,g)
+ (-ir+"+m"Pi-i(gJ)- (8)

For i = 0, this is formula (23) of Part 1, chap. IV, §4. The proof of (8) is again
by double induction on i and m. For i "> 2 and m = 0, both sides of (8) are 0.
The case i = 1, m — 0 has to be considered separately, namely, the formula

PiW,g) + (-l)"+1Po(/,0) + (-l)"Po(0,/) = 0- (9)
This follows from (7) applied for i— 1, m = 0, giving

Tap1(5/,ff) = (-l)"+1Po(Taff,Ta/),
hence

Pl(<5/,âf)(Xo,*l, •■,*..) = <?(/(*..) - /(Xo), 0(^0,^1, •■•,^n))

and that is (9) by definition. For i > 1 use the relation

<5Ta/ + Taôf = /

and the computation is routine.
The next step is to pass from the functions in C'(X; G) and C'(X; G') to the

Alexander-Spanier cochains, elements of the quotients

C(X; G) = C(X; G)/C0(X; G), C(X; G') = C(X; G')/C0(X; G'):

even if only one of the two functions/, a is 0 in a neighborhood of the diagonal,
it follows from formula (7) that p^f g) has the same property. Thus are defined
the ï-products j'^; g of Alexander-Spanier cochains in C'(X; G) with values in
C'(X;G'); all preceding formulas are still valid when pjifg) is replaced by
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To get down to cohomology classes / and g must be cocycles; making
ôf = ôg = 0 in the formula for S{f^ig) deduced from (8) gives

ô(u^i+1 v) — ( — l)'+1u-_-ii; + ( — l)mt;^;M for cocycles u, v (10)

and if v = u,

o(U^iU) = ((-i)i + (-ir)(U^I._lU). (ii)
So, in general, u^i+1v will not be a cocycle; however, u^{u is a cocycle for
m — i odd and u e Zm(X; G). Suppose u = ôw, where w e Cm_1(X; G); then

<5w--';<5w = <5(w--'i_1 w + w^,-(5w)-|-(( — l)' + (— l)m)(w^i-2w + w^-';-1 Sw).
(12)

Again if m — i is odd and ueZm(X;G) is a coboundary, u^^tu is also a
coboundary. If both u and v are m-cocycles (and m — £ is odd)

«wjU+D^ji. is a coboundary,

and in particular 2m^;m is a coboundary.
Replacing u by u — t; for two m-cocycles u, v, it follows that if u — v is a

coboundary, so is m^;m — v^iv. Finally, for two m-cocycles u, v

(u + v)^i(u + v) — (u^iii + v^tv) is a coboundary.

These results prove that if m — £ is odd, the cohomology class of u^^u for
an m-cocycle u only depends on the cohomology class z of u; if Sq( z is the class
of u^-'jU, the map

zt—»Sq;z

is a homomorphism

Sq,:H™(X;G)-»H2,,,-i(X;G'). (13)
Now, if m — £ is even and u e Zm(X;G), m^,m is not a cocycle in C2m~'(X;G')
in general, but its class in C2m~'(X;G72G') is again a cocycle by (11); for
any m-cochain weCm(X;G), the class of ôw^iôw is a coboundary in
C2m"'(X; G'/2G') by (12); this defines a homomorphism

Hm(X; G) -► H2m-'(X; G'/2G').

Of course, reducing mod .2G' in (13) also gives a homomorphism. It is
convenient to write that homomorphism

Sq' = Sqm_,­

so that for all integers m ^ 0, a group homomorphism is defined:

Sq': Hm(X; G) -» Hm+;(X; G'/2G'). (14)
This definition is functorial: for any continuous map /: X -► Y,

Sqiof*=f*oSqi. (15)
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Steenrod also showed that if A is a closed subspace of X, it is possible to
define similarly the i-products u^iV for relative cocycles in Z'(X, A;G) and
to obtain homomorphisms

Sq1': Hm(X, A; G) -► Hm+'(X, A; G'/2G').

The diagram of cohomology exact sequences

•••-► Hm(X;G) -► Hm(A;G) -^ Hm+1(X,A;G) -►•••
Sq' Sq' Sq'

• • • -► Hm+'(X; G'/2G') -► Hm+;(A; G'/2G') -► Hm+i+1 (X, A; G'/2G') -► • • •
(16)

is commutative.
An important consequence of the commutativity of the diagram (16) is that

for the unreduced suspension §X of a space X, there is a commutative diagram

Hm(X;G)

Sq'

Hm+i(X;G'/2G')

Hm+1(SX;G)

Sq'

Hm+1+.(5X;G72G')

(17)

The homomorphisms Sq' are known as the Steenrod squares; they are
mostly used when G and G' are the additive group {0,1} of the field F2, so
that G'/2G' = G' = G and (p is the multiplication in F2. Then

Sq'(x) = 0 ifdimx<i, (18)
Sq'(x) = x — x if dim x = i, (19)Sq°(x) = x; (20)

SqJ(x) coincides with the cohomology Bockstein operator corresponding to
the exact sequence

0 -► Z/2Z -► Z/4Z —^ Z/2Z -► 0

(Part 1, chap. IV, § 5,D) which gives the exact cohomology sequence

•••^H"(X,A;Z/4Z)^H"(X,A;F2)S^H"+1(X,A;F2)^H"+1(X,A;Z/4Z)^---.

In 1950 [107] H. Cartan showed how i-products could be defined in the
cohomology of the product X x Y of two spaces, starting from the product
Pi(f,g) for X and the similar product for Y, written qi(f',g') to avoid
confusion; then he defined

rdf ® f, 9 ® 9') = ( - l)m'" I P2j(f, 9) ® 92i-j(f, 9')
j

+ (_ i)«'(-+-')+«'+-' X p2j+i(f,g) ® <ii-2i-x(g',r)
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for fe Cm(X; G), g e C"(X; G), /' e Cm'(Y; G), g' e C"'(Y; G). From this
construction he deduced two formulas that had been conjectured by Wu Wen­
Tsiin and Thorn for the Steenrod squares

Sq,(xxy)= X Sqj(x) x Sqt(y) (21)
j+k = i

for a class x e H'(X; F2) and a class y e H'(Y; F2);

Sq;(xW)= I Sq,(x)~ Sq^y) (22)
j+k=i

for two classes x, y in H'(X; F2).

§ 2. The Steenrod Reduced Powers

A. New Definition of the Steenrod Squares

In 1950 [449] Steenrod announced at the International Congress the
discovery of new cohomology operations, now called the Steenrod reduced
powers. He had been led to their definition by a new definition of the
operations Sq' which he connected with the group algebra of the cyclic group
Z/2Z, inspired by the method by which P. Smith and M. Richardson had
defined "special" cohomology groups related to that group algebra (Part 2,
chap. VI,§3,C).

Steenrod's point of departure was Lefschetz's definition of the cup-product
a^-b of cohomology classes in H'(X; A) [Part l,chap. IV, §5,H, formula (81)]
as the pullback of the cross-product a x b in H'(X x X; A) by the diagonal
map

ôx: X -► X x X.

In singular homology Sx defines a chain transformation <5X: S.(X) -► S.(X x X)
by <5x(s) = ox ° s f°r anv singular simplex s in S.(X); so a cup-product u^ v
of two singular cochains in S'(X; G) may be defined by the formula

<u^ v,s} = <u x Mx(s)> (23)
for any singular simplex s. If ôp+q is the diagonal map

Ap+, -► Ap+, x Ap+,

then for a singular (p + q)-simplex s, one has a commutative diagram

Ap+q x Ap+, sxs ■> X x X

Ap+q —^ X
and therefore



516 3. Homotopy and its Relation to Homology

<u x v,Sx(s)y = <u x v,(s x s)oôp+qy

for a p-cochain u and a q-cochain t; in S'(X; G).
Now consider Ap+q to be a simplicial complex consisting of all its facets,

and consider also a simplicial subdivision of the product Ap+q x Ap+q. For
these simplicial complexes ôp+q is not a simplicial map, but C.(Ap+î) is free
and acyclic, and C.(Ap+î x Ap+q) is acyclic, so, by the Hopf construction
(Part 1, chap. IV, § 5,F) there is a chain transformation

d0: C.(Ap+,) -► C.(Ap+, x Ap+q)

coinciding with Sp+q on the vertices of Ap+q; since Ap+q is contractible, the map
st—><u ® v,D0s> may be used in the computation of the cup-product in
cohomology by Lefschetz's method instead of the map

si—*(ji x v,(s x s)o(5x>,

where D0 is the chain transformation S.(X) -► S.(X) ® S.(X) defined by

sh-vD0s = C((s x s)od0) (24)
and £: S.(X x X) -► S.(X) ® S.(X) is the Eilenberg-Zilber chain equivalence
(Part l.chap. IV,§5,G).

Now let T be the automorphism s ® 1i—> t ® s of S.(X) ® S.(X) exchanging
the factors; then TD0 is different from D0, but both chain transformations are
chain homotopic, since they coincide in dimension 0; in other words, there is
a chain homotopy

D1:S.(X)^S.(X)®S.(X) (25)
such that

TD0 -00 = 00! +D!b (Part 1, chap. IV, §5,F). (26)

Steenrod had the idea of applying T to both sides of (26); since T2 is the identity
and T commutes with the boundary operator b,

b/j + /îb = 0 for^ = TD1+D1. (27)
Next he observed that the proof given by Hopf for the existence of chain

transformations (Part 1, chap. IV, §5,F) can be generalized in the following
way: let C. = (C,) and C. — {C'q) be two augmented chain complexes such
that C. is free and C. is acyclic. For any i > 0, call a graded homomorphism
h = (hq): C. -► C. a homomorphism of degree i if each hq is a homomorphism

hq:Cq->C'q+i.

Thus a chain transformation is a particular homomorphism of degree 0 and
a chain homotopy a particular homomorphism of degree 1. A homomorphism
of degree 0 is a chain transformation if and only if it commutes with the
boundary operator b. Steenrod considered for a graded homomorphism h of
degree i > 1 the similar condition
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bh + (-l)i+1hb = 0

and by the same argument as Hopf (induction on the degree) he showed that
there is a homomorphism k of degree i + 1 such that

h = bk + (-l)i+2kb.

Returning to the analysis of the chain transformation D0 defined by (24),
Steenrod applied this general lemma to h — TD! + D1; and from (27) he
deduced the existence of a homomorphism D2 of degree 2 such that

bD2 -D2b = TD1 +Ü!.

The process can obviously be continued, and yields an infinite sequence (D;)
of graded homomorphisms

D,: S.(X) -» S.(X) ® S.(X)

of degree i such that

bB2i.1 + D2wb = TD2I_2 - D2i_2,

bD2l - D2ib = TD2(., + Ü2,., (28)
Steenrod then checked that the i-products of cochains that he had defined
earlier satisfy the relations

<M-^;i;,s> = <u x v,DjS>

for any singular simplex

s: Ap+,_; -► X,

any p-cochain u and any q-cochain v.

B. The Steenrod Reduced Powers: First Definition

Steenrod observed that the relations (28) could be expressed in a way
introducing the group algebra Z[II] of the cyclic group II = Z/2Z of order 2: if
II = {1, y}, where y2 = 1, II acts on C. = S.(X) ® S.(X) by y. z = Tz; hence C.
is a Z[II]-module, and relations (28) can be written

bD2i_1+D2i_1b = (y-l).D2i_2
for i ^ 1.

bD2l-D2ib = (y+l).D2i_1

This led him [451] to the following generalization. Consider an augmented
chain complex C, and a finite group II acting on C. in such a way that for
every g eH, z\->a.zisa chain transformation. Then the group algebra Z[II]
acts on C. by

a. z = X Xj(0,. z)
i

for any a = Y,i xi9i w*tn xi e Z and gt e II, and each map z \—»■ a. z is a chain
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transformation. Let s(a) = £;x;eZ. Steenrod called a sequence (a,-),-^ of
elements of Z[II] a O-sequence if it satisfies the relations

s(aj) = 0, ai+1a; = 0 in Z[IT| for i ^ l. (29)
If II = Z/2Z, then a2j-_j = y — 1 and a2j- = y + 1 form a O-sequence.

Suppose C. is free and acyclic; using as before the Hopf method, Steenrod
proved the existence of graded homomorphisms D,: C. -► C. of degree i ^ 0
satisfying

bD1- + (-l),'+1Dib = ai.D1-_1 for alliai. (30)
The usual functorial argument shows that this construction can be extended

simply by assuming the identity functor in C. to be free, and to have acyclic
models (Part 1, chap. IV, §5,G).

Steenrod then generalized the Sq; in the following way. Let C. = S.(X) be
the singular complex of a space X, C. = (S.(X))®P its p-th tensor power for
any integer p ^ 2. The symmetric group Sp operates on C. by a slight
modification of the usual action; the transposition x = (i i + 1) acts on a tensor
product s1 ® s2 ® ■ ■ ■ ® sp by

T.(Sj ® S2®'"® Sp) = {-If'^'^S, ®-"®S,-_1 ®Si+1 ®S,® •••® Sp,
(31)

if q; is the dimension of the singular simplex s;. Clearly, z\—*x.z is a chain
transformation, and C. is free and has acyclic models (Part 1, chap. IV, § 5,G);
hence, for any subgroup II of Sp and any O-sequence (a,),^ ^ for II there exists
a sequence (D,),-^ of graded homomorphisms satisfying (30), By duality, II
acts on the cochain complex C" = Hom(C., Z) in a natural way, and by
transposition, D; gives a graded homomorphism of C", of degree — i, which
Steenrod also writes D;. Then, for an r-cocycle w of C", the coboundary of
D;W is given by

d(DI.w) = (-l)i+1D;_1(a>..w). (32)
Now consider two commutative groups G, G' and a p-linear map

q>: Gp ^ G'; for cocycles ux, u2, ■■■, up in 7ß{X;G), define a "cross-product"
MjM2 ■ ■ ■ up as the pg-cocycle in ZP<,(XP;G') such that

<U1U2---Up,Z1 X Z2 X ■■■ X Zp> = ^«Mj.Zj >,..., <Mp,Zp» (33)

for any cycles zs e Zq(X; G). For a q-cocycle u e Zq(X; G), up is defined by (33)
with all uj equal to u; Steenrod obtained the formulas (for a O-sequence (a;) in
Z[G'])

nrr, P^ J(-l)i+1s(a.-)D*-i«p if? is even,
d(Di"") = ((_1)1.+lt(a;)D_iuP if?isodd> 04)

where s(a) is defined above, and t: Z[G'] -► Z is the homomorphism such that
t(g) = 1 if g is an even permutation, t(g) = — 1 if g is an odd permutation.

Put n = n(q, a,) equal to s(a;) if q is even and to t(a;) if q is odd and let
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G'n = G'/nG'; (35)
then

Di«p6Z«-,'(X;Gi).

Steenrod showed that for a given O-sequence (a,), the cohomology class of D;up
in H'",~i(X; G'„) only depends on the class of u in H'fX; G), not on the choice
of the sequence (D;) of graded homomorphisms satisfying (30). Thus to each
element v of H«(X; G) he attached an element of HM"''(X; G^) that he wrote
3P?v and called the i-fold reduction of the p-th power of v; he observed that the
map

SPf: H"(X; G) -► HM_,'(X; G;)

is not necessarily a homomorphism, although it is functorial in X. He singled
out explicitly the O-sequence (inspired by the work of Smith and Richardson)

<*2j-i = r - i, «2j= i + y + y2 + --- + yp~1

in the symmetric group ®p, where y is the circular permutation (1 2 ... p)
and said that 3Pf is a cyclic reduced power.

C. The Steenrod Reduced Powers: Second Definition

A little later [453] Steenrod realized he could give another, simpler definition
for the reduced powers. Inspired by the method J. Adem used for the proof
of the relations between the Sq' (see §3,C), he connected this new
definition with the cohomology of groups and the definition of the slant product
(Part 1, chap. IV, §5,H), which he introduced for that purpose.

The definition of the slant product given loc. cit. has to be slightly modified
to account for the presence of operators acting on chain complexes. There are
two cell complexes (finite or infinite) W and X, and a finite group II operates
freely on W, in such a way that its action on the chain complex C.(W) is a
chain transformation. The group II is made to operate on W x X by the
condition

a. (e x a) = (a. e) x a

for all cells eeW and a e X. The group II also operates on two additive
commutative groups A and G; it then operates on the tensor product A ® G
by a. (a ® g) = (a. a) ® (a. a); if R(A ® G) is the subgroup of A ® G generated
by the elements a. s — s for all s e A ® G and all a e II, then one defines
A ®n G as the quotient

(A ® G)/R(A ® G).

An equivariant r-cochain of W x X with values in G is a cochain v such that

<t;, a.c> = oc.(v, c>

for any a e II and any chain c e Cr(W x X).
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Write a® e instead of ae for a e A and any cell e of W and A ® C.(W)
instead of C.(W; A), the chain complex of chains of W with coefficients in A;
the group II operates on A ® C.(W) by

a. {a ® e) = (a. a) ® (a. e).

The chains in A ® C.(W) that are sums of chains of the form- a. c — c for
c e A ® C.(W) and a e II generate a chain subcomplex R(A ® C.(W)) of
A®C.(W); the quotient chain complex is written A®nC.(W). Eilenberg
showed [173] that if W is acyclic (and II operates freely on W), the homology
of A ®n C.(W) only depends on the group A and the action of II on A, and is in
fact the homology H.(II; A) of the group II with coefficients in A (chap. V, § 1 ,D).

Now, for an i-chain z in A ® C,(W), an (r — i)-cell a in X, and an equivariant
r-cochain »ofW xX,by definition of the slant product

<(u/(a.z — z)),0"> = a.<u,z x cr> — <u,z x cr>

so that the (r — i)-cochain v/{a .z — z) of X has its value in the subgroup
R(A ® G). This also means that, for all elements a e II the image of v/{a. z) in
Hom(C.(X), A ®n G) is the same; in other words, that cochain only depends
on the image z of z in A ®nC.(W); it is written again as the slant product vjz
of the equivariant r-cochain t; of W x X and the i-chain z in A ®nC;(W), and
it is an element of Cr~'(X; A ®n G). If t; is a cocycle (resp. a coboundary) and
z is a cycle (resp. a boundary), vjz is a cocycle (resp. a coboundary).

To define the reduced powers, the preceding notions are specialized. Let B
be any commutative group and u e C(X; B) be a q-cochain; for any integer
n ^ 1, an n-th power u" is defined by

{un,a1 x a2 x ■•■ x o-„> = (u,^) ® <u,<r2> ® ••• ® {u,a„y (36)

for arbitrary q-cells a1,..,, an in X; it is an element of

C""(X";B®"),

i.e., an nq-cochain taking its values in the n-th tensor power B®" of the group
B.

The group II is specialized to a subgroup of the symmetric group ®„ and
made to operate on the chain complex (C.(X))®" by defining for every
transposition (i i + 1) its action on a tensor product by formula (31). We also have
to define the action of II on B®" in such a way that u" becomes an equivariant
cochain; for that purpose, it is enough to take

a. (fcj ® b2 ® ■ ■ ■ ® bn) = £è<.-.(1) ® ■ ■ ■ ® £<.-.(„), (37)

where £ = 1 if q is even and £ is the signature of the permutation a when q is
odd.

Now take an acyclic cell complex W on which II operates freely and let II
operate (also freely) on W x X by

a. (e x a) = (a. e) x a.

As the chain complex (C.(X))®" [equivalent to C.(X") by the Eilenberg-Zilber
theorem] has acyclic models, it is possible to define a chain transformation
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<p;. C.(W x X) -► C.(X")

by the usual induction on the dimension, with a slight change: once <p.(e x a)
has been defined for all cells a of a given dimension and one cell e of an
equivalence class {a. e \ a e II} then <p.(a. (e x a)) is taken equal to a. (<p.(e x a))
for all a e II; this ensures that

(p. o a = a o <p_ for all a e II. (38)
By duality, (p. gives a cochain transformation

<?•: C(X"; B®") -> C(W x X; B®"),

and for each equivariant q-cochain u e C(X";B®"), (p'un is an equivariant
nq-cochain in Cq(W x X; B®") (recall the action of II on B®" depends on the
parity of q).

The slant product for an i-chain z e A ®nQ(W),

ç)-«7z6C"«-i(X;GIli,),

is therefore defined, G„ q being the group A ®n B®" for the actions of II on A
and B®". Steenrod states that when u is a cocycle and z is a cycle, the
cohomology class of (p'u"/z only depends on the cohomology class of u in
H'fXjB) and the homology class of z in H;(II;A). He thus defined a homo­
morphism

H«(X;B)-H"«-i(X;GIli,)
which he wrote

v\—*v"/c

for any c e H,(II; A); he said that v"/c is the power v" "reduced by c." That
definition is functorial: for any continuous map/: X -► Y,f*{vn/c) = (f*v)"jc.

If n c n' are two subgroups of ®„, then

un/^c = A'(«n/c)

where A: II -► II' is the natural injection, and A' is the homomorphism of the
cohomology groups deduced from the natural map G„ q -> G'n q, where G'n q
is the group A ®n, B®" for the actions of IT on A and on B®".

Steenrod connected this new definition with the former one by starting from
a O-sequence (a,),^ 1 in the algebra Z[II]. If z0 is a vertex in W, it is possible to
construct a sequence (z;),->o. where z; is an i-chain in C,-(W) and bz; = a,. Zj_j,
(p'unjzi is then identified with the D,u" of the first definition.

As he had done for the first definition, Steenrod specialized the group II to
the subgroup of ®„ generated by the neutral element and the circular
permutation y = (1 2 ... n); the coefficient groups A and B are the same both
equal to Z or to Z/nZ. Let a„ and a" be the Bockstein homomorphisms in
homology and in cohomology corresponding to the exact sequence

0 -► Z -^-* Z -► Z/nZ -► 0 (39)
He then showed that for c e H,(II;Z/nZ) and v e H«(X;Z),
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v"/anc = (-l);+V(i/yc) (40)
(for any subgroup II c S„). As in the first definition, he introduced the two
elements of Z[II]

T = y-1, a = 1 + y + y2 + ■■• + y""1

and used them to determine the complex W with which he computed the
homology of the cyclic group II: for each dimension i ^ 0, W has n cells ak. e{
(0 < k < n — 1) and the boundary operator is given by

be2.+i = i-e2h be2i+2 =<r.e2i+l.

This defines W as a free and acyclic complex, and easily yields the homology
(for trivial actions of II on Z or Z/nZ)

H2i+1(n;Z) = Z/nZ, H2l+2(ri;Z) = 0 for i > 0;

Hj(n ; Z/nZ) = Z/nZ for j ^ 0.

In the cases H, is not 0, it is generated by the class êj of the cycle, image
of 1 ® es in Z ®n C.(W) [resp. (Z/nZ) ®n C.(W)]. The Bockstein operator
corresponding to (39) is such that

v-nêu = ë2i-i inH2i_!(n;Z)

and anê2i is mapped onto e2i-1 by the map

H2/_1(n;Z)-H2i_1(n;Z/nZ).

Formula (40) then shows that the cyclic reduced powers v"/c, for c in
H2l_j(ri;Z) or in H^jfl^Z/nZ) are entirely determined by the reduced
powers v"/e2i for ê2i e H2,-(ri; Z/nZ).

Steenrod then showed that the Cartan formulas for the Sq' [§ 1,B, formulas
(21) and (22)] extend to the cyclic reduced powers for the cohomology with
coefficients in Z/nZ when n is any odd number: for the cross product

(u x v)"/e2i = ± £ (u"/è2j) x (u"/ê2i.2J) (41)
j=o

where the sign depends on the degrees of the classes u and v. He realized that
the formula is in fact a consequence of properties of the homology of the group
II with coefficients in Z/nZ, namely, the expressions

i

Ô*ë2i = Z ê2j x ê2i-2j,
j=o

2i+l

<5*ê2;+1 = £ ês x ê2i+1_s,
5=0

for the diagonal map <5: II -► II x II.
Already in that paper [453] the special case in which n is an odd prime p

appears; its importance will be made clearer later (§ 3). Acting upon a
suggestion of Serre (who had done the same thing for the Steenrod squares), Steenrod
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revised the notation he had introduced in [451] for the cyclic reduced powers
of odd prime order p. He wrote

Pkp: H«(X; Fp) -► H«+2k(',-1)(X; Fp) (for all q $s 0) (42)

the cyclic reduced powers

■p_l\V*-«

lp" ­
p> =
p> =

p>~

u"

u,

«>)

'p if dim u

= I P>^
h=0

^ ^-»v,

= 2/c,

P^t;.

u*i-iy\\-2~)1) «p/«(,-2*„p-„
with r = (p — l)(/c + jq(q — 1)). Its main properties are quite similar to the
properties (18), (19), (20) of the squares:

P*u = 0 ifdimu<2/c, (43)
(44)

(45)

(46)

Furthermore, the reduced powers can be defined in the same way for relative
cohomology H'(X, A;Fp), and there is a commutative diagram of exact
sequences similar to (17).

§ 3. Cohomology Operations

A. Cohomology Operations and Eilenberg-Mac Lane Spaces

Historically, the definition of homotopy operations (chap. V, § 5,C) had been
preceded by a similar definition, this time for cohomology, introduced by Serre
[431] and independently by Eilenberg and Mac Lane ([185], IV). The data,
here, are two integers q > 0, n > 0 and two commutative groups A, B; we
write as CW the category of CW-complexes. A cohomology operation of type
(q, n, A, B) can be considered a functor

defined by the conditions that for any CW-complex X

£(X)eMap(H*(X;A),H"(X;B))

(set of all maps, not necessarily homomorphisms), and that for any continuous
map v: Y -► X of CW-complexes, the diagram

H"(X;A) "* > H"(Y;A)i(X) ç(Y) (47)
H"(X;B) > H"(Y;B)

commutes.
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Serre's result was that there is an element

aeH"(K(A,q);B) (48)
such that the pair (K(A, q), a) represents the functor £ (Part 1, chap. IV, § 8,C).
To define a, recall that there is a natural bijection of H'fKfA, q); A) onto the
set of homotopy classes [K(A, q);K(A, q)] [chap. V, § 1,D, formula (43)]. Let
i be the class in H'fKfA, q); A) corresponding by that bijection to the
homotopy class of the identity. For any CW-complex X, and any class x e Hq(X; A),
there is a continuous map gx: X -► K(A, q), determined up to homotopy, such
that

g*{i) = x (loc. cit.). (49)
The class a is then defined by

a = £(K(A,q))(.)eH"(K(A,q);B) = H"(A,q;B). (50)
Indeed, the commutative diagram (47) applied to gx gives

H*(K(A,q);A) —^- H«(X;A)

ï(K(A,<z)) i(X) = C (51)
H"(K(A,q);B) -— H"(X;B)

a*

hence C(x) = g*(0L) (52)
by (49). Conversely, any a e H"(K(A,q); B) defines a cohomology operation of
type (q, n, A, B) by formula (52).

Examples

I. For 0 < n < q, necessarily C = 0, since H"(A, q; B) = 0 by Hurewicz's
theorem.

II. For n = q, H"(A,q;B) = Hom(A,B) (chap. V, § 1,D); to each homo­
morphism (p: A -> B is thus associated the cohomology operation

C,,,:H«(X;A)-H«(X;B)

(Part 1, chap. IV, §3).
III. For n = q + 1, suppose L is an extension of B by A, so that we have

an exact sequence of commutative groups

0->B->L->A->0.

Then, in the corresponding cohomology exact sequence

• • • -» H«(X; L) -> H«(X; A) t H"+1(X; B) -» H*+1 (X; L) -» • • •

the Bockstein homomorphism ß (Part 1, chap. IV, §5,D) is a cohomology
operation.
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A cohomology operation defined by an element a e H"(A, q;B) does not
necessarily define homomorphisms H'fX; A)-» H"(X;B); conditions for this
"additivity" of a cohomological operation were given by Eilenberg and Mac
Lane; the simplest sufficient condition is that a be in the image of the Eilenberg
-Mac Lane cohomology suspension H"+1(A, q + l;B)-> H"(A,q;B)(chap. V,
§2,D) (cf. [424], pp. 14-10).

B. The Cohomology Operations of Type (q, n, II, F2)

Serre was particularly interested in the case B = F2, so he had to determine
the cohomology algebra H'(II, q;F2) for commutative groups II (he only
considered finitely generated groups). His starting point was the observation
made in his thesis ([429], p. 457) that for a fibration (X, B,F) the Steenrod
squares commute with the transgression (cf. chap. IV, § 3,B)

r.H"(F;F2)^H"+1(B;F2)

as a consequence of the commutativity of the diagram (16) in § 1,B). He then
used A, Borel's algebraic theorem on the determination of H'(B;F2) when
H'(F;F2) is an algebra of polynomials over F2 in a family of transgressive
elements zt of degrees nt (chap. IV, §4); recall that H'(B;F2) is then the
polynomial algebra

F2[(r,-)]

where the f; = r(z;) are the images of the transgressive elements zr
For any finite sequence I = (ij, i2,..., ir) of integers ih > 1, Serre wrote

Sq1 = Sq'1 o Sq''2 o • • • o Sq'v (53)
the composite which sends each H"(X;F2) into

H"+i'+,'2+-+,'-(X;F2),

From § 1,B, formula (19), it follows that for x e H"(X; F2) (for the cup-product
multiplication)

Sq°(x) = x2, Sq2o(x2) = x4,..., Sq^'^x2'"') = x2"

so that

x2" = SqL(a'r) (54)
with

L(a, r) = (2r_ 1 a, 2r~2a,..., 2a, a). (55)
Apply this to H'(B;F2) under the above assumption on F; the zf constitute
a simple system of generators of H'(F;F2) (chap. IV, §4,IV); since Sq" o % =
t o Sq",

H-(B;F2) = F2[(SqL<".'r»(t;))] (56)
where i is any integer "> 1, r any integer ^0.
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The first application is to the determination of the cohomology
H'(Z/2Z, q;F2); by definition of the Eilenberg-Mac Lane spaces, for 0 < i < q,
H''(Z/2Z, q; F2) = 0 and H«(Z/2Z, q; F2) s. Z/2Z; write uq the unique element
#0 of H«(Z/2Z, q; F2). Serre determined the other groups H"(Z/2Z, q; F2) by
induction on q. He started from the fact that K(Z/2Z, 1) is the infinite­
dimensional real projection space P^fR) (chap. II, §6,F), and therefore
H'(Z/2Z, 1;F2) = F2[uj]. The Borel theorem recalled above determines
H-(Z/2Z,q;F2) from H-(Z/2Z,q - 1;F2) by consideration of the space of
paths of K(Z/2Z,q) with fixed origin, that has K(Z/2Z, q — 1) as a fiber. To
express the result, call a sequence of integers ^ 1

I =(i1,i2,...,ir)

admissible if it satisfies the inequalities

ij > 2i2, i2 > 2i3,..., ir-i > 2<r'

call i1 + i2 + • • • + ir the degree of I and

e(\) = (ij - 2i2) + (i2 - 2i3) + • • • + (ir-i - 2Q + K

= 2i1 - (i1 + i2 + ■ ■ ■ + i,)

its excess. Then

H-(Z/2Z,q;F2) = F2[(Sq1u,)] (57)
where I takes as values all admissible sequences of excess e(l) < q.

Next Serre applied a similar method to H'(Z, q; F2), this time starting from
the fact that K(Z, 1) has the homotopy type of S! and K(Z, 2) is the infinite­
dimensional complex projective space P^fC) (chap. II, §6,F). The result was
that

H-(Z,q;F2) = F2[(Sq\)] (58)
where vq is the unique element /0 of H'fZ,q;F2) = Z/2Z, and I is any
admissible sequence such that e(I) < q and ir> 1.

For odd m, H"(Z/mZ, q; F2) = 0 for all n > 0, since (Z/mZ) ® F2 = 0 (chap.
V, § 5,A). On the other hand, K(II, q) x K(II', q) has the homotopy type of
K(n©IT, q), so the determination of H'(II, q;F2) is complete when it is
known also for the groups II = Z/2'IZ with h ^ 2. The method is again the
same, but here the initial algebra H'(Z/2'IZ, 1; F2) is a little different from the
case h = 1: it is the tensor product

F2[u2]®A("i)
where v2 is the image of the canonical generator of H1(Z/2'IZ, 1; Z/2'IZ) by the
Bockstein operator

dK1: H^Z^Z, 1;Z/2ÄZ)- H2(Z/2ÄZ, 1;F2)

coming from the exact sequence

0 -> F2 -> Z/2Ä+1Z -^ Z/2ÄZ -» 0.
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Similarly, if

ÖM: H«(Z/2*Z,«;Z/2*Z)^ H«+1(Z/2*Z,«;F2)

is again the Bockstein operator coming from the same exact sequence and vq
is the image by dhq of the canonical generator H',(Z/2'IZ,q;Z/2hZ), then the
element written Sqq{uq) is defined as equal to Sq'fu,,) if ir > 1 and to

Sq'-Sq^-Sq^-'ft;,)
if ir = 1. Then the final result is that

H-(Z/2ÄZ,q;F2) = F2[(Sq}1(U,))]

for admissible sequences I such that e(\) < q.
The Eilenberg-Mac Lane theorem on homology suspension (chap. V,§ 2,D)

shows that for q>n all cohomology groups Hn+q{Tl,q,G) are naturally
isomorphic; they are called the stable cohomology groups and the cohomo­
logical operations corresponding to their elements (§ 3,A) the stable
cohomology operations. Write A"J(II, G) for the stable group H"+,(n,q;G) for q =
n + 1. For G = F2 and II equal to one of the groups Z, Z/2'IZ, the stable
groups are explicitly determined by the preceding computations.

C. The Relations between the Steenrod Squares

In the special case II = Z/2Z the determination of the cohomology algebra
H'(Z/2Z, q; F2) implies, by § 3,A above, the determination of all cohomology
operations of type (q, n; F2, F2): every such operation

C:H*(X;F2)^H"(X;F2)

for fixed q and arbitrary n, can be written
x^C(x) = P(Sq-'(x),...,Sq-"M) (59)

where Pisa polynomial (for the cup-product) and the Sq1',..., Sq1" correspond
to admissible sequences of excess <q. There are corresponding results for the
cases II = Z and II = Z/2'IZ with h^-2. Since only admissible sequences I
occur in (59), there must be formulas expressing the Sq1 for nonadmissible
sequences by linear combinations of the Sq1 for admissible sequences. It is
enough to express in that way all products Sq"Sq'' for a < 2b; the precise
formula giving that product was conjectured by Wu Wen Tsiin and first
proved in 1952 by Adem [6]:

SqflSq6= X (b~C~l)sq"+b-cSqc. (60)
OägCäga/2 \ a — AC J

Adem's proof was an adaptation of Steenrod's definition of the reduced
powers by means of the operators D; (§2,A); he considered a group II of
order 4 contained in a dihedral subgroup of S4 of order 8; this gave him a
cohomology operation

tiy.mx)^H^(X)
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depending on an additional parameter k, and he proved it by direct
computation to be a sum of iterated squares £SqrSqs. He also showed that [£] =
[.--it], and this gave him relation (60).

Serre described ([431], p, 224) a simpler method suggested by Wu Wen
Tsün's study of the Stiefel-Whitney characteristic classes (§ 4,B); he considered
the real projective space of infinite dimension P^fR) = Y (chap. II, §6,F),
which has the homotopy type of K(Z/2Z, 1), and the product X = Yq; then
H'(X;F2)is a polynomial algebra F2\_y1,y2,---,yq\, where the ysare
independent elements of H^X'Fj). It is easy to compute the Sq' in H'(X;F2) ([463],
p. 38). From their expression is deduced the following lemma; if wq is the
product y1 ^ y2-^■•■-^ yq, the Sq'fw,) for all admissible sequences 1 =
(ij, i2, ■ ■ ■, ik) with ij + i2 + • • • + ik ^ q are linearly independent, Therefore, if
C is a sum of operators Sq1 with arbitrary sequences I of degree <q, the
relation C(wq) = 0 implies C = 0.

The general result from which the Adem relations can be deduced is then:
if C is any sum of operators Sq1 such that for every space T the relation
C(y) = 0 for an element y e H'(T; F2) implies C(x •^ y) = 0 for every element
xeH'(T; F2), then C = 0. This is proved by taking T = Y* for q large enough,
because C(l) = 0, hence C{y1 -^ y2 ^ • • • -^ _y,) = 0 for every i, and therefore
in particular C(wq) = 0, which implies C = 0 by the preceding lemma. Adem's
formula is then proved by induction on a + b and repeated application of
Cartan's formula (22).

D. The Relations between the Steenrod Reduced Powers,
and the Steenrod Algebra

In 1953 J. Adem [7] generalized to the Steenrod reduced powers the method
he had used to prove (60) for the Steenrod squares by considering the homology
of the Sylow subgroups of the symmetric group Sp2. In 1954 H. Cartan [112]
obtained the Adem relations by another method, extending the one used by
Serre and Thom for the Sq", described in section C above.

For an odd prime p, Cartan used the notation

/?P:H«(X;FP)-»H«+1(X;FP)

for the Bockstein operator corresponding to the exact sequence

0 -» Z/pZ -» Z/p2 Z —^ Z/pZ -» 0

already considered by Steenrod (§ 2,C). For any integer a > 0 such that

a = 0 (mod.2p — 2) or a = 1 (mod.2p — 2) (61)
he wrote

Stp: H«(X; Fp) -» H«+a(X; Fp) (62)
for the operator defined as follows: if a = 2k(p — 1), then Stp = Pp; if a =
2k(p — 1) + 1, Stp = ßpoPp (one writes ß and St" when no confusion can
arise).
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For each sequence I = (al,a2,...,ar) where the a,- are congruent to 0 or 1
mod. (2p — 2), let

St^ = St0p'oSt0/o---oSt0/; (63)
the degree of the sequence I is the number d = al + a2 + """ + ar; Stp is a
graded endomorphism of degree d of the vector space H'(X;Fp).

The Steenrod algebra srfp is introduced in the following way. Consider the
vector space E over Fp with denumerable basis (T-)^. The tensor algebra
^"(E) over Fp has as basis the unit element 1 of Fp and the tensor products

for arbitrary finite sequences (jh)i^i,<r of integers >1 (it is also called the
free associative algebra over Fp with generators Tj). Consider the increasing
sequence of all integers a ^ 1 satisfying (61), and write a(m) the m-th term of
that sequence; then for any space X the tensor algebra ^"(E) acts on the
cohomology H'(X; Fp) by

(T,-, ® Th ® ■ ■ ■ ® Tjr). u = (St""1' o Sta(J'2) o • • • o St^'"»). u. (64)

Let J be the subset of ^"(E) consisting of all elements Ç such that
£. H'(X; Fp) = 0 for all spaces X. It is clear that J is a two-sided ideal of the
algebra ^~(E). By definition, the Steenrod algebra stfp is the quotient algebra
2nj£)jJ. Since every element £ e ^~(E) is acting on H'(X; Fp) as a cohomology
operation, the characterization of these operators (section B) shows that the
necessary and sufficient condition for £ to belong to J is that

£(K(Z/pZ,n))(.„) = 0 (65)
for every n ^ 1, where i„ is the canonical cohomology class in H"(K(Z/pZ, n); Fp)
(chap. V, § 1,D). The Stp, however, commute with the Eilenberg-Mac Lane
cohomology suspension [chap. V, § 2,D, formula (60)]

H'+1(K(Z/pZ, n + i); Fp) _ H'(K(Z/pZ, n); Fp).

Therefore, from the definition (64) it follows that if for a given £ relation (65)
is satisfied for large enough integers n, this is enough to conclude that it is
satisfied for alln^ 1. However, H. Cartan, in his determination of the
cohomology of Eilenberg-Mac Lane spaces (chap. V, § 3,C), had proved that for n > q
the Fp-vector space H"+*(K(Z/pZ, n); Fp) has a basis consisting of the Stp(.„),
where I = (a l, a2, ■. ■, ar) is any sequence such that

al + a2 + " • " + ar = q and aj ^ paj+l for 1 < i < r — 1. (66)
This generalized Serre's result for the cohomology of K(Z/2Z, q) with
coefficients in F2 (section B). Cartan similarly said that sequences satisfying (66) are
admissible for any q; from the argument given above, it follows that the Stp
for all admissible sequences form a basis of the Fp-vector space stfp (Adem had
shown earlier that these operators generate the vector space stfp\

To complete the determination of the algebra structure of sép, Cartan had
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to compute the products P'CP'1 and P*/?P* for k < ph. He showed that

pfcp;. = £ c'khpk+h-'V' for k < ph, (67)

P^P* = £ c'k[hPk+h''ßP' + X 4'ihßPk+"-'P' for k s= ph, (68)

where the values of the coefficients c'kh, c'k\h, ck'h in Fp are explicitly given, by
adapting Serre's procedure described in section C to a space K(Z/pZ, 1)"+"
(whose cohomology is known) for large values of n, ri.

In 1957 [341] Milnor took a different approach to the structure of sép. He
showed that there is a comultiplication

A:s/p->s/pg®s/p

for which se becomes a Hopf algebra (Part 2, chap. VI, §2,B) which is
coassociative [loc. cit., formula (18)] and co-anticommutative. This means that
the diagram

T

is commutative, where T is the bijection such that

T(xk®y„) = (-Vkhyk®xk

when k is the degree of x and h the degree of y.
The existence of A is another way of expressing the Cartan-Steenrod

formula for Pk(u^ v):

A(P't) = Pk® 1 + P*-1®?1 + ••• + P1®?*-1 + 1® Pk

and there is a similar formula for the Bockstein operator

A(jß) = jß®l + \®ß.

Let se* be the graded dual of the vector space sép\ the transposed map

'A: s/*e® se* ^>sé*

defines on stf* a structure of associative and anticommutative algebra; and if
m: sép%® sép -* sép is the linear map defining the algebra structure of s4p, its
transposed map

'm: s4* -» s4* g® s4*

together with 'A, defines on se* a structure of coassociative Hopf algebra.
Milnor has determined the algebra structure of se*; his results can

be presented in the following way. For an odd prime p, the cohomology
H'(Z/pZ, l;Fp) is the tensor product of an exterior algebra /\(x) with one
generator of degree 1:
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xeH'fZ/pZ, l;Fp), (69)
and an algebra of polynomials Fp[_y] with one generator of degree 2:

y e H2(Z/pZ, 1; Fp), and y = ßx (70)
([110], p. 1306). The action of the Steenrod algebra sét on H*(Z/pZ, l;Fp) is
given by the rules

St'x = 0

unless St1 = ß, when ßx = y, or if St1 = P^P"1' ' • • • PT1, when St1 x = ypk+l;

St'y = 0

unless St1 = ppkppk ' ■ ■ ■ pop1, when St1 y = ypk+\
These rules entirely determine the j/p-module structure of H'(Z/pZ, l;Fp);

in particular, for each s e stfp and for the generators x, y defined in (69) and (70),

s-y= Z ai(s)y"\ s.x = a0(s)x+ X fe/(s)yp"

where (f f: s i—> a,(s) and t;: s i—> fe,.(s) are linear forms on the Fp-vector space sép,
or in other words, elements of the dual space j/* , of respective degrees 2p' — 2
and 2p' — 1.

Milnor's theorem is that the algebra stf* is isomorphic to the skew tensor
product

A(W1,...,T1.,...)*®FPK0,£1,...,£.,...] (71)
of the exterior algebra over Fp with generators 1 and the t; and of the algebra
of polynomials with generators 1 and the £;; note that this agrees with the
general theorem of Leray and Borel on the structure of infinite-dimensional
anticommutative Hopf algebras (Part 2, chap. VI, § 2,A).

The comultiplication 'm in stf* is given by

Osgisg..

'm(xk) = xk®l+ X (^-.)P'®V
Osgisg..

Finally, the general theory of Hopf algebras (or of bigebras) [346]
establishes that if A is a Hopf algebra over Fp such that A0 = Fp. 1 (so-called
"connected" Hopf algebras), there is a unique antipodism, defined as a graded
linear map of degree 0,

a: A -> A

such that a(l) = 1, and for an x e A, if

A(x) = X x{ <g> xf

then
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£ x\a{x") = 0.

The map a is an antiautomorphism, a linear bijection such that

a(xpxq) = (- Ifaix^aiXp)

when xp has degree p and xq has degree q. The origin of that map is to be
sought in the particular case A = H.(G), the homology Hopf algebra of a Lie
group G, where a is just the map in homology

i„:H.(G)->H.(G)

corresponding to the inverse map i: x\—>x~l in G.
For the Steenrod algebra sép, the antipodism a was introduced by Thom

([463], p. 60). Milnor then gave the expression of a(x) for any element x of a
Milnor basis.

There are corresponding results for the Steenrod algebra stf2 over F2,
generated by the Sq' ([425], exps. 10 and 11).

E. The Pontrjagin p-th Powers

In a Note of 1942 [378a] Pontrjagin used an operation that transforms
cohomology classes with coefficients in Z/2Z into cohomology classes with
coefficients in Z/4Z. It was called the Pontrjagin square and was generalized
later by Steenrod and E. Thomas ([454], [465]). For each prime p they defined
cohomology operations

<Pp: H'(X;Z/p*Z) - H'"(X;Z/p*+1Z)

which have the properties:

1. If .7: Zi/ph+lZ-* Z/p^Z is the natural homomorphism, .7.,. the corresponding
homomorphism of cohomology rings, then

r,tWpx) = x".

2. If p: Z/phZ -> Z/ph+lZ is the natural injection, and p^ is the corresponding
homomorphism of cohomology rings, then

<Pp(x + y)= %x + ypy + Y, (£(j)Wx'~ ^"!)'
3.<Pp(x^y)=<Ppx^<Ppy.
4. If p is odd and x has odd degree, then ^3px = 0.

It follows from H. Cartan's general description of the cohomology
H'(K(II,n);G) for all finitely generated commutative groups II, G (chap. V,
§ 3,C) that all cohomology operations of type (q, n, A, B) for finitely generated
commutative groups A, B can be obtained by composition and addition from
the special cohomology operations described in this chapter.
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§ 4. Applications of Steenrod's Squares and
Reduced Powers

A. The Steenrod Extension Theorem

Pontrjagin's proof of formula (1) of § 1, classifying up to homotopy the
continuous maps of a three-dimensional simplicial complex into S2, was long
and intricate; it independently developed parts of the obstruction theory
published in 1940 by Eilenberg (chap. II, §4,C), and used the technique of
inverse images inaugurated by Hopf in his 1930 paper on 7r3(S2) (chap. II,
§ 1,B). Steenrod took another approach, linking the problem to the
computation of what he called a "secondary obstruction." In the Eilenberg theory of
obstructions (loc. cit.) applied to the special case in which Y = S„, consider a
continuous map /: Xq^l -> S„ of the (q — l)-skeleton Xs_t of X, and suppose
it can be extended to a continuous map /': Xq -* S„, so that the obstruction
q-cocycle bq(f) in Zq(X;nq(Sn)) is 0. The obstruction (q + l)-cocycle bq+l(f)
in Zq+l(X;nq(Sn)) is then defined, and its cohomology class in Hq+l(X;nq(Sn))
is independent of the particular extension /' of / to Xq; it can therefore be
written zq+l(f) and called the secondary obstruction to the extension of/ to
X [it is of course only defined when the primary obstruction bq(f) = 0].

Consider now a CW-complex X of dimension n + 2 and suppose that there
exists a continuous map /: X„ -* S„ that can be extended to a continuous map
/': X„+1 -> S„. Steenrod's theorem is that the secondary obstruction zn+2(f)
to the extension of/' only depends on / (and not on the particular extension
/') and is given by the (n — 2)-product (§ 1,B)

^+2(/') = /*(s.)-.-2/*(s.)- (72)
The proof is ingenious and done in several steps [447].
I. The first and second steps are devoted to what look like very special cases

of formula (72). First Steenrod considered the four-dimensional complex
projective plane P2(C) and its standard definition as a CW-complex (chap. II,
§ 6,F). He extended the natural map of S3 c C2 onto the line at infinity of
P2(C) to a continuous map \j/A of the ball D4:

\Zl\2 + \z2\2^l

onto P2(C), such that ij/4.(zl,z2) is the point of P2(C) having homogeneous
coordinates (zl,z2,(l — \zl\2 — |z2|2)1/2); he then defined the three cells e°, e2,
eA of P2(C) as follows:

i. e° is the point i^4(l, 0);
ii. e2 is the image by \j/A of the disk D2 c C defined by \zl | < 1, z2 = 0, the

intersection of D4 with the projective line z2 = 0; e2 is identified with the
sphere S2; i/^, restricted to the interior D2 of the disk, is a homeomorphism
onto e2 = e2 — e0 and maps St : \zl \ = 1 on the point e°;

iii. e4 = P2(C); the restriction of \jjA to the interior D4 of the ball is a homeo­
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morphism onto e4 = e4 — e2; and the restriction of \j/A to the frontier
S3: \zx\2 + \z2\2 = 1 is the Hopf map S3-► S2 (chap. II, §1,B).

In_this part of the proof he considered the extension of the identity / =
Id2: e2 -* S2 toji_map P2(C) -> S2. Since the 3-skeleton of P2(C) coincides with
the 2-skeleton e2, the obstruction 4-cocycle is defined by

<MId2),[^]> = »?2,

the homotopy class of the Hopf map in 7t3(S2), of which it is a generator; in
other words, in the cohomology group H4(P2(C); 7r3(S2)) the obstruction class
/.4(Id2) can be identified with the fundamental cohomology class s4 of P2(C)
when 7r3(S2) is identified with Z.

On the other hand, the computation of the cohomology of a CW-complex
(Part 2, chap. V, § 3,C) shows that the natural injection

j:S2 = P1(C)-P2(C)

gives in cohomology an isomorphism

j*:H2(P2(C);Z)^H2(P1(C);Z)

by the cohomology exact sequence. The fundamental cohomology class s2 of
Pt(C) (or S2) is thus the image of a well-determined element of H2(P2(C);Z)
that we again write s2 [up to sign, the Euler class of the tautological vector
bundle over P2(C) (chap. IV, § 1,D)]; furthermore,s2^ s2 = ±s4 (73)
in the cohomology algebra H'(P2(C);Z).

As a basis for the induction in step II it is convenient to consider s4 to be
taking its values in 7r3(S2) and s2 in n2(S2); the equation (73) can then be
written in the notation of § 1,B:

«2 — 0 «2 = S4 (74)
for a suitable bilinear symmetric map cp: n2(S2) x 7r2(S2)-> 7t3(S2); the
preceding argument then shows that for/ = f = Id2,

z4(/) = S2 — 0S2 (75)
which means that relation (72) is satisfied.

II. Steenrod then defined a sequence of CW-complexes P„ of dimension n
by induction on n, starting with P4 = P2(C) and its cells e°, e2, e4 defined in
I. The space P„+1 is taken as the unreduced suspension §P„ (Part 2, chap. V,
§2,C); it is convenient to consider this the join of P„ and two points AJ,, B^
(loc. cit.). The idea is to repeatedly "suspend" all the features of the situation
in I.

First define N4 = D4; N„+1 is the unreduced suspension §N„ identified with
the join of N„ and two points A„, B„, so that N„ is homeomorphic to the closed
ball D„. Starting with the map \jjA, define by "suspension" a sequence of
continuous maps \\in: N„ -> P: for each yeN„, [j/n+1 sends the segment of
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extremities A„, y (resp. B„, y) linearly onto the segment of extremities A'n, \[jn(y)
[resp. BJ,, i/>n(y)].

The subspace Mn-t of N„, homeomorphic to S„_1; is inductively defined by
M3 = S3, M„ = §M„_,; similarly, the subspace Q„_2 of P„, homeomorphic to
S„_2, is defined by Q2 = S2, Q,,-! = §Q,.-2- The subspace L„_2 of N„,
homeomorphic to D„_2, is defined by L2 = D2,L„_. = §L„_2, and the subspace K„-3
of L„_2, homeomorphic to S„_3, by Kl = Sl and K„_2 = §K„_3.

The structure of the CW-complex of P„ is then defined by three cells e°,
e"~2, e". The point e° is the same for all P„; e"~2 = Q„_2 is the image i/'„(L.,_2),
and {//„, restricted to the cell L„_ 2 — K„_ 3, is a homeomorphism one"-2; finally
\jjn maps M„_t onto Q„_2, and its restriction to the cell N„ — M.,^ is a
homeomorphism on e".

The investigation in that part of the proof concerns the extension of the
identity map/ = Id„: Q„ -> Q„(= S„) to a continuous map P„+2 -> Q„. Again,
the (n + l)-skeleton and the n-skeleton of P„ are both e" = Q„, so that the
obstruction (n + 2)-cocycle bn+2(ldn) is defined by

the homotopy class of the restriction \j/n+2\Mn+l which can be identified with
an element of nn+l(Sn). It follows at once from the definitions that

In = Efan-i)

where E is the Freudenthal homotopy suspension (chap. II, §6,E). In the
infinite sequence E E

7T3(S2) -» 7T4(S3) -» 7t5(S4) -» • • •

the first map is surjective and the other ones are bijective by Freudenthal's
theorems (loc. cit.). Since rj2 is a generator of 7r3(S2) ~ Z, each of the other
classes rj„ is the unique element /0 in 7r„+1(S„) ~ Z/2Z. Define a bilinear map

<p: 7r„(S„) x 7r„(S.,)-^7r„+2(S„+1)

by <?('„,'„) = tln+i, where i„ is the homotopy class of Id„.
Now consider the fundamental class s„ e H"(S„; Z) taking its values in 7r„(S„).

Since the natural isomorphism H" (S„ ) 2; H"+1 (S„+1 ) defined by the suspension
(Part 2, chap. V, §2,C) maps s„ onto s„+1, and the similar isomorphism
H"+2(P„+2) ~ H"+3(P„+3) maps è„+2(Id„) onto è„+3(Id„+1), it follows by
induction from (74) and from the commutativity of the diagram (17) in § 1,B) that

zn+2(Idn)= sn^n_2sn (76)
so relation (72) is satisfied.

III. Now consider the general case of a continuous map /: X„ -> S„ under
the assumption that there is a continuous extension /': X„+1 -* S„ of/; (72)
can be proved by establishing that when S„ is identified with the subspace Q„
of P„+2 defined in II, there exists a continuous extension /": X„+2 -» P„+2 of
/' such that the obstruction (n + 2)-cocycle bn+2(f) is given by



536 3. Homotopy and its Relation to Homology

bn+2(f) = f"(K+2(Un))eZ"+\X;nn+l{Sn)). (77)
Then, from the functoriality of i-products and relation (76), derive

^+2(/') = f"*(zn+2(Idn)) = f'*{sn^n_2sn)

= f"*(sn)~n.2f"*(sn) = f*(sn)^n-2f*(sn)

proving (72).
To define /" satisfying (77), it can first be supposed that f(Xn^l) is reduced

to the point * in S„; this follows from the argument detailed in the definition
of the Eilenberg groups (chap. V, § 1,C), originally due to Whitney [509].
Because of the different natures of the homotopy groups 7r„+1(S„) for n = 2
and n > 2, both cases must be considered separately.

First suppose n > 2 and consider any (n + 2)-cell a in X; if the obstruction
(n + 2)-cochain bn+2(f) is such that (.bn+2(f), Q"> = 0, then/', by definition,
can be extended continuously from Fr(cr) c X„+1 to a. If <b„+2(/'), <x> / 0, its
value is the unique element rjn / 0 in 7r„+1(S„). Choose a map g: Fr(cr) -> M„+1
of degree 1; since by II the homotopy class of \j/n+2\Mn+l is also rç.,, the
restrictions of /' and ip„+2 ° g to Fr(cr) are homotopic Since g can
obviously be extended to a map g' of a onto N„+2, ^n+2°g' extends to
^n+2 ° d''- &-> Pn+2> and therefore /'|Fr(cr) can be extended to a map
/«'■■ ff ->•?„+ 2 of degree 1.

Now suppose n = 2; then <è4(/'), c> = mr\2 for some integer m; the same
construction can be made, with the sole difference that g has degree m.

In both cases /" is thus defined as coinciding with /„" on each a c X„+2.
Using the construction of /" and the Brouwer-Hopf theorem, Steenrod
showed that

/"(b„+2(Id„)) = bn+2(ldn of) = bn+2{f),

and this ends the proof of (72).
Having done this, Steenrod applied standard obstruction theory and

recovered Pontrjagin's result (1) for n = 2. Next he obtained its generalization
for all n ^ 3: if f0, fl are two continuous maps of X„+1 into S„ that coincide
in X„, a necessary and sufficient condition for f0 and fl to be homotopic
with respect to X„ is the existence of a cohomology (n — l)-class en_l in
Hn_1(X;7in(Sn)) such that, in the group H"+1(X;7r„+1(S„)), the deviation of f0
and fl satisfies

rn+i(/o»/i) = en-1^„-3e„-i- (78)
In the notation Sq', this result can be expressed by saying that for a given class
c £ H"(X; Z), the homotopy classes of all continuous maps /: X„+1 -> S„ such
that f*(sn) = c are in one-to-one correspondence with the group

H"+1(X;F2)/Sq2(H"-1(X;Z)) (79)
where Sq2 is considered as mapping cohomology with coefficients in Z into
cohomology with coefficients in F2 [§ 1,B, formula (14)].
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Another proof can be given using the Postnikov factorization ([440],
p. 460).

B. Steenrod Squares and Stiefel Whitney Characteristic Classes

In 1950 Thom discovered a remarkable relation between the Steenrod squares
and the Stiefel-Whitney characteristic classes of an unoriented vector fibra­
tion £ = (E, B, F, p) [462]. Suppose the typical fiber F is a real vector space of
dimension m, and consider the Thom isomorphism

-D:H°(B;F2)~Hm(E,E°;F2)

[chap. IV, §2, formula (48)]. Then the Stiefel-Whitney classes are given by
the formula

wi(0 = «>"1(Sq,'(fl>(l)) (80)
where the Steenrod squares are operating on the relative cohomology
H-(E,E°;F2).

Thorn's proof used a triangulation of B and the definition of the Stiefel­
Whitney classes as obstructions to the extensions of sections of E above the
skeletons of B. A simpler proof [347] can be based on an axiomatic definition
of the Stiefel-Whitney classes, patterned after Hirzebruch's similar axioms for
Chern classes (chap. IV, § 1,B). There are two essential axioms, the stipulation
of the functoriality of the maps Ç t—> w,.(£) and the Whitney product formula
[chap. IV, § 1,B, formula (2)]; two other axioms "normalize" the classes by the
conditions w0(Ç) = 1, wfâ) = 0 if m = rank £ < i, and finally vv1(U2, t) / 0 for
the tautological bundle U2 l with base space Pt(R) [chap. IV, § 1,C]. It is then
an easy matter to check that these axioms uniquely characterize the Stiefel­
Whitney classes and that the right-hand sides of (80) verify these axioms
([347], pp. 86 and 92).

Thom was particularly interested in the Stiefel-Whitney classes of the
tangent bundle of a smooth manifold and the normal bundle of a submanifold;
these would play a fundamental part in his theory of cobordism, conceived in
1953 (chap. VII, § 1,G).

One of Thorn's first results was that the Stiefel-Whitney classes of the
tangent bundle of a smooth compact manifold X only depend on the topology
of X, not on its differential structure. This can be deduced at once from a useful
formula found by Wu Wen Tsiin ([522], [523]) for the computation of these
classes. Its proof can be presented as follows [347].

I. First, Wu Wen Tsiin introduced cohomology classes related to the Sq'
for any space X satisfying the following assumptions:

1. H'(X; F2) = 0 for i>n;
2. H"(X;F2) has dimension 1 over F2, and has therefore a unique element

u #0;
3. for 0 < k < n, H^X; F2) is put in duality with H"-*(X; F2) by the formula
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xk^y„-k = (xk,y„_k}u (81)
forx,eH*(X;F2),y„_,eH"-''(X;F2).

It is clear, by Poincaré duality (Part 2, chap, IV, § 3,A), that these
assumptions are verified by any smooth compact connected manifold X.

Under these assumptions, for each k such that 0 < k < n there is a unique
cohomology class vk e H't(X;F2) such that

vk^ x = Sq*(x) e H"(X; F2) (82)
for every x e Hn-*(X; F2); the vk are now called the Wu classes of X, and

v = v0 + vl + • • • + t;„ e H-(X; F2) (83)
the total Wu class.

In this notation Wu Wen Tsiin's formulas for the Stiefel-Whitney classes
of the tangent bundle T(X) of a smooth compact manifold X are

w*(T(X))= X Sq'ty) (84)
i+j=k

or, if the total Wu class v and the "total Steenrod square"

Sq = Sq° -t-Sq1 + • • • + Sq" (85)
are introduced, formula (84) can be written

w(T(X)) = Sq(i>). (86)
II. The proof uses properties of the normal bundle of a submanifold (chap.

III, § 1,C). Let Y be a smooth manifold and X be a compact submanifold of
Y of codimension k. Assuming that Y is given a riemannian structure, let N(e)
be the open subset of the normal bundle N of X in Y consisting of the points
of N at a distance < £ from X. Then the "exponential map" of riemannian
geometry is defined in N(e) for £ small enough and is a diffeomorphism of N(e)
on a tubular neighborhood of X in Y (Part 1, chap. Ill, § 1). By excision, this
gives the existence of a natural isomorphism of relative cohomology algebras

^.-H'(Y,Y-X;A)2iH-(N,N0;A) (87)
where N° is the complement N — X.

III. This leads to an expression for the top Stiefel-Whitney class wk(N) for
the normal bundle N. The Thom isomorphism

-D: H°(X;F2)q;H't(N,N0;F2)

defines in H*(N,N°: F2) the fundamental cohomology class u = <I>(1) (chap.
IV, § 2); hence it defines a cohomology class

«' = ^_1(«)eH*(Y,Y-X;F2)

called the dual cohomology class of X in Y. That name is justified by the fact
([347], p. 136) that the image of u' in the cohomology exact sequence
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H^Y, Y - X; F2) -i H^Y; F2)

is the Poincaré dual of the homology class ./„([X]), where y. X-> Y is the
natural injection and [X] e H„_k(X; F2) the fundamental class of the manifold
X (Part 2, chap. I, § 3,A).

Now consider the commutative diagram

H*(N,N°;F2)

<D

H°(X;F2)

leading to the Gysin sequence for the fibration (N,X, Rk, p) [chap. IV, §2,
formula (50)], where a is the homomorphism in the cohomology exact
sequence for (N,N°), and s: X -> N the zero section. Since g = s* ° a o (J),
s*(a(u)) = g(\) = wk(N). Now using the commutative diagram

H*(Y,Y-X;F2) —^—► H*(Y;F2)<l> I J*
H*(N,N°;F2) > H'C(X;F2)

s* o a

we obtain j*(a(u')) = wk(N), where j: X -» Y is the natural injection.
IV. These general properties of normal bundles are now specialized to the

case of the diagonal embedding

^:X->XxX.

There is then a natural isomorphism of the tangent bundle T(X) over X onto
the normal bundle N over the submanifold <5(X) in X x X: to the tangent
vector v e TX(X) it associates the normal vector ( — v,v)e Td(x)(X x X). If u' is
the dual cohomology class in H"(X x X,X x X — <5(X);F2) defined in III, its
image u" by the map

a: H"(X x X,X x X - <5(X);F2)-> H"(X x X;F2)

is called the diagonal cohomology class in H"(X x X). From the fact that the
two projections pr1; pr2 of X x X coincide on <5(X) it is easily deduced that
for any class c e H'(X; F2),

(c x 1)^ u" = (1 x c)~ u". (88)
Suppose X is compact and connected; it then follows from the characterization
of the slant product (Part 1, chap. IV, § 5,H)

H'(X x X) ® H.(X) -» H*(X)
that

-> H'C(N;F2)

-> H't(X;F2)
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u"/[X] = 1 eH°(X;F2). (89)
By (88) and (89),

SqV)/[X] = w.(T(X)). (90)
Take a basis (è;)!<.<, of the F2-vector space H'(X;F2) and a "dual basis"
(b'[)l <lS;r of the same space satisfying

<bi~b'j,[X]>=ôlJ (91)
the existence of which follows from Poincaré duality (Part 2, chap. IV, § 3,A);
using the Kiinneth formula for H'(X x X; F2),

u" = Yj(-lf'mb'bixb'i. (92)
I

On the other hand, Thorn's formula (80) gives

SqV) = (w,.(T(X)) x 1)_ u"

and since ((w;(T(X)) x 1)_ u")/[X] = w.(T(X))^ («"/[X]) = w;(T(X)) by
(88), this yields (90).

Wu Wen Tsiin formula (86) is now easily proved; for any x e H'(X; F2),

x = 2>«oc~&;,[x]>
i

and in particular, for the total Wu class

v = X &,<»- fe|',[X]> = I ^<Sq(eO,[X]>

i i
hence

Sq(t;) = XSq(&.)<Sq(&;),[X]>
i

= X (Sq(fef) x Sq(fe;))/[X]
i

and finally, by Cartan's formula

Sq(t-) = Sq(u")/[X] = w(T(X)).

Application. As an example of application of (86), consider a compact
connected manifold X for which the cohomology algebra H'(X;F2) is
generated by a single element a e Hk(X; F2) for a k ^ 1, so that HJ'(X; F2) = 0
when j is not divisible by k and H'cm(X; F2) = F2. am; the dimension of X is
thus a multiple kq of fc. Then for the total Steenrod square

Sq(a) = a + a2

and, by Cartan's formula

Sq(am) = am(l + a)m

so that the total Wu class is
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" (n-m\v= V )am.
m=o \ m )

Wu's formula (86) gives therefore for the total Stiefel-Whitney class

w(T(X)) = (l +a)"+l = l +(q+l )" + ■■■+ (q+ ja" (93)

where the binomial coefficients are reduced modulo 2. Among such spaces are
the spheres S„ with k = n, the projective spaces P„(R) with k = 1, P„(C) with
k = 2 and P„(H) with k = 4. In addition G. Hirsch also discovered in 1947
another example, of dimension 16 with k = 8; he used octonions to give its
definition [227], and that manifold is now called the Cayley plane*; A. Borel
later showed that it is diffeomorphic to the homogeneous space F4/Spin(9)
[56].

In 1958 J.F. Adams closed that list by showing that there are no other
compact CW-complexes whose cohomology algebra over F2 is generated by
a single element (cf. § 5,D).

From the consideration of the cohomology of the product of two Grass­
mannians, Wu Wen Tsiin obtained a general formula for a vector fibration £, (k — m\ (k — m\

Sq't(wJ = wW wm + l j jw^1^ wm+1+-+l k jw0^wm+k (94)

where w,- = vv,-(ij) and m < k [347].
Finally, a little later Wu Wen Tsiin defined other characteristic classes for

cohomology with coefficients in Fp, p is an odd prime. He extended Thorn's
formula (80) to the Steenrod reduced powers and defined for a vector
fibration £ q„(0 = ^1(P;(«>(l))). (95)
They played an important part in the further developments of the theory of
fibrations.

C. Application to Homotopy Groups

Serre's determination of the cohomology algebra H'(II, q;F2) for a finitely
generated commutative group n (§ 3,B) allowed him to prove an interesting
general result on homotopy groups. Let X be an arcwise-connected and simply
connected space satisfying the following conditions:

1. H;(X;Z) is finitely generated for every i ^ 0;
2. H,(X; F2) = 0 for large enough i;
3. H,(X; F2) / 0 for at least one i > 0.

These conditions are satisfied by a finite simplicial complex.

* From a strictly algebrogeometric point of view, the Cayley plane had been
considered by R. Moufang, Hamburg. Abhandl., 9 (1933), 207-222.
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The theorem is that for infinitely many dimensions i, the homotopy group
7T;(X) contains a subgroup isomorphic to Z or to Z/2Z; this is equivalent to
saying w,(X) ® F2 # 0 (96)
for infinitely many values of i.

The proof is by contradiction, assuming that there is a largest integer q such
that

7rt(X) <g> F2 # 0. (97)
Consider the sequence (W„) of spaces "killing" the homotopy groups of X

(chap. V, § 2,C). The assumption (97) and the definition of W,+1 imply that

7tr(W,+1 ) ® F2 = 0 for all values r > 0;

hence (chap. V, § 4)

Hr(W,+1 ; F2) = 0 for all r > 0. (98)
Next, W, has the homotopy type of the space P of a fibration
(P, K(nq(X),q),Wq+l), and by Serre's exact sequence [chap. IV, §3,C, formula
(74)]

H'(W„; F2) = H'(P; F2) = Hl(nt(X), q; F2) for all i > 0. (99)

Finally, for 2 < j < q there is a fibration

(Wj^j^Kinj^XlJ - 2)). (100)
Serre used these facts to obtain majorations of the (positive) coefficients of

the Poincaré series

OO

PY(f)= X dimH"(Y;F2).f" (101)
n = 0

when Y is one of the spaces W,- for 2 < j < q.
Write

ö(n,q;f) = PK(n,,)(f). (102)
Then by (99),

Pw,(O = 0(*,(X).g;t) (103)
and for 3 < i < q,

PWj(0 -< Pw,.,(0 • 0(*!-i (X), i - 2; f), (104)
where A(f) -< B(f) for power series with positive coefficients is the Cauchy
"majorant" inequality, meaning that each coefficient in A(f) is at most equal
to the corresponding one in B(f). The relations (104) follow from the existence
of the fibrations (100) and the Leray-Hirsch inequalities for the dimensions
of the homology spaces [chap. IV, § 3,A, formula (64)]. Finally, from (103) and
(104)
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ö(7r,(X),q;f)^Px(f). F] 0(7t,(X),i-l;t). (105)

To use this inequality, Serre applied his determination of the cohomology
H'(II, q;F2) to a study of the Poincaré series 9(Tl,q;t). He showed that the
series is convergent for |t| < 1. If

<p(II,q;x) = log20(ILq;l -2-x) for 0 < x < + oo, (106)
he could obtain asymptotic evaluations of these functions when x tends to
+ 00: let r ^ 0 (resp. s ^ 0) be the number of groups isomorphic to a 2-group
XßhX (resp. to Z) in the decomposition of II into cyclic groups of prime power
order or infinite. Then:

l.ifr ^ \,q><Jl,q;x)~rxq/q\;
2. ifr = 0ands^ 1, (p(Tl,q;x) ~ s.xq~l/(q - 1)!;
3. if r = s = 0,(p(Tl,q;x) = 0.

Now, since Px(0 is by assumption a polynomial, the Cauchy majoration
(105) implies, for \t\ < 1,

9(nq(X), q; f) < C. f] öfaW, i~h 0 (107)

for a constant C > 0, or, equivalently

(p(7r,(X),q;x)<log2C+ £ ç)(K<fX),i - l;x). (108)

Since nq(X) ® F2 / 0, one of the evaluations 1 or 2 above may be used for
(p(nq(X), q;x), but by the same evaluations, the right-hand side of (107) is
majorized by Ax"~2 for some constant A, and thus the desired contradiction
is reached.

In the last part of his paper [431] Serre also showed how the knowledge of
the cohomology algebra H'(II, q;F2) could yield information on the homo­
topy groups 7r„(S3) [remember that up to 1951 the only homotopy groups
7rm(S„) explicitly known for m > n were nn+l(S„) and 7t„+2(S„)]. Serre again
used the sequence (W,) of spaces that "kill" the homotopy groups 7r;(S„), so
that tt,(S3) = H,(W,; Z); thus

H«(Wt;F2) = Hom(H,(W,;Zy,F2) = Hom(7r,(S3), F2)

gives information on the 2-component of 7r,(S3). Serre carried out
computations for the cases q = 4, 5, 6, 7; he used the spectral sequence of the Serre­
Cartan fibrations defining the spaces W, (chap. V, § 2,C), which can be done
given the cohomology of the Eilenberg-Mac Lane spaces with coefficients in
F2. In this manner, and by using previously incomplete information on w6(S3)
and tt7(S3), he could show that tt6(S3) = Z/12Z and tt7(S3) = Z/2Z. Other
results on the Freudenthal suspension then allowed him to determine the
groups 7r„+3(S„) and 7t„+4(S„) completely; later he also determined nn+k(Sn) for
5 < k < 8 [432].
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D. Nonexistence Theorems

The discovery of unsuspected cohomology operations provided new ways of
proving that two spaces do not necessarily have the same homotopy type even
if their cohomology algebras and their fundamental groups are isomorphic.
Let £ be a cohomology operation of type (q, n,A, B); consider a continuous
map f:Y-*X and the corresponding commutative diagram (§ 3,A)

H«(X;A) f* > H«(Y;A)

{(X) Ï(Y)

H"(X;B) ;—► H"(Y;B)

If there is u # 0 in H«(X; A) such that £(X)(u) = 0, but Ç(Y)(v) # 0 for v # 0
in H*(Y; A), then /* cannot be injective.

Thom gave such an example ([462], p. 142): he considered the product
S2 x Sk for k > 2 and the (unique) nontrivial fiber space E with base space
S2 and typical fiber Sk; their cohomology algebras are isomorphic, but
Sq2(l x sk) # 0 in H*(E;F2), whereas Sq2(l x sk) = 0 in H'(S2 x St;F2).

Another example was given by Steenrod: consider the real projective spaces

P5(R) z> P4(R) z> P2(R).

Let X = P5(R)/P2(R) be the "truncated (or "stunted") projective space"
obtained by collapsing P2(R) to a point (Part 2, chap. V, §2,A), and let
/: P5(R) -> X be the collapsing map and A be the image/(P4(R)) in X, homeo­
morphic to P4(R)/P2(R). Then there is no retraction of X onto A, although
there are algebra homomorphisms

q>: H-(A; F2) -> H'(X; F2), ijj: H*(X; F2) -> H*(A; F2)

such that \jj o y = id. This is because if u # 0 in H3(X; F2), one has Sq2(u) # 0,
whereas H5(A;F2) = 0.

We postpone to § 5,B other kinds of nonexistence theorems, which Adem
was first to deduce from his relations between Steenrod squares, and which a
little later were greatly generalized by J.F. Adams in his work on the maps of
spheres with Hopf invariant 1. A. Borel and Serre also obtained interesting
results by computing the Steenrod reduced powers for the classical compact
Lie groups [68]; this is easily done, using the known description of the
cohomology algebras of these groups and the Cartan-Steenrod formulas.

The most interesting consequence of these computations is the fact that on
a sphere S2„ with n ^ 4 there does not exist a structure of almost complex
manifold, which means that on the tangent bundle T(S2„) there is no structure
of complex vector bundle of rank n for which the underlying structure of real
vector bundle would be the usual one. The proof is by contradiction: there



§§4D,5A VI. Cohomology Operations 545

would exist Chern classes c; e H2'(S2„; Z), which would be images of the Chern
classes C, e H2'(BU(n);Z) by /*, for a continuous map /: S2„ -> BU(n). Using
the structure of the cohomology of BU(n) determined by Borel (chap. IV, §4)
and the fact that H2l'(S2„;Z) = 0 for 0 < i < n, they showed that the Chern
class c„ should be divisible by an odd prime p, owing to the computations of
the reduced Steenrod p-powers in H'(BU(n);Fp). However, c„ would be the
Euler class e(T(S2„)) [chap. IV, § 3,D, formula (26)] and if u is the fundamental
cohomology class of S2„, e(T(S2„)) = x(S2„)u = 2u [chap. IV, §3,E, formula
(36)], giving the required contradiction.

Another result concerns the existence of sections of a fibration (E, Sr, F, ri)
with base Sr. Let ß be the fundamental cohomology class in Hr(Sr; Fp); suppose
y = n*(ß) e H'(E: Fp) is equal to a sum of cup-products of reduced p-powers
of elements of H'(E; Fp) of dimension < r; then E cannot have a section
s: Sr -> E. This follows from the fact that s* o n* = Id., so ß = s*(n*(ß)) =
s* (y) would similarly be a sum of cup-products of reduced p-powers of
elements of H'(Sr; Fp) of dimension < r that are all 0, hence one would have the
contradiction ß = 0. In this way Borel and Serre proved that the fibration
(SU(n),S2„_1,SU(n — 1)) has no section for n ^ 3 and similar results for the
groups SO(n) and U(n;H).

§ 5. Secondary Cohomology Operations

A. The Notion of Secondary Cohomology Operation

The idea that led to secondary cohomology operations was first formulated
by Adem in his work on the Steenrod squares [6]. One of his results in that
Note was a continuation of Steenrod's investigations on the cohomological
characterization of the set [X;S„] of homotopy classes when dimX = n + 1
(§§ 1 and 4,A); Adem tackled the next case, when dimX = n + 2. Suppose that
a continuous map /: X„ -> S„ defined in the n-skeleton of X can be extended
to a continuous map /': X„+2 -> S„; then the secondary obstruction

Sq2(/*(sJ) = 0

by Steenrod's result, and the obstruction (n + 3)-cocycle bn+3(f) can be
defined. Here (contrary to Steenrod's case) it depends on the particular
extension /' chosen, but the cohomology classes of all these cocycles form a coset
in the quotient space

H"+3(X;F2)/Sq2(H"+1(X;F2))

that only depends on / and is called the tertiary obstruction to the extension
off. Adem found that the map that sends u = f*(sn) to the tertiary obstruction
can be defined for all cohomology classes u in H"(X; F2) for which Sq2 u = 0
(without reference to a map /), and he showed that there is a natural homo­
morphism <I> from the kernel of
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Sq2: H"(X; F2) -» H"+2(X; F2)

to the cokernel of

Sq2: H"+1(X; F2) - H"+3(X; F2);

he called that homomorphism a secondary cohomology operation.
Adem obtained the existence and uniqueness of <I> by the use of the relations

he had found between the Sq'. This method was greatly generalized by J.F.
Adams in his work of 1958 on the Hopf invariant ([1], [2]).

B. General Constructions

Adams starts from the graded Steenrod algebra ,ss/2 over F2 (§ 3,D). Consider
a pair of free left graded j/2-modules C0, Ct and a graded j/2-homomorphism

d: Cl ->C0.

Let (c0i x), (ct „) be bases of C0 and Ct, respectively, consisting of homogeneous
elements, with degc0 x = lx, degct„ = mß; write

d(ci,ß) = YJaßico,x witha^ej/2.

Finally, let z = 'YJllbllcill be an element of Ker(d), with bß e stf2.
Let H + (X) = 0iSîl H'(X;F2) for any space X, so that H+(X) is a graded

left j/2-module. Define two j/2-modules ~D"{d, X), Q"(z,X) for each integer
n=?0:

~D"(d,X) is the module consisting of all graded j/2-homomorphisms
e: C0 -» H+ (X) of degree n such that e o d = 0. If

e(c0.i) = xi6H-+,'(X;F2),

D"(<i,X) may be identified with the submodule of 0A H"+'*(X; F2) consisting
of the families (xx) such that

Z a^ ■ xi = °­

Q"(z,H) c H+(X) consists of the elements £(z) where Ç: Ct ->H + (X) is any
graded j/2-homomorphism of degree n — 1; therefore

Q"(z,X) = X^-H"+m--1(X;F2).

Adams defined a family (<!>nX)n;}0 of stable secondary cohomology operations
associated to d and z as a family of maps

cD„,x:D"«X)^H+(X)/Q"(z,X)

satisfying three conditions:
I. Functoriality: for any continuous map f:X-*Y, the diagram
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jy(d,X)

f*

D"(rf,Y)

H+(X)/Q"(z,X)

H+(Y)/Q"(z,Y)

is commutative (/* being the map deduced from/* by passage to quotients).
II. Commutation with the suspension: the diagram

D"{d,X)
®n.X

H+(X)/Q"(z,X)

Bn+1(d,SX) > H + (SX)/Q"+1(z,SX)
<!>,.+.,sx

is commutative [a and ä are induced by the natural isomorphisms
Hm+1(SX;F2)-Hm(X;F2)].

III. For any continuous injective map i: Y -> X such that i* o e = 0 and any
pair of graded homomorphisms

J7:C0->H+(X,Y) of degree n

C:C1-^H+(Y) ofdegreen-1
such that the diagram

H + (X) H+(Y)

Cr

H+(Y)

is commutative,

'■*(*..x(«(co.i))) = C(c0. J + »■*(Q"(^X)).

The existence of such operations On>x is proved by using "universal spaces"
as in the determination of "primary" cohomology operations (§ 3,A); instead
of Eilenberg-Mac Lane spaces, here it is necessary to use fibrations with base
space and typical fiber equal to suitable products of Eilenberg-Mac Lane
spaces ([2], and [425], pp. 13-07 to 13-29).

Adams showed that if (On_x) and ((I)J,ix) are two families of secondary
cohomology operations corresponding to the same data (C0,C1, d,z) and if
•A = ®n,x - ®'n,x, there is a homomorphism

<p.D"(^X)->H+(X)

such that each ip((xx)) is in the class of (p((xx)) modulo Q"(z, X).
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C. Special Secondary Cohomology Operations

Adams applied his general construction to define a special kind of secondary
cohomology operations, in order to use them in his solution of the Hopf
invariant problem (see Section D). He considered F2 an j/2-module, the
operation (a, l)i—>• a. 1 being such that its value is 0 if deg a > 0, and 1 if a = 1.
He then considers a limited free resolution ofthat j/2-module (Part 1, chap.
IV,§5,F)

0^F2^Co^-C1 ^C2 (109)
constructed in the following way. First C0 = s/2, and the augmentation £ is
defined by e(l) = 1. Next Ct is defined as a free graded j/2-module with one
basis element cl for each degree i ^ 0, and dx is defined by

dlCi = Sq2'.

Finally C2 is a free graded j/2-module with homogeneous basis elements cy
for all pairs of indices such that 0 ^ i ^ j and j # i + 1; d2 is defined by

d2cij = Sq2'.cJ+ X Ve*
0^k<j

where the elements bk e stf2 are elements that appear in one Adem relation
(§3,C)oftheform

Sq2' Sq2J + X bkSq2" = 0 for 0 < i < j, j # i + 1 ;
0^k<j

there may be several such relations for given i and j, just pick one; the bk are
homogeneous, and

deg^^2'' + 2J- 1

so that dl(d2(cij)) = 0.
For each j ^ 0, let Ct( j) be the submodule of Cl generated by the ck with

0 < k < j and d1(j) be the restriction of dl to Cl (j). The general construction
of section B is applied by specializing the Cl ofthat construction to Cl(j), the
map d to d^j), and the element z to z,j = d2cVy

The secondary cohomology operation (I)iJix obtained in this fashion is
defined on the subspace D^(X) that consists of the elements x e H"(X; F2) such
that Sq2" x = 0 for 0 < k < j; it takes its value in the quotient

H"+2'+2J-1(X;F2)/Qyi(X)

where

Q?J.(X)=Sq2'.H"+2J-1(X;F2)+ £ bk.H"+2k-"(X;F2).
0^k<j

Note that the operation <b defined by Adem [6] is equal to <Pr t in the
preceding notation.
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D. The Hopf Invariant Problem

Recall that when Hopf defined the Hopf invariant H(/) for a continuous map
/: Sjn-! ->S„forn ^ 1 (chap. II, § 1,C) he asked for conditions on n that would
imply the possibility of having H(/) = + 1 and showed by explicit examples
that the values n = 2, 4, and 8 have that property.

The problem attracted several mathematicians. In 1950 G.W. Whitehead
[486], using his study of the homotopy of the wedge S„ v S„, proved that a
necessary condition for the existence of an /with H(/) = + 1 is that n = 2 or
n = 0 (mod. 4).

The use of Steenrod squares brought a decisive turn in the problem. Steen­
rod had given a cohomological definition of the Hopf invariant (chap. V,
§ 5,D): using the mapping cylinder Z/; it followed from that definition [loc.
cit., formula (103)] that the relation H(/) = + 1 implies that the map

H"(Z/;F2)^H2"(Z/;F2) (110)
defined by u i—> u^ u is / 0. But that map is exactly Sq" [§ 1,B, formula (19)].
Therefore, the condition H(/) = + 1 cannot be satisfied if the map

Sq":H"(X;F2)->H2"(X;F2) (111)
is 0 for all spaces X such that Hl (X; F2) = 0 for n < i < 2n (which is the case
for Zf).

Adem had the original idea of using the relations he had found between the
Steenrod squares to find values of n for which the map (111) is always zero for
the spaces under consideration. He showed that the only exceptions would
necessarily be powers of 2 [7]. As an example, the proof that the map (111) is
0 for n = 6 relies on the relation

Sq6 = Sq2Sq4 + Sq5Sq1.

Since H'(X; F2) = 0 for i = n + 4 and i = n + 1, Sq6(H"(X; F2)) = 0.
The argument does not apply if n is a power of 2 and Adams undertook to

generalize Adem's use of secondary cohomology operations in that case to
obtain an expression for Sq2" in terms of these operations. His result was that
if a space X is such that

Hi(X;F2) = 0 form< i< m + n, (112)
then the map

Sq":Hm(X;F2)->Hm+"(X;F2) (113)
is 0 provided that n is not 2, 4, or 8; this establishes in particular that the only
values of n for which H(/) = + 1 are 2, 4, or 8.

Adams' proof is extremely long and intricate; it can be divided into three
parts.

The first part establishes a relation valid for every space X: there is a X e F2
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(thus equal to 0 or 1) and elements aijk e s/2, such that if u e Hm(X; F2) satisfies
the relations

Sq2"u = 0 for0s=r</<, (114)
then

Â[Sq2k+'u]= X ay*-*y.x(«X providedk>3, (115)
jV' + l

where [Sq2"+" u] is the class modulo Y,'.j,kaijk-Q?j(X).
The proof needs some heavy machinery from homological algebra. The

sequence (109) is the beginning of a free resolution of the j/2-module F2.
Because of the construction of the <I,ij,x> relations such as (115) are obtained
by a detailed investigation of the cohomology algebra H'(stf2) as defined by
Hochschild and Cartan-Eilenberg [113]; in particular it is necessary to have
precise information on H'(j/2) for i = 1, 2, 3. This is obtained by using the
results of Milnor on the structure of Hopf algebra of ,s/2 (§ 3,D). It is also
necessary to consider an increasing sequence (B'n) of sub-Hopf algebras of the
dual Hopf algebra stf* that is a direct limit of the B'n; H'(stf2) can be studied
by considering the algebras H'(B„), where B„ is the Hopf algebra dual to B'n;
the passage from H'tB.,^) to H'(B„) is obtained by defining an appropriate
filtration and using the corresponding spectral sequence; the latter is similar
to the one Adams had introduced earlier for the study of stable homotopy
(see chap. VII, § 5,D).

The second part of the proof consists in showing that in (115) the coefficient
X is equal to 1 by choosing a particular space X for which both sides of (115)
may be computed for well chosen elements u. Adams takes for X the infinite­
dimensional complex projective space P^(C) (chap. II, §6,F) that has the
homotopy type of K(Z, 2). The cohomology algebra H'(X; F2) is then a
polynomial algebra F2[_y] with y e H2(X;F2), and u = y2', at first for any integer
j ^ 0. Preliminary computations show that 0,-(y') is defined if and only if
t = 0 (mod. 2J), that it is a class consisting of a single element, and that element
is 0 unless i = 0 and j ^ 2. A double induction on j and t then gives

<t>oj(y2J') = ty2J'+2J~l.

For k ^ 3, there is then a relation between elements of H'(X; F2), not merely
between classes modulo a subgroup:

ASq2k+Vk) = û0.*,*.*o.*(3-2k) = flo.*.*-J'3'2"'­

Finally the right-hand side is shown to be equal to y2"+l and the left-hand side
to ly2k+\ hence A = 1.

The third part of the proof now follows the pattern of Adem's proof. If n is
not a power of 2, Sq" is decomposable as a sum or products of SqJ with j < n;
from the assumption on the groups Hm+J(X;F2) for j < n, it follows that Sq"
is 0 in Hm(X;F2). If n = 2k+l with k > 3, Sq2» = 0 for u e Hm(X;F2) and
0 < s < k, so (115) can be applied; but the 0;-iX(m) belong to a quotient of
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0H"-1+2<+2J(X;F2)
'.J

with 2' + 2} — 1 < 2k+l since i ^j ^k and i + 1 # j. So again the right-hand
side of (115) is 0, and this ends the proof of the vanishing of the map (113).

In 1966 Adams and Atiyah found a very simple proof of the vanishing of
the map (111), based on K-theory (chap. VII, §5,A).

E. Consequences of Adams' Theorem

It had earlier been recognized that the existence of continuous maps /:
S2„+1 -» S„+1 with H(/) = + 1 is equivalent to other properties of S„:

1. If i„ is the class of the identity in n„(S„), then the Whitehead product [.„,.„]
(chap. II, § 3,E) is 0.

2. There is a structure of H-space (Part 2, chap. VI, §2,A) on S„.
3. The Freudenthal suspension E: 7i2n_1(Sn) -> w2„(S„+1) is bijective.

Indeed, G.W. Whitehead [488] proved that in the exact sequenceii ? p
7r2n + l(S„ + l) —► Kln + iySln + l) ~* n2n-l(^n) ~* n2n{^n + l)

\\l
z

[chap. V, § 5,D), formula (105)], the image of 8, equal to the kernel of E, is the
subgroup generated by [.„, .„] in n2„-i(S„). Hence [.„, i„] = 0, or equivalently
E is injective [hence bijective by Freudenthal's theorem (chap. II, §6,E)] only
if H is surjective, i.e., n = 1, 3, or 7 by Adams' theorem.

If S„ has a structure of H-space, the maps /".: xi—*\e and f2: x\—+ex have
degree 1 and fx v/2:S,vS,-» S„ has a continuous extension S„ x S„ -* S„
by definition. The definition of the Whitehead product then implies that
L/1,/2] = °> hence ['„',] = 0, so n = 1, 3, or 7.

Finally, it was proved by Dold that if S„ is given a differential structure
compatible with its topology (it may be the usual ones or "exotic" ones, see
chap. VII, §2,B), then S„ is parallelizable for that structure if and only if it
has a structure of H-space, so again n = 1,3, or 7. Milnor, Bott, and Kervaire
obtained proofs for that result using Bott's work on homotopy of compact
Lie groups ([82], [272]).

§ 6. Cohomotopy Groups

Homotopy groups arise from the consideration of the sets of homotopy classes

[S„,*;X,x0]

for pointed spaces (X,x0) and the possibility on defining naturally a group
structure on such a set. Similarly, in 1936 Borsuk [74] considered the sets of
homotopy classes [X,x0;S,*] (116)



552 3. Homotopy and its Relation to Homology

and showed that for some values of n they could naturally be given a group
structure; his results were later extended by Spanier [439].

A. Cohomotopy Sets

Let (X, A) be a pair of pointed spaces; recall that the set[X,A;S„,*] (117)
is the set of homotopy classes [/] of continuous maps /: X -> S„ such that
/(A) = {*}; for a homotopy (x, t)i—>F(x, f) between two such maps F(x, f) =
{*} for all x e A and t e [0,1]. The set (117) is called the n-th cohomotopy set
of the pair (X, A) and written nn(X, A); it must be considered a pointed set with
a privileged element, the homotopy class of the constant map X -> {*}, usually
written 0.

It is clear that (X, A)i—>7r"(X,A) is a contravariant functor: for any map
/: (X, A) -> (Y, B) of pairs of spaces,

f*:n"(Y,B)^n"(X,A)

is defined by the relation

/*([«]) = [« o/]

for every map u: (Y, B)-> (S„,*), and /*(0) = 0. When X is compact, Y is
paracompact, A is closed in X, B is closed in Y, and the restriction /|(X — A):
X — A -> Y — B is a homeomorphism, it can be shown that /* is bijective
([254], p. 207).

Write
7r"(X) = 7r"(X,0). (118)

When X is paracompact and A is closed in X, it is possible to define a map of
pointed sets

«3:7r"(A)-7r"+1(X,A) (119)
such that in the infinite sequence

TT^X, A) -^ TT^X) -îl» 7T1 (A) X 7T2(X, A) - • •• 7Tm(A) h 7Tm+1(X, A)

-^U7rm+1(X)-^7rm+1(A)->--- (120)
the composite of two successive maps has image {0} [the image of each map
is contained in the "kernel" (chap. II, § 5,D) of the next one]; i: A -* X is the
usual injection and j: X -* (X, A) is the identity.

To define the map (119), consider the hemispheres D.J"+1 and D~+1 of S„+1,
defined, respectively, by xn+2 ^ 0 and xn+2 < 0. Take d = y~l o ß o a-1, where
a and y are two natural bijections

a:[X,A;D„++1,S„]^[A;S„],

y:[X,A;S„+1,*]^[X,A;S„+1,D„-+1],
and
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ß: [X, A; D„++1, S„] -> [X, A; S„+1, D„"+1]

is the map associating to the class [/] of a map/: (X, A)->(D^"+1,S„)theclass
[h o/], where

fc:(DB++1,SB)->(SB+1,D.r+1)

is the natural injection. The fact that a is surjective is a consequence of the
Tietze-Urysohn extension theorem, since D^+1 is homeomorphic to [0,1]"+1;
the fact that it is injective is a consequence of the homotopy extension property
proved by Borsuk, since D.J"+1 is an ANR (chap. II, §2,D). The bijectivity of y
follows at once from the fact that D~+1 is contractible to the point * in S„+1.
The verification of the relations 8 ° i* = 0 and j* o d = 0 are straightforward,
and /*([«]) = 0 if and only if [a] =;*([/]) for some /: (X, A) - (S„, *). In
general the sequence (120) of pointed sets is not necessarily exact at 7rm(A) and
7rm+1(X,A) in the sense of the category PSet (chap. II, §5,D) ([254], p. 227).

B. Cohomotopy Groups

For simplicity's sake, we shall now assume that (X, A) is a compact relative
CW-complex of finite dimension. Then for 2m — 1 > dim(X, A) (Part 2, chap.
V, § 3,C), there is a natural structure of commutative group on the cohomotopy
set nm(X, A). Consider the product space Sm x Sm a pointed space with (*,*)
as a privileged point and its closed suspace, the wedge

S,vS„ = (S,x {*})u({*}xSJ.
Let (a,ß) be any pair of elements in nm(X, A) x nm(X, A), with a = [/], ß =
[g]. Consider the map (/, g): x i—> {f{x), g(x)) of X into Sm x Sm; if x e A,
(f(x),g(x)) = (*,*). Now the injection i: (Sm v Sm,(*,*))^(Sm x Sm,(*,*))
defines a bijection i*: [X, A;Sm v Sm,(*,*)]-> [X, A;Sm x Sm,(*,*)]
associating to the class [u] of u: (X, A) -> (Sm v Sm, (*, *)) the class of [i o u]. This
follows from the fact that 7rr(Sm x Sm, Sm v S„) = 0 for r < 2m (chap. II, § 4,C),
(X, A) is a relative CW-complex of dimension 2m - 2, and (X x I, A x I)
is a relative CW-complex of dimension < 2m — 1; it is therefore
possible, by "climbing" on the skeletons, to extend a continuous map
(X, A) -» (Sm v Sm, (*, *)) [resp. (X x I, A x I) -» (Sm v Sm, (*, *))] to a
continuous map (X,A)^(Sm x Sm,(*,*)) [resp. (X x I,A x I)^(Sm x Sm,(*,*))]
(chap.II,§3,C).

Next consider the natural map j:Sm v Sm->Sm equal to (x, *)i—>x in
Sm x {*} and to (*,x)i—>x in {*} x Sm, and let_/„, be the map which associates
the class [jo u] to the class of u: (X, A) ->(Sm v Sm,(*,*)). Finally, let

/z:7rm(X,A) x 7rm(X, A) -> [X, A;Sm v Sm,(*,*)]

be the map which, to every pair (a, ß) of elements a = [/], ß = [a] of nm(X, A)
associates the class [(/, a)], which only depends on a and ß. Then define a
map s: nm{X, A) x nm{X, A) -» nm(X, A) by

s=i*° i*1 °h; (121)



554 3. Homotopy and its Relation to Homology

s straightforwardly defines a structure of commutative group on nm(X, A),
written s(a,ß) = a + /.; the element 0 e nm(X, A) defined in section A is the
neutral element of that group. For a £ nm(X, A), the element - a is defined in
the following way: if a = [/], — a = [r °f~\, where r: Sm -> Sm is a continuous
map of degree - 1 ([254], pp. 211-212).

Suppose X is now a finite CW-complex of dimension < 2n — 1 and A is a
CW-subcomplex of X. Then 7tm(X) and nm(A) are also commutative groups
for m^ n, the maps in the sequence

7r"(X, A) -il> tt"(X) - • • — 7rm(A) -^ 7rm+1(X, A) -il» 7rm+1 (X) -il* • • • (122)

are homomorphisms of groups, and the sequence is exact. Spanier, under the
same assumptions, defined two mappings between cohomotopy and cohomo­
logy groups. First, for m ^ n there is a homomorphism

«D:7rm(X,A)^Hm(X,A;7r„(S.,)). (123)
It is defined in the following way: if a £ nm(X, A) is the class [/] of a map
/: (X, A) -» (Sm, *), the element f*(sm), the image of the fundamental cohomo­
logy class sm e Hm(Sm; Z), only depends on the class a, and <I>(a) = f*(sm); it is
convenient to identify Z and nn(Sn).

The second map goes instead from cohomology to cohomotopy:

A:H"+2(X,A;7r„+2(S„+1))^7r"+1(X,A) (124)

and is only defined for dim(X, A) < n + 2. Let u be a cohomology class in
H"+2(X, A;7r„+2(S„+1)), and c be a cocycle in the class u; therefore, for any
(n + 2)-cell a in X, c(a) £ w„+2(S„+1) and c(a) = 0 if a c A. Let X„+1 be the
(n + l)-skeleton of X; by definition, there is a continuous map (pa: D„+2 -* X
such that (pa(Sn+1) c X„+1, and the restriction of (pa to the interior D„+2 is a
homeomorphism onto o\ Let ga: (S„+2,*)->(S„+1,*) be a continuous map
whose homotopy class is c(a); ga can also be considered a continuous map
Dn+2 -» S„+1 such that öfa(S„+1) = {*}. Define

/„: (X„+1 u o-,X„+1) -» (Sn+1, *)

by /„(*) = * if x £ X„+1 and /ff(x) = ga(z) if x = ^(z) and z e D„+2.There is a
continuous map/: (X,X„+1)-> (Sn+1,*) equal to/., in each (n + 2)-cell crof X,
since there are no m-cells in X for m > n + 2; by definition, A(u) = [/]. Under
the condition dim(X, A) < n + 2, Spanier proved that the sequence

tt"(X, A) * H"(X, A; tt„(S„)) -^1 H"+2(X, A; tt„+2(S„+1))

^7r"+1(X,A)^H"+1(X,A;7r„+1(S„+1)) (125)
is exact. He showed that this result gives another proof of Steenrod's results
on the extension problems described in § 4,A.

A little later F. Peterson, in his thesis [360], obtained similar results for the
kernel and cokernel of the map (123) for larger values of m, by considering
only the p-components of the groups for any prime p > 2 and using the
corresponding Steenrod reduced powers.



Chapter VII

Generalized Homology
and Cohomology

The ten years between 1942 and 1952 had seen an explosive development of
algebraic topology, with a totally unexpected wealth of new methods and new
results. The next decade was just as fruitful, and just as unpredictable.

The two main novelties were cobordism and K-theory. The former
inaugurated a revival of differential topology, which has kept its momentum
to this day; the latter emerged in algebraic geometry, but very soon spread
over all topology and all algebra. A large part of their rapid success was due
to the availability of the new techniques acquired in algebraic topology during
the preceding decade.

A little later it was realized that both theories, as well as all previous
definitions of homology and cohomology, could be encompassed in the very
general concepts of generalized (or extraordinary) homology and cohomology,
which have dominated algebraic topology and differential topology ever
since.

§ 1. Cobordism

A. The Work of Pontrjagin

In 1950, in order to compute the homotopy groups n„+1(S„) and nn+2{Sn),
Pontrjagin [382] described a new approach to the computation of nn+k(Sn)
for any k ^ 1. His central concept was that of a framed manifold M of
dimension k, embedded in a space R"+k: M is a smooth manifold whose normal
bundle in Rn+k is trivializable; equivalently, there exist n continuous maps
x i—> Uj(x) of M into R"+k (1 ^ j ^ n) such that the Uj(x) form an orthonormal
basis of the normal subspace Nx to M at the point x for every x e M. Not
every smooth submanifold of Rn+k is framed, for instance, no nonorientable
submanifold may have that property.

However, it is easy to give examples of framed manifolds: consider a Cx
map /: X -> Y of an (n + /c)-dimensional manifold X into an n-dimensional
manifold Y; then, if y e Y does not belong to the image /(E) of the set E of
critical points of/(Part 1, chap. Ill, § l),f~l(y) is a /c-dimensional submanifold

J. Dieudonné, A History of Algebraic and Differential Topology, 1900-1960,
Modern Birkhäuser Classics, DOI 10.1007/978-0-8176-4907-421,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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of X whose normal bundle in X is trivializable. The proof is an immediate
consequence of the implicit function theorem.

It is that property that Pontrjagin used to study the maps/: S„+k -* S„; since
any such continuous map is homotopic to a Cx map (Part 1, chap. Ill, § 1), it
may be assumed that / is C°°. Then by Sard's theorem (loc. cit.), there is a
point z e S„ that does not belong to the image of the set of critical points, and
(barring the uninteresting case in which fis not surjective)/-1(z) is a compact
/c-dimensional framed submanifold of S„+k, and since it cannot be S„+k itself,
it can be considered as a submanifold of Rn+k. Conversely, a framed k­
dimensional submanifold M of Rn+k has a tubular neighborhood N that
is diffeomorphic to the product M x R", and there is therefore a Cx map
g: N -> R" that tends to infinity on the frontier of N; if Rn+k and R" are
considered as open subsets of S„+k and S„, respectively, g can be continued to a map
f: S„+k -> S„ that sends S„+k - N to the point at infinity of S„, and M = f~l(0).

To study homotopy classes of maps Sn+k -* S„ by means of framed sub­
manifolds, Pontrjagin introduced an equivalence relation between framed
/c-dimensional submanifolds of R"+k, that his student Rokhlin called "intrinsic
homology": two framed submanifolds M0, Ml of R"+k are "homologous"
if there is a (noncompact) (k + l)-dimensional framed submanifold W of
Rn+k x R such that M0 x {0} and Mt x {1} are the intersections of W with
the hyperplanes x„+k+1 = 0 and x„+k+1 = 1, and the normal bundles of
M0 x {0} and M, x {1} are intersections of these hyperplanes with the
normal bundle of W.

Pontrjagin's main result was then that two smooth maps / g of Sn+k into
S„ are homotopic if and only if the two framed submanifolds f~1(z), g^1{z)
(for a point z which is not in the images of the critical points of / and g) are
"homologous" in his sense. This enabled him to determine the groups nn+1{Sn)
and 7r„+2(S„), and Rokhlin also determined the groups nn+3(Sn) in that way
[399], but the study of "intrinsic homology" for k "> 4 became too complicated
to compete with the other methods of computation of the homotopy groups
of spheres (chap. V, § 5,F).

This work of Pontrjagin may be considered the germ of the much more
extensive theory of cobordism inaugurated by Thom in 1953 [463].

B. Transversality

Let X, Y be two smooth manifolds* and /: X -> Y be a C" map. A question
that recurs in many problems is whether the inverse image /_1(Z) of a smooth
submanifold Z of Y is also a submanifold of X. When Z = {z} is reduced to a
point, a sufficient condition is that f~l(z) does not contain any critical point
of/ (section A). This generalizes to any submanifold Z: if/~'(Z) does not
contain any critical point of/ /_1(Z) is a submanifold, but the condition is
very restrictive.

* Manifolds are always assumed to be locally compact, metrizable, and separable.
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Thom found a much less restrictive condition, which turned out to be a
very flexible and useful tool in all differential topology. The map / is said to
be transverse over Z at the point x ef~x(Z) if the tangent space T/(X)(Y) is the
sum (not necessarily a direct sum)

T/(X)(Z) + TX(/)(TX(X));

it is transverse over Z if that condition is satisfied at all points x e/_1(Z). The
set of points of/-1(Z) at which f is transverse over Z is open in/-1(Z).

As an example, let X be the plane x = 0 in R3, Y be the plane z = 0, Z be
the line y = z = 0, and / be the projection (y, z)t-*y of X into Y; then / is
transverse over Z, but the tangent mapping Tx(/): TX(X) -» T/(X)(Y) is never
surjective.

If/ is transverse over Z,/~'(Z) is a submanifold of codimension in X equal
to the codimension of Z in Y; the normal bundle of/~'(Z) in X is the pullback
/*(N) of the normal bundle N of Z in Y. The question being a local one, the
proof of these statements is immediately reduced to the case in which X, Y,
and Z are vector spaces, and is then a consequence of the implicit function
theorem.

The main result concerning transverse mappings is Thorn's transversality
theorem:

Let d be a distance defining the topology of Y and /: X -> Y be-an arbitrary
smooth mapping. Then for any £ > 0 there is a smooth map g: X -> Y such
that d(f(x),g(x)) ^ £ in X and g is transverse over Z. If A is a closed set of
f~1(Z) such that/is already transverse over Z at the points x e A, then it may
be assumed that f\A = g\A.

Thorn's proof ([463], pp. 22-26) made use of the group Jf of diffeomor­
phisms of Y onto itself that leave fixed the points of Y — T, where T is an open
tubular neighborhood of Z; his idea was to take g = A °f, where A e Jf is
close enough to the identity for a suitable topology. Milnor provided a more
elementary proof, which can be broken up as follows ([347], p. 212).

I. There is an open neighborhood U of A in X such that/is still transverse
over Z at every point of Un/"'(Z). Take an open denumerable covering
(Yi)iS,0 of Y such that Y0 = Y — Z, Y< is the domain of a chart of Y for i "> 1,
and Z c [Ji^iYf. Take an open denumerable covering (V^o of X by
domains of charts of X, finer than the covering consisting of X — A and U,
and also finer than the covering consisting of the/_1(Yj). Finally, let (Wt)ts,0
be an open locally finite covering such that (Wk) is finer than (V,-).

II. The strategy of the proof is to define by induction a sequence (/) of
smooth maps of X into Y, having the following properties:

(a) /0 = / rf(/f(xX/,-i(x)) ^ e/2' for all x e X; _
(b) / coincides with /_1 in the complement of W;;
(c) /• is transverse over Z at every point of/._1(Z) n {J]^{ Wj.
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Then the sequence (/,) converges uniformly in X to a smooth map g: X -> Y,
which satisfies the conclusions of the theorem.

III. By assumption, there is an index j(i) such that _/^_1(VI-) is contained in
an open set Y;(i). Using the charts with domains V; and Ym, the problem is
reduced to the following:

Let V be an open set in R", W be an open set such that W c V, Y be an
open set in Rp, Z = R'nY for a value q < p, K be a compact subset of R",
and /: V -* Y be a smooth map that is transverse over Z at every point of
K n V. For a given ô > 0 define a smooth map g: V -* Y that coincides with
/ outside a closed neighborhood of W in V, such that \g{x) — f(x)\ ^ ô for all
x e V, and that g is transverse over Z.

To define g, first consider a smooth map X: V -* [0,1], equal to 1 in W and
whose compact support T is contained in V. Let p be the projection of Rp on
the supplementary space Rp~q of R'; Z = Ynp"'(0). There is, by Sard's
theorem, a point y e Rp~'1 arbitrarily close to 0, which is not an image of a
critical point of p °f. Take

g(x) = f{x) - A(x)y.

If y is close enough to 0, it is possible to assume |#(x) — /(x)| ^ ô in V, and
that the derivative Dtf(x) = D/(x) — (DA(x))y is arbitrarily close to D/(x) in
V. Since p(D/(x)) has rank p — q in /_1(p_1(0))n K, the same is true of
p(Dgix)) when y is close enough to 0. On the other hand, DA(x) = 0 in W, so
Da(x) = D/(x); the points of W such that p(a(x)) = 0 are those for which
pifix)) = y, and therefore at all points x e Wna~1(p~1(0)),p(Da(x)) has rank
p — q, which means that g is transverse over Z = Y n p_1(0). Since a(x) = fix)
outside T, g has the required properties.

C. Thorn's Basic Construction

There are two basic ideas in Thorn's fundamental paper [463].
I. The first one is the association, to each vector fibration Ç = (E, B, R\p),

of the mapping cone of the map p: E -> B (Part 2, chap. V, §3,B); it is now
called the Thorn space T(£) of the fibration. When B is compact, hence E is
locally compact, T(£) can be identified to the compact space obtained by
adjoining to E a "point at infinity" t0. When B is paracompact, there exists a
distance iionE that has as a restriction to each fiber Eb a euclidean distance
on that vector space. Recall that for the sphere bundle S corresponding to E
each fiber Sb is the sphere of radius 1 and center h in Eb (chap. Ill, § 1,C). Let
E(a) be the open subset of E such that E(a) n Eb is the open ball of radius a
in Eb. Then T(£) can also be identified to the space E(l)/S obtained by
collapsing the sphere bundle S to a single point t0 in the closure E(l), or
equivalently to the space E/(E — E(l)).

II. Thom used the spaces T(£) in an original way to establish, by means of
the transversality theorem (section B), a two-way correspondence between
submanifolds of a smooth manifold X and continuous maps X -* T(£) into
Thom spaces.
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Let Z be a submanifold of X, of codimension k; there is then an open tubular
neighborhood N of Z. If £ = (E, Z, Rk), there is an isomorphism of vector fibra­
tions g: N -> E(l), which is extended to a continuous map N -> E(l), sending
the frontier of N in X onto the sphere bundle E(l) — E(l). If (p: E -> T(£) =
E/(E — E(l)) is the collapsing map, (p o g is extended to a continuous map
f: X -> T(£), constant and equal to the "point at infinity" t0 in X — N, and
coinciding with the identity in Z.

Conversely, suppose X is a compact smooth manifold and let f:X-* T(£)
be a continuous map for a fibration £ = (E, B, R', p) with base space a smooth
manifold B; let d be a distance on E such that its restriction to each fiber Eb
is a euclidean distance. Consider the open set /_1(E) in X; there is a smooth
map g:f~l(E) -> E such that d(f(x),g(x)) ^ £ for x e/"~'(E) and a homotopy
F:/-'(E) x[0,l]-»E such that d{F(x, s),f(x)) s= 2e for all (x, s), and F(x, 0) =
f(x), F(x, 1) = g(x). The choice of d implies that F can be extended by
continuity to X x [0,1] by taking F(x, s) = t0 for x ^f~1(E). Now use the trans­
versality theorem to define a smooth map h:f~l(E) -* E that is transverse over
B, and a homotopy H:/_1(E) x [0,1]-» E such that d(H(x,s),g(x)) < e,
H(x, 0) = g(x), H(x, 1) = h(x); it is extended by continuity to X x [0,1]. The
map h is thus homotopic to f and /i-1(B) is a smooth submanifold of X.

D. Homology and Homotopy of Thom Spaces

Suppose B is a finite CW-complex; then for any vector fibration £ =
(E, B, Rk,p) of rank k with base space B, the Thom space T(£) is a (k — 1)­
connected CW-complex. Indeed, if ex is any n-cell of B, p~1(ex) = e'x is a
(k + n)-cell by Feldbau's theorem, and T(£) is the disjoint union of the cells
e'a and the 0-cell {t0} (chap. II, § 6,C).

The homology of T = T(£) is easily computed. If T° = T — B, T° is contrac­
tible, and the homology exact sequence of the triple (T, T°, {t0}) gives natural
isomorphisms Hf(T, {t0};F2)2; H,-(T,T°;F2). There is then an excision
isomorphism H;(T,T°;F2)2; H((E, E°;F2), and finally the Thom isomorphism
Hf(E,E°;F2)~H;_t(B;F2) [chap. IV, §2, formula (51)]. By composition,
there is an isomorphism H,.(T, {t0};F2)2^ H,._t(B;F2); from the homology
exact sequence, H;(T; F2) ~, H((T, {t0}; F2) for i ^ 2, and since T is connected,
this holds for i = 1; finally, there is a natural isomorphism

H^TrOlF^-H.^BiF,) for alliai. (1)
Since the homotopy groups 7Tj(T(cf )) are 0 for 1 ^ i ^ k — 1, it follows from

the improvement of the ^-absolute Hurewitz theorem mentioned in chap. V,
§4,A that if <£ is the class of finite commutative groups, there is a %?­
isomorphism WT(0)-*H.,(B;Z) (2)
for all n < k — 1.

For the applications he had in mind (see below sections E, F, G) Thom
considered the vector bundles of rank k (or the corresponding sphere bundles)
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associated to the principal fiber spaces

(EO(/c),BO(/c),0(/c)) and (ESO(fc), BSO(fc), SO(fc))

(chap. Ill, § 2,E). It is more convenient to work with locally compact bundles
that have these as their direct limits, namely, the vector fibrations (for large N)

ÏN.k = (UN,k,GNtk,Rk) and y'Ntk = (U^.G^^R*), (3)

where UNjk is the tautological bundle with base the real Grassmannian GN k,
and U^fc is its double covering, a vector bundle over the special Grassmannian
G'N k (chap. IV, § 1,C). Thom wrote the corresponding Thom spaces MO(/c)
and MSO(/c), and he made in [463] a deeper study of their homology and
homotopy.

Recall that the cohomology algebra H"(GN k; F2) is generated by the Stiefel­
Whitney classes w,, w2,..., wk of yN k (chap. IV, § 1,C). Using(l), Thom showed
that the cohomology algebra H"(MO(/c);F2) can be identified with the ideal
of H"(GN k; F2) generated by the top class wk. He proved in the same way that
for odd primes p, H"(MO(/c); Fp) is the ideal in H"(GN t;Fp) generated by the
cup-square e— e of the Euler class e = e(yN k). There are similar results for
MSO(/c).

Concerning homotopy groups, the Freudenthal theorem on homotopy
suspension (chap. II, § 6,E), together with the variant of the first Whitehead
theorem which he proved for that purpose (chap. II, § 5,F), enabled Thom to
prove that for i < k — 1 there is a natural isomorphism

;rt_1+i(MO(fc))2;WMO(fc)) (4)
and there is a similar isomorphism for MSO(/c). For given i the groups
nk+i(MO(k)) [resp. 7rt+i(MSO(/c)] are all isomorphic as soon as k > i + 1, the
same phenomenon of stability as for the homotopy groups of spheres (chap.
H,§6,E).

Inspired by the results on the cohomology of the Eilenberg-Mac Lane
spaces K(Z/2Z, n) obtained by Serre (chap. VI, § 3,E), and with some assistance
from the latter, Thom was able to prove similar results for the cohomology
of the spaces MO(/c). He first showed that the classes Sq'(wt), for admissible
sequences I of degree k (loc. cit.) are linearly independent in H"(GN t;F2) for
large N. Expressing w,, w2, ..., wk as elementary symmetric polynomials in
"phantom" indeterminates t,, t2, ..., tk [cf. Hirzebruch's method for Chern
classes, chap. IV, § 1,E formula (30)], Thom wrote a basis over F2 of

HH*(MO(/t);F2) forfisj/c

as symmetrized polynomials* of monomials in the ty.

* The symmetric group S„ acts in an obvious way on any polynomial in t,, t2,..., t„.
The symmetrized polynomial s(P) of a polynomial P is the sum of the distinct
polynomials in the orbit of P under the action of <5„.



§ ID, E VII. Generalized Homology and Cohomology 561

xj, = s((t, y ■+1 {t2r+1 ■ ■ ■ rt,r+1 tr+1 • • • tk), (5)

where a) = {a,,a2,...,a,} is an arbitrary partition of the number h. A study of
the behavior of the elements Sq^Xj,) then enabled him to define a continuous
map

F: MO(fc) -» Y = fi (K(Z/2Z, k + h))m (6)
.1=0

where d(h) is the number of partitions a> of h into integers as such that
ûj + 1 is not a power of 2 (nondyadic partitions). The crucial property of
that map is that if Y2k is the 2/c-skeleton of Y, there exists a continuous
map g: Y2k -> MO(/c) such that g o F is the identity on the (2k — \)-skeleton
of MO(/c). This shows in particular that for h < k, nk+h(MO(k)) is an F2-vector
space of dimension d(h).

Thom could also describe the vector spaces Hm(MO(/c); F2) explicitly for
small values of m and k.

The description of the "stable" homotopy of MSO(/c) proved more difficult,
and Thom could only obtain partial results and compute explicitly the stable
groups nk+i(MSO{k)) for i ^ 7. This was because in order to prove the
existence of a map similar to the map (6), the product of Eilen berg-Mac Lane
spaces on the right-hand side of (6) must be replaced by a tower of nontrivial
fibrations with Eilenberg-Mac Lane fibers. Thom only considered a fibration
with base space K(Z, k) and fiber K(Z, k + 4), defined by an Eilenberg-Mac
Lane invariant (chap. V, § 2,A), which turns out to be a lifting to the cohomology
group Hk+5(Z, k; Z) of the Steenrod reduced power St|(i) of the canonical class
i of K(Z,/c) (chap. V,§1,D).

E. The Realization Problem

The first problem to which Thom applied his basic construction in his
fundamental paper [463] was: given a smooth compact manifold X of dimension
n and a homology class z e H„_t(X; F2), is there a smooth closed submanifold
W of X, of codimension k, such that z = i*([W]) for the natural injection
i: W -* X? If such is the case, the class z is said to be realizable by the
submanifold W.

Thorn's construction allowed him to replace that problem by an equivalent
one concerning the cohomology class z* e H'(X;F2) dual to z by Poincaré
duality (Part 2, chap. I, § 3).

A canonical cohomology class uT(?) e H'(T(iJ); F2) is defined for every vector
fibration Ç = (E, B, R') of rank k; it is the image of the fundamental class uE> E„
of relative cohomology in H'(E, E°; F2) (chap. IV, § 2) by the map

H*(E, E°; F2) ~ H*(T, {t0}; F2) ~ H*(T; F2)

(section D). Thorn's theorem is then:

A necessary and sufficient condition for z e H„_t(X;F2) to be realizable is that
the corresponding cohomology class z* e H'(X;F2) be such that z* = f*(uk),



562 3. Homotopy and its Relation to Homology

where uk is the canonical cohomology class of T(ym k) with large m, and f a
continuous map f:X-* T(ym t).

Necessity. Let W be a smooth submanifold of X of codimension k, and
consider an open tubular neighborhood N of W, identified with the total space
of the normal bundle v = (N, W, R') of W in X. There is a continuous map
g: W -> Gm k for a large integer m, such that v is the pullback g*{ymik) (chap.
Ill, § 2,E). Let G: N -> Um k be the corresponding bundle map, which extends
continuously to a continuous map /: X -> T(ymk) by taking f(x) = t0 for
x e X — N. This gives the commutative diagram

£— H*(X;F2)

/•

—- H*(X,X-W;F2) (7)

li­
► H*(N,N°;F2)
G*

where the arrows e are isomorphisms defined in section B and j* comes from
the exact cohomology sequence. The left vertical arrows are isomorphisms,
and G*(uUm Vo = uN N« (chap. IV, § 2); therefore

f*(uk) = j*(e{uNiNo)).

But j*(e(uN>No)) is the cohomology class dual to i*([W]) (chap. VI, §4,B).
Sufficiency. Suppose f:X-* T(ymk) is such that f*(uk) = z*. Then Thorn's

construction (section C) yields a map h: X -> T(ymJt)homotopicto/such that
h is Cx in h'1{\Jmik), h is transverse over Gmk, and therefore W = h~1{Gmk)
is a smooth submanifold and the pullback h*(ymk) is isomorphic to the normal
bundle of W in X. Then h*(uk) = z*, and the first part of the proof shows that
z* is the dual cohomology class of i*([W]), where i: W -> X is the natural
injection.

The results obtained by Thom on the cohomology of MO(/c) (section D)
allowed him to apply the preceding theorem to the realization problem for
homology modulo 2. From the properties of the map F [formula (6)] follows
the existence of a continuous map g of the 2/c-skeleton (K(Z/2Z, k))2k into
T(ym,t) such that

g*{uk) = e*

the unique cohomology class /0 in H'(K(Z/2Z, fe);F2). On the other hand,
if X has dimension <2fe, for every class z* e H'(X;F2), there is a continuous
map h:X^{K(Z/2Z,k))2k such that z* = h*(e^) (chap. V, §1,D), Thus for

H'(T(ym,t);F2)

Hk(T(ymk),{t0};F2)

H (Um,fc,Um,t;F2)
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/ = g o h: X -> T(ym k), z* = f*{uk), hence every homology class in H'(X; F2)
is realizable if X is a smooth manifold of dimension ^ 2k. Serre pointed out
that H"(K(Z/2Z, k); F2) has infinite dimension, whereas H'(T(ymJt); F2) is finite
dimensional; for n large enough, there cannot exist a continuous map g:
(K(Z/2Z, k))„ -»• T(ym t) that would be a homotopy inverse (chap, II, §2,C) to
the continuous map T(ym k) -> (K(Z/2Z, k))n. Hence, for large enough n, there
are homology classes in H„(X; F2) which are not realizable if dim X > n.

Nevertheless, a more detailed study of the cohomology mod. 2 of MO(/c)
shows that for a manifold X of dimension n, all classes in H„„1(X;F2) are
realizable for any n, all classes in H„_2(X; F2) if n < 6, all classes in H„_3(X; F2)
if n < 8, and finally, all classes in Hj(X; F2) if i ^ n/2, for every n.

Thom also considered the realization problem for classes in H.(X; Z) when
X is an orientable smooth manifold and the submanifolds W that must
"realize" homology classes are also restricted to orientable ones. The normal
bundle of W in X is then also orientable (chap. IV, § 1,C), and is therefore
associated to a principal fiber space with structural group SO(/c) (loc. cit.). If
X is orientable, a homology class in H.(X; Z) is realizable for the rotation group
SO(/c) if it is realizable by an orientable submanifold of codimension k. Thorn's
main theorem reducing the problem to a problem on cohomology classes can
then be extended by replacing T(ym k) by T(y'mk). Using his results on the
cohomology of MSO(/c) (section D), he could show that for any integer n > 1
in an n-dimensional compact connected orientable manifold X, all homology
classes in H„_, (X; Z), H„_2(X; Z), and H,(X; Z) for i ^ 5 are realizable for the
rotation group. He also showed that for given n and k, there is an integer
N > 0, depending only on n and k, such that for every class z e Hk(X; Z), N. z
is realizable for the rotation group.

F. Smooth Classes in Simplicial Complexes

Thom also applied his method to a related problem raised by Steenrod [175]:
if K c RN is a finite euclidean simplicial complex, and z e H,(K; A), does there
exist a smooth compact connected manifold M of dimension r and a
continuous map /: M -> K such that /„([M]) = z, [M] being the fundamental class
of M in H,(M; A)? For A = Z or A = F2 Thom reduced the problem to the
realization problem.

Since K is an ANR (chap. II, §2,B), it is possible to find an open
neighborhood U =i K with a smooth frontier T in RN, for which there is a
continuous retraction r. 0 -> K. Take an open neighborhood V of K such that
K is a retract of V; by a theorem of Whitney there is then a continuous map
h: V -► [0, +oo[ such that /r'(0) = K and which is C0 in V - K; by Sard's
theorem there exists some c > 0 such that U = ^~'([0,c[) has the required
properties. Now let X be the double of Ü (Part 2, chap. V, § 2,F), and consider
the natural projection p: X -> Ü; it is clear that r' = r o p; X -> K is a
retraction, and if i: K -> X is the natural injection, r' o i is the identity in K, so
r'*: H'(K; A) -► H'(X; A) is injective.
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Using this construction, Steenrod's question is answered by the following
theorem: for zeH,(K;A) to be equal to /„.([M]) for a continuous map
/: M -> K with M a smooth manifold, it is necessary and sufficient that, after
embedding K in an RN with sufficiently large N and considering a "double"
smooth manifold X in RN containing K, the class i^(z) e H,(X; A) be realizable.

The sufficiency is evident, since if i^(z) = [W] for a submanifold W of X,
r;([W]) = WJz)) = z.

To prove necessity, consider a continuous map /: M -> K such that
/*([M]) = z. It is possible to suppose that the origin 0 of RN is in K; on the
other hand, there is an N' such that there is an embedding g: M -> RN'.
Consider K as embedded in RN+N', and let X be a corresponding smooth
manifold that is the "double" of a closed neighborhood Ü of K in RN+N. It is
enough to show that there is a homotopy F: M x [0,1] -> U between the map
/ and a map h:M-*U such that h(M) cljisa smooth manifold diffeo­
morphic to M. Such a homotopy can be defined by

F(x,t) = ((l-t)i(f(x)),atg(x))

where i: K -> U is the natural injection and a > 0 is taken small enough so
that the values of F(x, t) are all in U. Then xi—*h(x) = F(x, 1) = ag(x) maps
M homeomorphically on a submanifold of Un RN' c X, so that ^([M]) =
U/*([M])) = i„(4

Since in that theorem N can be taken arbitrarily large, the results obtained
for the realization problem give a complete solution to Steenrod's problem
for A = F2: any homology class z e H,(K;F2) can be written /„.([M]) for a
continuous map /: M -* K where M is a smooth manifold.

The results are much less complete for A = Z. If r ^ 5, then all classes
z e H,(K;Z) are again images of fundamental classes of smooth manifolds.
But a deeper study, using the antipodism of the Steenrod algebra (chap. VI,
§ 3,D) enabled Thom to prove that the same statement is false for all r "> 7.
However, for any r > 0, there is an integer N > 0 depending only on r, such
that N. z is the image of the fundamental class of a smooth manifold for every
finite simplicial complex K and every z e H,(K; Z).

G. Unoriented Cobordism

The most remarkable part of Thorn's fundamental paper [463] in his creation
of cobordism. He described two theories: unoriented cobordism dealing with
smooth manifolds, which may be orientable or not; and oriented cobordism,
where only oriented manifolds are considered.

The basic notion is that of a smooth n-dimensional manifold-with-boundary.
This is a paracompact Hausdorff space X, equipped with a family of charts
<pa: Ua -* H„, where (UJ is an open covering of X, and H„ is the closed half­
space of R" consisting of points (x,,x2,--.,x„) such that x, "> 0; each <px is a
homeomorphism of Ua onto an open subset of H„; if UanU,/ 0, (pe ° (p'1 :
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(pa{Ua n \Jf) -* (pß{Ua n U^) is a diffeomorphism* The points x e X for which
there exists a chart (pa\ Ua -> H„ for a domain Ua containing x such that
(px{x) belongs to the hyperplane x, = 0, frontier of H„ in R", are called the
boundary points of X. The set dX of boundary points of X is called the boundary
of X, a smooth (n — l)-dimensional manifold (without boundary, connected
or not). A smooth manifold-with-boundary X is triangulable in such a way
that dX becomes a simplicial subcomplex of X for the triangulation.1 At a
boundary point x e dX, the tangent space Tx(dX) is a hyperplane in the tangent
space TX(X). There exists a diffeomorphism h of dX x [0,1[ onto an open
subset of X that maps dX x {0} onto dX; for any x e dX the tangent vectors
v in TX(X) which are the images by Tx(h) of the vectors (u, t) in Tx(dX) x [0,1 [
with t > 0 form a half-space of TX(X) and are said to "point inside X" ( — v is
then said to "point outside X"). The normal bundle of T(X)/T(<3X) is a trivial
line bundle.

The following problem was raised by Steenrod [175]: find necessary and
sufficient conditions for a smooth n-dimensional compact manifold M
(without boundary, but not necessarily connected) to be diffeomorphic to the
boundary dX of an (n + l)-dimensional smooth manifold-with-boundary X.
Pontrjagin [379] had found necessary conditions on the cohomology of the
tangent bundle T(M) that we shall describe a little later. In his 1954 paper
[463] Thom introduced a new method using his basic construction (section
C) that allowed him to completely solve Steenrod's problem.

His idea was to introduce among n-dimensional smooth manifolds (without
boundary) an equivalence relation R„. two such manifolds M, M' are cobordant
(or cobordant mod. 2) if their disjoint union M JJ M' is diffeomorphic to the
boundary of a smooth (n + l)-dimensional manifold-with-boundary. The
relation is obviously symmetric; to prove that it is reflexive it is only necessary to
observe that if M is any smooth n-dimensional manifold, the union of M x {0} and
M x {l}inM x Ris the boundary of the manifold-with-boundary M x [0,1].
Finally, to show that R„ is an equivalence relation, it only remains to prove it
transitive. Suppose there is a diffeomorphism h1 : M, JJ M2 2; dW, and a
diffeomorphism h2: M2 JJ M3 2; <?W2. Form a space W by identifying in W, JJ W2
the points h^x) and h2(x) for every x e M2, and let q: Wt JJW2 -> W
be the natural surjection. To define a differential structure on W, it is
enough to define charts only for the points y = q(/i,(x)) = q(h2(x)) for
x £ M2, the other ones being obvious. Let <p, : U, -> H„+1, (p2: U2 -> H„+, be
charts for neighborhoods U, of h,(x) in W, and U2 of h2{x) in W2; it may be
assumed that </),(U,) and <p2(U2) are both the half ball z, ^ 0, \z\ < 1 in R"+1

* A C"° map u of an open set V <= H„ into H„ must be such that for every point z e V,
there is a neighborhood W of z in R" such that WnH,cV and u|(Wn H„) is the
restriction of a C"° map of W in R". A diffeomorphism of V <= H„ onto V <= H„ must
be such that it is bijective and both it and its inverse are C°°.
t For such a triangulation X is a pseudomanifold-with-boundary (Part 2, chap. 1, § 3).
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and that Uq(h1{x')) = q(h 2(x')) tor x' e M2, then <pi(hx(x')) = q>2{h2{x')) e R",
with <p,(/i,(x)) = (p2(h2(x)) = 0. Then take as neighborhood of y in W the
union U = q(U,)uq(U2); the chart (p: U->R"+1 is defined as follows: if
y' = q(h,(x')) e a(U,), then (p(y') = q)1(h1(x')); if y" = q(h2(x")) e q(U2), then
<p(y") = ~ <Piih2{x")). When y' = y", <p(y') = <p(y").

Let 9t„ be the set* of equivalence classes for the relation R„, and write cl(M)
the equivalence class in 9t„ of the smooth compact n-dimensional manifold
M. It is possible to define in 9t„ a law of composition

(cl(M), cl(M'))h-> cl(M JJ M'),

written cl(M) + cl(M'). It is necessary to verify that if cl(M,) = cl(M2), then
cl(M, JJM') = cl(M2 JJM'): if M, JJM2 is the boundary of W, we already
know that M' JJ M' is the boundary of a manifold-with-boundary W, so

(M, [JM')L[(M2[JM') = (M, [JM2)LJ(M'TJM')

is the boundary of W JJ W.
The law thus defined on 9t„ is obviously associative and commutative; it

has a neutral element, written 0, which is the class of all manifolds M that
are diffeomorphic to boundaries of (n -I- l)-dimensional manifolds-with­
boundary: these manifolds are equivalent for R„, because if M, = dQ1 and
M2 = <3Q2, M, JJM2 = 5(Q, JjQ2). If M' is any smooth compact n­
manifold, (M, JJ M') JJ M' = M, JJ(M' JJ M') is the boundary of Q, JJ W,
socl(M1[jM')=cl(M').

We have already seen that cl(M JJ M) = 0, so each element of 9t„ is its
own "inverse"; in other words, 9t„ is a commutative group each element of which
has order 2, or equivalently a vector space over F2.

In addition, if P is any smooth compact n-dimensional manifold,
cl(M x P) = cl(M' x P) in yi„ when cl(M) = cl(M'): indeed, if M JJ M' =
dQ, (M x P)JJ(M' x P) = (M JJM') x P is the boundary of Q x P. There
is therefore a natural map

(cl(M),cl(P))h->cl(M x P)

and it can immediately be verified that it is bilinear. The direct sum«. = © nn (8)
«5:0

(with yi0 = F2) is thus a graded commutative algebra over F2.
Thom was able to completely determine the structure of that algebra: it is

a graded algebra of polynomials

* Each compact finite-dimensional smooth manifold (or manifold-with-boundary) is
diffeomorphic to a manifold (or manifold-with-boundary) that is a subspace of the
infinite product space RN. We can therefore speak of the set of equivalence classes of
smooth manifolds that are subspaces of RN, and it is that set which is taken as the
union of the 9Î„.
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F2LV2,v4,v5,v6,v8,v9,...] (9)
with exactly one generator vk of degree k, for each integer k such that k + 1 is
not a power of 2.

The proof of this remarkable theorem relies on the basic construction of
section C and the study of the homology and homotopy of the Thom space
MO(/c) (section D),

I. First he defined, for each integer m> k and every vector fibration £ =
(E, B, R'), a natural homomorphism

^:7rm(T(0)^Wm_t. (10)
By transversality (section B), each continuous map /: Sm -> T(£) is homo­

topic to a continuous map g: Sm -> T(£) which maps the point * of Sm to t0, is
Cx in g~l (E), and is transverse over B, so that g~l (B) is an (m — /c)-dimensional
compact submanifold of Sm. He then had to show that if g0, a, are two such
maps that are homotopic, they are cobordant. Starting with a homotopy

F:Smx[0,l]^T(O
such that F(x, 0) = g0(x), F(x, 1) = g1{x), assume that F(x,s) = g0(x) for
0 ^ s ^ 1/3 and F(x, s) = g,(x) for 2/3 ^ s ^ 1. Let U be the open subset in
Sm x [0,1]

U = F-1(E)n(Smx]0,l[).

By transversality it is possible to approximate F|U by a smooth map
G: U -> E, transverse over B and such that G(x, s) = F(x, s) for (x, s) £ U and
s^ [1/4,3/4]. That map is extended as usual by continuity to a map G,;
Sm x [0,1] -► T(£) such that G,(x,s) = t0 for (x,s) e(Sm x ]0,1[) - U and
G,(x,s) = F(x,s) for s = 0 and s = 1. Then (F|U)"'(B) is a smooth (m + 1)­
dimensional submanifold of Sm x ]0,1[ and its intersection with Sm x {s} is
gë'(B) x {s} for 0 < s ^ 1/4 and ^'(B) x {s} f°r 3/4 ^ s < 1; this proves our
assertion, and A4 is well defined byW]) = ^-'(B)). (11)
The fact that it is a homomorphism follows from the definition of the sum
Ldi ] + Ldil in nm(T(Ç)\ since by that definition (chap. II, §3D) gr"1"1(B) and
g2'(B) must be disjoint in Sm.

II. Thom next specialized (10) to the case

for large m and k and proved that the map (12) is bijective.
(a) He first proved (12) surjective. For k > n + 1, any smooth n-dimensional

compact manifold M can be embedded in Sn+k by Whitney's theorem (Part 1,
chap. Ill, § 1). Consider an open tubular neighborhood N of M in Sn+k,
identified with the normal bundle of M in S„+k. Since R"+k is diffeomor­
phic to Sn+k — {*}, assume that N c R"+k; there is then a smooth map
g: M -* Gn+kk = G„+t t(R) that to every x e M associates the /c-dimensiona.
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vector subspace of Rn+k orthogonal to the tangent vector space TX(M) (the
so-called "Gauss map"). Since the ranks of N and Un+k<k are equal, N can be
identified with the pullback g*{Un+k<k), and it follows from the definition that
the bundle map F: N -> Un+kk is transverse over Gn+kk. Composing F with
the natural bundle map Un+k <k -> Um k for arbitrary m> n + 1, one has a
bundle map F,: N -> Umk that is still transverse over Gmk, and M = F,~'(Gm k).
As usual F, extends by continuity to a map /: Sn+k -* T(ym k) equal to t0
in Sn+k ~ N; cl(M) is clearly the image by the homomorphism (12) of the
homotopy class [/].

(b) The proof of the injectivity of (12) is more involved. Start with a
continuous map g: Sn+k -> T(ymk), which is C00 in âf_1(Um,i.) and transverse over Gm k,
so that M = g~1(Gmk) is a smooth submanifold of dimension n of S„+k.
Assume that M is diffeomorphic to the boundary dQ of an (n + l)-dimensional
manifold-with-boundary Q; we must show that g is homotopic to a constant
map. The proof (somewhat simplified by Milnor) can be divided in two parts;
the first treats a very special case and the second reduces the general case to
the special one.

In the special case Sn+k is identified to Rn+k with the point * at infinity;
it is assumed that Q is contained in Rn+k x [0,|] and that the intersection
of Q with Rn+k x [0,1/4] is the "cylinder" M x [0,1/4], If V, defined by
d(x, Q) < e in Rn+k x [0,1], is a sufficiently small tubular neighborhood of
Q in Rn+k+\ then U = Vn{R"+k x {0}) is the tubular neighborhood of
M x {0} in Rn+k x {0} defined by d{x,M x {0}) < e; when V is identified
with the normal bundle of Q in R"+k x [0,1], U is identified with the normal
bundle of M in R"+k.

Let h be a bundle map of the vector bundle (U, M, R', p) into (Um k, Gmk, Rk);
it is possible to extend it to a bundle map F of (V, Q, R') into (Um k, Gmk, Rk)
by Steenrod's technique (chap. Ill, § 2) after having triangulated Q in such a
way that M becomes a subcomplex of Q. If h is the restriction to U of a
continuous map /: Sn+k -* T(ym k) with value t0 in Sn+k — U, then F can be
extended to a continuous map G: Sn+k x [0,1] -> T(ymk) with value t0 in the
complement of V. Since G(x,0) = f(x) and G(x, 1) = t0 for x eSn+k, f is
homotopic to a constant map.

The problem in this special case is to obtain a map/homotopic to the given
g having a restriction h to U that is a bundle map. Consider first the restriction
gt = g|U; for any x e U in the normal vector space to M at the point p(x), sx,
for 0 ^ s ^ 1, means the image of x by the homotethy z\—> sz in that vector
space. Then H(x, s) = g^sxys is defined for 0 ^ s ^ 1, has a limit H(x,0) =
lims_0H(x, s) that is not 0 for x / p(x), and gives a homotopy H of a,(x) to
h(x) = H(x, 0), which is easily seen to be a bundle map. However, if a is taken
equal to t0 in Sn+k — U (as can always be done by homotopy), H does not
map Fr(U) x [0,1] to t0. It can be modified in the following way. There is a
S > 0 such that d(x, M) ^ je implies |H(x,s)\ ^ S (for a euclidean distance
on UmJt) when x e U. Then take

ni{x,s)=q>(\H(x,s\/ô).U{x,s)
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where £ i—> <p(£) is a Cx function defined in [0, + oo [, increasing in that interval,
equal to 1 in a neighborhood of 0 and tending to +oo with £. H,(x,0) =
/î,(x) restricted to U is again a bundle map, and H,(x, 1) is homotopic to g{x)
by a homotopy sending {Sn+k — U) x [0,1] to t0.

To treat the general case, start from a diffeomorphism h of M x [0,1 [ onto
a neighborhood of dQ in Q that maps M on dQ. It is then possible to define
a smooth map hx of Q onto a "hut" the union of the "cylinder" M x [0,1/4]
and a "roof", the "cone" union of the line segments in Rn+k+1 joining a point
P = (xoA)t0 the points of M x [0,1/4]. This is done as follows:

(a) for y = h(x,s) with xeM,0<s^î, take h1(y) = (x,^s);
(b) for y i h(M x [0,1[), take h1(y) = p;
(c) for y = h(x, s) with jeM,^s< 1, take

/i, 00 = (1 -0(s)).(x, 1/4)+ 0(s).p

where ß is an increasing Cx function in [2,1], equal to 0 in a
neighborhood of j, to 1 in a neighborhood of 1.

Standard techniques of approximation of smooth maps ([232], p. 53) then
yield an embedding h2: Q -* R"+k+1 arbitrarily close to ft, (for k large enough)
and equal to h1 in h(M x [0,^]); the manifold-with-boundary Q2 = h2{Q)
is of the special type considered in the first part of the proof.

This already proves that the vector space yin has dimension d(n) over the field
F2.

III. Before dealing with multiplication in 91. Thom derived, from what he
had already proved, the solution to Steenrod's problem. This uses the concept
of Stiefel-Whitney numbers of a compact n-dimensional smooth manifold
M. Let w,(t), ..., w„(t) be the Stiefel-Whitney classes of the tangent bundle
t = (T(M), M, R"). For each sequence (r1,r2,...,r„) of integers ^0 such that
r, + 2r2 + ■ ■ ■ + nrn = n, the cup-product

Wi(T)"w2(T)'''--w1I(T)'­

is a cohomology class in H"(M;F2); the elements

<w1(tr'---w„(tr",[M]>eF2 (13)
are called the Stiefel-Whitney numbers of M.

In his work (section A) Pontrjagin found a necessary condition for M to be
diffeomorphic to a boundary dQ: all Stiefel- Whitney numbers of M must be 0.

The proof is an application of the homology and cohomology exact
sequences of the pair (Q, M) when M = dQ. The homomorphism

-WH„+1(Q,M;F2)^H„(M;F2)

maps the fundamental class /u0 M of the pair (Q, M) on the fundamental class
[M] ([440], p. 304). By duality between homology and cohomology with
coefficients in a field (Part 1, chap. IV, §5,D) we have, for every cohomology
class zeH"(M;F2),
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<z,[M]> = <z,<3„+1/u0jM> = <'<3„+1z,.u0jM>. (14)

Now the normal bundle of M in Q is a trivializable line bundle since it has a
section nowhere equal to 0; for the natural injection i: M -> Q, we therefore
have for the Stiefel-Whitney classes

i*(w;(T(Q))) = w,(i*(T(Q))) = w,(t) for l^j^n.

From the exact cohomology sequence

(15)

H"(Q;F2)^H"(M;F2) ■a„+.
H"+1(Q,M;F2)

it follows that %+1(i*(z)) = 0 for all z e H"(Q;F2), so by (14), <i*(z\ [M]> =
0; in particular, for r, + 2r2 + • • • + nr„ = n,

<w1(Tr---w„(T)'\[M]> = <i*(w1(T(Q))'.--w„(T(Q))n[M]> = 0.

The elucidation of the structure of the unoriented cobordism group 9t„
enabled Thom to prove the converse: if all Stiefel-Whitney numbers of a
smooth manifold M are 0, then M is diffeomorphic to a boundary dQ.

The proof consists in showing that if cl(M) / 0 in 9t„, then at least one of
the Stiefel-Whitney numbers of M is not 0. From II, M can be identified with
a submanifold f~1(Gmk) c Sn+k for large m and k, where /: Sn+k -> T(ym k) is
C00 mf~1(Umk), transverse over Gm k, and the class [/] in n„+k(T(ymk)) is /0.
For a tubular neighborhood N of M in S„+k, N may be identified with the
normal bundle of M in Sn+k and is the pullback /*(UmJt). Consider the
commutative diagram deduced from (7) for X = Sn+k, where we have
suppressed the field of coefficients F2,

H"+t(T(ym.,))
/•

H"+t(S„+t)

J*

f*
H"+t(T(ym,,),{t0}) ^— H"+k{Sn+k,Sn+k-M)

H"+t(Um.„U°,t)

H"(Gm.)

/•
(16)

H"+t(N,N°)

<D

H"(M)

where g: M -> Gmk is the restriction of/, and <I> is the Thom isomorphism.
The elements of H"(Gm k) are polynomials of weight n in the generators w,,
w2,..., Wfc of the algebra H"(Gm k) (chap. IV, § 1,D); their images in H"(M) are
polynomials of weight n (with coefficients in F2) in the Stiefel-Whitney classes
w, (N),..., wk(N) of the normal bundle N; since the sum T(M) © N is the trivial
tangent bundle of R"+', the g*{w]) are also polynomials of weight n in the
Stiefel-Whitney classes w, (t), ..., w„(t).
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For any vector fibration £ of rank k and any partition <u = {a1,a2,---,ak}
of an integer n let

Uw(0) = sjw, (É), • • •, MO) = s(t?' t52 • ■ ■ CO (17)

when the Stiefel-Whitney classes are expressed as elementary symmetric
functions

Wj(Z) = <Tj(t1,...,tk) (18)
in "phantom" indeterminates t,,..., tk. For large m the scl(w1,..., wk) form a
basis of H"(Gm jj when <u runs through all partitions of the integer n. Suppose
that for the given map / such that [/] / 0 there exists a partition œ of n
such that for the corresponding element X^ in H"+k(T(ymk)) defined by (5),
f*(X"J # 0 in nn+k{S„+k). Write q>m<k (resp. q>) the composite of the left (resp.
right) vertical arrows in (16); by (5) and the definition of the Thom isomorphism
(chap. IV, § 2) X^ = <pm,fc(.sra(u', ,...,wk)); the commutativity of the diagram (16)
then gives

/*(X"J = <p(«*(Uw1,...,wt)). (19)
Let zra = g*(scl{w1,...,wk)); from the properties of the fundamental classes
relative to the homology exact sequences and relative to the Thom
isomorphism (chap. IV, § 2), it follows easily that

</*(X"J,[S„+t]> = <zra,[M]>. (20)
Since f*(X"a) # 0 in H"(S„+t), the element <zra, [M] > is not 0 in F2, and since
zra is a polynomial in the Stiefel-Whitney classes vv,(t), not all Stiefel-Whitney
numbers of M can be 0.

To prove the existence of a partition œ such that f*(X"m) # 0, note that from
the properties of the map F in (6), by composition of that map with the
projection on (K(Z/2Z, n + k))d{n), we obtain a map

F„:T(ym,t)^K(Z/2Z,n+/c)"<")

which, in homotopy, yields an isomorphism

F„.t: nn+k(Y{ymik)) ~ (tt„+,(K(Z/2Z, n + fc)f"> s Ff».

Now consider the commutative diagram

-W(T(ym,*)) -^- (7r„+t(K(Z/2Z,n + /c))d<"»h h'dM
H„+t(T(ym,,)) ——♦ (H„+t(K(Z/2Z,n+/c))"<"»

(coefficients of homology in F2), where the vertical arrows are the Hurewicz
homomorphisms. By definition of the Eilenberg-Mac Lane spaces h'd(n) is
bijective, so Fnit. o h is bijective; this implies that h is injective and its image
Hnn+k(T(ym,k))) >s a vector subspace supplementary to the kernel F~J(0) and
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has dimension d(n) over F2; the assumption on / thus implies h([/]) / 0.
Passing to cohomology, since F* is transposed of ¥nif, the map

F„*: (H"+'(K(Z/2Z, n + /c)f> - H"+'(T(ym,t))

is injective, and its image is naturally identified with the dual space of
h(nn+k(T(ym k))). But by definition (section D) this image of F* has a basis over
F2 consisting of the X"a for all nondyadic partitions of n. Since h([/]) / 0,
there is therefore at least one of these nondyadic partitions <u for which

<Xi,/i([/])>#0
and by definition of the Hurewicz homomorphism [chap. II, § 4,A, formula
(67)], this means that/*(X^) # 0.

IV. To determine the multiplication in 9t. Thom used special n-dimensional
manifolds Mra, indexed by the nondyadic partitions <u of n, such that the classes
cl(Mra) form a basis for 9t„. From the arguments of III it follows that there
is in nn+k{T(ymk)) (for large m and k) a basis ([/«J) such that (h([faJ)) is the
dual basis of the basis (X^) of the image of F*. It may be assumed that fm is
transverse over Gmk, and Mra = /ra_1(Gm,t) in Sn+k. By definition f*{X"m.) = 0
for two different nondyadic partitions <u, to' of n; if Nra is the normal bundle
of Mra in Sn+k, it follows from (19) and (20) that if zm. = sa.{w1 (NJ,..., wk(NJ),

<V,[MJ)=0 for to #o/. (21)
It is enough to show that if n = r + s, <u, (resp. <u2) 's a nondyadic partition

of r (resp. s), and <u = <u, JJ<u2, then in the algebra 91.,

cl(MJ = cl(Mrai x Mra2) = cl(Mrai)d(M„2). (22)

Indeed, if va = cl(Mjnj) for every integer a which is not of the form 2m — 1, it
follows from (22) by induction on n that for every nondyadic partition <u =
{a,,a2,...,a„} of n,

cl(MJ = vatva2---vari, (23)
and the structure theorem follows.

Relation (22) means that Mra and M x Mra2 are cobordant. This follows
from the Pontrjagin-Thom criterion proved in III if Mra and Mra x Mra2 have
the same Stiefel- Whitney numbers.

Let Nra be the normal bundle of Mra in R"+' and Nrai (resp. Nra2) be the
normal bundle of Mrai in W+k' (resp. the normal bundle of Mra2 in Rs+I:") with
k' + k" = k (k' and k" large); then the normal bundle of Mrai x Mra2 can be
written as a Whitney sum

Nra„ra2 = prïNrai®pr-ÎNra2. (24)
For clarity, we write as za.(Na) the element of H"(Mra) written za. above, and
similarly zm-(Nmi), zm- (Nra2) are the elements of H'(Mrai) and Hs(Mra2) defined
in the same manner, <u', (resp. <u2) running through all nondyadic partitions
of r (resp. s). If
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-V(Nra„ra2)eH"(Mrai xMra2)

is also defined in the same way for every nondyadic partition of n, we must
prove that

<z„.(NJ, [M„]> = <z«,(Nra.,rai). [Mra, x MraJ> (25)
for all such partitions to'; this will imply that all Stiefel-Whitney numbers of
Mra are equal to the corresponding Stiefel-Whitney numbers of M x Mra2,
because the Stiefel-Whitney classes of a tangent bundle of a submanifold of
an RN are expressed as polynomials in the Stiefel-Whitney classes of the
normal bundle ofthat submanifold [chap. IV, § 1,B, formula (7)].

The computation of the classes zra(Nrai ra2) is, by (24), a special case of the
computation of sa(w(Ç © £')) for two vector fibrations Ç, £,' with base space a
smooth manifold of dimension n and a partition <u of n, the ranks of £ and £'
being > n. The general formula Thom proved is

sjw(£ ©£')) = I «„.ME))-srai(H-(É')) (26)
Willw2=w

the sum being over all disjoint unions <u, JJ<u2 = <u. Using "phantom"
indeterminates t,., ...,tk,tk+1,...,t2k with k > n to express the Stiefel-Whitney
classes of £ and £', the verification of (26) is easily reduced to the purely
algebraic formula

sjo-,,..., o-J = £ smi{a\,a'2,...)smi{a'i,al,...) (27)
(Ut l_l W2 = W

where cr, (resp. crj, crj') is the j'-th elementary function of t,,..., t2k (resp. t,,...,
tk, resp. tk+1,..., t2t); the verification ofthat formula is straightforward.

Applying (26) to the expression (24) of the normal bundle Nrai jCl)2, we get

<v(w(NC01jC02)),[MC0i x Mra2]>

= I <pr?(vi(w(Nrai))^prî(srai(w(Nra2)),[Mrai]x[M„1]> (28)
m\ V±m'2=m'

the sum being over all disjoint unions a/, JJa/2 = ^'j but on'y tne terms of
that sum for which <y', is a partition of r and a/2 is a partition of s can be /0,
and the sum is then [Part 1, chap. IV, §5,H, formula (81)]

I < V, (w(Nrai )), [Mra, ] >. < V2(w(Nra2)), [M„2] >
W| l_lm'2=oi'

restricted to those partitions of r and s. Finally, by using (21) we see that
<zra-(Nra.ira2), [Mrai x Mra2]> = 0 except when a)'=o) = a), JJo)2, ending the
proof.

V. The manifolds Mjnj for integers a other than the numbers 2m — 1 were
not all explicitly described by Thom; he only showed that for even values of
a, cl(Pa(R)) = va, and he gave examples of other manifolds whose classes in
91. are the va for a ^ 8. The description of the generators va for odd a was
completed by Dold [141]. Let P(m, n) be the quotient space of Sm x P„(C) by
the equivalence relation
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(x,z) = (-x,z)

so that Sm x P„(C) is the universal covering space of P(m, n). Then for
odd j = 2r(2s + 1) — 1 with r > 1, s > 1, v, is the class of the manifold
P(2r — l,s.2r); Dold's proof consists in explicitly computing the Stiefel­
Whitney numbers of P(m, n) and checking that they are not all 0 for
P(2r- l,s.2r).

H. Oriented Cobordism

The theory of oriented cobordism introduces an equivalence relation R'n
between oriented n-dimensional smooth compact manifolds (without
boundary). To say that an (n + l)-dimensional smooth manifold-with-boundary W
is oriented means that its tangent bundle is oriented (chap. IV, § 1,C). Since
the normal bundle of dW in W is trivializable, the tangent bundle to dW is
orientable: it is given the orientation induced by the orientation of W by taking
in each tangent space Tx(dW) as oriented basis (u2,.,,, u„+, ) such that if u, is
a tangent vector in TX(W) which "points out" of W, (u,,u2,...,u„+,) is an
oriented basis of TX(W).

For an oriented manifold X (with or without boundary), write — X the same
manifold with the opposite orientation. Then two oriented n-dimensional
smooth compact manifolds M, M' are equivalent for R'n (or cobordant if no
confusion is possible) if there exists an (n + l)-dimensional smooth manifold­
with-boundary W such that 3W, with the orientation induced by the
orientation of W, is diffeomorphic* to M JJ ( — M'). The fact that R'n is an equivalence
relation is easily verified in the same way as in unoriented cobordism; reflexiv­
ity here is due to the fact that M]J( —M) is the oriented boundary of
M x [0,1]. Thom wrote £2„ for the set of equivalence classes for R^. If the
equivalence class of M for R'n is again written cl(M), a law of composition in
n„ is defined by

(cl(M), cl(M')) i-> cl(M [] M')

written cl(M) + cl(M'). It is again easily verified that this definition is
meaningful, and gives a structure of a commutative group on £2„, the neutral
element 0 being the class of n-dimensional oriented manifolds that are
boundaries of oriented (n + l)-dimensional manifolds-with-boundary; here
n„ may have elements of finite or infinite order.

The graded algebra n. = © a (29)
«5:0

(with no = Z) is defined in the same way as 91., but it is now anticommutative,
since in an exterior algebra zp a zq = ( — \)pqzq a zp when zp has degree p and
zq has degree q.

* We say that two oriented manifolds are diffeomorphic if there exists a diffeomor­
phism between them that preserves orientation.
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The notion of transversality and the transversality theorem (section B) are
easily extended to manifolds-with-boundary. The argument leading to the
isomorphism theorem (12) may then be repeated with slight modifications
when ymJt, GmJt, UmJt are respectively replaced by y'mk, G'm<k, and U'm,k; they
establish an isomorphism of commutative groups

kymk:nn+k(T(y'mtk))znn (30)
for large m and k.

As Thorn's results for the cohomology of MSO(/c) were much less complete
than for MO(/c), he could only explicitly determine the groups £2„ for n ^ 7:

i^ = a, = a, = o,* n4 = z, si5 = z/2z, n6 = n7 = o. (3i)
The ^-isomorphism (for the class %? of commutative finite groups)

*r(T0-;.t)) - Hr(G^>t; Z) for r < 2k - 1

[section D, formula (2)] also enabled Thom to show that Sïn is finite for n ^ 0
(mod. 4), and il4r ® ZQ has dimension c(r) over Q, where c(r) is the number of
all partitions of r.

For a smooth, oriented manifold M of dimension Ar, the Pontrjagin numbers
are defined in the same way as Stiefel-Whitney numbers: for any partition
{aua2,...,ar}o(r,

<PÏ-pS2-"PM_M]>eZ

where Pj = pj(T(M)) e H4j(M; Z) is the j-th Pontrjagin class of the tangent
bundle T(M) (chap. IV, § 1,C). By the same argument as in section G
Pontrjagin showed that when M is the boundary of an (n + l)-dimensional manifold­
with-boundary all Pontrjagin numbers of M are 0.

Using results of A. Borel and Serre on the generation of the cohomology
of special grassmannians by Pontrjagin classes [68], Thom repeated his
arguments of section G for Q4r ® ZQ. For each partition œ of r there is a
4r-dimensional oriented manifold Wra with all its Pontrjagin numbers equal
to 0 except the one corresponding to the partition <u. He showed that in
ß4r ® Q, cl(WJ = cl(Wrai). cl(Wra2) if co = œl \Jœ2. It is easily verified that
for each integer a ^ 1, W{a} is cobordant to P2a(C), and therefore the algebra
Œ. ® zQ 's isomorphic to the algebra of polynomials Q [w4, w8,... ] with w4„ =
cl(P2„(C)). Finally, Thom proved that if an oriented manifold M has all its
Pontrjagin numbers equal to 0, then cl(M) has finite order in the group Î2..

I. Later Developments

Thorn's paper immediately attracted much attention among topologists. The
first challenge was to complete the determination of the structure of the ring
SI.. This was done between 1956 and 1959 by the combined contributions of

* The relation Q3 = 0 (in another formulation) had been announced earlier by Rokhlin
[397], without a complete proof.
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several mathematicians. Thom had left open the question of the structure of
the torsion subgroup for every group £2„ with n ^ 8. In 1959 Milnor [344] and
Averbuch [36] independently obtained an important result in that problem:
there is no odd torsion; the order of an element of finite order in a group £2„ is
always a power of 2. Milnor's proof used a deep study of the Steenrod algebra
s/p for odd p and the Adams spectral sequence (see below, § 5,D).

The complete determination of the torsion of the groups £2„ and the algebra
structure of il. was accomplished in 1959 by C.T.C. Wall [479]. He proved
the following theorems.

I. Every element /0 and of finite order in a group £2„ has order 2.
II. For each q ^ 1, there is a subgroup 2B, of 91, and a homomorphism

d: W&q -> CÏ,,-! such that the infinite sequence

...^«^l-^g-B^iVi^n,-!-*"- (32)
is exact, where . 2 is multiplication by 2, and r the "forgetful" map that to the
class of an oriented manifold in Cïq associates the class of the same manifold
in 9t,j when its orientation is disregarded.

III. The direct sum 2B. = @qit03Bq (with 2B0 = F2) is a subalgebra of 91.
and the composite maps

<z;:g-B,-£«,_!-ism,-! <33)
define a derivation d' of the algebra 3B..

IV. 3B. is a graded algebra of polynomials
F2[z2,z4,z5,z6,z8,z9,...] (34)

with exactly one generator zk of degree k for each integer k such that k + 1 is
not a power of 2:

z2q-i = v2<j-i f°r 1 not a power of 2, z2.,+. = v2/ for j ^ 1, (35)
and

d'(22q) = T-iq-r for q not a power of 2, d'(z2J+.) = 0, d'(z2q-i) = 0.
(36)

V. The ideal © of torsion elements in Î2. is an algebra over F2 isomorphic
to the subalgebra Im(d') of 3B.. The quotient algebra Î2./0 is isomorphic to
the algebra of polynomials Z[w4,w8,w12,...] (37)
and the multiplication in Î2. is such that for U £ © = Im(d'),
w4jU = zi-U e lm(d') = 0.

VI. In order that an oriented manifold be diffeomorphic to the boundary
of an oriented manifold-with-boundary, it is necessary and sufficient that its
Stiefel-Whitney numbers and its Pontrjagin numbers all be 0 (the solution of
Steenrod's problem for oriented manifolds conjectured by Thom).

Wall used the Milnor-Averbuch result and the fact that the sequence
Slq ——> Slq A yiq is exact, announced earlier by Rokhlin [390] and for which
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Dold had given a proof [142]. The center of the proof is a construction of 3B,
and of the map d inspired by a similar construction by Rokhlin [399], but
Wall did not use any of Rokhlin's results. For clarity it is convenient to write
cln(M) and clgi(M) the classes in Q. and 9t..

The elements of 3B, are the classes cl^M) of manifolds M of dimension q
for which the first Stiefel-Whitney class w1(T(M)) is the image of a
cohomology class u e H*(M; Z) by the natural homomorphism

Since there is a natural bijection H*(M; Z) 2; [M; K(Z, 1)] (chap. V, § 1,D) and
K(Z, 1) has the homotopy type of S1; there is a continuous map /: M -> St
such thatu = f*{sl), where st is a generator of H1(S1;Z) ^ Z, so w1(T(M)) =
f*(si), where'sl is the unique element /Oin H^S^Fj). If Wj,(T(M)) = 0, take
d(clyi(M))) = 0; we may therefore suppose w1(T(M)) / 0. Since st is the
Stiefel-Whitney class of the nontrivial double sheet covering space S\ of S1;
w1(T(M)) is the Stiefel-Whitney class of a nontrivial double sheet covering
space /*(S'1) of M. By the transversality theorem, it may be assumed that
/_1(*) = V is a (q — l)-dimensional submanifold of M. Wall proved that V is
orientable, that cln(V) only depends on clg[(M), and that 2. cln(V) = 0. It is
convenient to identify S t with the space obtained by identification of the points
0, 1 in the interval [0,1] of R. Since / is transverse over a small interval [0, <5]
and the covering space S\ is trivial above that interval, /""(S'j) is trivial over
/_1([0, (5]), which is therefore an orientable manifold-with-boundary; that
boundary consists of V and Vt = f~l(S), and is therefore orientable. By
transversality, the normal bundle of V in M is trivial, so there is a diffeo­
morphism of V onto Vt preserving orientation. The same argument may be
repeated for/_1([l — <5,1]) and for its boundary, the disjoint union of V and
V2 = f~l(l — ô). The covering space S\ is also trivial above the open interval
]0,1[, so/_1([(5,1 — <5]) is an orientable manifold-with-boundary, its
boundary being the disjoint union V1JJV2. Finally, the orientations induced on
Vj, and V2 give, by the diffeomorphisms mentioned above, the same orientation
on V, since otherwise the covering space f*(S'1) would be trivial; this proves
thatcln(V[]V) = 0.

If clgi(M) = clgi(M'), so that there is a manifold-with-boundary B such
that dB = M JJ M', and if we have two maps /: M -> S1; f'\ M' -> St with
/_1(*) = V, /,_1(*) = V', there is a map F: B -> St extending / and /' and
transverse over the point *, so that F_1(*) = C is a q-dimensional
orientable manifold-with-boundary; its boundary is (±V)JJ( + V), and therefore
cln(V) = ±cln(V); but since 2.cln(V) = 0, this means cln(V) = cln(V). The
map d: 3B, -* £lq-t is thus well defined, and easily seen to be a homomorphism.

Next Wall proved that the sequence 3B, -> Slq-t ——> Qq-i is exact. Suppose
V is an oriented (q — l)-dimensional manifold such that 2.cln(V) = 0; there
is therefore an oriented q-dimensional manifold-with-boundary M' such that
dM' = V1JJV2, where V1; V2 are oriented manifolds diffeomorphic to V.
Let p be a smooth distance on M' such that p(Vt, V2) > 1; consider a map
g: M' -»• [0,1] such that
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g(x) = p(x,\l) ifp(x,V1)<i
a(x) = l-p(x,V2) ifp(x,V2)<i
dix) = i at other points.

If h: Vj, -> V2 is a diffeomorphism preserving orientation, let M be the
manifold (without boundary) obtained by identifying x and h(x) for every x e Vt,
and let V be the submanifold of M image of Vt JJ V2 by that identification;
since g(x) = 0 for x e Vt and g{x) = 1 for .x e V2, there is a continuous map
/: M -> Sj, such that /_1(*) = V and f(x) = g(x) for x $ V. Then one shows
that cl9i(M) belongs to Wq, and by the construction, d(c\<}i(M)) = cln V.

Wall postponed the proof of the exactness of the sequence £2, -4 3B, -> il,_1
to the end of his paper, listing it as a consequence of the other theorems
on Q,. It may be derived directly from the definitions by a construction
of Dold [143], inspired by another construction of Rokhlin. If cl^M) e 3B,,
and the submanifold V such that cln(V) = t/(cl5i(M)) verifies cln(V) = 0, there
is an oriented q-dimensional manifold L such that dL = V. There is a
tubular neighborhood T of V in M, and a diffeomorphism (x, t)\-^h(x, t) of
V x [— 1,1] onto T. In the disjoint union

(Mx[-l,l])TJ(Lx[-l,l])
identify each point (x,t)e V x [—1,1] c L x [—1,1] to the point
{h(x, f), 1) e M x {1}. This gives (after "smoothing the corners" in a
standard way [232]) a manifold-with-boundary P whose boundary
is the disjoint union of M x {—1} and of the oriented manifold
((M -T) ;. {l})u(L x {-l})u(L x {1})= M'; therefore

cl„(M) = r(clo(M')).

The fact that 3B. is an algebra is an immediate consequence of the definition
and of the Whitney-Wu Wen Tsiin formula

w,,(É x Ç) = Wl(É) x 1 + 1 x Wl(É')

(chap. IV, § 1,B). In Wall's construction wk(T(V)) = j*(wk(Y(M))) for the
injection;': V -* M, since the normal bundle of V in M is trivial; the homology class
i*([V]) = Wj.fJXM)).— [M] by Poincaré duality and the definition of 9B,; for
any monomial zm = w^TCV))"1 ■ ■ ■ wr(T(V))fl'' of weight q- \,zm= j*{z'l0) with
z'm = w1(T(M))fl' • • • wr(J(M)f-, hence the relations

<^,[V]> = <z;j*([V])> = <z;,Wl(T(M))~ [M]>

= <z^w1(T(M)),[M]>

express the Stiefel-Whitney numbers of V in terms of those of M. Together
with the Whitney-Wu Wen Tsiin formula for the total Stiefel-Whitney class
w(T(M x M')), this shows that

<P(cUb(M)c1,b(M')) = ^'(cl9J(M)).cl3J(M') + cl9J(M).^'(cl9J(M'))
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because the manifolds representing the cobordism classes of both sides have
the same Stiefel-Whitney numbers.

The greater part of Wall's paper is devoted to the structure of the algebra
3B. and the formulas (36). In addition to the generators v2q-i and v2J of the
algebra 91, (section G, V), new generators z2q had to be introduced. In the
space P(m, n) defined by Dold (loc. cit.), define an involution h which associates
the image of (s. x, z) to the image of (x, z) in P(m, n), where s is the symmetry
in Rm+1 with respect to the hyperplane xm = 0. Then consider the space Q(m, n)
obtained by identifying in P(m, n) x [0,1] the points {y,0) and {h(y), 1) for
y e P(m, n); for 2q = 2r(2s + 1) with s > 0, z2q is the class in 91, of the space
Q(2r — l,2rs). The most difficult part of the proof of IV giving the structure
of 3B. is to show that the subalgebra generated by the zk is equal to 3B.; it
requires a delicate study of H"(MO(n);F2) considered as a module over the
Steenrod algebra sé2. Then the derivation d' defines 3B. as a graded differential
algebra, and a study of its homology of that algebra enabled Wall to prove
that:

Ker(rf')/Im(rf') = F2[zl,zi...,zl„. .]; (38)Im(rf') = r(0). (39)
From (39) it follows that no element of © may have an order 2" with n ^ 2,

because for such an element x e £2, (with maximal n), r(x) = d'(x') = r(d{x')),
so r(x — d(x')) = 0, and by exactness x — d(x') = 2x"; if n > 1, then 0 -­
2"x" = 2"~1(x — d(x')) would hold, and since 2d(x') = 0, this would give
2"~1x = 0, contradicting the maximality of n.

The characterization VI of boundaries of oriented manifolds-with-boundary
follows: if the Stiefel-Whitney numbers of M are 0, then cl^M) = 0 by
Thorn's theorem (section G,III); if the Pontrjagin numbers are also 0, then
x = cln(M) e © (section H); but by exactness x = 2y with y e Î2., and since
there is no odd torsion, 2y = 0, so x = 0.

Finally, Ker(<i) = Ker(d'): obviously Ker(<i) <= Ker(d'); if x e Ker(d'),
r(d(x)) = 0, so d(x) = 2y, and since 2d(x) = 0, Ay = 0, so 2y = 0 and
x £ Ker(d). The same argument shows that the 'restriction of r to ©
is injective, and (39) shows that is isomorphic to Im(d'); since
(Î2./0) ® F2 = Ker(d')/lm(d'\ the knowledge of the structure of the algebra
3B. implies the results on the structure of Î2,. In particular

il8 s Z ® Z, 0, s (Z/2Z) ® (Z/2Z), O10 s Z/2Z, nu s Z/2Z,

and all groups £2„ with n ^ 8 are /0.
In his 1954 paper Thom had already remarked that his basic construction

(section C) could apply not only to the orthogonal groups 0(/c) and SO(/c),
but to any closed subgroup G of 0(/c); it was only necessary to replace the
principal fiber space (EO(/c), BO(/c), 0(/c)) by (EG, BG, G), where BG is a
classifying space for G and EG the corresponding universal fiber space (chap. Ill,
§2,F). In 1960 Milnor and Novikov were the first to investigate such a theory
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for a group G other than 0(/c) and SO(/c), namely, the unitary group U(/c)
[344], The pattern of the study of the homology and homotopy of the
corresponding Thom space MU(fc) follows Thorn's methods in outline, but
with the injection of a strong dose of more sophisticated tools, such as the
Adams spectral sequence and concepts derived from the idea of "spectrum"
of spaces (see below § 5,C),

There is a corresponding "cobordism" theory called complex cobordism. It
deals with "stably almost complex manifolds," with or without boundary: an
n-dimensional manifold M defined by the property that it can be embedded
in a sphere S„+2m of high dimension for which the normal bundle of M in
S„+ 2m is associated with a principal fiber space having U(m) as structural group
[344],

After 1960 all other "classical groups" were likewise investigated from the
point of view of cobordism [458].

§ 2. First Applications of Cobordism

A. The Riemann-Roch-Hirzebruch Theorem

We saw earlier (Part 2, chap. VII, § 1) how during the first half of the twentieth
century the concepts of algebraic topology (cycles, simplicial homology, de
Rham cohomology, homology of currents and Hodge theory) were harnessed
to prove new results in algebraic geometry, After 1950 the new topological
tools (fiber spaces, characteristic classes, sheaf cohomology) brought even
more spectacular progress in the study of algebraic varieties, and, by an
unforeseen backlash, this study was the origin of an entirely new chapter of
topology and algebra, the K-theory. I think it is worthwhile to give a brief
account of these events, which provide a magnificent example of how different
parts of mathematics react with another.

/. The Arithmetic Genus

During the third part of the nineteenth century the study of algebraic surfaces
brought to light an unsuspected phenomenon. Whereas one integer was
attached to a complex algebraic curve, invariant under birational equivalence,
namely, the Riemann genus, for a smooth complex algebraic surface embedded
into some P„(C), there were two such invariants, written pg and pa, called,
respectively, the "geometric" and the "arithmetic" genus, and in general having
different values.

The geometric genus pg was easily defined, being the dimension over C of
the vector space of holomorphic complex differential 2-forms on the surface (a
four-dimensional manifold from the point of view of algebraic topology). But
the definition of pa turned out to be much more involved; it was found that
Pa < Pg always, and for nonsingular surfaces that can be embedded in P3(C),
Pa = Pg, the number q = pg — pa was in consequence called the irregularity of
the surface. It was soon realized that the number q is linked to the one­



§ 2AI, II VII. Generalized Homology and Cohomology 581

dimensional homology of the surface. Picard had already observed that q = 0
when the first Betti number Rt = 0. In 1905 Castelnuovo and Severi published
a proof that in general q = |Rt and that q is the dimension over C of the
holomorphic complex differential l-forms. That proof was based on an earlier
theorem of Enriques, but the proof of that theorem was later found defective
and it was only in 1910 that Poincare provided a correct proof for both the
Enriques and the Castelnuovo-Severi theorem.

When in 1905 Severi started a program aimed at extending the theory of
algebraic curves and surfaces to algebraic varieties of arbitrary dimension n,
the definition of the geometric genus g„ was naturally [for a smooth algebraic
manifold embedded in some PN(C)] the dimension of the vector space of
holomorphic complex differential n-forms on the manifold. But when he tried
to define a general expression that would be the "arithmetic genus" Severi was
confronted with three possibilities (see below, in A,V) he thought should give
the same number, a conjecture he was not able to prove. The most striking of
these tentative definitions was the alternating sum

Pa = gn- <7„-i + <7„-2 -••• + (- ir^i (40)
where gf,- is the dimension over C of the vector space of holomorphic differential
j-forms; it obviously generalizes the expression pa = pg — q for surfaces by the
interpretation of q.

II. The Todd Genus

The work of the Italian geometers on algebraic surfaces had been centered on
the study of what they called "systems" ("linear" or "continuous" ones) of
algebraic curves on a surface. As Picard, Poincaré, and later Lefschetz pointed
out, from the point of view of algebraic topology these curves are special
2-c.yc.es on the surface (Part 2, chap. VII, § 1); but the Italians defined more
restrictive equivalence relations between these cycles than mere "homology."
These concepts were extended by Severi and Lefschetz to algebraic cycles on
complex algebraic varieties of arbitrary dimension. In 1937 J.A. Todd [470]
and independently M. Eger [153], following research by Severi on
"equivalence" of algebraic cycles on a smooth complex algebraic manifold M of
dimension n, introduced "canonical classes", special homology classes in the
groups H2in^j)(M; Z) for 0 ^ j ^ n — 1; Todd conjectured that the expression
(40) proposed by Severi could be expressed by universal polynomials with
rational coefficients (independent of the manifold) in these classes. It was later
discovered that the Todd-Eger classes correspond by Poincaré duality to the
Chern classes Cj(l ^j^n) of the tangent bundle T(M), and Hirzebruch wrote
the formula Todd conjectured in the form

(-l)"Pa+ I = <.Tn{cuc2,...,c„),[Miy (41)
where the T„ are called the Todd polynomials [233]. They can be obtained in
the following way, essentially the one used by Todd [470]: if cu c2, ■ ■ ., c„ are
expressed as elementary symmetric functions of "phantom" indeterminutes tt,
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r2,..., r„, then the power series in z

El , ' -,., = I Tk(Cl,c2,...,cn)z\ (42)/4 1 - e ''z k^o
the first Todd polynomials are1 1 , 1

Ti(c!) = -<:,,, T2(Cl,c2) = — (c?-l-c2), T3(c1,c2,c3) = — cxc2,

T4(c1,c2,c3,c4) = — (-c4 + cxc3 + 3cf + 4c2c? - cf). (43)

Todd published a proof of (41), but it was based on a theorem of Severi of
which the proof was later found insufficient.

///. Divisors and Line Bundles

In 1949 A. Weil found a new way to apply algebraic topology to algebraic
geometry. He showed that on a smooth complex analytic manifold the
classical concept of divisor on algebraic manifolds could be generalized in such a
way that it becomes equivalent to the notion of holomorphic line bundle.

These ideas can best be explained in the simplest case of smooth algebraic
curves, where the concept of divisor was first introduced to algebraically
express the results obtained by Riemann in his "transcendental" theory of
algebraic functions and their integrals. On a smooth algebraic curve I" c P„(C)
(or equivalently a compact Riemann surface), a divisor is simply a 0-cycle

D = Z a* x

where the ax e Z; its degree deg(D) = Xxerax (the value of the
"augmentation"), and D is called positive if ax ^ 0 for all x. Algebraic geometry enters
the picture with the notion of principal divisor. If a meromorphic function /
on r is not identically 0, it has only a finite number of zeros and of poles; to
/ is then associated its "divisor of zeros" (/)0j which is the sum ^^m^.x,
with mx equal to the multiplicity of x as a zero of/; the "divisor of poles" (f)x
is defined as (l//)0, and (/) = (/)0 — (f)x is the principal divisor of/ (the
divisor of the function 0 is taken 0 by convention). Now (fg) = (/) + (g),
deg(/) = 0, and the relation (/) = (g) is equivalent to / = c. g for a constant
c # 0 in C. Whereas for 0-cycles "homology" is a trivial equivalence relation
(any two points are "homologous" if Y is connected), the important relation
between divisors is linear equivalence, meaning

D — D' = (/) for some meromorphic /. (44)
Ever since Riemann first mentioned it, a central problem in the theory of
algebraic curves has been to find the positive divisors linearly equivalent to a
given divisor D, i.e. to find the dimension of the vector space L(D) of all
meromorphic functions / such that (/) + D ^ 0. The relation (/) + D =
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(g) + D for two elements /, g of L(D) means that f/g is a constant, so the set
|D| of positive divisors linearly equivalent to D can be identified to the
projective space P(L(D)) of dimension dim L(D) — 1.

It is easy to see in this simple case how the determination of L(D) can be
translated into a problem of the theory of line bundles. Take an open covering
(\JX) of T such that U^ is the domain of a chart (px: Ux -> C of the analytic
manifold T. For each X let hx be the meromorphic function in U^ that has the
expression z^ fi (z-xf (45)
in local coordinates. Clearly, if U^ nU„/0, the function hjhx in U^ n U„ is
holomorphic and nowhere 0. A holomorphic line bundle (B(D), T, C, n) can then
be defined by charts ^^(UJ^UiXC (46)
with transition functions i/^ o \p~l; (\JX n U„) x C -> (UA n U„) x C given by

<M-(*J$.). •«)
Now suppose that s: T -> B(D) is a holomorphic section; for each A the
restriction s\Ux: Ux -> n~l(Ux) is such that

Zi((s|UJ(x)) = (x,Si(x))

where sx is holomorphic in U^; if U^ nU„^0, then for xeU^nU,,,

s„(x) = (M*)/M*))M*)

or equivalently

s,i(*)/M*) = s„(x)/Mx)

(the values being in C = Cu {°o}). This means there is a meromorphic fund ion
f: r -> C such that /|UA = s^/fi^ for every A; by definition of D this is
equivalent to (/) + D ^ 0.

It easily follows from the definitions that

B(D + D') = B(D) ® B(D'), (48)B(-D)=B(D)* (49)
[the dual line bundle Hom(B(D),r x C)].

These definitions are easily generalized to an arbitrary complex manifold
M (algebraic or not, projective or not) of arbitrary (complex) dimension n. For
a covering (UA) of M by domains of charts U^ -> C", call (fx) a defining family
if each fx is an elementary meromorphic function* and if, when UA n IL, / 0,

* This means a quotient px/qx of two holomorphic functions defined in UA.
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the function fjfk (defined in \JX n U„) is holomorphic and nowhere 0. Two
defining families (fx) and (/p'), relative to respective coverings (Ux) and (Up),
define the same divisor D if whenever \JX n Up / 0,fjfp is holomorphic and
nowhere 0 in Ux n Up. When a divisor D' has a defining family (gx) for the
covering (UA), D + D' is the divisor defined by the family {fxgx). The relation
D ^ 0 means that all fx are holomorphic.

When there is a complex function / defined in an open and dense subset of
M such that for each A, f\V}x is an elementary meromorphic function, then
the functions f\\5k constitute a defining family; / is a meromorphic function
in M and the divisor defined by {f\V5x) is the principal divisor (f). The line
bundle B(D) is defined as above, and relations (48) and (49) are valid; the vector
space L(D) of meromorphic functions in M such that (/) + D ^ 0 is identified
with the space of holomorphic sections of B(D) above M. Two line bundles
B(D), B(D') are isomorphic if and only if D — D' is a principal divisor ("linear
equivalence" of divisors).

The definitions show that when M is a compact algebraic manifold
embedded in a PN(C) ("projective" algebraic manifold) of (complex) dimension
n, a divisor D may be identified with a (2n — 2)-cycle, a linear combination
Yj ot/Sj with integer coefficients a,- of cycles which are intersections of M with
algebraic hypersurfaces S, in PN(C) not containing M; this is a direct
generalization of divisors on an algebraic curve defined above. An important role is
played by the divisor H, the cycle intersection of M and a hyperplane in PN(C)
(or any linearly equivalent divisor). For algebraic projective surfaces, the
intersection number (D. D') of two arbitrary divisors is therefore defined (Part
2, chap. VII, § 1) and invariant under linear equivalence; similarly, for three­
dimensional M, the intersection number (D. D'. D"), etc.

A meromorphic differential n-form œ on an arbitrary complex manifold M
of (complex) dimension n is by definition an n-form defined in an open dense
subset of M such that for a covering {Ux) by domains of charts, each restriction
co\Ux has a local expression

fxdzx a dz2 a • • • a dzn

where fx is an elementary meromorphic function in UA. Such forms need not
always exist, but they do if M is a smooth algebraic projective manifold. For
such a form (fx) is a defining family of a divisor A(co); any two divisors A(co),
A(cü') are linearly equivalent; they are called the canonical divisors on M. A
canonical divisor K is not always positive; if it is, L(K) has dimension gn, the
geometric genus.

IV. The Riemann-Roch Problem

In his theory of abelian integrals Riemann obtained, for the dimension of L(D)
for a divisor D on an algebraic curve, the inequality

dim L(D) > deg(D) + 1 - Pg; (50)
his student Roch completed that result by giving an expression for the differ­
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ence between the two sides of (50), using the canonical divisor K; the equation

dim L(D) - dim(K - D) = deg(D) + 1 - p, (51)
is called the Riemann-Roch theorem for curves.

The Italian geometers investigated the possibility of proving a similar
relation for algebraic surfaces, but they only could prove an inequality

dim L(D) + dim L(K - D) > pa + (D. D) - rc(D) + 1 (52)

where 7r(D) is what they called the "virtual genus" of the divisor D (see below
in A,VI).

The first progress beyond the inequality (52) was accomplished by Kodaira
in 1950 [277]. He worked on compact complex kählerian manifolds (Part 2,
chap. VII, § 1), which of course include as special cases smooth projective
algebraic surfaces; in (52) he replaced pa by pg — jRx, which made sense for
nonalgebraic surfaces. He used Hodge theory, the homology of currents (Part
1, chap. Ill, §3), and the interpretation of divisors by complex line bundles;
by intricate computations he obtained an expression of the difference between
the left- and right-hand sides of (52) (which he called the "superabundance"
of D), in which the dimension of subspaces of the vector space of holomorphic
differential l-forms on M is noticeable.

In 1952 Kodaira extended his methods to three-dimensional compact
kählerian manifolds; as could be expected, his expression for dim L(D) was
even more complicated, having no less than nine terms [278]. Clearly he could
not push much farther in that direction.

V. Virtual Genus and Arithmetic Genus

At the same time Zariski was investigating and putting on secure algebraic
foundations the concepts of arithmetic genus and virtual genus of a divisor
which had been introduced by Severi [526]. His starting point was the Hubert
polynomial /(V) of an irreducible algebraic variety of dimension n embedded
in PN(C). Let C[V] be the graded ring of the restrictions to V of homogeneous
polynomials in the N + 1 coordinates of a point of PN(C), and Rm be the
complex vector space of the elements of C[V] of degree m. Then the dimension
X(V, m) of Rm is equal, for large enough integers m, to a polynomial in m, the
Hubert polynomial of V

X(V, m) = a0 (m\ + a, ( ™ ^ J + • • • + an^ (*) + an (53)

where the as are integers. For large m,

Z(V,m)=l+dim|Cm| (54)
where |CJ is the projective space of the positive divisors linearly equivalent
to the intersection Cm of V and a hypersurface of degree m in PN(C). The first
definition Severi proposed for the arithmetic genus of V was
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A.(V) = (-l)"(a„-l). (55)
Zariski proved rigorously that to a divisor D on V is attached an integer

pa(D), its virtual arithmetic genus, invariant by linear equivalence and such that

p„(D + CJ = p„(D) + p„(CJ + p„(D. CJ (56)
a relation which gives a definition of pa(D) by induction on the dimension n.
He also showed that

dim(D + CJ = (- ir(P.(V) + p„(-D - CJ) - 1 (57)
and that the second definition of the arithmetic genus proposed by Severi
could be written

P.(V) = (- 1)"(P„(V) + Pfl(- K)) - 1 (58)
where K is a canonical divisor; the equality pa(V) = Pa(V) conjectured by
Severi is thus equivalent to

fl if n is even
P-(-K) = {l-2p.(V) if n is odd. (59)

Kodaira proved this in [275] by the same methods as in his two previous
papers on the Riemann-Roch theorem, applied to special types of divisors.

VI. The Introduction of Sheaves

Meanwhile, in 1950-1951 H. Cartan had found in the notion of sheaf (Part
1, chap. IV, §7,B) a particularly useful tool for the expression of the results
obtained by Thullen, Oka, K. Stein, and himself during the preceding 20 years
in analytic geometry (at that time still called "the theory of analytic functions
of several complex variables"). Acting on a suggestion of Serre, he also showed
that sheaf cohomology could lead to generalizations and simplifications
of these results. It has indeed become the frame within which have been
conceived all subsequent works in that theory [235].

On a complex manifold M of arbitrary dimension the fundamental object
is the structure sheaf (9M, whose stalks consist in "germs of holomorphic
functions"; it can be defined as the presheaf U i—► C(U) (Part 1, chap. IV, § 7,B),
where C(U) is the vector space over C of all functions holomorphic in the open
set U (it is obvious that this presheaf is indeed a sheaf). The sheaves used in
analytic geometry are mostly (9M-Modules; the most useful ones are the
coherent 0M-Modules. Such a sheaf J5" is characterized by the property that
each point of M has an open neighborhood V for which there is an exact
sequence of sheaves

0&|V-0Ï,|V-^|V-O
for some integers p, q.

To any complex holomorphic vector bundle E with base space M, is
associated the sheaf J5" = (9(E) of "germs of holomorphic sections" of E,
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defined as above as the presheaf U i—► J^(U), where J^(IJ) is the vector space
of holomorphic sections of E over U. The sheaves (9(E) are locally free: every
point of M has an open neighborhood V such that C(E)|V is isomorphic to
(9rM\V, where r is the (complex) rank of E. Conversely, every locally free sheaf
over M has the form (9(E) with E a holomorphic vector bundle.

In particular, the sheaf corresponding to the vector bundle /\p T(M)* of the
cotangent p-vectors of M is written Î1J, or £"F, so that H°(M; Î2£,) is the vector
space of holomorphic differential p-forms on M.

For a divisor D on M, the sheaf (9(B(D)) corresponding to the line bundle
B(D) is written #M(D); it turns out that computation with those sheaves
is more flexible than that with line bundles. In particular, (9M(D + D') =
CM(D) ® (9M(W) for two divisors D, D', and 0M(-D) = (9M{D)V, the dual
JfW(CM(D), (9U) of the sheaf 0M(D). The divisor D, D' are linearly equivalent
if and only if (9M(D) and (9M(D') are isomorphic.

The main applications of sheaf cohomology given by H. Cartan and Serre
were, relative to domains of holomorphy and their generalizations, the Stein
manifolds; for these manifolds, Cartan's "Theorem B" states that H,(M; ZF) = 0
for all q ^ l and all coherent sheaves J* on M.

VII. The Sprint

In the year 1953 the pace of research on the Riemann-Roch problem suddenly
accelerated, so that the problem was solved at the end of the year.

It all started in January, when P. Dolbeault published a Comptes Rendus
Note [140] that acted as a catalyst for all subsequent papers of the year. His
note dealt with Cx (not necessarily holomorphic) differential complex forms
of type (p, q) (Part 2, chap. VII, § l) on any complex manifold M; they are C00
sections over M of a sheaf sip'q with Çlp c s/p'°. The local expression of a
form <y of type (p, q) shows that doj = d'œ + d"œ, where d'co (resp. d"co) is a
well-determined form of type (p + \,q) [resp. (p, q + l)], and it is clear that
d" o d" = 0. Localizing above any open subset of M, there is a cochain
complex of sheaves

0-»«"-► sfp-°^,rfpA^-- • j/"'"-► 0. (60)
Grothendieck had recently proved for the operator d" a lemma

corresponding to the "Poincaré lemma" for d [214]: if d"(x> = 0 for a form œ of type (p,q),
then <x> = d"a locally on M, where a (only defined locally) is a form of type
(p, q — I). From this result it follows that the sequence (60) is exact (in other
words, a resolution of £"F); on the other hand the sheaves .stfp'q are fine. The
sheaf-theoretic proof of the de Rham theorem (Part l, chap. IV, §7,E) can
therefore be extended to (60): the q-th cohomology group Wpq{M) of the
cochain complex

0 -► H°(M; OP) -+ H°(M; j/"'°) -► * H°(M; sép'q) -► • • • (61)

is isomorphic to H,(M; £"F). If M is a compact kählerian manifold,
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H"(M;£"F)~ H""(M)

the vector space of complex harmonic forms of type (p, q) (Part 2, chap. VII, § 1).
Since for a divisor D on a complex compact manifold M the vector space

L(D) can be written H°(M; (9M(D)), Serre, led by Cartan's results and his
own for Stein manifolds, undertook to apply also sheaf cohomology to the
Riemann-Roch problem. He was immediately confronted with the need to
show that the vector spaces H,(M; !F) have finite dimension for the (9M­
Modules J5" he had to consider; in collaboration with Cartan, he proved that
this is true for arbitrary compact complex manifolds M and any coherent sheaf
J5" [117]. The main idea of the proof is that for sufficiently small open sets U
in M the space of sections H°(U; J5") with the compact open topology is a
Fréchet space; the known properties of these spaces enabled L. Schwartz to
provide tools that finished the proof [419].

A few months earlier Serre had used this technique of Fréchet spaces to
prove probably his most original contribution to that part of the theory,
the duality theorem. He showed that the simultaneous appearance in all
"Riemann-Roch" equalities or inequalities known until that time of a divisor
D and the divisor K — D for the canonical divisor K was not fortuitous, but
a natural consequence of a very general phenomenon, now called Serre duality.
This is valid on an arbitrary compact complex manifold M of dimension n;
for any holomorphic vector bundle E of base M the finite-dimensional vector
spaces

H«(M;f2"®C(E)) and W'^M;^'" ® (9(E*))

are dual to each other in a natural way; in particular, for every divisor D on M

H«(M; 0M(D)) and H"_«(M; CM(K - D))

are in duality.
The proof starts with an extension of Dolbeault's theorem to differential

forms with values in a vector bundle on an arbitrary complex manifold M of
dimension n (compact or not): the group

H«(M;f2',®C(E))

is isomorphic to the q-th cohomology group of the cochain complex

0 -► H°(M; W ® (9(E)) -► A"-°(E) ^ • • -^ AP'«(E) -► • • •

where

Ap-"(E) = H°(M; s/p-q ® (9(E)).

Then the spaces AP'',(E) are given topologies of Fréchet spaces in a natural
way. Using the duality of such spaces and its application to the theory of
currents (Part 1, chap. Ill, §3), Serre proved that the topological dual of

n"(M;Çîp®(9(E))

is isomorphic (as a vector space without topology) to
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Hnc",(M;CY,'p ® (9{E*))

provided that both maps

Ap.«-1(E)^Ap--j(E)^A''--j+1(E) (62)
are strict homomorphisms* This condition is always satisfied when the spaces
H,(M; ÎF ® 0(E)) have finite dimension; such is always the case when M is
compact because £F ® (9(E) is a coherent sheaf ([428], p. 305).

When sheaf cohomology is used, the expression (40) proposed by Severi for
the arithmetic genus is written

dim H°(£"2") - dim H0^"1) + ••• + (- If'1 dim H0^1)

so that for complex compact manifolds this is equal to

dim H"(0M) - dim H"_1(CM) + ••• + (- l)""1 dim Hl{(9M)

by the duality theorem.
This led Serre to introduce, for any coherent sheaf J5" on a compact complex

manifold M of dimension n, what he called the Euler-Poincaré characteristic
of&

Xi&) = dim H°(.SF) - dim H^-SF) + ••• + (- 1)" dim W{&) (63)

also written ^(D) when !F = 0M(D).
He then endeavored to express the Riemann-Roch relation for algebraic

curves and surfaces in the language of sheaves. For curves, he showed that
the classical Riemann-Roch theorem could be written

Z(D)=</ + |Cl,[M]> (64)
where cx is the unique Chern class of the tangent bundle T(M) and / is the
Chern class of the line bundle B(D). For surfaces, he interpreted Kodaira's
formula as

Z(D) = àf(f + Cl) + ^(c2 + cj), [M]\ (65)
where / has the same meaning as above and ct, c2 are the two Chern classes
of T(M). This led him to conjecture that a general Riemann-Roch relation
for projective algebraic manifolds of dimension n should have the form

X(D)=<P(/,c1,c2,...,c),[M]> (66)
for some polynomial P in / and the Chern classes cu c2,..., c„ of T(M) with
rational coefficients.

* A linear continuous map u: E -► F, where E and F are topological vector spaces, is
a strict homomorphism if in the canonical factorization

u: E-^ E/Ker(u)-%(E) - F

w is an isomorphism of topological vector spaces.
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Around the beginning of 1953 D. Spencer (then professor at Princeton
University), whose work until that time had chiefly been concerned with
analytic functions of one complex variable, became convinced of the usefulness
of sheaf cohomology in the theory of compact complex manifolds;
independently of Serre he introduced the Euler-Poincaré characteristic (63) of a sheaf.
He teamed with Kodaira (then at the Institute for Advanced Study) to apply
sheaf cohomology to the problems on which the latter had already been
working for several years. Through A. Borel (then also in Princeton) Serre
was kept informed of their work; in April he sent Borel a long letter [433]
describing his own results, which Borel communicated to Kodaira and Spencer.

The focus of their research in early 1953 was to settle the Severi conjectures
on the arithmetic genus. To avoid confusions, write a(M) the right-hand side
of (40) for a compact n-dimensional kählerian manifold M. For any divisor D
on M and a sufficiently large integer m, there is a positive divisor Sm e |D + CJ
(in the notation of IV) which is a nonsingular hypersurface; Kodaira and
Spencer showed that a(Sm) for large m is equal to a polynomial in m which
they wrote a(m; D, M), and they defined

aM(D) = a(0;D,M) (67)
[so that aM(D) = a(D) when D is itself a nonsingular hypersurface]. In his
earlier paper [275], Kodaira had shown that the number pa(M) defined in (55)
satisfies the relation

Pfl(M) = fl(M)-flM(-K)-(-ir. (68)
Since he had also shown that Pa(M) = pa(M), the point which remained to be
settled was the relation

aM(-K) = (l-(-l)>(M). (69)
In the Note Kodaira and Spencer published in May [279] this was done by
an interpretation of aM(D) in terms of sheaf cohomology, which also identified
aM(D) to the virtual arithmetic genus pa(D) defined by Zariski when M is a
projective algebraic variety.

Their method was to define for each integer r^na subsheaf

ÇYD c QT [also written OJ>(M)]

which they called the "sheaf of germs of meromorphic r-forms multiples of
— D." It is enough to define it when D is a nonsingular hypersurface S; then
for a point x e S, there are local coordinates zt, z2,..., z„ on M in a
neighborhood U of x such that U n S is defined by the equation zx = 0. The
meromorphic r-form t in U is then "multiple of - S" if the form zx. x is holomorphic
inU.

They then wrote

/m(D) = x(Od) for each r ^ n
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and in particular xM(D) = Zm(D), and proved the formula

aM(D) = (-ir1(ZM(D)-z(M)). (70)
Like Zariski's (see IV), their proof proceeded by induction on the dimension
n of M, but using the exact sequence of sheaves for a generic hypersurface S,

o-»n&-»nj,+s-n5:i(S)-»o.

Such uses of exact sequence of sheaves henceforth became a standard
method in all works on algebraic geometry, both classical (i.e., over the
complex field) and "abstract." We will not follow these developments, which
are beyond the scope of this book. We only mention here that that is the way
Serre found that a "weak" form of the Riemann-Roch relation expressing the
Euler-Poincaré characteristic #(D) of a divisor

Z(D) = z(M)-/M(-D) (71)
where #M(— D) is his notation for the virtual arithmetic genus of — D.

VIII. The Grand Finale

In the Spring of 1953 Thom published four Comptes Rendus Notes in which
he summarized the results of the 1954 paper he had just completed [463].
When these Notes reached Princeton, Hirzebruch, who was spending a year
at the Institute for Advanced Study, became convinced from their contents
that they would enable him to prove the Todd conjecture (see II) on the
arithmetic genus.

Thorn's Notes did not mention the Todd genus, but in his 1952 thesis [462]
he had studied a purely topological invariant, the signature (or index) of a
CW-complex M (connected or not). If M has even dimension 2m, the map

(x,y)h-<x^y,[M]> (72)
is a bilinear form on the vector space Hm(M; Q); it is symmetric if m is even,
antisymmetric if m is odd. For m = 2/c the signature of the symmetric form
(72) is therefore an invariant of the homotopy type* of M and is now called
the signature of M, which we write cr(M). By convention cr(M) = 0 when the
dimension of M is not a multiple of 4.

In his thesis Thom showed that if an oriented compact smooth manifold
M is the boundary of an oriented (4/c + l)-dimensional manifold-with­
boundary W, then cr(M) = 0. The proof relies on the commutative diagram
of exact sequences

* Recall that the signature of a quadratic form with real coefficients is the difference
between the number of plus signs and the number of minus signs in the decomposition
of the form as combinations of squares of independent linear forms with coefficients
±1.
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... + H-'l'W) •-* * H2*CM) ■ -"—■> H2*+?»W. MS ► -••U [ V W
j

- » Hjfc.,,(W,'vî, -- > H2k.M) ---;--> H^W) - ->•••'■' J* ,73)
(homology and cohomology with cocfficienls in Q; /: M -* W being the
natural injection?. Here .., t\ w are bijcctivc. If A = Im/* and B -- iver/*,
dim A =■ dim B; A is also the dual vector space of I r,..(M)/B. This implies that
for the bilinear form {72} A is a maximal isotropic subspacc of dimension equal
to one half she Belli number/',», the dimension of H :ik(M); therefore a(M) ■■- 0,
After introducing cobordism Thorn added to thai result the observation thai
a(—M) = -<t."vî, and o(Vf jj \V) — o'M) r- a(W) for two oriented
manifolds of same dimension; finally, for two oriented manifolds of any dimension
M, N, ihe Künne.h formula implies

(t(M x N) = ff(M)(T(N). (74)
The signature rr{M) therefore only depends on the <7<r>;f d^'M) and the map

cltJ(M)-x7(M)

thus defined is a ring homomorphism of Q. into '£..
Recall that Poiurjagin had shown that two oriented cobordant manifolds

have the same Pontrjagin numbers {§ LH); il was therefore natural to expect
relations between signature and Pontrjagin numbers. Using the isomorphism
fi., ~ 7. that he had discovered. Thorn showed that for four-dimensional
compact manifolds

<7«M)-i<Pi.fM]>. (75)
This was generalized by Hirzebruch, who obtained an explicit expression

of <t(M) for any oriented compact manifold M as a linear combination oï
Pontrjagin numbers with rational coefficients.

In general, suppose that for any oriented compact smooth manifold M of
dimension 4r (where r is any integer 5- IS, a rational number t/M'M) is defined
with the properties:

0)t>(-■- M) ■- -i//(M) and t/flNf ] | M')----t^(M) + ^{M'.i for two oriented
manifolds M, M' of saine dimension 4r;

(iïs i/WM x N) = i/.(M'w(N) for two oriented manifolds of dimensions
multiples of 4;

(iii) i/M'M) -■- 0 if M is the boundary of a (4r ■•■ 1)-dimensional oriented mani­
foid-with-boundary.

Thorn's theory showed thai i>(M' only depends on cl!5(M), and
cijjfM) —» yy(M ) is a ring homomorphism of Q. <x) Q into Q.

Hirzebruch showed that there exists a unique sequence of polynomials
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(Kr(T!, T2,..., Tr))r3, ! of weight 4r in the indeterminates T, of weight Aj such
that for any oriented manifold M of dimension Ar

*(M) = <Kr(Pl,p2,...,Pr),[M]> (76)
where the ps (1 ^ j; ^ r) are the Pontrjagin classes of T(M).

His method was a generalization of Todd's procedure for the definition of
his polynomials. He started from a formal power series with constant
coefficient 1 in Q((x))

K(x)= 1 +a1x + a2x2 + •••. (77)
Write the Pontrjagin classes ps (1 < j' ^ r) of T(M) for a compact oriented
manifold M of dimension Ar as elementary symmetric polynomials in the
"phantom" indeterminates t1,t2, ■■-, lr (chap. IV, §1,D), and consider the
product

Write

Then:

K(t1x)K(t2x)--K(trx)= £ Km(Pl,...,pr)x". (78)

K(M)=<Kr(Pl,...,pr),[M]>eQ. (79)

1. if M is the boundary of an oriented (Ar + l)-dimensional manifold-with­
boundary, all Pontrjagin numbers of M are 0 (§ 1,H), hence K(M) = 0;

2. K( — M) = — K(M) since the Pontrjagin classes of M and — M are the same;
3. if M, M' are two oriented 4r-dimensional compact manifolds, K(MjjM') =

K(M) + K(M');
4. from the Wu Wen Tsiin formula for Pontrjagin classes of the tangent bundle

of a product (chap. IV, § 1,D), it follows that

K(M x N) = K(M)K(N).

Thus K(M) only depends on the class cln(M); in the same way as ij/, it defines
a Q-algebra homomorphism

cln M -» K(M)

of SI, ® Q into Q. To prove that K(M) = i/^M), it is only necessary to show
that

K(P2à(C)) = *(P2à(C))

since the classes cln(P2t(C)) generate the Q-algebra SI, ® Q (§ 1,H).
In the case of the signature <r(M), if a is the first Chern class of T(P2t(C)),

the vector space H2*(P2t(C); Q) has a basis consisting of the unique element
ak, and

<a*~ aMT2*(C)]> = 1 (chap. IV, §2)

hence <r(P2t(C)) = 1. On the other hand (loc. cit.), the total Pontrjagin class of
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T(P2k(C)) is equal to (1 + a2)2k+1; in other words, for the Pontrjagin classes p;
00

£ PjX*J = (1 + a2x*)2k+1.

The formal power series corresponding to a, written L(x), is therefore
determined by the condition that the coefficient of xk in (L(x))2k+1 must be equal
to 1 for all k "> 1. By an elementary computation of residues Hirzebruch
proved that

L(x) = ^=. (80)
This gives as values of the first polynomials L;:

Li(Pi) = ^Pi, L2(Pi.P2) = ^(7p2 -pi),

L3(Pl,P2>P3) = ^(62P3 ~ 13PlP2 + 2Pl)­ (81)

These results were published by Hirzebruch in July [233]; but, although he
saw that the Todd polynomials are obtained by the same method applied to
the series x/(l — e x), he could not prove at that time that, for a projective
algebraic manifold of dimension n

X(M) = t(M) = <T„(Ci,c2,...,c„),[M]>. (82)
He mentioned in that Note that Kodaira could prove (82) for complete
intersections, and he began to investigate the relations between the Todd
polynomials of an algebraic manifold M and a fiber space E with base M.

Hirzebruch pushed this idea to a successful conclusion in December of the
same year [234]. The proof is intricate and clever, using results of Kodaira
and Spencer just published [281] and other results of Kodaira still
unpublished. The main idea is to associate to a projective algebraic nonsingular
variety M another variety M*. Let P(M) be the principal bundle with base
space M and structure group GL(n, C) to which the tangent bundle T(M)
is associated; M* is the total space of the bundle with base space M
associated to P(M) and to the action of GL(n, C) on the homogeneous space
GL(n, C)/A(n, C), where A(n, C) is the subgroup of lower triangular matrices;
M* has dimension m = n + jn(n — 1), and it is easily seen that x(M*) = x(M).
From the results Hirzebruch had proved in his first Note it follows that
t(M*) = t(M); the proof of (82) for M is thus reduced to establishing the same
equation for M*.

In the construction of M * it is possible to define an increasing sequence of
holomorphic vector bundles W;, with base space M* and complex rank;', such
that Wm = T(M*) and it is possible to express t(M*) by a combination of
signatures of the line bundles WJ-fWJ-^1. On the other hand, using a paper of
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Kodaira and Spencer [276], Hirzebruch defined a "virtual index" Xi f°r
algebraic varieties, and showed that z(M*) can be expressed as linear
combination of values of Xi for Whitney sums of line bundles W/W,-^. The final
step of the proof appealed to a previous theorem of Hodge: for any compact
kählerian manifold V, namely Zi(V) = t(V).*

From the formula (82) the passage to the general Riemann-Roch formula
was easier, as had been forecast by Serre; the final result obtained by
Hirzebruch can be written, for any holomorphic vector bundle E over the projective
algebraic smooth manifold M

X(&{E)) = K2n(ch{E)^tdM) (83)
where ch(E) is the Chern character of E (chap. IV, § 1 ,E) and tdM is the sum
YJk\{ci,c2,.-,ck) of the Todd polynomials; if u is the sum of the terms in
the cup-product which belong to H2"(M;Q), the right-hand side of (83) is
<u,[M]>.

B. Exotic Spheres

In 1956 Milnor startled the mathematical community with a completely
unexpected theorem. He showed that on the sphere S7 it is possible to define
a structure of C°° manifold not diffeomorphic to the usual one (induced by the
standard differential structure of R8) [340].

The method can be presented in two steps:

I. definition of the "exotic" differential structure on S7 and
II. proof that this structure is not diffeomorphic to the usual one.

I. The sphere S7 (with its usual structure) can be considered the total space
of the Hopf fibration (S7, S4, S3, n) (chap. Ill, § 1,C). The complements U+, LL
of the points — e5, e5, respectively, in S4 <= R5 are the domains of two charts

s+:U+->R4, s^:LL->R4
which are the stereographic projections with poles at — e5 and e5, respectively.
The sphere S7 can be defined as the set of pairs of quaternions (Zi,z2) e H2
(considered as left vector space over H) satisfying the equation

For z2 # 0, if <7+ = s+ o 7t,

o-+(z1,z2) = z2"1z1 eH (=R4)­

For any quaternion u, o+l{u) is therefore the fiber consisting of the pairs of

* In his proof of the Riemann-Roch theorem (65) for surfaces Serre had also used
Hodge's result.
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quaternions

qu

Similarly, for zx ^0 and ov = s^ o %,

and oZl{u) is the fiber consisting of the pairsq uq

for\q\ = 1 (i.e., q e S3).

Vl + |u|2Vl + l«l:
for \q\ = 1.

The diffeomorphism of transition ov o(,+' of (H — {0}) x S3 onto itself is
therefore

+:™~faw\)- (84)
The "exotic" differential structures are defined on S7 by taking the same

charts a+ and ov, but for a diffeomorphism of transition

^■■^Hw'wr) for*6Z' (85)
taking into account that for u # 0, q\-^uhqu~h is an element of the rotation
group SO(4) acting on R4 (with that notation, \\i = \j/0). Call Mh the C00
manifold defined by ij/h.

II. To show that for some integers h, MÄ is not diffeomorphic to S7, Milnor
attached to every oriented seven-dimensional compact C00 manifold M for
which

H3(M; Z) = H4(M; Z) = 0, (86)
an element 2(M) e Z/7Z, invariant under diffeomorphism. Since Thom proved
that Q7 = 0 (§ 1,H), M is the boundary of an oriented eight-dimensional
manifold-with-boundary B. From the exact cohomology sequence

■ ■ ■ -» H3(M; Z) -» H4(B, M; Z) C H4(B; Z) -» H4(M; Z) -» • • •

and assumptions (86) it follows that;'* is bijective. Define on H4(B,M;Q) a
symmetric bilinear form

where /iB M is the fundamental homology class in H8(B, M:Z) (Part 2, chap.
IV, §3,A); let <r(B) be the signature of that form. Now let pi(B) be the first
Pontrjagin class of T(B), and write

4(B) = 0*~1(Pi(B))2,/<b,m>­

Milnor showed that the class of

2q(B) - (7(B)
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in Z/7Z is independent of the choice of the eight-dimensional manifold-with­
boundary B such that dB = M. The proof consists in considering two such
manifolds-with-boundary B x, B2 and the eight-dimensional oriented manifold
C (without boundary) obtained by "gluing" together Bx and — B2 (cf. § 1,G).
Milnor showed that <r(C) = o^Bj) - <r(B2) and that if Pi(C) is the first
Pontrjagin class of T(C) and q(C) = <Pi(C)2, [C]>, then

q(C) = q(Bx) - q(B2).

Hirzebruch's explicit determination of the signature as a function of
Pontrjagin numbers [relations (81)] gave

^(Q = ^<(7p2(C)-Pl(C)2),[C]>
hence

45<j(C) + q(C) = 7<p2(C), [C] > = 0 (mod. 7)

so that 2q(C) - <r(C) = 0 (mod. 7), and therefore

2q(B1) - ^Bj) = 2q(B2) - ff(B2) (mod. 7).

Milnor computed the invariant A(MÄ) for each integer h. There is a
canonical manifold-with-boundary B such that dB = MÄ, namely, the fiber space with
base S4, each fiber of which is the closed 4-ball with frontier n ~1{x) ä S3 at a
point x. For that space B, <r(B) = 1 and q(B) = 4k2 with k = 2h — 1.
So 2q(B) - o-(B) = 8fc2 - 1 = k2 - 1 (mod. 7), and for k # ± 1 (mod. 7),
X(Mh) # 0, whereas A(S7) = 0.

A little later Thom made a complete study of the oriented vector fibrations
£, =(E,S4,R4,7t) with base space S4 and rank 4 ([347], pp. 243-245); he
showed that for every pair of integers k, I such that k = 21 (mod. 4), there exist
such fibrations for which the Pontragin and Euler classes are given by

Pj(0 = ksA, e{£,) = lsA

where s4 is the fundamental cohomology class of S4. Taking / = 1, k = 2
(mod. 4), he showed that the total space M of the corresponding sphere bundle
(set of vectors of E of length 1) is homeomorphic to S7, but is not diffeomorphic
to S7 for k e£ ±2 (mod.7). The corresponding Thom space T(£) is a C°
manifold which admits a triangulation, but there is no C00 differential structure
on T(t^) for which that triangulation is smooth.

Still later Kervaire and Milnor were able to define on the set of diffeo­
morphism classes of C00 structures on S„ for n # 3 a structure of finite group;
for n = 7 that group has order 28, and for n = 11, order 992.

Finally, exotic spheres appeared in a very natural way in classical
differential geometry: E. Brieskorn showed that the intersection of the sphere S4m+1:
YJT0 ZjZj = 1 in C2m+1 with the algebraic variety zl + zf"*1 +zj + ---zjm = 0
is an "exotic" sphere for the differential structure induced by the usual
structure of R4m+2.
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§ 3. The Beginnings of K-Theory

A. The Grothendieck Groups

Barely was the ink dry on Hirzebruch's Note when new problems arose about
the Riemann Roch relation. One was part of the general trend toward an
exclusive use of algebraic tools in algebraic geometry, which of course made
possible the replacement of the complex field C by any algebraically closed
field with arbitrary characteristic. We mentioned earlier (Part 2, chap, VII, § I )
this new "abstract" algebraic geometry, which, in 1950, had already reached
a high level of sophistical ion in the works of van der Waerden, A. Weil, and
Zariski. It received a new impetus when Serre, in 1954, discovered the possibility
of transplanting to that general situation the use of sheaves and sheaf coho­
mology. He showed thai his methods and those of Kodaira based on various
tools from functional analysis could be replaced by purely algebraic ones,
yielding similar results valid in the "abstract" case, such as his duality theorem
(§2,A,VII) and the "weak" form (71) of the Riemann Roch relation, A little
later the precise form (83) Hirzebruch gave to that relation was also generalized
independently by Washnitzer and Grothendieck ([55], pp. 659-698).

The hitter's method was based on extremely original ideas, which were to
have unexpected consequences reaching far beyond algebraic geometry. We
can only examine those consequences that relate to algebraic and differential
topology, and shall therefore, in sketching Grothendieck's work on the
Riemann Roch relation, restrict the exposition to the case of smooth complex
projective algebraic manifolds, although his explicit purpose was to deal with
algebraic varieties over arbitrary algebraically closed fields.

In the late 1950s the growing usefulness or "categorical" notions gradually
convinced mathematicians that "morphisms" rather than "objects" had to be
emphasized in many situations. It was that trend that led Grothendieck to
believe that the Riemann Roch Hirzebruch formula (83) is only a special case
of a "relative" Riemann-Roch relation dealing with a morphtsm /: X -» Y of
smooth projective algebraic varieties; the relation (83) would then be the case
in which Y is reduced to a single point. The problem was thus to replace both
sides of (83) by meaningful generalizations when X, Y and / are arbitrary

For the right-hand side of (83) the "integration" map u h-> <h, |.M] > sending
H"(X;Q) into Q has to be replaced by a map H'(X;Q)-+ H'(Y;Q) that goes
"against" the fact that cohomology is a contravariant functor. Because X and
Y are oriented manifolds, this can be done by using Poincaré duality in a way
"dual" to the way it had been used by Gysin (chap. IV, §2). Let m and n be
the complex dimensions of X and Y, and consider the Poincaré isomorphisms

;,: H'(X; Q) ?. H2m. p(X;Q), j'q. H*(Y;Q) ~ H2, .,(Y; Q).

Then a hnmotnorphism

./■,:H'(X;Q)-H'--(Y;0)
with d -- 2(n — m) is defined as the composite
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H*(X; Q) -^ H2m_p(X; Q) -A* H2m_p(Y; Q) -^U H*+«(Y; Q)

(for n = 0,p = 2m, this is the "integration" H2m(X;Q) -► Q).
On the other hand, there was no obvious way for Grothendieck to define

an expression that would be the generalization of the left-hand side of (83)

z(^r) = Z(-l)'tdimHk(^) (87)
k

for a coherent sheaf ^ on X. Such an expression should belong to the
cohomology ring H'(Y;Q), but how could he define "alternating sums" of
elements ofthat ring which would take the place of dimensions in (87)? It was
here that Grothendieck broke entirely new ground by his concept of what are
now called Grothendieck groups and by the imaginative use he made of them.

Let C(X) be the set of isomorphism classes of coherent sheaves on X, and for
each coherent sheaf J"7 let \F~\ be its class in C(X). Consider the free Z-module
Z(c(x» with basjs (e^ indexed by C(X). Let E(X) be the submodule of that
module generated by the elements

ei&i — ei&'i — ei&"] (88)
for all triples (^, IF',^") of coherent sheaves on X for which there exists an
exact sequence of homomorphisms

0 _► &' _► & -► jt" _> o, (89)
The quotient K(X) = Z(C(X»/E(X) is the Grothendieck group of coherent
sheaves on X. It has the "universal" property that any map

<p:Z<C(X»^G

into a commutative group G such that

<p([^j) = «•»([#"]) + <P([^"J) (90)
for all exact sequences (89), factorizes into

tp: z<c(x» £ K(X) t g (91)
where y (also written yx) is the natural map and i/. is a homomorphism of
groups.

From the fact that X is smooth and compact it follows that any coherent
sheaf & on X has a finite resolution by locally free sheaves

o+-p+-se0+-se1+—-+-sem+-o. (92)
This enables us to define the total Chern class c(F) e H"(X; Q) of a coherent
sheaf: for a locally free sheaf J-?, the Chern classes are by definition the Chern
classes of the corresponding vector bundles on X. Then the total Chern class
of & is defined by considering a finite locally free resolution (92) of & and
taking

c(&) = c(se0)c(sexrlc(se2y- ■ c{sej-^. (93)
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This definition does not depend on the choice of the locally free resolution
(92) of !F. The Chern character da(^) [also written chx(^")] is then defined
by the general formula (chap. IV, § 1,E); it satisfies the relation

ch(J^) = ch(J^') + ch(J2r") (94)
for every exact sequence (89). Since it is obviously invariant under
isomorphism, it factorizes as J^i—»^(J"7)!—►ch(y(J5")) for a homomorphism
ch:K(X)^H'(X;Q).

Now consider a morphism /: X -> Y of smooth compact algebraic
manifolds. The "relative" objects corresponding to the "absolute" cohomology
groups YV(lF) are the Leray "higher direct images" by / of a coherent sheaf
& on X, which we have written Jfq(f, &) (Part 1, chap. IV, § 7,E), and which
were written Rqf,(^) by Grothendieck [R0/^) = f\{&) is the direct image
of &, written also /#(^")]. He proved that the R"f\(&) are coherent sheaves
on Y and that Rqß(^) = 0 when q is large enough. The finite sum

YJ{-i)"yARqM^))=(p(^) (95)
«

is therefore defined in the group K(Y). It obviously only depends on the
isomorphism class of &. The crucial fact is that it only depends on the class
yx{^) in K(X), and if we write it as

MVxW)

we define a homomorphism of groups/,: K(X) -> K(Y). This amounts to saying
that

q>(&) = <p(&') + q>i&") (96)
in K(Y), for every exact sequence (89) of coherent sheaves. From that sequence
an exact cohomology sequence can be derived:

•■■->• Rqfi(^') -> R"f\(^) -> R"f\{&") -» Rq+1f\(^') -*■•■;

and since this sequence is finite, the alternating sum of the values of yY for the
sheaves of the sequence is 0, which proves (96).

With these definitions the Riemann-Roch-Grothendieck theorem may be
formulated:

chY(/i(x))~ tdY = /„(chxM- tdx) (97)
in H'(Y; Q), for every x e K(X). It is easy to check that it reduces to equation
(83) when Y is reduced to a point.

The strategy of the proof imagined by Grothendieck was completely
different from Hirzebruch's method: its principle was to decompose /: X -* Y as
the immersion h: X -> X x Y sending X onto the graph of/, followed by the
projection g:X x Y -> Y; of course he had to prove that (g ° h), = g,° h. The
case of the projection g is fairly easy, but the immersion h requires intricate
arguments.
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B. Riemann-Roch Theorems for Differentiable Manifolds

Since the Riemann-Roch-Hirzebruch theorem dealt with vector bundles, it
would have seemed more natural to generalize it for locally free sheaves
instead of going to the larger category of coherent sheaves. Unfortunately, the
higher direct images of locally free sheaves are not locally free in general, which
explains Grothendieck's approach. However, if a "Grothendieck group"
KX(X) is defined by replacing coherent sheaves by locally free ones in the
definition, there is a natural homomorphism K1(X)->K(X), and
Grothendieck proved that (for smooth projective algebraic manifolds) it is bijective.

In so doing, he used the language of abelian categories (Part 1, chap. IV,
§ 8) with which he had already been familiar for some time [215]; for such a
category C, the group K(C) can be defined in the same way as in the particular
case of coherent sheaves, since the concept of exact sequence applies to abelian
categories.

In particular, the abelian category of complex vector bundles on X may be
considered instead of the category of their associated locally free sheaves, and
then X may be any space. Furthermore, instead of exact sequences to define
the elements (88), the Whitney sum of vector bundles may be used here;
consider the subgroup generated by the elements

e[E©F] — ß[E] ~ ß[F]

for all pairs (E, F) of vector bundles over X. When X is paracompact, both
definitions are in fact equivalent, since the existence of an exact sequence
0 -> E' -> E -> E" -* 0 of vector bundles implies that E is isomorphic to
E' © E".

In 1959 [34] Atiyah and Hirzebruch investigated the group K(X) [also
written KC(X)] for the category of complex vector bundles over a finite­
dimensional C W-complex X. They noted (as Grothendieck had already done)
that K(X) has the natural structure of a commutative ring stemming from
the tensor product of vector bundles: y(E)y(F) is defined as equal to y(E ® F),
and there is a unit element, the class of trivial line bundles on X. The contra­
variant functor K: X i—► K(X) is defined by associating to any continuous map
/: X -► Y the map y(F)h->y(/*(F)) of K(Y) into K(X); K({x0}) is naturally
isomorphic to the ring Z for any point x0 e X, and the embedding {x0} -> X
defines a surjective ring homomorphism K(X) -> K({x0}); its kernel R(X) is
an ideal in K(X).

The classification theorem of vector bundles (chap. Ill, § 2) shows that R(X)
may be identified to the group [X,Bjj] of homotopy classes, where U is the
"infinite" unitary group. With Bott's periodicity, which establishes a weak
homotopy equivalence between B^ and il2(BlJ) (chap; V, §2,B), this enabled
Atiyah and Hirzebruch to establish the central result of their investigations:
the natural map

ß:K(X)®K(S2)^K(X x S2)
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deduced from the product of vector bundles on X and S2 is an isomorphism
of rings, and the diagram

K(X)®K(S2) —^—► K(X x S2)

ch ® ch ch (98)
H-(X;Q)®H-(S2;Q) > H'(X x S2:Q)

a

is commutative (a being the cup-product).
This result was a base for their proof of a Riemann-Roch relation

analogous to Grothendieck's for compact C3 manifolds X, Y and a continuous map
/: X -> Y. Some restrictions on these data have to be made: the difference of
the dimensions of X and Y must be even, and the relation

w2(Y) = /*(w2(X)) (99)
between the second Stiefel-Whitney classes of the tangent bundles of X
and Y must be satisfied. The Atiyah-Hirzebruch theorem then asserts the
existence of a homomorphism of groups

g: K(X) - K(Y)

such that

ch(0(x))~ AfT(Y)) = /,(ch(x)~ A(T(X)) (100)

for all x £ K(X). Here, for any vector fibration £,, A(£) is a polynomial in the
Pontrjagin classes of £ defined by the Hirzebruch method (§2,A, VIII): if the
Pontrjagin classes are considered elementary symmetric polynomials in the
"phantom" indeterminates tj, then A(£) = K(l) for the power series

K(x) = El a(tjX)
j

where

fl(x) = iV^/sh(è7^). (101)
The proof follows a pattern similar to Grothendieck's: / is assumed to be C00,
and there is a smooth embedding g: X -> S2„ for n large enough. Then / is
factored into v° u, where

» = (/.9):X-YxS2,

and v is the first projection Y x S2„ -> Y. Then (100) is proved in succession
for v and for u; for v the fundamental diagram (98) is used.

Shortly afterward [35] Atiyah and Hirzebruch developed their study of
K(X) into a "generalized cohomology" (see §5,A). After 1960 the concepts
of K-theory invaded many parts of mathematics, particularly algebra and
number theory (see [33]).
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§4. S-Duality

The general idea of duality has been one of the guiding concepts in algebraic
topology since Poincaré, and we saw in the preceding chapters the various
forms it has taken, particularly after the introduction of cohomology. The
properties of cohomotopy groups (chap. VI, § 6) pointed toward a possible
duality theory for homotopy, but these groups n"{X) are not defined for
arbitrary values of n > 0 and X, in contrast with the homotopy groups 7r„(X).
In 1953 E, Spanier and J.H.C, Whitehead endeavored to define in homotopy
theory a genuine duality [441]. Given two pointed spaces X, Y, they wrote
SX, SY for their unreduced suspensions (Part 2, chap. V, §2C) and they
considered the infinite sequence of sets

[X; Y] -^ [SX; SY] -^ [S2X; S2Y] -» • ■ ■ Â [S"X; S"Y] -» ■ ■ ■

where the map S: [/] -> [S/] is the Freudenthal suspension. Recall that for
fc "> 2, [S*X; S* Y] is a commutative group and S is a homomorphism of groups
(chap, II, §3D); then they define the direct limit commutative group

{X;Y}=lim[S*X;S*Y]. (102)
k

The elements of {X; Y} are called S-homotopy classes or S-maps; two
continuous maps g: S"X -»• SPY, h: S"X -»• S'Y belong to the same S-map if and only
if for some n > Max(p, q), S"~pg and S"~qh are homotopic. Note that for some
finite CW-complexes the map S: [S"X;S"Y] -► [S"+1X;S"+1Y] is bijective for
large n (chap. II, § 6,E).

These definitions allow us in particular to define generalized homotopy and
cohomotopy groups for every dimension p "> 1 :

ZP(X) = {Sp; X}, Z"(X) = {X; Sp}, (103)
S-maps may be composed: if the maps /: S*X -► S*Y, g: ST -► S*Z are in

the respective classes a e {X; Y}, ß e {Y; Z} for some large k, ß ° a e {X; Z} is
by definition the class of g of: S'X ->S*Z, This defines the S-category, in
which the objects are the finite CW-complexes, and the morphisms are the
S-maps, The suspension

S. {X;Y}^{SX;SY} (104)
is defined in an obvious way. If/: S*X -> S*Y is in the class a e {X; Y}, then
Sa is the class of Sf: S*+1X -»• S*+1 Y; the map (104) is obviously bijective.

Since the suspension defines isomorphisms (Part 2, chap. V, §2,C)

H,(X) 2; H,+1(SX), H"+1(SX) 2; H«(X)

in homology and cohomology, any S-map a. e {X; Y} defines in a natural way
homomorphisms in homology and cohomology

a„; H,(X) -» H,(Y), a*: H«(Y) -» H«(X): (105)
iff: S*X -* S* Y is in the class a, a^ is the unique homomorphism for which the
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diagram

H, (X)

Ht+à(S*X)

-*-> Ht(Y)

H.^(S*Y)/. lq+k

is commutative, and similarly for cohomology.
An ^-equivalence for the S-category is an element a e {X; Y} that has an

inverse a-1 e {Y;X}. This is the case if and only if a„.: HS(X)->HS(Y) is
bijective for every q > o: if that condition is satisfied, since S*X and S*Y
are simply connected CW-complexes for k "> 3, a map /: S*X -* S*Y which
belongs to a is a homotopy equivalence by the second Whitehead theorem
(chap.II,§6,B).

The technical tool at the basis of the S-duality theory of Spanier and
Whitehead is the notion of ^-deformation retract for a CW-subcomplex A of
the CW-complex X: the class ; e {A; X} of the natural injection A -* X is an
S-equivalence; there is therefore an inverse r1 e {X; A}, called an S-retraction.

S-duality is concerned with finite euclidean simplicial complexes (which we
call polyhedra for short) contained in a fixed sphere S„; its purpose is to extend
Alexander duality. Suppose X c S„ is a polyhedron; then an n-dual of X is a
polyhedron D„X cS.-X that is an S-deformation retract of S„ — X. Such
a space is not uniquely determined, but the S-homotopy type is the same for
all of them, and X is an n-dual of D„X.

The main result of Spanier and Whitehead was the definition of a homo­
morphism of groups

D„:{X;Y}^{D„Y;D„X} (105)
for all pairs of polyhedra X, Y contained in S„; it has the properties expected
from a "duality":

1. if X c Y and i e {X; Y} is the class of the natural injection X -> Y, then
D„Y c D„X and D„i = i, the class in {D„Y;D„X} of the natural injection
D„Y^D„X;

2. if X. Y, Z are three polyhedra contained in S„, and a e {X; Y}, ß e {Y; Z},
then

DK(ß o a) = D„a o DJ;

3. for all a e {X; Y}, D„(D„a) = a;
4. for a e {X; Y} and p < n, the diagram

HP(X)

H"-pl(D„X)
(D„û<)*

HP(Y)

H"-p-1(D1IY)
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commutes, where the vertical arrows are the Alexander duality
isomorphisms;

5. for X = Sp with p < n, one may take D„X = S^p-!, and D„ can be
considered a duality in homotopy theory

?;Zp(Y)^Z"-"-1(D„Y)

such that the diagram

(106)

£p(Y)

Z"-p-1(D,,Y)

H, (Y)

Hn-"-1(DnY)

commutes; z is the Hurewicz homomorphism, and t* is defined by

z*{ß) = ß*{sn.p.l)
for

/?eZ"-"-1(D„Y)={D„Y;S„_p_1}.

The proofs are broken down into a long series of lemmas, most of which
use the straightforward combinatorial methods of simplicial homology with
which Whitehead was familiar from his work on combinatorial homotopy.
The major part of the proof is the definition of the map D„ in (105); it turns
out that this is fairly easily done when a map

A„:[X;Y]^{D„Y;D„X}

can be defined in a reasonable way for two polyhedra X, Y contained in S„
such that X n Y = 0. Let /: X -> Y be a simplicial map and W be a
"polyhedral mapping cylinder" of/ having the same homotopy type as the usual
mapping cylinder Xf; it may be supposed that W (containing X and Y as
subpolyhedra) is contained in a sphere S, for some q > n. There are q-duals
X*, Y*, and W* of X, Y, W in S,, such that W* c X* u Y* and

D,X = S«-"D„X c X*,

Then S-maps

D.Y-ÙY* •W*

D,Y = S"-"D„Y c Y*.

•X*AD,X
can be defined, where i, i* are S-inclusions and r, r* S-retractions. The element
A„([/]) e {D„Y;D„X} is then defined by

A„([/]) = S"-'J(roi*or*oi),

using the fact that S has an inverse S_1 in {D,Y;D,X}. Showing that the
element A„([/]) is well defined, independently of all the choices made,
constitutes the bulk of the proof.

The notion of n-dual can be extended to any finite CW-complex X; X has
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the homotopy type of a polyhedron, and any polyhedron is homeomorphic
to a subpolyhedron of some Sp. Two finite CW-complexes X, X* will then be
called weakly p-dual if there are S-equivalences Ç:X-*Xlt £,*: X* -> X"f such
that X1 and X* are p-dual subpolyhedra of Sp. It is then possible to define

Dp:{X;Y}^{Y*;X*}

in an obvious way when X*, Y* are respectively weak p-duals of X, Y.

§ 5. Spectra and Theories of Generalized
Homology and Cohomology

Around 1959 several mathematicians, working in different directions, were led
to consider systems of covariant functors h„: C -* Ab (resp. contravariant
functors h": C° -* Ab), where n takes all values in N or Z, and C is a
subcategory of the category T of topological spaces. These functors verified all
Eilenberg- Steenrod axioms for homology (resp, cohomology) with the
exception of the dimension axiom: the groups h„(pt.) [resp. h"(pt.)] might be /0 for
n ¥= 0. The theory of such functors became known as generalized (or
extraordinary) homology (resp. cohomology).

A. K-Theory as Generalized Cohomology

The first of these theories to appear in print was Atiyah and Hirzebruch's [35].
They restricted the contravariant functor K that they had defined after
Grothendieck (§ 3,B) to pointed spaces X equipped with a structure of finite
CW-complex and pairs (X, Y), where Y is a sub-CW-complex of the finite
CW-complex X. At first, for n ^ 0 and for such a pair (X, Y), they defined, by
means of the iterated reduced suspension S"X = S„ a X (Part 2, chap. V, §2,C
and D),

K""(X, Y) = K(S"(X/Y)), (107)
K_"(X) = K""(X, 0) (108)

so that K°(X) = K(X), K°(X, Y) = K(X, Y). Using the Puppe exact sequence
(chap. II, § 5,D), they obtained a long exact sequence

•••->• K"""1 (X) -^ K-"(X, Y) -► K-"(X) -► K-"(Y) -►■■•-► K°(X) -► K°(Y)
(109)

and a similar one for the "reduced" functor R. Applying the latter to the pair
(X x Y, X v Y), they got the split exact sequences

0 -► R-"(X a Y) -► R-"(X x Y) -► R-"(X v Y) -► 0.

From the Bott isomorphism (§3,B) they derived an explicit isomorphism

K""(X,Y)2;K-"-2(X,Y)
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so that the exact sequence (109) could be extended to a doubly infinite exact
sequence

■ ■ ■ -» K"(X, Y) -» K"(X) -» K"(Y) -^ K"+1 (X, Y) -» • ■ ■ (ne Z).

This led them to consider that the K" and the homomorphism d (for n e Z)
defined a "generalized" cohomology, for which they could also prove the other
Eilenberg-Steenrod axioms, except the dimension axiom, since K"(pt.) = Z
for n even, K"(pt. ) = 0 for n odd.

They also filtered each K"(X) by the subgroups

K"p(X) = Ker(K"(X) -► K"(XP_1)) (110)
where Xp is the p-th skeleton of X. This gave them a spectral sequence linking
ordinary cohomology and K-theory; they found

Ef ~Hp(X;K"(pt,)), (111)
E£~ Kp(X)/Kp:?(X). (112)

B. Spectra

In 1958 E. Lima wrote a thesis in Chicago under the guidance of Spanier
[327]. He noted that S-duality, as defined by Spanier and Whitehead, did not
immediately extend to subspaces of S„ more general than finite CW-complexes,
For instance, in R2, if X is a circle and Y is the Alexandroff subspace
defined in Part 1, chap. IV, §2, it is easily verified that {X;Y} =0 but
{S2 — Y; S2 — X} s Z. Lima undertook to generalize S-duality by
introducing what he called spectra. Instead of considering only the successive
suspensions

X-^SX-^S2X^----^S"X^--­

of a space X, he took a more general sequence (X„) of spaces together with a
sequence of continuous maps

/V SX„-► X„+1. (113)
He showed that it is possible to define morphisms of spectra in a natural way,
so that spectra become a category. Using this category (in which he called the
objects "direct spectra") and a similar one with "reversed arrows," called
"inverse spectra," he was able to generalize the notion of "n-dual" in such a
way that an arbitrary closed subset X in S„ has S„ — X as an n-dual, and for
a second closed subset Y of S„ there is a natural isomorphism

{X;Y}S2;{S„-Y;S„-X}C

where both sides are generalizations of the Spanier-Whitehead group {X; Y},
but the left-hand side is based on "direct spectra" and the right-hand side on
"inverse spectra."

A little later Spanier described another generalization of S-duality based
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on a special kind of spectrum: for a pointed space M,

X„ = <-f(M;S„)

with the usual compact-open topology (chap. II, § 2A); pn is the natural map

p„:S<-f(M;S„)^(M;S„+1)

that associates to Su: SM -> S„+1 the composite map

M-^S„->S„+1,

C. Spectra and Generalized Cohomology

Recall the fundamental relation between Eilenberg-Mac Lane spaces and
cohomology [chap. V, § 1,D, formula (43)]

[X;K(iLn)]~H"(X;n) (114)
which can be extended to

[X/Y;K(n,n)]^H"(X,Y;n). (115)
Recall also the existence of a weak homotopy equivalence

K(n,n)^nK(n,«+ i)
(chap. IV, § 2,C), which can, by the consideration of adjoint functors, be written
as a weak homotopy equivalence

p„:SK(n,n)^K(n,n+ 1). (116)
Since the suspension defines isomorphisms

H«(X;II)~H«+1(SX;n),

the iteration of the Freudenthal suspension homomorphism defines
isomorphisms of groups for q < n,

[X;K(n,q)]^[S"-«X;K(ILn)]

so that relation (114) may be written

H«(X;n)~lim[S"X;K(n,q + n)]. (117)

The maps p„ define the sequence (K.(IL n)) as a spectrum, the Eilenberg-Mac
Lane spectrum, written K(IT). The relation (117) led to the consideration, for
any spectrum

h: bx —> b2 —>••■—> b„ —*•• ■

of pointed CW-complexes, and, for a finite pointed CW-complex X, of a
generalized cohomology group

H|(X) = lim [S"X; E,+„]. (118)
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For a CW-subcomplex Y of X, formula (115) similarly leads to the definition
of relative cohomology groups

H|(X,Y) = H|(X/Y). (119)
It can then be checked that these generalized cohomology groups satisfy

the Eilenberg-Steenrod axioms, with the exception of the dimension axiom,
which is replaced by

H|(pt.)~lim7r„(E„+,).

The Atiyah-Hirzebruch spectral sequence (111), (112) generalizes to any
cohomology theory defined by a spectrum: simply replace K* by H| in the
definition.

In 1959 [93] E.H. Brown characterized contravariant functors
F: CW° -» Set

defined in the category of pointed CW-complexes, which can be written

X^[X;Y]
for a CW-complex Y. It is necessary and sufficient that they satisfy the two
following conditions.

1. For any wedge Y„X. of pointed CW-complexes (with arbitrary set of
indices), the map defined by the injections if Xß -* \/xXx

F((iJ):F(\/Xa)-nF(XJ
is bijective.

2. For any pair (Als A2) of CW-subcomplexes of a CW-complex X, such
thatX = Ax uA2,let

i1:A,->X, i2:A2->X, i21;A1nA2-»A1I i12: A1 n A2 -> A2
be the natural injections. Then for any pair of elements

xeF(A1), x2eF(A2)
satisfying the condition F(i21)(x1) = F(i12)(x2), there is a y e F(X) such that
F(i1)(y) = x1andF(i2)(y) = x2.

When F satisfies these two conditions the construction of Y is done in the
following way. By induction on n, an increasing sequence

{y0}-=YlCY2C---CY„C--­
and a sequence of elements u„ e F(Y„) are defined simultaneously to verify the
two conditions:

(i) F(i)(u„) = «„_! for the natural injection i: Y„_x -* Y„.
(ii) Let T„n: nq(Yn) -► F(S,) be defined by

TUn([/]) = F(/)(u„);

then T„ is bijective for q < n, surjective for q = n.
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That construction is done by attaching n-cells to Y„_1 in a suitable way; the
techniques are similar to those used in the proof of the second Whitehead
theorem (chap. II, § 6,B).

From the Brown theorem it easily follows that any generalized cohomology
defined for CW-complexes can be defined by a spectrum E = (E„) such that
£2E„+1 is weakly homotopically equivalent to E„.

D. Generalized Homology and Stable Homotopy

In 1954 G.W. Whitehead studied the homotopy of the smash product X a Y
of two pointed CW-complexes X, Y. He had the idea of considering the
filtration (Xp a Y) of X a Y, where X" is the p-skeleton of X. This gave him
a spectral sequence with E2 terms which, for p, q satisfying some restrictions,
are

E2^Hp(X;tt,(Y))

and the terms Ex are given by a suitable filtration on

7T.(X A Y) = 0 7T„(X A Y).
n

When Y = K(IL n), it follows from that spectral sequence that for given p
and large n,

ttp+„(X a K(II, n)) =. Hp(X; H). (120)
In particular, when X = K(G, m) with large m, the homology of Eilenberg­
Mac Lane spaces is

Hp+m(G,m;TÏ) =. np+m+n(X a Y) ~ 7rp+„+m(Y a X) ~ Hp+„(ILn;G)

a "symmetry" which had been noted by H. Cartan in his earlier work on that
homology [110].

Relation (120) can be written

H„(X; II) ~ lim nn+q{X a K(II, n)). (121)

When Lima introduced the idea of spectrum, G. Whitehead, by analogy with
(121), considered, for an arbitrary spectrum E = (E„), the direct limit

HJ(X) = lim nn+q{X a E„) (122)
ft

for the system of homomorphisms

nn+q{X a E„)—Un„+l+qQ(. a SE„) "-*n„+l+q(X a E„+1).

He called (122) the generalized homology groups for the spectrum E.
In a paper which laid the foundations for both the generalized homology

defined by (122) and the generalized cohomology defined by (118), he showed
that definition (122) satisfies the Eilenberg-Steenrod axioms for homology
(except of course the dimension axiom), and that Alexander and Poincaré
duality can be generalized in that context [489]. There is again a spectral
sequence going from the E2 terms
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E^Hp(X;HE(pt.))
to the graded module associated to a filtration on Hp+(J(X).

The "coefficient groups" Hp(pt.) are here the stable homotopy groups

o-„(E) = lim nn+k{Ek). (123)
k

It is therefore important to be able to obtain information on these groups for
applications of generalized homology.

In the case Ek+1 = SEt for all k, J.F. Adams discovered in 1958 [1] a
remarkable spectral sequence that links the cohomology of the Steenrod
algebra sép for each prime p to the p-components of the stable homotopy
groups limt7r„+t(S''X).

The construction of that spectral sequence is very involved and impossible
to describe here in detail. The main idea is to build a decreasing sequence of
space for each n

S"X = Y0 ^ Y1 ^ Y2 ^ • • • ^ Ys ^ • • •

such that (J)s H'(YS, Ys+1;Fp) is a free resolution of H'(X; Fp) considered as a
left module over the Steenrod algebra s/p. In the spectral sequence the groups
E" and E^ are quotients of subgroups of the relative homotopy groups

then E" is one of the quotients of a suitable filtration of 7r,_s(X), and

Es2' =* Ext^p(H-(X; Fp), Z/pZ). (124)
Here Ext^o(H"(X; Fp), Z/pZ) is the Ext functor of Cartan-Eilenberg (Part 1,
chap. IV, § 8,A); it is given a grading (E^H^X; Fp), Fp)() arising from the
gradings of H'(X; Fp) and of the Steenrod algebra sép; the result (124) is derived
from the consideration of the Hurewicz homomorphisms.

Later Adams' spectral sequence was generalized to any spectrum [459]. He
had chiefly used it in his solution of the Hopf invariant problem (chap. VI,
§ 5,D) but it was very useful in the various cobordism.theories developed after
1960 [458].

In 1960 the spectra used in algebraic topology were the Eilenberg-Mac
Lane spectrum, giving the "ordinary" homology and cohomology theories,
and the spectrum BU obtained by taking E2„ = B^ and E2„+1 = U, with the
corresponding homomorphisms U -> QBV and Î1U -> Z x Bv (the second
being the Bott isomorphism); K-theory is the corresponding cohomology
theory, and similar spectra were later defined for all classical groups. Finally,
the Thom spaces MO(/c) and MSO(/c) also define spectra, and similar ones
were also defined for all classical groups.

Generalized homology and cohomology have provided a host of new tools,
built on the model of the classical theories, and that have shown their value
in the uninterrupted progress made by algebraic and differential topology
since 1960 [459].
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Index at a point of a piecewise

continuous vector field, 170, 202
Index of a critical point, 227
Index of a fixed point, 200
Index of a quadratic form, 227
Index of coincidence, 312
Index of the form E,.,., 265
Index theorem, 265, 267
Infinite chain, 76
Infinite dimensional projective space

(real, complex, quaternionic), 369
Initial object, 154
Injective module, 143
Injective resolution, 144, 148
Injective sheaf, 144
Integration along the fiber, 437
Intersection number, 21
Intersection of a subset with a concrete

complex, 116
Intersection of two concrete complexes,

116

Invariance problem, 43
Inverse image of a concrete complex, 138
Inverse image of a fiber space, 390
Inverse limit of modules, 74
Inversely related orientations, 20
Irregularity of an algebraic surface, 580
Isomorphism of fiber spaces, 580
X-isomorphism of covering spaces of a

space X, 390
Iterated bar construction, 476
Iterated Cartan construction, 477
Iterated loop space, 334

Jacobi field, 265
Jacobi identity for Whitehead products,

337



644 Subject Index

James exact sequence, 494
Join of two spaces, 34, 218
Juxtaposition, 274

Kählerian manifold, 256
Kernel of two maps, 153
Kernel of two morphisms, 154
Knot, 308
Kronecker index, 21, 53
Kronecker integral, 176
Kiinneth formula for chain complexes, 92
Kiinneth formula for simplicial

homology, 56
Kiinneth formula for singular homology,

103

Lefschetz duality, 219
Lefschetz formula, 199
Lefschetz number, 200
Left adjoint of a functor, 155
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Monodromy principle, 298
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Nondegenerate critical point, 227
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Normal bundle, 393
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Nullity of E,,, 265
Numerable fiber space, 41.7

Obstruction, 342, 346
Octonions, 320
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Order of a point with respect to an image

/PC), 176
Ordered chain, 41
Orientable homology n-manifold, 211
Orientable manifold, 19
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438
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Orientation of a spherical fibration (or
vector fibration), 428
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Oriented manifold, 19
Oriented manifold-with-boundary, 574
Oriented spherical fibration (or vector

fibration), 427

Paracompactifying family, 132
n-parameter variation, 264
Partition of unity, 61
Path lifting theorem, 296
Pencil of curves on a surface, 249
Perforation of order n, 377
Permanent cycle, 448
Picard-Lefschetz formula, 252
Piece wise affine map, 170
Poincaré conjecture, 35
Poincaré duality, 21, 210, 212
Poincaré-Bohl theorem, 180
Pointed space, 331
Points of coincidence, 312
Polyhedra in general position, 53
Pontrjagin class, 427, 429
Pontrjagin numbers, 575
Pontrjagin product, 240
Pontrjagin product in homology, 241
Pontrjagin square, 532
Positive divisor, 582
Postnikov invariant, 463
Presheaf, 126
Primitive element in a Hopf algebra, 239
Primitive harmonic form, 256
Primitive pair, 72
Principal divisor, 582, 584
Product of categories, 155
('-product of cohomology classes, 512
Projection of a fibration, 389
Projection spectrum, 71
Projective module, 147
Projective resolution, 147
Proper embedding, 60

Properly discontinuous group, 293
Property (P), 175
Pseudomanifold, 174
Pseudomanifold-with-boundary, 174
Pull-back of a fiber space, 390

Quotient space, 214
Quotient topology, 214
Quotient vector bundle, 393

Ramified covering surface, 294
Rank of a Z-module, 90
Rank of a semi-simple Lie group, 234
Rank of a vector bundle, 392
Rational homology, 42
Realizable homology class, 561, 563
Realization of a combinatorial complex,

40

Reduced cohomology, 109
Reduced cone, 216
Reduced homology, 108
Reduced mapping cylinder, 220
Reduced product (James-Toda—), 494
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Regular sphere space, 388
Relative Borel-Moore homology, 145
Relative cohomology, 108
Relative CW-complex, 223
Relative dimension of a relative

CW-complex, 223
Relative homology (simplicial—), 58, 108
Relative homotopy between two maps,

348

Relative homotopy group, 349
Relative homotopy set, 348
Relative Hurewicz homomorphism, 355
Relative Hurewicz isomorphism

theorem, 355
Relative singular cohomology, 79
Relative singular homology, 69
Relative unit cocycle, 120
Representable functor, 153
Restriction of a fiber space to a subspace

of the base space, 391
Restriction of the structural group of a

principal fiber space, 396
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Right derived functor, 148
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S-deformation retract, 604
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S-homotopy class, 603
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S-retraction, 604
Sard's theorem, 61
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Section of a fibration over the base space,
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Serre fibration, 400
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Sheaf (in Leray's sense), 124
Sheaf induced over a subspace, 131
Sheaf of A-algebras, 127
Sheaf of A-modules, 126, 127
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n-simple space, 338
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n-skeleton of a simplicial complex, 37,

110,340
Skew tensor product, 235
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Special Grassmannian, 225
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Spherical cycle, 455
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space, 557
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Triad, 353
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Triple, 109
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Trivial fiber space, 390
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416
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Unramified covering surface, 294
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Unreduced suspension, 217
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